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DESIGN-DEPENDENT LOADS IN TOPOLOGY OPTIMIZATION

Blaise Bourdin
1

and Antonin Chambolle
2

Abstract. We present, analyze, and implement a new method for the design of the stiffest structure
subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S
of a reference domain, and the complement of S is made of two other “phases”, the “void” and a
fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem
we consider is to minimize the compliance of the structure S, which is the total work of the pressure
and internal forces at the equilibrium displacement. In order to prevent from homogenization we add
a penalization on the perimeter of S. We propose an approximation of our problem in the framework
of Γ-convergence, based on an approximation of our three phases by a smooth phase-field. We detail
the numerical implementation of the approximate energies and show a few experiments.
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Introduction

Topology optimization is a rigorous framework for the design of structures with optimal properties. This
method is very general and many different applications have been imagined, see for instance [8]. However, most
of the theoretical literature deals with the so-called “minimum compliance” problem, that is, how to design the
stiffest (or least compliant) structure under a given fixed load (refer to [30] and [29] for the pioneering works,
to [2] for an exhaustive study of the homogenization method or, again, to [8]). A limitation of these approaches
comes from the fact that the loads are supposed to be given and cannot depend on the object to be designed
itself. For instance, the design of pressurized structure likes dams, pipelines or containers where the loads are
a function of the design is not within the reach of these methods. Similarly, they do not allow for the design of
structures under gravity forces, since in these situations the application point of the force, that is, the structure
itself, is the unknown of the problem.

As the theoretical and numerical tools for the “classical” problems seem now to have reached maturity, the
interest tends to shift toward topology optimization under design-dependent loads, as in the examples mentioned
above. For instance, in [28] and [15] numerical techniques that deal with the pressure loads are presented.

In this paper, we address two types of design-dependent loads for the minimum compliance: a pressure load,
which depends on the shape and the topology of the unknown structure and a volume load like a gravity force,
for instance. Our goal is to give a rigorous modeling, a mathematical study and a numerical implementation
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of this problem. The basic ingredients are the “perimeter penalization method” and the idea of variational
approximation by Γ-convergence. The former, detailed in [27] and analyzed in [4] allows for the well-posedness
of the problem but is also what makes our numerical implementation possible. The latter, which is also closely
related to the “phase field” or “diffuse interface” methods in material science has been used by both authors for
various problems related to image processing, fracture mechanics or epitaxially strained crystalline thin films
(see [10–12, 14]). An alternate approach for some similar problems has been studied by Osher and Santosa
in [36]. In order to achieve some properties of the natural vibration mode of a drum, they consider a topology
optimization problem with a perimeter penalization. They represent the unknown structure as the level set of
a function. The evolution of this function towards the optimum is governed, in part, by the mean curvature
motion equation, which corresponds to the gradient flow of the surface energy in our method. See also [38] for
another approach, also based on level sets.

This paper is organized as follows: in Section 1, we give a mathematical formulation of our problem and
introduce a weak formulation, where the design is represented by a phase indicator. Then, we present a two
step approximation scheme based on a “fictitious material” (in Th. 1.3) and a “phase-field” (in Th. 1.5) model.
In Section 2, we detail the numerical implementation and present several experiments. Section 3 is devoted to
the proof of the convergence of the phase-field approximation and Section 4 to that of the fictitious material
problem. The short Section 5 investigates some properties of the interfaces, in the two-dimensional case only.
Lastly, in the appendices, some useful properties of the Γ-convergence are recalled and two technical lemmas
are proved.

1. Statement of the problem and of the main results

1.1. Notations and statement of the ideal problem

In the following, we consider an open bounded domain Ω ⊂ R
N , with Lipschitz-regular boundary, where the

optimization problem will take place. In practice, N = 2 or 3, but except when otherwise stated most results
of this paper are valid in any dimension. In this domain, three “phases” are to be distributed: the structure or
“solid” phase, i.e., a part S ⊂ Ω occupied by some elastic material, the “liquid” L, and some “void” V , filling
the remaining of Ω. S,L, V thus form a partition of Ω. At each point of x ∈ Ω, we define a function p : Ω → R,
the value of the pressure field if some liquid is present. Since we do not know a priori the set L, we have to
define p in the whole domain Ω, even if it has a physical effect only at the interface ∂L. Similarly, we define a
force field f : Ω → R

N that is to be applied at each point of the structure. We assume that f and p are smooth
and that p does not vanish in Ω.

The equilibrium displacement associated with a given repartition of the three phases is the minimizer of

E({S,L, V }, u) =
1
2

∫
S

A e(u)(x) : e(u)(x) dx −
∫

S

f(x) · u(x) dx

−
∫

∂L∩Ω

p(x)u(x) · νL(x) dHN−1(x) (1)

among all kinematically admissible displacements. Here, A, the Hooke’s law of the linear elastic material we
consider, is given for any symmetrical matrix of order N , ξ by Aξ = (κ− 2µ/N) tr ξ I+2µξ, where κ and µ are
the bulk and shear moduli. The linearized strain is defined as e(u) = (∇u+∇ut)/2, νL(x) is the outer normal
to the set L at x, and HN−1 is the (N − 1)-dimensional Hausdorff measure (see for instance [22, 24, 25]). The
term − ∫

∂L∩Ω
p u · νL dHN−1 corresponds to the potential energy of the hydrostatic pressure at the boundary

of the liquid, applied to the other phases.
The set Xu of admissible displacements consists in the functions u ∈ H1(Ω; RN ) such that u = 0 on some

(non-negligible) part of the boundary ∂Ω and u · νΩ = 0 on some other part (with νΩ the outer normal to Ω,
defined HN−1-a.e. since ∂Ω is Lipschitz). We call Γu the part of ∂Ω where either one or the other of these
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homogeneous Dirichlet boundary conditions is enforced. Without loss of generality we will consider in the sequel
that u = 0 on all of Γu, in order to simplify the notations.

Then, the minimizer u∗ of (1), if it exists, is the solution of the following weak problem: u∗ ∈ Xu and for
each v ∈ Xu, ∫

S

A e(u∗)(x) : e(v)(x) dx =
∫

S

f(x) · v(x) dx +
∫

∂L∩Ω

p(x) v(x) · νL(x) dHN−1(x). (2)

In this case, we can define the compliance of the structure S under the load of pressure field defined in V as
the work of the forces at equilibrium, namely

C(S,L, V ) =
∫

S

f(x) · u∗(x) dx +
∫

∂L∩Ω

p(x)u∗(x) · νL(x) dHN−1(x).

By choosing v = u∗ in (2), one recovers the well-known identity

C(S,L, V ) = −2E({S,L, V }, u∗) = −2 inf
u∈Xu

E({S,L, V }, u).

In particular, the last equality makes possible to define the compliance C for any partition S,L, V of Ω, even
when the existence of a minimizer u∗ is not granted.

Remark 1.1. At each point of the domain, the magnitude of the pressure field is supposed to be known a priori
and does not depend on the deformation of the structure. This simplification might seem a little rough but
actually makes sense if the part L of the domain is supposed to be connected to a large “container” or caused
by some external phenomena. For instance, the pressure of the water in an artificial lake does not vary with
the deformation of the dam closing it. In the numerical experiments presented in Section 2.3, we have tried to
solve problems where this hypothesis is realistic.

The problem that we will consider in this paper is a generalization of the usual minimum compliance problem,
that is, find the configuration S,L, V of given volume fraction, that minimizes C.

Unfortunately, as is usual in optimal design, it is unlikely that this problem admits a solution. Indeed, in
the absence of strong compactness of the minimizing sequences of designs, the optimal state should be attained
by a fine mixture of all three phases. The rigorous framework for studying this problem would then be the
theory of homogenization as in [2, 3, 17, 18]. However, in our case, it is not clear how to apply this method.
Also, the mechanical interpretation of a fine mixture of the “liquid” and some other phase (either “solid” or
“void”) is not obvious: where would the pressure actually be applied, in what direction? For these reasons,
we prefer to consider a slight modification of the problem for which one can prove the existence of solutions of
more “classical” interpretation.

We choose (as many others, see for instance [4, 27]) to perturb our functional C by adding to it another
term that penalizes the total length (or surface) of the interfaces between the three phases, so that our problem
becomes

min
S,L,V

C(S,L, V ) + λΛ(S,L, V ) (3)

where λ > 0 is a fixed parameter, and

Λ(S,L, V ) = HN−1(∂L ∩ Ω) + HN−1(∂V ∩ Ω). (4)

The energy Λ is not symmetric in S, L and V . This is because of the underlying assumption that in the optimal
configuration there will be no contact in between the liquid and the void. If this is true, the only interfaces
we expect to encounter are ∂S ∩ ∂L ∩ Ω and ∂S ∩ ∂V ∩ Ω, that is ∂S ∩ Ω, which is exactly measured by Λ.
Otherwise, the surface of ∂L ∩ ∂V ∩ Ω is counted twice in Λ.
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Formally, our assumption is quite intuitive: along an interface ∂L ∩ ∂V , the would opposes no resistance to
the pressure field and therefore should be sent to infinity, leading to an infinite compliance. However, a rigorous
approach of this delicate point is much more complicated than this heuristic argument and is addressed (with
a complete solution in the 2-dimensional case only) in Section 5.

This choice of Λ is very valuable in the numerical implementation: it can be represented through a scalar
phase-field approximation (see Sect. 1.4), whereas more symmetric penalizations of the interfaces would require
a vector-valued representation.

Problem (3) has to be solved under two additional constraints. First, we want to prescribe the propor-
tion θS , θL, θV ∈ (0, 1) (θS + θL + θV = 1) of each phase by enforcing the constraints |S| = θS |Ω|, |L| = θV |Ω|,
etc. Then, we also want to consider some “Dirichlet” boundary condition for the partition S,L, V . This
means that we will consider three disjoint (closed, regular) subsets ΓS , ΓL, ΓV of ∂Ω, that we want to belong,
respectively, to S, L, V . All the results we show will be valid under the following technical hypothesis:

(H) ∂Ω = Γu ∪ (ΓS ∪ ΓL ∪ ΓV ).

This means that we need to assign some Dirichlet condition either to u, or to the partition S,L, V everywhere on
the boundary. In fact, this could be a little relaxed: all results would still hold if we assumed that, everywhere
on ∂Ω \ Γu ∪ ΓL, the phase L does not touch the boundary – but in order to simplify the notations we leave
this adaption to the reader.

1.2. The weak formulation

In all that has been written above we have implicitly assumed that the sets S,L, V have regular topological
boundaries ∂S, ∂L, ∂V of finite HN−1 measure. In this setting, again, under the constraints stated above, we
cannot ensure that our problem (3) has a solution. However, we may now introduce a weak version of (3) that
actually has a solution (that we will then be able to approximate numerically), and that coincides with (3) for
smooth partitions. We now consider that S,L, V is a partition of Ω into three finite-perimeter (or Caccioppoli)
sets. A set E of finite perimeter in Ω is by definition a set whose characteristic function 1E belongs to BV (Ω),
the space of functions with bounded variation in Ω. The reader who is not familiar with this theory may consult
for instance [22, 25, 26, 40].

A set of finite perimeter E has a generalized boundary in Ω called measure-theoretical boundary and denoted
by ∂?E. It is the set of points of Ω where E is not of Lebesgue-density 0 or 1:

∂?E =

{
x ∈ Ω : lim sup

ρ↓0

|E ∩B(x, ρ)|
ωNρN

> 0 and lim inf
ρ↓0

|E ∩B(x, ρ)|
ωNρN

< 1

}

with ωN = |B(0, 1)| the volume of the unit ball in R
N . The distributional derivative of 1E in Ω, which by

definition is a bounded Radon measure, is carried by the set ∂?E and given by

D1E = −νE HN−1 ∂?E

where νE is the generalized outer unit normal to E, defined HN−1-a.e. in ∂?E. The perimeter of E in Ω is the
total variation of this measure: Per(E,Ω) = |D1E |(Ω) = HN−1(∂?E). When E is a smooth set, then all these
notions coincide with the classical notions (∂?E = ∂E ∩Ω, νE is the classical outer normal to E).

