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Preface: Emergence of Science

First of all a word of warning: The word Stochastics as used in this e-Learning Program was originally
coined by Jakob Bernoulli in his masterpiece Ars conjectandi. It has nothing and really nothing in
common with the word stochastics as being used in nowadays financial and the mathematical areas.
Therefore, the name Bernoulli Stochastics is used for the content of this e-Learning Program. The
aim of Stochastikon Magister is to make a contribution to the Emergence of a Science. This aim must
be surprising, as science seems to have emerged centuries ago. In order to solve this puzzle, a short
glance at contemporary science and philosophy of science will be beneficial. To this end a citation
from an article authored by John R. Searle1 is used, which was published in the 1999 issue of the
Philosophical Transaction of the Royal Society, London.

The Philosophy of Science

In the 20th century, not surprisingly, the philosophy of science shared the epistemic ob-

session with the rest of philosophy. The chief questions in the philosophy of science, at

least for the first half of the century, had to do with the nature of scientific verification,

and much effort was devoted to overcoming various sceptical paradoxes, such as traditional

problem of induction. Throughout most of the 20th century the philosophy of science was

conditioned by the belief in the distinction between analytical and synthetic propositions.

The standard conception of the philosophy of science was that scientists aimed to get syn-

thetic contingent truths in the form of universal scientific laws. These laws stated very

general truths about the nature of reality, and the chief issue in the philosophy of science

had to do with the nature of their testing and verification. The prevailing orthodoxy, as

it developed in the middle decades of the century, was that science proceeded by something

called the hypothetico-Deductive method. The scientists formed the hypothesis, deduced log-

ical consequences from it, and then tested those consequences in the form of experiments.

This conception was articulated, I think more or less independently, by Karl Popper2 and

Carl Gustav Hempel3.

Those practising scientists who took an interest in the philosophy of science at all, tended,

I think, to admire Popper’s views, but much of their admiration was based on a misunder-

standing. What I think they admired in Popper was the idea that science proceeds by acts

of originality and imagination. The scientist has to form a hypothesis on the basis of his

own imagination and guess-work. There is no scientific method for arriving at hypotheses.

The procedure of the scientist is then to test the hypothesis by performing experiments and

reject those hypotheses that have been refuted.

Most scientists do not, I think, realize how anti-scientific Popper’s views actually are. On

Popper’s conception of science and the activity of scientists, science is not an accumulation

of truths about nature, and the scientist does not arrive at truths about nature, rather, all

that we have in sciences are a series of so far unrefuted hypotheses. But the idea that the

scientist aims after truth, and that in various sciences we actually have an accumulation

1John R. Searle, Slusser Professor of Philosophy, University of California - Berkeley.
2Karl Raimund Popper, Austro-British philosopher and a professor at the London School of Economics.
3Carl Gustav Hempel, German-American philosopher of science and a major figure in 20th-century logical empiricism.
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PREFACE PREFACE

of truths, which I think is the presupposition of most actual scientific research, is not

something which is consistent with Popper’s conception.

The comfortable orthodoxy of science as an accumulation of truths, or even as a gradual

progression through the accumulation of so far unrefuted hypotheses, was challenged by the

publication of Thomas Kuhn’s4 ‘Structure of scientific revolutions’ in 1962. It is puzzling

that Kuhn’s book should have had the dramatic effect that it did, because it is not strictly

speaking about philosophy of science, but about the history of science. Kuhn argues that if

you look at the actual history of science, you discover that it is not a gradual progressive

accumulation of knowledge about the world, but that science is subject to periodic massive

revolutions, where entire world views are overthrown when an existing paradigm is over-

thrown by a new scientific paradigm. It is characteristic of Kuhn’s book that he implies,

though as far as I know he does not state explicitly, that the scientist does not give us truths

about the world, but gives us a series of ways of solving puzzles, a series of ways of dealing

with puzzling problems within a paradigm. And when the paradigm reaches puzzles that it

cannot solve, it is overthrown and a new paradigm is erected in its place, which again sets

off a new round of puzzle-solving activities. From the point of view of this discussion, the

interesting thing about Kuhn’s book is that he seems to imply that we are not getting pro-

gressively closer to truth about nature in the natural sciences, we are just getting a series of

puzzle-solving mechanism. The scientist essentially moves from one paradigm to another,

for reasons that have nothing to do with giving an accurate description of an independently

existing natural reality, but rather for reasons that are in greater or lesser degree irrational.