Our case is slightly more complicated. Indeed, we want our set S to be attached in some sense to the
boundary ΓS , L to ΓL, and V to ΓV . However, if we impose for instance that the trace of 1S on ∂Ω is 1 a.e.
on ΓS , then this property is not stable in the L1 topology (the natural topology for the convergence of finite-
perimeter sets): if Sn → S in the sense that 1Sn → 1S in L1(Ω) as n→∞, and 1Sn = 1 on ΓS for every n, the
trace of 1S on ΓS does not have to be 1 as well. In order to take into account this phenomenon we will extend
the BV functions 1S ,1L,1V to Ω ∪ Γρ (where Γρ = ΓS ∪ ΓL ∪ ΓV , the notation Γρ will be made clear in the
sequel) by assigning them a fictitious “exterior trace” on Γρ.
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More precisely, we introduce the space BV (Ω ∪ Γρ) of functions with bounded variation on Ω ∪ Γρ. Such
functions w have an inner trace wint on ∂Ω, which is the standard trace of w seen as functions in BV (Ω) (well
defined in L1(∂Ω) since ∂Ω is Lipschitz-regular), and an outer trace wext ∈ L1(Γρ) on Γρ 3. Their derivatives
Dw are measures on Ω ∪ Γρ, defined by∫

Ω∪Γρ

ϕ(x) ·Dw(x) =
∫

Γρ

wext(x)ϕ(x) · νΩ(x) dHN−1(x) −
∫

Ω

w(x) divϕ(x) dx (5)

for every ϕ ∈ C1(Ω ∪ Γρ; RN ) with compact support in Ω ∪ Γρ. In other words, the measure Dw is

Dw = (wext − wint)νΩHN−1 Γρ + Dw Ω

with Dw Ω the classical distributional derivative of w seen as a function in BV (Ω), and the total variation

|Dw|(Ω ∪ Γρ) =
∫

Γρ

|wext(x)− wint(x)| dHN−1(x) + |Dw|(Ω).

Then, a set E of finite perimeter in Ω ∪ Γρ is a set E such that |D1E |(Ω) < +∞, together with an outer
trace 1ext

E ∈ {0, 1} on Γρ (that can be the characteristic function of an arbitrary measurable subset of Γρ,
see [26] (Prop. 2.15)). We introduce the extended measure theoretical boundary

∂?E = ∂?E ∪
{
x ∈ Γρ : 1ext

E (x) 6= 1int
E (x)

} ⊂ Ω ∪ Γρ.

Again, the measure D1E is carried by ∂?E and given by

D1E = −νE HN−1 ∂?E

where for every x ∈ Γρ, νE(x) = νΩ(x) if 1ext
E = 0, 1int

E = 1 and νE(x) = −νΩ(x) if 1ext
E = 1, 1int

E = 0. Again,
we have |D1E |(Ω ∪ Γρ) = HN−1(∂?E).

In this setting, we consider S,L, V as finite-perimeter sets in Ω∪Γρ, letting 1ext
S = 1 on ΓS and 0 on ΓL∪ΓV ,

1ext
L = 1 on ΓL and 0 on ΓS ∪ ΓV , and 1ext

V = 1 − 1ext
S − 1ext

L . For instance, ∂?L = ∂?L ∪ {x ∈ ΓL : 1int
L =

0} ∪ {x ∈ ΓS ∪ ΓV : 1int
L = 1}.

Then, the correct definition for the penalization is

Λ(S,L, V ) = HN−1(∂?L) + HN−1(∂?V ). (6)

In fact, it is exactly the relaxation (or lower semicontinuous envelope) in L1(Ω) of the function Λ defined by (4)
for partitions into regular sets S,L, V with ΓS ⊂ S, ΓL ⊂ L, ΓV ⊂ V , and set to +∞ for any other partition.
This fact is discussed in Appendix B.

Then, we define again the compliance by

C(S,L, V ) = −2 inf
u∈Xu

E({S,L, V }, u) (7)

3This space can be precisely defined as the set of the restrictions to Ω ∪ Γρ of the functions u ∈ BV (Ω′), where Ω′ is a larger

set such that Ω′ ∩Ω is Ω∪ Γρ (minus the N − 2 dimensional boundary of the N − 1 dimensional set Γρ), or, in an equivalent way,

as the set of functions u ∈ L1(Ω) such that sup{RΩ udiv ϕ : ϕ ∈ C1(Ω), spt. of ϕ ⊂ Ω ∪ Γρ , |ϕ(x)| ≤ 1 for every x ∈ Ω} < +∞.
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where E is the natural extension of (1) to finite-perimeter partitions:

E({S,L, V }, u) =
1
2

∫
S

A e(u)(x) : e(u)(x) dx

−
∫

S

f(x) · u(x) dx −
∫

∂?L

p(x)u(x) · νL(x) dHN−1(x)

=
1
2

∫
Ω

1S(x)A e(u)(x) : e(u)(x) dx

−
∫

Ω

1S(x)f(x) · u(x) dx +
∫

Ω∪Γρ

p(x)u(x) ·D1L(x).

(8)

Notice that C ∈ [0,+∞] since E({S,L, V }, 0) = 0. Given λ > 0, our weak problem is now:

min
S,L,V

C(S,L, V ) + λΛ(S,L, V ) (9)

where the minimum has to be taken among all finite-perimeter partitions S,L, V with given proportion |S| =
θS |Ω|, |L| = θL|Ω|. We have the following result, valid under the technical hypothesis (H).

Theorem 1.2 (Existence of a solution of the weak problem). Assume there exists a finite-perimeter partition S,
L, V of finite compliance C(S,L, V ). Then problem (9) admits a solution.

This result is simply a consequence of the next approximation theorem.

1.3. The fictitious material formulation

In practice, it is very difficult to address the minimization of (9), numerically. The two main reasons to this
are that problem (7) generally does not admit a minimizer (for an arbitrary partition S,L, V ), and that we need
to represent the free (unknown) boundaries of the sets S, L an V (or the discontinuities of their characteristic
functions).

Since we do not know how to make a correct numerical analysis of our problem, we will consider variational
approximations of our energies, in the setting of Γ-convergence. We refer to [5] and [20] for monographs on this
notion of convergence, introduced by De Giorgi for the approximation of variational problems. See Appendix A
for the main definitions and properties. Our aim is to find approximate energies whose minimizer(s) are close,
in some sense, to the solution(s) of (9).

To overcome the first difficulty, we make the classical assumption that the set L ∪ V is also filled with a
“fictitious material” of very small (in the sense of quadratic forms) elasticity tensor. In practice (but there
would be many other ways to implement this idea, we describe the simplest) we fix a small parameter δ > 0
and assume that the elasticity tensor is A in S and δA in L ∪ V , so that the energy (8) becomes

Eδ({S,L, V }, u) =
1
2

∫
Ω

(δ + (1− δ)1S(x))A e(u)(x) : e(u)(x) dx

−
∫

Ω

1S(x)f(x) · u(x) dx +
∫

Ω∪Γρ

p(x)u(x) ·D1L(x).
(10)

Again, the compliance is simply

Cδ(S,L, V ) = −2 min
u∈Xu

Eδ({S,L, V }, u) (11)
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(the existence of the minimizer will be discussed in Sect. 3.2 for a general energy) and the approximated
problem is

min
S,L,V

Cδ(S,L, V ) + λΛ(S,L, V ) (12)

where again the minimum is taken among the finite-perimeter partitions S,L, V with given proportion |S| =
θS |Ω|, |L| = θL|Ω|. The next result again is valid under the technical hypothesis (H).

Theorem 1.3 (Convergence of the solutions of the fictitious material problem). For every δ > 0 small,
problem (12) admits a solution. Moreover, assuming again that there exists a finite-perimeter partition S,L, V
such that C(S,L, V ) < +∞, if Sδ, Lδ, Vδ are solutions of (12) for δ > 0 small, then there exists a sequence
(δj)j≥1, δj ↓ 0 as j →∞, and a finite-perimeter partition S,L, V such that 1Sδj

→ 1S, 1Lδj
→ 1L,1Vδj

→ 1V

in L1(Ω), and S,L, V is a solution of (9).

Theorem 1.3 will be established in Section 4, as a consequence of Corollary 4.2 and of the analysis in
Section 4.3. Notice that it yields Theorem 1.2.

1.4. A phase-field approximation

Now, we can compute an approximation of our solution, provided that we are able to solve problem (12) for a
small enough δ. However, this problem is not easily solved because the unknown is a finite-perimeter partition.
As it is classical, we will represent this partition by means of a BV “density” function taking three values and
then, introducing a new scale parameter ε, approximate this density by smoother functions.

We thus introduce a phase field ρ in order to represent the partition of Ω into the three phases: ideally ρ
should be a function taking just the three values −1, 0, 1 (−1 = void V , 0 = structure S, 1 = liquid L). In the
approximate models, however, ρ will be allowed to take any real value.

We introduce a new notation for the subsets ΓS , ΓL, ΓV of ∂Ω: in what follows they will be denoted
respectively by Γρ

0, Γρ
1, Γρ

−1, in order to emphasize the fact that they are the parts of the boundary where we
want to ensure a Dirichlet condition for the phase ρ (ρ = α on Γρ

α). We still denote Γρ = ∪α=−1,0,1Γρ
α, and

hypothesis (H) states that ∂Ω = Γu ∪ Γρ.
We consider a triple-well (continuous) potential W (t) such that W (t) > 0 except at t = −1, 0, 1. For instance,

we can consider W (t) = 8t2(t2 − 1)2. For simplicity we assume that W is even and that
∫ 0

−1

√
2W (t) dt =∫ 1

0

√
2W (t) dt = 1, but other (more general) potentials would lead to similar results with a different penalization

of the interfaces. We letXρ = {ρ ∈ H1(Ω) : ρ = α on Γρ
α, α = −1, 0, 1} and introduce the energy, for ρ ∈ L1(Ω),

Λε(ρ) =


ε

2

∫
Ω

|∇ρ(x)|2 +
1
ε

∫
Ω

W (ρ(x)) dx if ρ ∈ Xρ,

+∞ otherwise.
(13)

This kind of energy was first introduced by Cahn and Hilliard [13] in order to represent the interfacial energy
of a mixture of fluids, and then widely studied (see for instance [1, 32, 33]).

Next, we introduce the space

Xρ =
{
ρ ∈ BV (Ω ∪ Γρ; {−1, 0, 1}) : ρext(x) = α on Γρ

α, α = −1, 0, 1
}
,

where as previously BV (Ω ∪ Γρ; {−1, 0, 1}) denotes the space of functions ρ that belong to BV (Ω; {−1, 0, 1})
and are considered to have an “exterior trace” ρext on the part Γρ of ∂Ω, so that their derivative is a measure
acting on the continuous functions with compact support in Ω ∪ Γρ, defined by the duality formula (5).
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Figure 1. The functions V, L, S.

A function ρ ∈ Xρ has therefore a derivative which is the measure in M(Ω ∪ Γρ; RN ) given by

Dρ = Dρ Ω +
∑

α=−1,0,1

(α− ρint(x))νΩ(x)HN−1 Γρ
α,

were as before ρint denotes the interior trace of ρ on ∂Ω.
This is the correct, weak way of enforcing the condition “ρ = α on Γρ

α” for functions ρ that have only BV
regularity. In this setting, the total variation of ρ on Ω ∪ Γρ includes a penalization if the inner trace ρint

disagrees with the Dirichlet condition:

|Dρ|(Ω ∪ Γρ) = |Dρ|(Ω) +
∑

α=−1,0,1

∫
Γρ

α

|ρint(x)− α| dHN−1(x).

Recalling definition (6), we see that

|Dρ|(Ω ∪ Γρ) = Λ ({ρ = 0}, {ρ = 1}, {ρ = −1}) ·

For this reason, we will still denote by Λ the functional of L1(Ω)

Λ : ρ 7→
{ |Dρ|(Ω ∪ Γρ) if ρ ∈ Xρ,

+∞ otherwise.
(14)

Then, we introduce three “phase indicators” that we denote by S,L, V : R → (0, 1). These are smooth functions
such that S(0) = 1, S(t) = 0 if |t| ≥ 1, S increases on (−1, 0) and decreases on (0, 1); L(t) = 0 if t ≤ 0, L(t) = 1
if t ≥ 1, and L increases on [0, 1]; and V = 1− L− S (see Fig. 1 for a possible choice of the phase indicators).
For every ρ ∈ L1(Ω), we will interpret V (ρ(x)), L(ρ(x)), S(ρ(x)) as the proportion of each “phase” (void,
liquid and structure) at the point x. If ρ ∈ Xρ, then clearly V (ρ) = ρ− = 1{ρ=−1}, L(ρ) = ρ+ = 1{ρ=1}, and
S(ρ) = 1{ρ=0}. In this case for simplicity V (ρ) (respectively, L(ρ), S(ρ)) will also denote the finite-perimeter
set where V (ρ(x)) = 1 (resp., L(ρ(x)) = 1, S(ρ(x)) = 1), as in the previous sections.

Given ρ ∈ Xρ we also have that L(ρ) ∈ BV (Ω ∪ Γρ; {−1, 0, 1}) with an exterior trace L(ρ)ext = L(ρext) = 1
on Γρ

1 = ΓL and 0 on Γρ
−1 ∪ Γρ

0 = ΓV ∪ ΓS , and the derivative of L(ρ) is defined as in (5):∫
Ω∪Γρ

ϕ(x) ·DL(ρ) =
∫

Γρ
1

ϕ(x) · νΩ(x) dHN−1(x) −
∫

L(ρ)

divϕ(x) dx,
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and supported again by the extended measure-theoretical boundary of L(ρ), ∂?L(ρ) = ∂?L(ρ) ∪ {x ∈ Γρ :
L(ρext) 6= L(ρint)}.

For δ > 0, ρ ∈ Xρ, u ∈ Xu, the linear elasticity energy (10) becomes in our new notations

Eδ(ρ, u) =
1
2

∫
Ω

(δ + (1− δ)S(ρ(x)))A e(u)(x) : e(u)(x) dx

−
∫

Ω

S(ρ(x))f(x) · u(x) dx +
∫

Ω∪Γρ

p(x)u(x) ·DL(ρ).
(15)

On the other hand, if ρ ∈ Xρ, we let

Eδ(ρ, u) =
1
2

∫
Ω

(δ + (1 − δ)S(ρ(x)))A e(u)(x) : e(u)(x) dx

−
∫

Ω

S(ρ(x))f(x) · u(x) +
∫

Ω

p(x)u(x) · ∇L(ρ)(x) dx.
(16)

Then, integrating by part the last term, and recalling hypothesis (H) that implies that u · νΩ = 0 out of Γρ, we
see that both formulae (15) and (16) may be written

Eδ(ρ, u) =
1
2

∫
Ω

(δ + (1− δ)S(ρ(x)))A e(u)(x) : e(u)(x) dx

−
∫

Ω

S(ρ(x))f(x) · u(x) dx

−
∫

Ω

L(ρ(x)) div(pu)(x) dx +
∫

Γρ
1

p(x)u(x) · νΩ(x) dHN−1(x),

(17)

for every u ∈ Xu and ρ ∈ Xρ ∪Xρ. The last expression is in fact well defined for every ρ ∈ L1(Ω).

Remark 1.4. We see that equation (17) holds if we just assume that on ∂Ω \ (Γu ∪ Γρ
1), ρ ≤ 0, so that all our

results still hold true if we assume a slightly more complicated Dirichlet boundary condition on this part of the
boundary than ρ = −1 on Γρ

−1 and ρ = 0 on Γρ
0.

We can extend the definition (11) of the compliance to any ρ ∈ L1(Ω), simply letting

Cδ(ρ) = −2 inf
u∈Xu

Eδ(ρ, u). (18)

Problem (12) admits the equivalent formulation

min
ρ∈L1(Ω)

Cδ(ρ) + λΛ(ρ) (19)

where the minimum must be taken among the densities ρ such that
∫
Ω S(ρ(x)) dx = θS |Ω|,

∫
Ω L(ρ(x)) dx =

θL|Ω|.
For ε > 0 we have a new approximated problem

min
ρ∈L1(Ω)

Cδ(ρ) + λΛε(ρ), (20)

under the same constraints. Then, we have the following theorem, on which our numerical implementation is
based:
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Theorem 1.5 (Convergence of the solutions of the phase-field problem). Assume δ > 0 is fixed. Then, for
every ε > 0 small, problem (20) admits a solution. Moreover, if ρε are solutions of (20) for ε > 0 small, then
there exists a sequence (εj)j≥1, εj ↓ 0 as j → ∞, and ρ ∈ Xρ such that ρεj → ρ in L1 and ρ is a solution
of (19) (equivalently (S(ρ), L(ρ), V (ρ)) = ({ρ = 0}, {ρ = 1}, {ρ = −1}) is a solution of (12)).

The proof of this theorem is given in Section 3. It is a consequence of the Corollary 3.4.

2. The numerical implementation

In this section, we present and detail the actual numerical implementation of our problem, which relies on
the approximation results discussed in the previous sections.

The actual implementation described in this section has been made only in the bidimensional case (N = 2),
however, the techniques described here would also apply to the case N = 3 without changes.

The base of our numerical algorithm is to be found in Theorem 1.5, which states that the minimizers of the
“fictitious material” problem (19) approximate that of the original one (12). Of course, in view of a numerical
implementation, one cannot really send the regularization parameters δ and ε to 0 but one can set these
parameters to an arbitrary small value and numerically compute a minimizer for Cδ + λΛε.

This approach is in spirit very similar to the so-called diffuse interface methods widely used in materials
science. Indeed, our numerical algorithm uses several ideas from the literature (see for instance [16, 23, 31]). In
that framework, our original problem (9) would be the “sharp interface” problem and its approximation would
be referred to as the “diffuse interface” problem, which is to be numerically implemented.

Remark 2.1. In our model, the surface energy Λε is used only to prevent from fast oscillations, and then from
homogenization, of the design variable, as it penalizes small scale patterns (this is illustrated in Sect. 2.3.2).
Therefore, the parameter λ has to be set so that the leading term in the objective function is the compliance.

Unfortunately, the numerical implementation of the regularized surface energy is also the most challenging
part. This is why most of the techniques described in this section aim at its efficient implementation.

In order to deal with the volume constraints on the phases, we introduce three Lagrange multipliers which
we update at each iteration. This is discussed at the beginning of the next section.

Then, the main difficulty related to the compliance part of the objective function Cδ is that it does not
depend explicitly on the phase field ρ but rather on the equilibrium displacement uρ associated with this
design. However, the sensitivity of the compliance with respect to a design change can be computed in closed
form, as it is shown in Lemma 2.2, and one can implement a gradient-based optimization algorithm.

The regularized surface energy is non-convex which means that a descent algorithm might be unstable or
converge to a local minimizer. In our implementation, the former issue is addressed by the use of a semi-implicit
descent scheme and a continuation method reduces the effects of the latter. Both techniques are detailed in
Section 2.1.

Lastly, the actual implementation by means of piecewise linear finite elements is detailed in Section 2.2, and
some numerical experiments are shown in Section 2.3

2.1. Algorithm

A first problem in the implementation of the numerical minimization of Cδ + λΛε is to deal with the set of
volume fraction constraints. 

∫
Ω S(ρ) dx = |Ω| θS∫
Ω L(ρ) dx = |Ω| θL∫
Ω
V (ρ) dx = |Ω| θV ,

(21)

where θS + θL + θV = 1.
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As these constraints depend nonlinearly on the phase field, their implementation is complicated. In the proof
of Theorem 1.5, this difficulty is circumvented by introducing a penalized surface energy which takes value +∞
whenever the constraints are not satisfied. Of course, for practical purposes, we cannot use this formulation;
instead, we introduce three non-negative Lagrange multipliers, λS , λL, and λV and the Lagrangian

L(ρ, (λS , λL, λV )) = Cδ(ρ) + λΛε(ρ) + λS

∫
Ω

(S̃(ρ)− θS) dx

+λL

∫
Ω

(L̃(ρ)− θL) dx+ λV

∫
Ω

(Ṽ (ρ)− θV ) dx. (22)

Here, the functions Ṽ , S̃, and L̃ are three interpolation functions which coincide with V , S, and L at the
points −1, 0, and 1 and such that S̃ + L̃+ Ṽ = 1. The purpose of such a substitution might sounds somewhat
unclear at this point but its soundness, in the numerical implementation will be justified further in the paper. Its
goal is detailed in Section 2.3, while Remark 3.2 reminds that this substitution has no effect on the theoretical
results.

Unfortunately, the numerical choice of the Lagrange multipliers associated with given volume fractions is not
obvious. Actually, their existence for a given set of volume fractions is not even granted as we do not have any
information on the continuity of the solution of the primal problem (the design), with respect to a small change
of the dual variables.

However, in the practical implementation, we assume that the Lagrange multipliers exist. In this case, it is
easy to see that they are defined up to the addition of a constant so that one can assume their positiveness
without loss of generality. Another way to see it is to notice that the equalities in (21) could be replaced by
three inequalities of the same type, in which case the multipliers would be required to be of the same sign.

Then, the goal of our optimization algorithm is to find a set ρ, λS , λL, λV satisfying the Kuhn and Tucker
conditions associated with the Lagrangian L.

For that matter we use an iterative scheme: at each step, we first update the density field based on the
sensitivity of the objective function with respect to a design change. Then, we modify the Lagrange multipliers
according to the following rule: 

λn
S =

λn−1
S

|Ω|
∫

Ω

S̃(ρn)
θS

dx

λn
L =

λn−1
L

|Ω|
∫

Ω

L̃(ρn)
θL

dx

λn
V =

λn−1
V

|Ω|
∫

Ω

Ṽ (ρn)
θV

dx.

(23)

The update of the phase field ρ is more complicated since it requires the computation of the sensitivity of the
objective function. The derivative of the surface energy or the constraints with respect to ρ is straightforward
but that of the compliance is less simple. This is because Cδ does not depend explicitly on ρ but rather through
the work of the forces for the equilibrium displacement, linked to ρ through equation (11). However, this
derivative can be computed in a closed form, as it is stated in the following lemma:

Lemma 2.2. Let ρ ∈ L1(Ω) and ψ ∈ L∞(Ω). Then the derivative of the compliance with respect to a design
change in the direction ψ is given by

lim
t→0

Cδ(ρ+ tψ)− Cδ(ρ)
t

− 2
∫

Ω

(
1−δ
2 S′(ρ)A e(uρ) : e(uρ)− S′(ρ)f · uρ − L′(ρ) div(puρ)

)
ψdx (24)

where uρ is the minimizer of Eδ(ρ, u) over u ∈ Xu.
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Proof. For every t near zero let ρt = ρ + tψ and ut be the minimizer of Eδ(ρt, u) over u ∈ Xu. Taking the
difference of (33) for (ρt, ut) and for (ρ0, u0) = (ρ, uρ) and dividing by t gives∫

Ω

(1− δ)
S(ρt)− S(ρ)

t
A e(ut) : e(v) dx +

∫
Ω

(δ + (1− δ)S(ρ))A e
(
ut − u0

t

)
: e(v) dx

=
∫

Ω

S(ρt)− S(ρ)
t

f · v dx +
∫

Ω

L(ρt)− L(ρ)
t

div(pv) dx
(25)

for every v ∈ Xu. Let wt = (ut − u0)/t ∈ Xu. Notice that (S(ρt) − S(ρ))/t ≤ ‖S′‖∞|ψ| and (L(ρt) − L(ρ))/t
≤ ‖L′‖∞|ψ| are bounded in L∞(Ω). Therefore, taking a sup over v ∈ Xu, ‖ e(v)‖L2 ≤ 1 in (25) and using
Korn’s inequality (31) we get that (wt) is uniformly bounded in H1(Ω; RN ). Let w0 be the weak H1-limit
of some sequence (wtk