Kuhn’s book was not much welcomed by practising scientists, but it had an enormous effect

on several humanities disciplines, especially those connected with the study of literature,

because it seemed to argue that science gives us no more truth about the real world than

do works of literary fiction or literary criticism; that science is essentially an irrational

operation where groups of scientists form theories which are more or less arbitrary social

constructs, and then abandon these in favour of other theories, which are likewise arbitrary

social constructs.

Whatever Kuhn’s intentions, I believe that his effect on general culture, though not on

the practice of real scientists, has been unfortunate, because it has served to demythologize

science to debunk it, to prove that it is not what ordinary people have supposed it to be.

Kuhn paved the way for the even more radical sceptical view of Paul Feyerabend5, who

argued that as far as giving us truths about the world is concerned, science is no better

than witchcraft.

My own view is that these issues are entirely peripheral to what we ought to be worried

about in the philosophy of science, and what I hope we will dedicate our efforts to in

the 21st century. I think the essential problem is this: 20th-century science has radically

challenged a set of very pervasive, powerful philosophical and common sense assumptions

about nature, and we simply have not digested the results of these scientific advances. I

am thinking especially of quantum mechanics. I think that we can absorb relativity theory

more or less comfortably because it can be construed as an extension of our traditional

Newtonian conception of the world. We simply have to revise our ideas of space and time,

and their relation to such fundamental physical constants as the speed of light. But quantum

mechanics really does provide a basic challenge to our world view, and we simply have not

yet digested it. I regard it as a scandal that philosophers of science, including physicists

with an interest in philosophy of science, have not so far given us a coherent account of

how quantum mechanics fits into our overall conception of the universe, particularly as

regards to causation and determinacy.

4Thomas Samuel Kuhn, American physicist who wrote extensively on the history of science.
5Paul Karl Feyerabend, Austrian-born philosopher of science best known for his work as a professor of philosophy at

the University of California, Berkeley.
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Most philosophers, like most educated people today, have a conception of causation that is

a mixture of common sense and Newtonian mechanics. Philosophers tend to suppose that

causal relations are always instances of strict deterministic laws, and that cause and effect

relation stand to each other in the kind of simple mechanical relations of gear wheels moving

other gear wheels, and other such Newtonian phenomena. We know at some abstract

level that is not right, but we still have not replaced our commonsense conception with a

more sophisticated scientific conception. I think that the most exciting task of the 21st-

century philosophy of science, and this is something for both scientists and philosophers,

would be to give an account of the results of quantum mechanics that will enable us to

assimilate quantum mechanics to a coherent overall world view. I think that in the course

of this project we are going to have to revise certain crucial notions, such as the notion

of causation; and this revision is going to have very important effects on other questions,

such as the questions concerning determinism and free will. This work has already begun,

and I hope it will continue successfully in the 21st century.

Paul Feyerabend wrote in his book Against Method, (London, 1975 revised ed. London, 1988, p. 295):

science is much closer to myth than a scientific philosophy is prepared to admit. It is one

of the many forms of thought that have been developed by man, and not necessarily the

best. It is conspicuous, noisy, and impudent, but it is inherently superior only for those

who have already decided in favour of a certain ideology, or who have accepted it without

ever having examined its advantages and its limits.

According to Popper’s philosophical view, Kuhn’s historical account and Feyerabend’s scepticism,
science does not and cannot provide any truths about reality. Scientific theories are imaginations and
guesswork and scientific activities consists of solving puzzles. There is no scientific method and, as
a consequence, whatever scientists do is called scientific. Note that Searle does not provide a single
argument for his optimistic view on quantum mechanics, except that neither philosophers nor scientists
have so far digested it. Thus, one may conclude that Feyerabend’s view of science cannot be excluded
and that science, in fact, is not what ordinary people have supposed it to be.

Even Searle admits that quantum mechanics indicates the collapse of the foundation of Modern Sci-
ence which built on causation and determinacy and the belief in the truths being the result of the
imagination of geniuses. The difficulty with quantum physics or radioactive decay is that it cannot be
dealt with in a usually assumed cause-effect relation. Thus, science is suddenly based on two different
world-views, which contradict each other.