)k≥1. Passing to the limit in (25), and noticing that (S(ρt) − S(ρ))/t → S′(ρ)ψ and
(L(ρt)− L(ρ))/t→ L′(ρ)ψ a.e. in Ω, we get that w0 ∈ Xu is characterized by∫

Ω

(1− δ)S′(ρ)A e(u0) : e(v)ψ dx+
∫

Ω

(δ + (1− δ)S(ρ))A e(w0) : e(v) dx

=
∫

Ω

S′(ρ)f · v ψ dx +
∫

Ω

L′(ρ) div(pv)ψ dx
(26)

for every v ∈ Xu. In particular w0 is unique and we get that limt→0 wt = w0 weakly in H1.
Since

Cδ(ρt) =
∫

Ω

(δ + (1− δ)S(ρt))A e(ut) : e(ut) dx,

we have

Cδ(ρt)− Cδ(ρ)
t

=
∫

Ω

(1− δ)
S(ρt)− S(ρ)

t
A e(ut) : e(ut) + (δ + (1− δ)S(ρ))A e(wt) : e(ut + u0) dx. (27)

Notice that ut − u0 = twt so that ut goes to u0 strongly in H1(Ω), and also that

S(ρt)− S(ρ)
t

e(ut) =
S(ρt)− S(ρ)

t
e(u0) + (S(ρt)− S(ρ)) e(wt),

and since |(S(ρt) − S(ρ)) e(wt)| ≤ |t| ‖S′‖∞|ψ| | e(wt)| a.e. in Ω we deduce that as t goes to zero, e(ut)(S(ρt)
−S(ρ))/t goes strongly to S′(ρ)ψ e(u0) in L2. Hence, we get by passing to the limit in (27)

lim
t→0

Cδ(ρt)− Cδ(ρ)
t

=
∫

Ω

(1 − δ)S′(ρ)A e(u0) : e(u0)ψ + 2(δ + (1− δ)S(ρ))A e(w0) : e(u0) dx. (28)

We deduce (24) from (26) with v = u0 = uρ and (28).

Remark 2.3. Equation (24) can be rewritten as

lim
t→0

Cδ(ρ+ tψ)− Cδ(ρ)
t

= −2 lim
t→0

Eδ(ρ+ tψ, u)− Eδ(ρ, u)
t

∣∣∣∣
u=uρ

,

which is a classical identity in compliance optimization.
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The easiest way to update the density field would be through an explicit steepest descent scheme. In that
case, the n-th descent iteration, would then write as

ρn = ρn−1 − r

{
DρCδ(ρn−1) + λ

εW
′(ρn−1) − 2λε∆ρn−1 + λS S̃

′(ρn−1) + λLL̃
′(ρn−1) + λV Ṽ

′(ρn−1)
}
,

where DρCδ(ρ) is the derivative of the compliance given by the previous lemma and r is the descent step.
Unfortunately, such a scheme is very unstable and requires a very small descent step. It is easy to see, for
instance, that due to the Laplacian term, a fully explicit scheme is unstable as soon as r ≥ cλεh2 for some c > 0,
where h is the discretization characteristic length. It is actually known that the actual upper bound on the step
for the surface term is of the order of λεh4, which implies a very poor convergence rate. Considering that the
evaluation of DρCδ(ρ) requires the computation of the equilibrium displacement associated with the design ρ,
and hence the solving of an elasticity problem, this is not acceptable.

In order to enhance the convergence rate and following [35,37] and somehow [16], we rewrite the non-convex
part W of the surface energy as W (x) + k x2

2 − k x2

2 , where k ≤ −min(−1,1)W
′′ so that F (x) = W (x) + k x2

2
is convex in (−1, 1). Then, it is possible to speed up the numerical scheme by using an implicit scheme for
the Laplacian and quadratic parts of the objective function and an explicit scheme for the remaining terms.
Eventually, the iteration of the semi-implicit scheme we use writes as

(
1− r k λ

ε − 2rλε∆
)
ρn = ρn−1 − r

{
DρCδ(ρn−1) + λ

εF
′(ρn−1)

+λSS̃
′(ρn−1) + λLL̃

′(ρn−1) + λV Ṽ
′(ρn−1)

}
· (29)

The main difference between our semi-implicit scheme and those used in the above-mentioned articles is that we
deal with the Laplacian implicitly while they implement it explicitly. This is because our implementation choice
is to use unstructured finite elements instead of finite difference (see Sect. 2.2 for a discussion of the reasons
leading to this choice). Hence, evaluating the Laplacian of the density field requires the computation of its
projection onto the considered finite element space, i.e. solving a heat equation, which in terms of computational
cost is equivalent to that of solving the Laplace equation associated with the iteration formula (29).

Remark 2.4. It is clear that if the scheme converges, the resulting fields ρ, λS , λL, and λV satisfy the Karush–
Kuhn and Tucker conditions for the Lagrangian L. However, proving the convergence of the scheme is an open
problem.

The last ingredient in our numerical implementations is linked to the problem of local minimizers. As we are
applying a gradient algorithm to a non-convex problem, our scheme might converge only to a local minimizer.
This is a very common problem and several methods are to be found in the literature. In [27], for instance, it
is suggested to use an iterative algorithm and gradually increase the perimeter penalization factor, denoted λ
in our case. The underlying idea is to let the algorithm explore as many designs as possible and later restrict
the exploration space by increasing the penalty factor on the non-convex term. Our solution is related to that
idea but is slightly more complicated as it involves both an adaptive step strategy and a continuation method.

Instead of increasing the parameter λ with the iteration, we slowly decrease the scale parameter, ε, until it
reaches some lower bound. This strategy has two advantages on the previous one. First, we favor the convex
terms in the energy during the first iterations, which is the base of a continuation method. Then, it is known
that the “front propagation” speed (i.e. the speed at which the edges of the structure can move during the
iterative process) decreases with ε. By starting with a “relatively large” value for ε, we let the structure evolve
quickly during the first iterations and the design to remain “smooth”. Then, when ε gradually decreases, the
field ρ concentrates its values around −1, 0 and 1 and the design tends to evolve more slowly.

At the same time, we use an adaptive step strategy for the choice of the parameter r in (29). Computing
the optimal r (i.e. doing a line search) is feasible but tends to be numerically inefficient as each evaluation of
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our objective function is very expensive. Instead, we gradually increase r with the iterations. Then, we check
regularly if the energy of the sequence of designs is decreasing. If not, we go back to the last saved iteration,
reduce the step and start again. Remark that if r.ε stays constant, this scheme results in fixing the weight on
the convex part of our objective function while gradually increasing that on the non-convex terms.

2.2. Implementation

Again, Remark 2.1 is the base of the main technical choices. As the surface energy is only a perturbation of
the compliance, the accuracy of its approximation is not nearly as important as its isotropy. Indeed, the phase
field ρ is also used to keep track of the normal direction of the interfaces and hence of the pressure force. If the
approximation of the perimeter energy favors some orientations of the boundary of the structure, the pressure
force will also tend to match these orientations. In such a case, the perimeter penalization will not only act as
a way to prevent from fast oscillation and to enforce a lower bound the scale of the smallest patterns but will
also influence the general design.

Of course, as we are doing a two step approximation (Γ-convergence first and discretization then), most of
the anisotropy induced by a structured discretization described in [14,34] should disappear as the discretization
parameter tends to zero. However, there are some numerical evidences that for a fixed mesh size, these effects
are noticeable.

This is the reason why we chose to approximate the ρ field by means of piecewise linear finite elements on an
unstructured triangular mesh. In this setting the dependency of the design upon the discretization is very easy
to check experimentally by running several computations on different meshes. Also, since the leading term is
to be the compliance, we do not attempt to obtain a very high precision on the interpolated surface energy and
we do not need a very fine mesh or an adaptive meshing technique. Thus, we can use the same discretization
for both ρ and u, which means that we do not have to compute a projection from one discrete space to another
at each iteration.

Our choice of finite elements and non-structured triangulation differs from the classical choice of using finite
differences, or finite elements over a structured mesh, as it is often seen in topology optimization, or in the
“diffuse interface” methods in material science. It makes the implementation more complicated, but it is also
very efficient, in preventing from most of usual numerical issues like mesh dependency, checkerboards, and
anisotropy.

Remark 2.5. The approximation of the compliance (18), given itself by the elastic potential (16), and of the
surface energy (13) by piecewise linear finite elements does not present any major difficulty, and is not detailed
here.

2.3. Numerical experiments

Before running any computation, we have to choose the triple-well function W and the interpolation laws S,
L and V . Indeed, while the convergence theorem does not depend on their actual expression, their proper choice
can improve the efficiency of the numerical algorithm.

In the numerical experiments, the triple-well function W is given by

W (x) = α

(
1− x2

)2
x2

1 + 2 x2
,

where α is such that
∫ 1

0

√
2W (x) dx = 1, i.e. α ' 12.58. The parameter k in equation (29) is set equal to α.

We also choose to use different laws for the volume constraint and the stiffness interpolation function as-
sociated with the solid and void phases. Indeed, it is known (see [9] for instance) that if one uses the same
interpolation scheme for the volume constraint and the stiffness of a material, one artificially favors the inter-
mediate densities. In our case, it would be a problem since the approximation scheme relies on the density
field ρ focusing around the values −1, 0 and 1, when ε goes to 0. A proper choice for S and S̃ is such that the
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Figure 2. The functions S (plain), S̃ (dashed) and L (dotted) used in the numerical implementation.

intermediate values of the density tend to disappear naturally. Then, one can obtain well “focussed” numerical
results for smaller values of the weight on W in the surface energy, i.e. for “larger” ε. This, in turn, permits to
use larger descent steps and increase the convergence speed, according to the previous comments4.

The interpolation functions used in the implementation are those pictured in Figure 2, namely:

S(x) =

0 if |x| ≥ 1,
(1− x2)2

1 + 10 x2
otherwise,

S̃(x) =

0 if |x| ≥ 1,
(1 − x2)2

1 + 2 x2
otherwise,

L(x) =


0 if x ≤ 0

1− (1− x2)2

1 + 2 x2
if 0 ≤ x ≤ 1,

1 otherwise,

L̃(x) =L(x).

In all the numerical experiments presented later, the elastic properties of the material have been chosen such
that the Young’s modulus E is equal to 1 and the Poisson’s ratio ν = .3 (i.e. κ ' .7143 and µ ' .3846). The
pressure field p also had to be normalized accordingly.

Remark 2.6. In the example we chose to present, we enforce only a constraint on the volume fraction of the
solid phase. This is achieved by setting λ0

L = λ0
V = 0 in (23). In that case, one can not rigorously assume the

positiveness of the third Lagrange multiplier. This would be true only if one could prove that the compliance
of the optimal design is an increasing function of its volume fraction. Unfortunately, such a result is not known
in our case, even if it seems very likely, except for some degenerate cases.

2.3.1. Design of a dam

The first experiments presented here mimics the design of a dam in a square domain (0, 1) × (−1, 0). The
pressure field varies linearly with the deepness: p(x, y) = −y/2 and the boundary conditions are the following:
on the left edge, ρ is set to be equal to 1 (i.e. a liquid phase is prescribed) and the displacement is left
unconstrained. On the right edge, one sets ρ = −1 (the void) and u is left free. On the bottom edge, one
enforces a Dirichlet boundary condition of both components of the displacement field and the phase is left free.
Lastly, the vertical displacement is prescribed on the upper edge and the phase is left free. Using the notations
of Section 1, we have that Γu = (0, 1) × {−1, 0}, ΓL = {0} × (−1, 0), ΓV = {1} × (−1, 0) and ΓS = ∅. A
schematic representation of the problem is shown in Figure 3a.

4One of the referees noted that substituting eS for S as an interpolation function is essentially equivalent to replacing the

triple-well potential W with fW = W + ε λS
λ

(eS − S) in the surface energy Λε.
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The volume fraction of the material is set to 12%. The discretization, shown in Figure 3b consists of 3 732
triangular elements and 1 944 nodes. In order to prevent from mesh-induced anisotropy, it has no favored
direction and is built using the Delaunay-Voronöı mesh generator emc2, developed at the INRIA5. The con-
tinuation algorithm described earlier is used: the approximation parameter ε goes from .64 to .32 while the
step r varies from 10−3 to 5 × 10−2. The penalization factor for the surface energy has been experimentally
set so that at convergence, the compliance is at least 5 times as large as the perimeter energy. Its numerical
value is 4× 10−3. We ran the computation until the absolute change on the density, |ρn+1 − ρn| is lower than
1.5× 10−4, which took about 1 500 iterations. The compliance of the computed design is equal to .191 and the
surface energy 3.8× 10−2.

Figure 3c represents the final design, i.e. the phase field ρ after convergence of the algorithm. The value −1
(associated with the void) is color-coded in white, the value 0 (the solid) in grey and the black corresponds
to the value 1 (the liquid). Of course, as we solved the approximated problem for a fixed ε, the function ρ is
“smooth”. However, its values are mostly concentrated round the three well of the function W . The black and
the white lines plotted over the density field represent respectively the level-line 1/3 and −1/3 of the density.
They suggest how the design might look like when the relaxation parameter goes to 0.

The numerical result has a few interesting properties: first, the cavity in the dam is filled with liquid and
not void. This is an illustration of another strength of our model where a single phase field represents the three
materials. As far as we know, this kind of design has not been described in the literature. Notice that it is
indeed very similar to an engineering technique in which one stiffens underground walls with cable and anchors
instead of inner reinforcement. Also, as one would expect, every surface of the structured on which a pressure
force is applied is arch-shaped.

Also, the design has no sharp corners, as it is usually the case in perimeter-controlled topology optimization.
A heuristic explanation is that “rounding” a corner inside of a ball of radius h requires using an amount of
material proportional to ±hN while it always diminishes the perimeter of an amount of the order of hN−1.
Therefore, there might exist a critical radius under which a sharp corner is not optimal. Unfortunately, a
rigorous analyze of this kind of geometric effects would require a knowledge of the regularity of the optimal
designs that is beyond the scope of this paper.

?

(a) Schematic problem (b) Discretization of the domain (c) Optimal design, 12% of

material

Figure 3. Optimal design of a dam.

5Available at http://www-rocq.inria.fr/gamma/cdrom/www/emc2/eng.htm
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Remark 2.7. Prescribing the normal displacement of the upper part of the domain is quite unrealistic. However
due to the hypothesis (H) on the boundary conditions (see p. 22) we need to prescribe the phase or the normal
displacement at each point of ∂Ω. We chose to fix the latter and to leave as much freedom on the design as
possible. Also, the restriction that p should not vanish is not satisfied on the upper edge of the domain. That
means that the liquid and void phases could be in contact with each other at the top of the computational design
and that some part of the very thin ligament might actually not represent the structure itself but this interface
(see the discussion in Sect. 5). However, even if these reasons make this simulation somehow unrealistic, we
believe that it illustrates some interesting features of the method.

2.3.2. Design of a cork

The second example presented here is the optimal design of a cork (or a piston). The computational domain
is the rectangle (0, 1)× (−.8, .3) from which a smaller rectangle (shown in black in Fig. 4a), (0, .05)× (−.05, .05)
has been removed. On the sides of the smaller rectangle, one fixes both components of the displacement field
while on the vertical edges of the domain, the normal displacement is held fixed. On the upper and lower edges
of the domain, the displacement field is left free but the phase field is forced to take respectively the value −1
(for the void) and 1 (for the liquid).

As the normal displacement is fixed on both side of the domain, both can be identified as symmetry axis
for a larger domain. If one uses the right edge, the simulation is related to that of a cork closing a pipe.
Otherwise, it can be seen as a piston free to move between two walls. Here, the approximation parameter
has been fixed (ε ' 1.6), and the convergence is much slower than in the previous simulation (typically about
10 000 iteration with a stopping criterion of 3× 10−4) despite the fewer number of degrees of freedom (1 485 nodes
and 2 829 elements). The weight on the perimeter is set to 5× 10−4, and the step r of the semi-implicit descent
scheme is gradually increased from 10−3 to 6 × 10−3. The volume fraction of the structure is set to 12%.
Figures 4b, 4c, and 4d use the same color scheme as before and differ from the choice of the magnitude of
the pressure field, set equal to 10−1 in Figure 4b, 1.4 × 10−1 in Figure 4c and 1.5 × 10−1 in Figure 4d. The
numerical values of the compliance and the surface energy are C ' 8.7× 10−2 and λΛ ' 2.2× 10−2 in Figure 4b,
C ' .17 and λΛ ' 3.3× 10−2 in Figure 4c, and C ' .19 and λΛ ' 4× 10−3 in Figure 4d.

Remark that the problem is unchanged if one modifies the parameter λ and p in such a way that pλ remains
constant (so the the ratio between compliance and surface energy is unmodified). Hence, this set of figures also
illustrates how the complexity of the optimal structures increases when the weight on the perimeter is lowered.

Again, the comments stated in the previous simulation, pertaining to the absence of cusps and the arch-shaped
members, apply.

3. Convergence of the phase-field approximation

The proof of the approximation Theorem 1.5, relies on the basic properties of the Γ-convergence, recalled in
Appendix A. First, we prove an approximation and a compactness theorem for the surface energy. Then, we
show that the compliance is a continuous function of the design. This allows us to deduce the convergence of
the phase-field model to the fictitious material one, which yields easily to the desired result.

3.1. The approximation of the perimeter

As a first step toward the proof of Theorem 1.5, we need to prove an approximation result for the surface term
in the objective function, under the volume constraints. For that, we introduce a variant of the functional Λε

introduced in Section 1.4.
Given a set of proportions θ = (θV , θS , θL) = (θα)α=−1,0,1, with θα ∈ (0, 1) for every α and θ−1 + θ0 + θ1 = 1,

we define the functional Λ
θ
(ρ) = Λ(ρ) if |{ρ = α}| = θα|Ω| for each phase α, and Λ

θ
(ρ) = +∞ otherwise. Also,

for every ρ ∈ L1(Ω) we define the functional Λθ
ε(ρ) = Λε(ρ) if

∫
Ω
L(ρ(x)) dx = θ1|Ω| and

∫
Ω
V (ρ(x)) dx = θ−1|Ω|,

and Λθ
ε(ρ) = +∞.
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Figure 4. Optimal design of a piston for increasing values of the pressure field.

Then, we are able to state the following approximation theorem, which is a slightly modified version of a
result due to Modica and Mortola [32, 33] (see also [1]).

Theorem 3.1. As ε goes to zero, Λε Γ-converges to Λ in L1(Ω), and Λθ
ε Γ-converges to Λ

θ
. Moreover, if the

functions ρε are such that supε>0 Λε(ρε) < +∞, then there exists a sequence εj going to 0 and ρ ∈ Xρ such that
ρεj → ρ in L1(Ω) as j →∞.

Proof. This result is very similar to the Theorem 2 in [33], which is also proved with a different method in [1].
The only differences between our Theorem 3.1 and the above mentioned results lie in the constraints on the
proportion of each phase, and in the fact that we want to impose a Dirichlet boundary condition on the phase ρ.
For the second point, it means that given ρ ∈ Xρ, and given a sequence (εj)j≥1 with εj ↓ 0 as j →∞, we must
be able to build a family (ρj)j≥1 of functions in Xρ such that ρj → ρ and

lim sup
j→∞

Λεj (ρj) ≤ Λ(ρ). (30)
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In order to do this we first observe that we may find a sequence (ρn)n≥1 of functions in BV (Ω ∪ Γρ; {−1, 0, 1})
such that each ρn is identically α in a neighborhood of Γρ

α, α = −1, 0, 1 (so that for every n, Λ(ρn) = |Dρn|(Ω) )
and lim supn→∞ |Dρn|(Ω) = Λ(ρ). Each function ρn may be defined by letting ρn = ρ in Ω except ρn = α in
{dist (x,Γρ

α) < δ/n} for an appropriately chosen δ > 0, small, and this can be done because we have assumed
that dist (Γρ

α,Γ
ρ
α′) > 0 if α 6= α′. This is equivalent to showing that Λ is the lower semicontinuous envelope

of Λ, see Appendix B for details.
Then, the construction of a sequence ρn

j converging in L1(Ω) to such a ρn and satisfying lim supj→∞ Λεj (ρ
n
j )

≤ |Dρn|(Ω), is the same as in [33], and we easily can adapt this construction in order to make sure that the
functions ρn

j satisfy the Dirichlet boundary conditions on Γρ (ρn
j ∈ Xρ). Eventually, a standard diagonaliza-

tion argument allows to build out of the sequences (ρn
j )j≥1, n ≥ 1, a sequence (ρj) that converges to ρ and

satisfies (30).
Once the sequence (ρj) has been built, we notice that limj→∞

∫
Ω
L(ρj(x)) dx = |{ρ = 1}| = θ1|Ω|, and

limj→∞
∫
Ω V (ρj(x)) dx = |{ρ = −1}| = θ−1|Ω|. Therefore we may perturb slightly (at least for j large enough)

the functions ρj in order to get the exact equalities
∫
Ω L(ρj(x)) dx = θ1|Ω|,

∫
Ω V (ρj(x)) dx = θ−1|Ω| without

perturbing much the energy Λεj nor changing the limit ρ. This is done, for instance, by Baldo in [6] (see
also [7]).

Remark 3.2. In this theorem, we have used the phase indicators S,L, V introduced in Section 1.4 for the
penalization of the volume fraction. It is however obvious that any other set of functions with a similar
behaviour could be used instead

3.2. Continuity of the compliance

We now study the functional (18). First we notice that for any ρ ∈ L1(Ω), 0 ≤ Cδ(ρ) < +∞, and the inf
in (18) is in fact a min. Indeed, since u ∈ Xu satisfies u = 0 on some fixed non negligible part of the boundary
∂Ω, there exists by Korn’s inequality (since ∂Ω is Lipschitz-regular, see [19], Th. 6.3-4 or [39]) a constant cK
such that

‖u‖2H1(Ω;RN ) ≤ cK

∫
Ω

A e(u)(x) : e(u)(x) dx (31)

for every u ∈ Xu. We deduce that the energy Eδ(ρ, u) is coercive in u, uniformly in ρ: for every u ∈ Xu and
ρ ∈ L1(Ω),

Eδ(ρ, u) ≥ δ

2cK
‖u‖2H1(Ω;RN )−‖f‖L2(Ω;RN )‖u‖L2(Ω;RN )−‖p‖H1(Ω;RN )‖u‖H1(Ω;RN ) − ‖p‖L2(Γρ)‖u‖L2(Γρ;RN ).

≥ c1‖u‖2H1(Ω;RN ) − c2
(32)

with two constants c1 and c2 depending only on δ. In particular, we easily deduce that the infimum problem
in (18) always has a solution uρ, characterized by∫

Ω

(δ + (1 − δ)S(ρ(x)))A e(uρ)(x) : e(v)(x) dx =
∫

Ω

S(ρ(x))f(x) · v(x) dx +
∫

Ω

L(ρ(x)) div(pv)(x) dx

−
∫

Γρ
1

p(x)v(x) · νΩ(x) dHN−1(x), (33)

for every v ∈ Xu, so that Cδ(ρ) < +∞ for every ρ ∈ L1(Ω). Letting v = uρ in (33), we discover that

Cδ(ρ) =
∫

Ω

S(ρ(x))f(x) · u(x) dx+
∫

Ω

L(ρ(x)) div(pu)(x) dx −
∫

Γρ
1

p(x)u(x) · νΩ(x) dHN−1(x) (34)



38 B. BOURDIN AND A. CHAMBOLLE

and if ρ ∈ Xρ,

Cδ(ρ) =
∫

Ω

S(ρ(x))f(x) · uρ(x) dx −
∫

Ω∪Γρ

p(x)uρ(x) ·DL(ρ),

which actually corresponds to the total work of the forces at equilibrium.
We then can show the following lemma:

Lemma 3.3. The functional ρ 7→ Cδ(ρ) is (strongly) continuous in L1(Ω).