The problem with searching truth is that truth assumes complete knowledge, but even geniuses like
Aristotle and Newton had only partial knowledge or more precisely said were characterized by igno-
rance. Therefore, one needs a subjective imagination for filling the gap yielding hypotheses which
although ingenious do not represent truth, which in fact is inaccessible for mankind. Another main
problem is that a seemingly identified cause-effect relation necessarily appears in the shape of truth
not admitting any room for expressing the always-existing uncertainty.

From the very beginning contemporary science claimed to be based on observation, i. e., experiments.
However, the basic knowledge represented by the Natural Laws is - as described above - the result
of the combination of some experiences and imagination. Experiments are mainly used for verifying
the hypotheses and here again we meet a serious problem. So far none of the Natural Laws has ever
been verified in the sense that a predicted event obtained by applying a Natural Law did really occur.
Consequently, all the Natural Laws should be refuted. However, instead of refuting the hypotheses,
science introduced the observation error and concluded that not the theory but the observation is
wrong.

The e-learning Program Stochastikon Magister as part of the comprehensive Stochastikon Information

System aims at introducing and teaching a new science based on a completely different world view
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and a different way of thinking than any of the traditional Western sciences. The new science is
named Stochastic Science and it is founded on the here introsuced Bernoulli Stochastics. Stochastic

Science does not search for or accumulate truths, but aims at gradually reducing ignorance, which is
a characteristic feature of mankind.

For a better understanding of the contents of Stochastikon Magister a very brief account of the
development of Science in Europe shall be provided below.

Scholastic Science

During the 9th century a movement of great significance was initiated in Europe. Schools were founded
and the Holy Scripture lost its ultimate monopoly for wisdom. Besides the Bible the writings of the
Church Fathers and of the Greek philosophers were studied and discussed. Public disputations pro
and contra (Pierre Abelard: ‘Sic et non’) certain opinions became popular and led to the emergence
of what is known as Scholastic Science. Scholastic Science was based

• on the application of logic,

• on clear definitions of questions and concepts,

• on the argumentation from effect to cause, and

• on the proof by authorities.

The assumption of God’s omnipotence and omniscience led to the conclusion that God knows past
as well as future and, hence, to a deterministic world view and to the confirmedness in cause-effect
relations. It was believed that the Holy Scripture containing God’s revelation enabled mankind to
identify the causes and, thus, to make appropriate decisions.

Scholastic Science served Christian religion by verifying the ‘truths’ of the Holy Scripture and harmo-
nizing ‘rationality’ and ‘belief.’ Still at the end of the 16th century, science was controlled by religion.
The postulate of (Christian) religion truths was unquestioned and implied that

• Religion represents ‘truth.’

• Science must be in accordance with ‘truth.’

• Science aims at developing a rational foundation of ‘truth.’

Greek, Arabian and Jewish advancements in philosophy, mathematics, astronomy and medicine were
studied and gradually changed the minds of scholars and subsequently the world view in Europe.

Contemporary Science

During the 16th and 17th century something so far incredible happened. By observing nature and
making experiments evidence was obtained which questioned the ‘truths’ of the Bible. Gradually the
Holy Scriptures were replaced by the divine ‘Book of Nature’ by which God had designed the universe.
Human ingenuity began to decipher chapter by chapter the Holy Book of Nature and detected the
divine ‘Laws of Nature’. These ‘Laws of Nature’ became the core of ‘scientific theory’ and it is widely
believed that they represent ‘truths’. The verification of these truths was performed by controlled
experiments, and gradually the scientists became the authorities replacing the Church Fathers and
Greek philosophers of Scholastic Science.

This development is called ‘Scientific Revolution’ and the result is often named ‘Modern Science’. It
may be characterized by the following issues:

• The search for ‘truths,’ called ‘Natural Laws’ coins ‘Modern Science.’

• The ‘Natural Laws’ are formulated for non-existing ‘ideal systems.’

viii
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• The belief in ‘Natural Laws’ is not really different from the belief in ‘religious truths.’

• The verification of ‘Natural Laws’ is similar weird as the verification of divine laws used to be,
as none of the ‘Natural Laws’ could ever be verified by observations.