Proof. Consider a sequence (ρn)n≥1 that converges to some ρ in L1(Ω). Without loss of generality we may
assume that the sequence (Cδ(ρn))n≥1 converges to some limit ` ∈ [0,+∞]. For every n let un ∈ Xu the
minimizer of Eδ(ρn, ·) over Xu.

By (32), we see that the sequence (un)n≥1 is bounded in H1(Ω; RN ) (‖un‖2H1(Ω;RN ) ≤ c2/c1). We may extract
a subsequence (unk

) converging weakly in H1 to some u ∈ Xu. Since S(ρn) → S(ρ) strongly (in any Lp(Ω),
p < +∞), and L(ρn) → L(ρ), taking ρ = ρnk

and uρ = unk
in (33) and passing to the limit we see that u is the

minimizer of Eδ(ρ, ·) over Xu.
Now, we also have that (by (34))

Cδ(ρnk
) =

∫
Ω

S(ρnk
(x))f(x) · unk

(x) dx +
∫

Ω

L(ρnk
(x)) div(punk

)(x) dx −
∫

Γρ
1

p(x)unk
(x) · νΩ(x) dHN−1(x).

Since unk
goes to u strongly in L2(∂Ω) we can pass to the limit in this expression and get that

` =
∫

Ω

S(ρ(x))f(x) · u(x) dx+
∫

Ω

L(ρ(x)) div(pu)(x) dx −
∫

Γρ
1

p(x)u(x) · νΩ(x) dHN−1(x).

= Cδ(ρ),

in particular, ` < +∞, and Lemma 3.3 is proved.

From Theorem 3.1 and Lemma 3.3 we deduce the following corollary:

Corollary 3.4. As ε goes to zero, the functional Cδ + λΛε Γ-converges in L1(Ω) to Cδ + λΛ, and (given a set
of proportions θ = (θ−1, θ0, θ1) ∈ (0, 1)3, θ−1 + θ0 + θ1 = 1) Cδ + λΛθ

ε Γ-converges to Cδ + λΛ
θ
.

We deduce Theorem 1.5 from this corollary: if ρε minimizes Cδ + λΛθ
ε in L1(Ω) (in fact, in Xρ), then by

Theorem 3.1 there exists ρ ∈ Xρ and a sequence εj going to 0 as j →∞ such that ρεj → ρ, and by Corollary 3.4

ρ is a minimizer of Cδ + λΛ
θ
, in other words a solution of (19).

4. Analysis and limit of the fictitious material problem

4.1. The dual problem

In order to study the limit δ → 0, we have to introduce (exactly like Allaire et al. in [2] in a similar situation)
the dual problem of (18). To define the dual problem we follow ([21], Chap. III).

The compliance Cδ(ρ) that we minimize is given by (18). We introduce as in [21] the perturbed energy (δ > 0
and ρ ∈ L1(Ω) being fixed)

Φδ,ρ(u, q) =
1
2

∫
Ω

(δ + (1− δ)S(ρ(x)))A(e(u)(x) + q(x)) : (e(u)(x) + q(x)) dx

−
∫

Ω

S(ρ(x))f(x) · u(x)−
∫

Ω

L(ρ(x)) div(pu)(x) dx +
∫

Γρ
1

p(x)u(x) · νΩ(x) dHN−1(x),
(35)
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defined for u ∈ Xu and q ∈ L2(Ω;SN ) where SN ' R
N(N+1)/2 is the set of symmetric N × N matrices. The

dual problem of (18) is by definition the problem

sup
σ∈L2(Ω;SN )

{−Φ∗δ,ρ(0, σ)
}

where Φ∗δ,ρ is the Legendre–Fenchel conjugate of Φδ,ρ. This conjugate is given by

cΦ∗δ,ρ(0, σ) = sup
u∈Xu,q∈L2(Ω;SN )

∫
Ω

q : σ dx− Φδ,ρ(u, q)

= sup
u∈Xu

(
sup

q∈L2(Ω;SN )

∫
Ω

q : σ dx− 1
2

∫
Ω

(δ + (1− δ)S(ρ))A(e(u) + q) : (e(u) + q) dx

)

+
∫

Ω

S(ρ)f · u + L(ρ) div(pu) dx −
∫

Γρ
1

pu · νΩ dHN−1,

=
1
2

∫
Ω

1
δ+(1−δ)S(ρ)A

−1σ : σ dx

+ sup
u∈Xu

∫
Ω

− e(u) : σ + S(ρ)f · u + L(ρ) div(pu) dx −
∫

Γρ
1

pu · νΩ dHN−1.

Introducing thus the functional Fδ(ρ, σ) = Φ∗δ,ρ(0, σ):

Fδ(ρ, σ) =
1
2

∫
Ω

1
δ+(1−δ)S(ρ(x))A

−1σ(x) : σ(x) dx,

if ∀u ∈ Xu, ∫
Ω

− e(u) : σ + S(ρ)f · u + L(ρ) div(pu) dx −
∫

Γρ
1

pu · νΩ dHN−1 = 0, (36)

and Fδ(ρ, σ) = +∞ otherwise, the dual problem of (18) may be restated as

Cδ(ρ) = 2 inf
σ∈L2(Ω;SN )

Fδ(ρ, σ). (37)

The equivalence of the two problems (18) and (37) (and the equality in (37)) comes from the fact that prob-
lem (18) is normal ([21], Def. III-2.1). This follows from ([21], Th. III-4.1). From the latter theorem we also
deduce that problem (37) admits a minimizer σρ.

4.2. Convergence of the fictitious material model

Consider now the functional, for δ > 0, and ρ ∈ L1(Ω), σ ∈ L2(Ω;SN ), Fδ(ρ, σ) = 2Fδ(ρ, σ) + λΛ(ρ),
and (given a set of proportions θ = (θ−1, θ0, θ1) ∈ (0, 1)3, θ−1 + θ0 + θ1 = 1) the functional Fθ

δ (ρ, σ)
= 2Fδ(ρ, σ) + λΛ

θ
(ρ).

Define, for ρ ∈ Xρ (ρ ∈ BV (Ω ∪ Γρ; {−1, 0, 1})), and σ ∈ L2(Ω;SN ), the functional

F0(ρ, σ) =
1
2

∫
S(ρ)

A−1σ(x) : σ(x) dx,

if σ = 0 a.e. in V (ρ) ∪ L(ρ) = S(ρ)c and ∀u ∈ Xu, (36) holds,

and F0(ρ, σ) = +∞ otherwise.
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Notice that for ρ ∈ Xρ, condition (36) may also be written

∀u ∈ Xu,

∫
Ω

− e(u) : σ + S(ρ)f · u dx −
∫

Ω∪Γρ

p u ·DL(ρ) = 0, (38)

and is a weak way of expressing the fact that in Ω,

div σ + S(ρ)f − pDL(ρ) = 0

while σ · νΩ + pνL = 0 on ∂?L(ρ) ∩ ∂Ω \ Γu. We then set F0(ρ, σ) = 2F0(ρ, σ) + λΛ(ρ) and Fθ
0 (ρ, σ)

= 2F0(ρ, σ) + λΛ
θ
(ρ). We have the following theorem:

Theorem 4.1. As δ → 0, Fδ Γ-converges to F0 in L1(Ω) × (L2(Ω;SN )–weak), and Fθ
δ Γ-converges to Fθ

0 .
Moreover if for δ > 0 small, Fδ(ρδ, σδ) ≤ c < +∞, then there exist ρ, σ and a sequence (δj)j≥1 (with δj ↓ 0
as j →∞) such that ρδj → ρ in L1(Ω) and σδj ⇀ σ weakly in L2(Ω;SN ) as j →∞.

Proof. Consider first (for δ > 0 small) functions ρδ, σδ such that Fδ(ρδ, σδ) ≤ c < +∞: we will show that there
exist ρ0, σ0 and (δj)j≥1 with ρδj → ρ0, σδj ⇀ σ0, and F0(ρ0, σ0) ≤ lim infj→∞ Fδj (ρδj , σδj ). Notice first that
since Λ(ρδ) = |Dρδ|(Ω ∪ Γρ) is uniformly bounded, there exist a sequence (δj)j≥1 and ρ0 such that ρδj → ρ0 in
L1(Ω), and Λ(ρ0) = |Dρ0|(Ω∪Γρ) ≤ lim infj→∞ Λ(ρδj ). To simplify the notations we let ρj = ρδj and σj = σδj .
We may assume without loss of generality that ρj converges to ρ a.e. in Ω.

Now, we have that

Fδ(ρδ, σδ) =
1
2δ

∫
S(ρδ)c

A−1σδ : σδ dx +
1
2

∫
S(ρδ)

A−1σδ : σδ dx ≤ c < +∞ (39)

(S(ρδ)c = V (ρδ)∪L(ρδ)) so that σδ is bounded in L2(Ω;SN ) and we may therefore assume that there exists σ0

such that σj ⇀ σ0 weakly in L2. We introduce the functions σ′j = S(ρj)σj and σ′′j = σj − σ′j = (1 − S(ρj))σj .
The estimate (39) yields ∫

Ω

A−1σ′′j : σ′′j dx ≤ 2cδj,

therefore σ′′j → 0 strongly in L2. We deduce that σ′j ⇀ σ0, and in particular that

1
2

∫
Ω

A−1σ0 : σ0 dx ≤ lim inf
j→∞

1
2

∫
Ω

A−1σ′j : σ′j dx ≤ lim inf
j→∞

Fδj (ρj , σj).

To conclude that F0(ρ0, σ0) ≤ lim infj→∞ Fδj (ρj , σj) it remains to show that σ0 = 0 a.e. in S(ρ0)c and that for
every u ∈ Xu, equation (36) holds for σ = σ0, ρ = ρ0.

The fact that σ0 = 0 a.e. in S(ρ0)c is clear because for every ϕ ∈ L2(Ω,SN ) with ϕ = 0 a.e. in S(ρ0),
ϕS(ρj) → 0 strongly in L2(Ω,SN ), thus

∫
Ω
σ′j : ϕdx =

∫
Ω
σj : (ϕS(ρj)) dx → 0, but since σ′j ⇀ σ0 it means

that
∫
Ω
σ0 : ϕdx = 0.

On the other hand, the fact that given u ∈ Xu (36) holds is also elementary since (Fδj (ρj , σj) being finite
for every j) it holds for σ = σj , ρ = ρj , and passes to the limit as j →∞.

In order to achieve the proof of Theorem 4.1 we need, given ρ0, σ0, to find ρδ and σδ such that ρδ → ρ0 in L1,
σδ ⇀ σ0 in L2, and lim supδ↓0 Fδ(ρδ, σδ) ≤ F0(ρ0, σ0). But since, if F0(ρ0, σ0) < +∞, Fδ(ρ0, σ0) = F0(ρ0, σ0)
for every δ > 0, we can take ρδ = ρ0, σδ = σ0.

Now we introduce the limit compliance (defined only for ρ ∈ Xρ)

C0(ρ) = 2 inf
σ∈L2(Ω;SN )

F0(ρ, σ). (40)
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From Theorem 4.1 follows the

Corollary 4.2. As δ goes to zero, the functional Cδ + λΛ Γ-converges in L1(Ω) to C0 + λΛ, and Cδ + λΛ
θ

Γ-converges to C0 + λΛ
θ
.

Proof. Consider ρδ such that Cδ(ρδ) + λΛ(ρδ) ≤ c < +∞ for small δ > 0. Clearly (ρδ)δ>0 is compact in L1(Ω)
and there exist (δj)j≥1 going to zero and ρ0 such that ρδj → ρ0 in L1(Ω). We let ρj = ρδj and define σj as
the minimizer of (37) for ρ = ρj . Then from Theorem 4.1 we get that (up to a subsequence) σj goes weakly to
some σ0 in L2 and

C0(ρ0) + λΛ(ρ0) ≤ 2F0(ρ0, σ0) + λΛ(ρ0) ≤ lim inf
j→∞

2Fδj (ρj , σj) + λΛ(ρj) = lim inf
j→∞

Cδj (ρj) + λΛ(ρj).

On the other hand, given ρ0 such that C0(ρ0) + λΛ(ρ0) < +∞, if for an arbitrary η > 0, ση is such that
2F0(ρ0, σ

η) ≤ C0(ρ0) + η, then Cδ(ρ0) ≤ 2Fδ(ρ0, σ
η) = 2F0(ρ0, σ

η) ≤ C0(ρ0) + η. Therefore Cδ(ρ0) ≤ C0(ρ0)
for every δ > 0 and we find a family (ρδ)δ>0 such that lim supδ↓0 Cδ(ρδ) + λΛ(ρδ) ≤ C0(ρ0) + λΛ(ρ0) (or, as

well, lim supδ↓0 Cδ(ρδ) + λΛ
θ
(ρδ) ≤ C0(ρ0) + λΛ

θ
(ρ0) ) just by letting ρδ = ρ0 for every δ.

4.3. Analysis of the limit problem

To sum up, we have shown that the problem we are actually (numerically) computing is an approximation
of the problem

min
ρ∈Xρ

C0(ρ) + λΛ(ρ) (41)

where C0 is defined by (40). We would like to show that this is the same as problem (9), or, equivalently, that
C0(ρ) defines the same functional as C(S,L, V ) in (7) for {S,L, V } = {S(ρ), L(ρ), V (ρ)}. Then, Theorem 1.3
(and as a corollary Th. 1.2) would easily follow from Corollary 4.2. Indeed, the assumption that there exists
{S,L, V } with C(S,L, V ) < +∞ would mean that there exists some ρ ∈ Xρ such that C0(ρ) < +∞. This would
imply that the minimizers ρδ of Cδ + λΛ

θ
satisfy supδ>0 Cδ(ρδ) + λΛ

θ
(ρδ) < +∞, and thus would yield the

existence of subsequences of (ρδ)δ>0 that converge in L1(Ω) to some minimizer of (41), showing Theorem 1.3.
To address this problem we simply consider the functional Φ0,ρ(u, q) defined in (35), this time for ρ ∈ Xρ and

δ = 0. A standard calculation shows that Φ∗0,ρ(0, σ) = F0(ρ, σ). Therefore problem (40) is the dual problem of

−2 inf
u∈Xu

E0(ρ, u) (42)

where E0(ρ, u) = Φ0,ρ(u, 0). But E0(ρ, u) is identical to E({S(ρ), L(ρ), V (ρ)}, u) defined in (8), thus prob-
lem (42) is equivalent to (7) and its value is exactly C(S(ρ), L(ρ), V (ρ)). Now, the functional Φ0,ρ satisfies
Φ0,ρ(0, 0) = 0 and q 7→ Φ0,ρ(0, q) is continuous in L2(Ω;SN ), therefore we may apply [21] (Th. III-4.1) whenever
the infimum in (42) is finite, to conclude that in this case, it is equal to C0(ρ). In addition ([21], Prop. III-1.2)
shows that the value of (42) (positive since E0(ρ, 0) = 0), is less than (40), therefore it is finite if and only if
C0(ρ) < +∞. It follows that the value of (42) is always equal to C0(ρ), whether finite or infinite. In other
words, we always have C0(ρ) = C(S(ρ), L(ρ), V (ρ)). Hence (41) is the same as (9) and Theorem 1.3 is true.

Remark 4.3. From [21] (Th. III-4.1) we also deduce that when C0(ρ) < +∞, (40) admits a minimizer σρ. On
the other hand, it is unlikely that (42) admits a minimizer in Xu for arbitrary ρ ∈ Xρ, even of finite compliance
C0(ρ).
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5. Interfaces of finite compliance configurations

Throughout the paper, we have made the “common sense” assumption that there are no Liquid-Void interfaces
in finite compliance configurations. Formally, this is because along such an interface, the void opposes no
resistance to the liquid and should therefore be sent to infinity, yielding an infinite compliance.

However, a rigorous study of this point is much more delicate and is discussed in the present section. In
the general case, if ∂∗S is essentially closed (i.e., closed up to a set of zero (N − 1)-dimensional measure), the
non-existence result is easy to obtain. In dimension two though, the situation is slightly simpler. Lemma 5.1 in
Appendix C permits to show that given any ρ such that C0(ρ) < +∞, the Liquid-Void interface is essentially
empty, without the above-mentioned closedness hypothesis.

These issues are discussed in the present section.

The energy E0(ρ, u) may be written (ρ ∈ Xρ, u ∈ Xu)

E0(ρ, u) =
1
2

∫
S(ρ)

A e(u) : e(u) dx −
∫

S(ρ)

f · u dx −
∫

∂?L(ρ)

p u · νL dHN−1(x)

with νL the exterior normal to L(ρ). The last term actually corresponds to a pressure p(x) exerted from L(ρ) onto
its complement. A problem is that we would like theoretically this pressure to be exerted only on the structure
S(ρ) and not also on the void V (ρ), in other words, the last integral should be taken only on ∂?L(ρ) ∩ ∂?S(ρ)
This is not a problem if we can show that actually, ∂?L(ρ) ⊆ ∂?S(ρ) (essentially, i.e. up to a HN−1-negligible
set). We can give a complete answer to this point only in dimension N = 2.

Assume that ρ is such that C0(ρ) is finite (for instance, ρ is a minimizer of (41)). The essential point is that,
as pointed out in Remark 4.3, equation (40) admits a minimizer. This minimizer σρ satisfies (38), or

∀u ∈ Xu,

∫
S(ρ)

− e(u) : σρ + f · u dx −
∫

∂?L(ρ)

p u · νL dHN−1(x) = 0. (43)

We recall the assumption that p does not vanish (either p > 0 on Ω or p < 0 on Ω). In the case where S(ρ) is a
regular (say, at least Lipschitz) set, (43) means (if we integrate by part) that necessarily,

div σρ + f = 0 in S(ρ),

∂?L(ρ) \ Γu ⊆ ∂S(ρ) (essentially),

σρ · νS = p νS HN−1–a.e. in ∂?L(ρ) \ Γu, and

σρ · νS = 0 HN−1–a.e. in (∂S(ρ) \ ∂?L(ρ)) \ Γu.

(44)

These are the classical expected conditions for the stress tensor σρ.
If, on the other hand, we could show that the boundary ∂̃?S(ρ) (where here ∂̃?E denotes the measure-

theoretical boundary of the finite-perimeter set E seen as a subset of R
N rather than Ω) is essentially closed (i.e.,

HN−1(∂̃?S(ρ) \ ∂̃?S(ρ)) = 0), then using a blow-up argument around a point of ∂?L(ρ)∩∂?V (ρ) \ (∂̃?S(ρ)∪Γu)
we would find again that the liquid-void interface is essentially empty: HN−1(∂?L(ρ)∩ ∂?V (ρ)) = 0. We would
deduce this time that ∂?L(ρ) \ Γu ⊆ ∂̃?S(ρ) (essentially), and (44) holds again, but in a weaker sense.

However, we do not have any result of regularity for S(ρ). So that we do not know in general whether some
weak form of (44) holds, or whether there might exist some finite-compliance repartition ρ with a liquid-void
interface, that would in this case essentially be included in ∂̃?S(ρ).

In dimension N = 2, however, we have the following technical lemma, shown in Appendix C:

Lemma 5.1. Consider Ω ⊆ R
2 an open domain in the plane and a vector field v ∈ L1

loc(Ω,R
2) such that the

distributional divergence div v of v is a bounded Radon measure in Ω. Assume that v vanishes outside of the set
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S ⊆ Ω of finite perimeter in Ω. Let S0 be the set of points where S has density 0 with respect to the Lebesgue
measure:

S0 =
{
x ∈ Ω : lim

ρ→0

|S ∩B(x, ρ)|
ρ2

= 0
}

and Ŝ0 the set of points of S0 where the boundary of S has zero 1-dimensional density:

Ŝ0 =
{
x ∈ S0 : lim

ρ→0

|D1S |(B(x, ρ))
ρ

= 0
}
·

Then the measure div v is carried by the complement of Ŝ0, that is | div v|(Ŝ0) = 0.

In our case (with little adaptions to study the part ∂?L(ρ) ∩ ∂Ω: we need to extend locally the functions
outside of Ω to apply the lemma), it shows that the measure div σρ defined by (43) is essentially carried by
(S(ρ)0 ∪ ∂̃?S(ρ)) \ Γu, so that we must have ∂?L(ρ) \ Γu ⊆ ∂̃?S(ρ), and (44) holds in the weak sense (replacing
∂S(ρ) with ∂̃?S(ρ)).

Appendix A. The Γ-convergence

We shortly define the Γ-convergence of functionals (in metric spaces) and its main properties. For more
details we refer mainly to [20] and [5].

Given a metric space (X, d) and Fk : X → [−∞,+∞] a sequence of functions, we define for every u ∈ X the
Γ-lim inf of F

F ′(u) = Γ−lim inf
k→∞

Fk(u) = inf
uk→u

lim inf
k→∞

Fk(uk)

and the Γ-lim sup of F

F ′′(u) = Γ−lim sup
k→∞

Fk(u) = inf
uk→u

lim sup
k→∞

Fk(uk),

and in the case where F ′ = F ′′, we let F = F ′ = F ′′ and we say that that Fk Γ-converges to F : X → [−∞,+∞].

The functions F ′, F ′′ (hence also F if it exists) are lower semi-continuous on X . We have the following two
properties:

1. Fk Γ-converges to F if and only if for every u ∈ X,
(i) for every sequence uk converging to u, F (u) ≤ lim infk→∞ Fk(uk);
(ii) there exists a sequence uk converging to u, with lim supk→∞ Fk(uk) ≤ F (u);

2. if G : X → R is continuous and Fk Γ-converges to F , then Fk +G Γ-converges to F +G.

The following result is the fundamental property of the Γ-convergence:

Proposition A.1. Assume Fk Γ-converges to F and for every k let uk be a minimizer of Fk over X. Then,
if the sequence (or a subsequence) uk converges to some u ∈ X, u is a minimizer for F and Fk(uk) converges
to F (u).

In particular, we see that it will always be of great interest to show, together with the Γ-convergence of a
sequence (Fk)k≥1 of functionals, that any sequence (uk)k≥1 of minimizers of Fk is precompact in X .

Finally, we give the following definition of Γ-convergence in the case where (Fh)h>0 is a family of functionals
on X indexed by a continuous parameter h: we say that Fh Γ-converges to F in X as h ↓ 0 if and only if for
every sequence (hj) that converges to zero as j →∞, Fhj Γ-converges to F .
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Appendix B. The relaxation of Λ(S, L, V )

In this section we show why Λ, defined in (6), is the lower semicontinuous envelope in L1(Ω) of the function Λ
of equation (4). As a consequence, it will also show how the sequence (ρn)n≥1 in the proof (p. 37) of Theorem 3.1
may be built in a rigorous way. It relies on the following general result:

Lemma B.1. Let Ω ⊂ R
N be a Lipschitz-regular bounded open set, and let Ωj be an increasing sequence of

Lipschitz-regular subsets of Ω such that ∪j↑∞Ωj = Ω. Then the three following conditions are equivalent:

(i) lim
j→∞

HN−1(∂Ωj) = HN−1(∂Ω);

(ii) ∀u ∈ BV (Ω) ∩ L∞(Ω), lim
j→∞

∫
∂Ωj

TrΩju(x) dHN−1(x) =
∫

∂Ω

TrΩu(x) dHN−1(x);

(iii) ∀u ∈ BV (Ω) ∩ L∞(Ω), TrΩju dHN−1 ∂Ωj ⇀ TrΩu dHN−1 ∂Ω weakly-∗ in M(Ω′) as j → ∞, where
Ω′ is any open set such that Ω′ ⊃⊃ Ω.

Here TrΩu denotes the trace of u on ∂Ω (TrΩu ∈ L1(∂Ω)) while TrΩju denotes the trace of the restriction u|Ωj

on ∂Ωj . The assumption that ∂Ωj is Lipschitz-regular is not absolutely essential: the result still holds if for
every j, Ωj is the intersection of Ω with some other Lipschitz-regular open subset of R

N .