The assumption that the evolution of universe can be separated in single cause-effect chains made
it appear reasonable to investigate each ‘cause-effect relation’ individually as an isolated system.
Consequently, evolution was divided into numerous narrow fields and for each field experts emerged
for performing an analysis not being able for a holistic view.

The major differences between Scholastic Science and Modern Science are as follows:

• The disputation is replaced by experiments.

• The application of logic in the form of mathematics could be intensified by the advances of
mathematics.

• The seemingly deciphering of the ‘Book of Nature’ made man believe to ‘be able to master the
nature.

• The ‘Natural Laws’ stimulated ingenious engineers to developed advanced technical devices which
revolutionized the life of mankind.

The last point is often taken as justification of ‘science.’ However, if an engineer would actually use
the Natural Laws, as formulated in the theory, for designing a device, it would not work. Therefore,
engineers have to perform extensive experiments and by means of the trial-an-error method finally
arrive at a feasible solution. Moreover, the advanced technology is developed without considering
that in the long-run many new inventions turned out to be extremely dangerous for the vital systems,
which are the basis of man’s existence.

In summary, there is no essential difference between Scholastic Science’ and Modern Science’. Both
search for ‘truths’ in the form of cause-effect chains and, thus, are entirely based on the belief in a
deterministic world, and exactly this is the problem. Evolution follows laws, but not deterministic
ones.

Stochastic Science

At the end of the 17th century, Jakob Bernoulli, had the idea of a science of prediction, which he
named Stochastics. His aim was to get rid of authorities and belief and to provide mankind with a
scientific method to deal with uncertainty. Unfortunately, he passed away before he could establish
the new science.

Stochastic Science is characterized by the following features:

• It aims at making reliable and accurate predictions about future developments.

• Predictions are made based on the verified knowledge about ‘what is not’, instead of the assumed
knowledge about ‘what is.’

• The process of acquiring new knowledge is essentially based on exclusion methods about ‘what
is not.’

In Stochastic Science there will be no paradigm changes, but a gradually decrease of ignorance about
the laws which make evolution run. However, these laws will never be identified by mankind. The
so far accumulated knowledge about nature must be relieved from determinism and reformulated.
Thus, Stochastic Science can revise, refine and improve the knowledge and arrive at a more realistic
description of evolution.

ix
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Stochastikon Magister aims at making a contribution to the Emergence of Stochastic Science, which
is not based on causation and does not exhaust itself by solving puzzles and by such activities wast-
ing enormous financial and human resources. Stochastikon Magister intends to introduce Bernoulli
Stochastics in an easy-to-understand way, which, however, assumes the willingness to abandon the
traditional way of thinking in favour of something which could be called stochastic thinking. This
e-Learning Program is mainly based on two seminal papers by von Collani6 and a booklet entitled
“Stochastics” which was published in 2005 in China7

State of Stochastikon Magister

Finally, a word to the state of Stochastikon Magister: Bernoulli Stochastics is in a state of development
and the same holds, of course, for this e-learning Program Stochastikon Magister. This second version
is opened to public discussion in order to test its functionality and its comprehensibility. At the
moment, only this English version is elaborated and should be used. We are working on the German
translations and hope that soon also a complete German version is available. Of course, we would
appreciate any proposal for improvement and any support in developing this e-learning program.

6von Collani (2004): “Theoretical Stochastics” and “Empircal Stochastics”.
7von Collani & Zhai (2005): “Stochastics” (in Chinese).

x



Course 1: Modeling Uncertainty

Content, Aim and Benefits of the Course Modeling Uncertainty

Uncertainty about the future development is the most challenging issue mankind is facing at. If
there would be no uncertainty, there would be no problems and, particularly, no need for ’science.’
Uncertainty is not restricted to some areas of human activities, but is omnipresent. This implies
that whatever man is doing uncertainty represents the main problem and, therefore, should be taken
into account appropriately Thus, the ability of taking into account uncertainty is the main factor
for success. Taking into account uncertainty appropriately assumes that a picture of what is called
uncertainty is available.

The first course Modeling Uncertainty of this Learning Program in Bernoulli Stochastics consists of
three modules. The first one introduces the basic concepts, which in the traditional sciences are kept
unclear and confused. The second module takes up the concepts prepared in the first module and
contains the rules how to quantify those quantities which are related to uncertainty. The last module
adds the different pieces to one unique picture (model) of uncertainty.