Proof. Clearly (iii) ⇒ (ii) ⇒ (i). Let us show first that (ii) ⇒ (iii). Choose u ∈ BV (Ω) and let ϕ ∈
C1(Ω′; RN) with compact support. Then∫

Ωj

u divϕdx =
∫

∂Ωj

TrΩjuϕ · νΩj dHN−1 −
∫

Ωj

ϕ ·Du.

Since ∩j↑∞(Ω\Ωj) = ∅, the last term goes to
∫
Ω
ϕ ·Du as j →∞ while the left-hand term goes to

∫
Ω
u divϕdx.

It yields

lim
j→∞

∫
∂Ωj

TrΩjuϕ · νΩj dHN−1 =
∫

∂Ω

TrΩuϕ · νΩ dHN−1.

We deduce that
∫

A∩∂Ω
|TrΩu| dHN−1 ≤ lim infj→∞

∫
A∩∂Ωj

|TrΩju| dHN−1 for every open A ⊂ Ω′. If u is positive
and HN−1(∂Ω ∩A) = 0, we thus get that∫

∂Ω

TrΩu dHN−1 =
∫

∂Ω∩A

TrΩu dHN−1 +
∫

∂Ω\A
TrΩu dHN−1

≤ lim inf
j→∞

∫
∂Ωj∩A

TrΩju dHN−1 + lim inf
j→∞

∫
∂Ωj\A

TrΩju dHN−1

≤ lim sup
j→∞

∫
∂Ωj∩A

TrΩju dHN−1 + lim sup
j→∞

∫
∂Ωj\A

TrΩju dHN−1

≤ lim sup
j→∞

∫
∂Ωj

TrΩju dHN−1.

If (ii) holds, we see that all inequalities are in fact equalities and we get

lim
j→∞

∫
∂Ωj∩A

TrΩju dHN−1 =
∫

∂Ω∩A

TrΩu dHN−1.

We deduce that (iii) also holds for u. If u is not positive, then it is enough to show (iii) for the positive and
negative parts u+ and u− of u and then take the difference.
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We now show (i)⇒ (ii). It is enough to prove (ii) for characteristic functions of finite-perimeter sets. Indeed,
if un =

∑n
i=1 αi1Ei ≤ u (u is bounded), where Ei are finite-perimeter sets, then if (ii) holds for each 1Ei ,∫

∂Ω

TrΩun dHN−1 =
n∑

i=1

αi

∫
∂Ω

TrΩ1Ei dHN−1 = lim
j→∞

n∑
i=1

αi

∫
∂Ωj

TrΩj 1Ei dHN−1 ≤ lim inf
j→∞

∫
∂Ωj

TrΩju dHN−1.

Since we can assume that, as n→∞, un → u not only in L1(Ω), but also in L1(∂Ω), we get
∫

∂Ω
TrΩu dHN−1 ≤

lim infj→∞
∫

∂Ωj
TrΩju dHN−1. Changing u into −u, we also have lim supj→∞

∫
∂Ωj

TrΩju dHN−1 ≤ ∫∂Ω TrΩu d
HN−1, so that (ii) holds for u.

Given a finite-perimeter set E in Ω, let Ej = E ∩ Ωj . First of all, limj→∞ 1Ej = 1E in L1(Ω′) so that
|D1E |(Ω′) ≤ lim infj→∞ |D1Ej |(Ω′). This may be written

|D1E |(Ω) + |D1E |(∂Ω) ≤ lim inf
j→∞

|D1E |(Ωj) + |D1Ej |(∂Ωj)

but since ∪j↑∞Ωj = Ω, limj→∞ |D1E |(Ωj) = |D1E |(Ω), so that

|D1E |(∂Ω) ≤ lim inf
j→∞

|D1Ej |(∂Ωj).

In particular if we let E′ = Ω \ E and E′j = E′ ∩ Ωj = Ωj \ E, and still view D1E and D1E′ as measures
in M(Ω′),

HN−1(∂Ω) =
∫

∂Ω

TrΩ1E + TrΩ1E′ dHN−1 = |D1E |(∂Ω) + |D1E′ |(∂Ω)

≤ lim inf
j→∞

|D1Ej |(∂Ωj) + lim inf
j→∞

|D1E′
j
|(∂Ωj)

≤ lim sup
j→∞

|D1Ej |(∂Ωj) + lim sup
j→∞

|D1E′
j
|(∂Ωj)

≤ lim sup
j→∞

HN−1(∂Ωj)

and assuming (i), we deduce that limj→∞ |D1Ej |(∂Ωj) = |D1E |(∂Ω). Since we have |D1Ej |(∂Ωj) =
∫

∂Ωj
TrΩj 1E

dHN−1, as well as |D1E |(∂Ω) =
∫

∂Ω TrΩ1E dHN−1, it shows the result for the case u = 1E and Lemma B.1 is
proved.

Given S,L, V a partition of Ω, let now Λ(S,L, V ) be defined by (4), i.e., Λ(S,L, V ) = HN−1(∂L ∩ Ω) +
HN−1(∂V ∩ Ω), if ∂L ∩ Ω and ∂V ∩ Ω are smooth and ΓS ⊂ S, ΓL ⊂ S, ΓV ⊂ S, and Λ(S,L, V ) = +∞
otherwise. Let also Λ be defined by (6). Clearly, Λ is lower semicontinuous (in the L1(Ω) topology) and since
Λ(S, L, V ) = Λ(S,L, V ) when Λ(S,L, V ) < +∞, it is clearly less than the l.s.c. envelope of Λ. To show that it
is equal, we must find, given S,L, V a finite-perimeter partition of Ω, a sequence of smooth partitions Sj , Lj, Vj

such that 1Sj → 1S , 1Lj → 1L in L1(Ω) and lim supj→∞ Λ(Sj , Lj, Vj) ≤ Λ(S,L, V ).
We recall that Γρ is the closed set ΓS ∪ ΓL ∪ ΓV . Let d : Ω → R+ be the distance function dist (·,Γρ). Since

dist (ΓS ,ΓL) > 0, dist (ΓL,ΓV ) > 0, dist (ΓV ,ΓS) > 0, and since (cf. [25] Th. 3.2.39)

HN−1(Γρ) = lim
δ→0

|{x ∈ Ω : d(x) < δ}|
δ

= lim
δ→0

1
δ

∫ δ

0

HN−1({d = s}) ds,

we can choose a sequence sj ↓ 0 such that limj→∞HN−1({d = sj}) = HN−1(Γρ), and such that the open sets
{dist (·,ΓS) < sj}, {dist (·,ΓL) < sj}, {dist (·,ΓV ) < sj} are Lipschitz-regular and disjoint. Let Ωj = Ω \ {d ≤
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sj}, and define

Sj = (S ∩ Ωj) ∪ {x ∈ Ω : dist (x,ΓS) < sj},
Lj = (L ∩ Ωj) ∪ {x ∈ Ω : dist (x,ΓL) < sj}, and
Vj = (V ∩ Ωj) ∪ {x ∈ Ω : dist (x,ΓV ) < sj}·

Then, the fact that limj→∞ Λ(Sj , Lj , Vj) = Λ(S,L, V ) comes from a straightforward application of Lemma B.1.
Moreover, it is clear that Λ(Sj , Lj , Vj) = HN−1(∂?Lj) +HN−1(∂?Vj) = |D1Lj |(Ω) + |D1Vj |(Ω).

By standard mollifying methods we can modify slightly for every j the partition Sj , Lj, Vj into a smooth
partition S′j , L

′
j , V

′
j , conserving the properties that ΓS ⊂ S′j , etc., that 1S′j → 1S in L1(Ω) as j → ∞, etc,

and not changing too much the perimeters so that we still have limj→∞ Λ(S′j , L
′
j, V

′
j ) = limj→∞ Λ(S′j , L

′
j , V

′
j )

= Λ(S,L, V ).

Appendix C. Proof of Lemma 5.1

In this appendix we give the proof of Lemma 5.1. We know that we can write div v = g| div v| where g is the
Radon–Nykodym derivative of div v with respect to its variation | div v|, and is given | div v|-a.e. in Ω by

g(x) = lim
ρ→0

div v(B(x, ρ))
| div v|(B(x, ρ))

·

All we have to show is that if x is a point in Ŝ0 such that this equality holds, then g(x) = 0. In order to do
this we will show there exists a sequence (ρn)n≥1 of radii that go to zero as n → ∞, such that for every n,
div v(B(x, ρn)) = 0.

In the following x is fixed and we will denote by Bρ the ball B(x, ρ). Our first claim is that for almost
every radius ρ > 0 (small), div v(Bρ) =

∫
∂Bρ

vr(y) dH1(y) where vr denotes the radial component v · er (er =
(y − x)/|y − x|) of the field v.

For a given ρ > 0 and every small α > 0, we introduce the function

ψα(y) =


1 if y ∈ Bρ−α
ρ− r

α
if r = |y − x| ∈ (ρ− α, ρ)

0 if y 6∈ Bρ.

Then,

div v(Bρ) = lim
α→0

∫
Ω

ψα(y) d(div v)(y) = lim
α→0

−
∫

Ω

∇ψα(y)v(y) dy

= lim
α→0

1
α

∫
Bρ\Bρ−α

vr(y) dy = lim
α→0

1
α

∫ ρ

ρ−α

dr
∫

∂Br

vr(y) dH1(y).

Fix ρ0 small (such that Bρ0 ⊂ Ω) and define for 0 < r < ρ0 the function f(r) =
∫

∂Br
vr dH1. Since v ∈ L1(Bρ0),

f ∈ L1(0, ρ0) so that for almost every ρ ∈ (0, ρ0),

lim
α→0

1
α

∫ ρ

ρ−α

f(r) dr = f(ρ).

We deduce that for a.e. ρ ∈ (0, ρ0), div v(Bρ) = f(ρ) =
∫

∂Bρ
vr dH1 which proves the first claim.

Now, we show that for every small ρ0 > 0, the set of radii ρ ∈ (0, ρ0) such that ∂Bρ ∩ S = ∅ (essentially)
has positive measure. Notice that for such a ρ, v = 0 H1-a.e. in ∂Bρ (by assumption), so that

∫
∂Bρ

vr dH1 = 0.
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Therefore if this second claim is true, then the existence of a sequence (ρn) such that ρn → 0 as n → ∞ and
div v(Bρn) = 0 becomes obvious, and the proof of the lemma is achieved.

Choose some δ > 0 and assume that ρ0 has been chosen small enough in order to have (we use the fact here
that x ∈ Ŝ0)

|S ∩Bρ0 | ≤ δρ2
0

and
|D1S |(Bρ0) ≤ δρ0.

We let I1 = {r ∈ (ρ0/2, ρ0) : H1(∂Br \ S) = 0}, I2 = {r ∈ (ρ0/2, ρ0) : H1(S ∩ ∂Br) < H1(∂Br)}, and
I = I1 ∪ I2. Notice that the complement of I in (ρ0/2, ρ0) is the set of radii r such that H1(∂Br ∩ S) = 0, i.e.,
such that the intersection ∂Br ∩ S is essentially empty and therefore

∫
∂Br

vr dH1 = 0. We thus have to show
that |I| < ρ0/2.

First,

|S ∩Bρ0 | ≥
∫

I1

2πr dr ≥ πρ0|I1|
so that |I1| ≤ δρ0/π. Then,

|D1S |(Bρ0) = H1(∂?S ∩Bρ0) ≥
∫ ρ0

0

H0(∂?S ∩ ∂Br) dr.

For almost every r, ∂?S ∩ ∂Br = ∂?(S ∩ ∂Br), and if moreover r ∈ I2, then ∂?(S ∩ ∂Br) must contain at least
two points. Therefore |D1S |(Bρ0) ≥ 2|I2|. We deduce that |I2| ≤ δρ0/2, so that if δ has been chosen strictly
smaller than π/(2 + π), |I| < ρ0/2, which is what we needed to show. The proof of the lemma is achieved.

Part of this work was carried out while A. Chambolle was visiting the Department of Mathematics of the Technical
University of Denmark, where B. Bourdin was employed, as a research assistant professor. Both author would like to
thank M.P. Bendsøe for making this visit possible and for the exciting discussions held there. We would also like to
thank R.V. Kohn for his numerous and invaluable comments and advices.
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