The course offers the possibility for posing questions and
taking part in tests. Frequent Asked Questions (FAQ) are
displayed together with the answers. Moreover, a discussion
forum may be used by students and teaching staff for joint
communications. In all, Stochastikon Magister is designed
in a way that it provides a virtual classroom with almost all
possibilities offered by traditional classroom teaching. It is
to be hoped that the participants will take advantage of the
built-in functions.

Primary aim of the Course Modeling Uncertainty is to teach stochastic thinking, i. e., thinking in
stochastic relations and abandon thinking in cause/effect relations. Because, training in causal think-
ing starts immediately after the birth of human beings, it becomes the ’natural way’ of thinking and
changing this habit proves to be extremely difficult.

The second aim of this course is to teach the rules how to model (describe) reality taking into account
uncertainty. Because ignorance is the major source of uncertainty, it is of utmost importance to
explicitly include it into the description.

A successful participation in this course, should result in a different perception of world, in a different
evaluation of activities and, finally, in the desire to adopting a different way of making decisions.

1



BASIC CONCEPTS MODELING UNCERTINTY

Module 1.1: Basic Concepts

Content, Aim and Benefits of the Module Basic Concepts

Uncertainty about the further evolution of universe consti-
tutes the center of stochastic science. Therefore, the funda-
mental concepts evolution and universe have to be explained
as well as the ambivalent concepts of past and future. The
basic question about what takes care of the astonishing or-
der of the universe has to be answered as well as the issue
how mankind fits into nature and how chaos comes in.

Finally more technical terms like predictions, probability and human ignorance versus human knowledge

have to be treated.

Although uncertainty about the future development is certainly the most important issue of any human
community, it has been more or less totally neglected by classical science. Probably this is the reason,
why modern people have enormous difficulties to understand the stochastic concept of uncertainty. It
demands to give up the idea of causality and this seems to be impossible by a majority of persons of
our times.

Module 1.1 aims at preparing the ground for a change
in thinking by clarifying some ambiguous concepts.
This clarification is necessary, because otherwise the
quantification of the concepts in the second module
cannot be understood.

A successful passing of this module should lead to a better understanding of the universe and its
continuously proceeding evolution.

In some sense the ideas, which are developed in this first module of Stochastikon Magister, seem to
be rather obvious and more or less trivial. The fact that they have not been considered so far shows
that humanity has not found its proper place within evolution, but floats without clear direction from
one man-made calamity to the other. Especially when looking at the decision-making processes, it
gets highly visible that mankind is ruled by egocentricity and particularist tendencies, which under
the guise of secrecy unfold.

Unfortunately, none of the many religions which were developed, brought about a change. Also
science, which is often looked upon as a guide in the dark, has been of no help. Religion and science
themselves are controversial, maybe because both of them are essentially based on authorities and
beliefs constituting a rather unreliable foundation. This basic module wants to present some thought-
provoking impulses, which in the following modules are elaborated and exemplified.

2



BASIC CONCEPTS EVOLUTION

Unit 1.1.1: Evolution

Target

The main goal of Learning Unit 1.1.1 is to im-
part the knowledge that future (= not com-
pleted evolution) is fundamentally different
from past (= completed evolution). The sec-
ond goal consists of showing that mankind’s
knowledge about the evolution is extremely
limited and that other creatures have possi-
bly a better understanding of evolution than
human beings.

Content

Universe, Nature and Evolution

The general meaning of the words universe, nature and evolution are as follows: In cosmology,
the term universe (Latin: universus = entire) is understood as the entire space-time continuum
including everything. The word nature is derived from the Latin word natura with the meaning
of emerging or to be born. Nature is often considered as opposition to culture, in the sense that
nature includes everything in the universe, which is not created by men. Evolution is derived
from the Latin word evolvere which means ‘to develop.’ It is used for the development process
by which living organism acquire and pass on novel characteristics.

In the framework of the e-learning Program Stochastikon-Magister, the term universe is used for
the existing whole including everything and the term evolution is used for the transformation
process the universe is permanently passing through. Finally, nature is used as a synonym of
universe just as the word reality or real world.

What is the difference between Past and Future?

For mankind evolution becomes manifest by a continuously advancing change. The completed
evolution is called past , while the not completed evolution is called future. Past is the realm
of determinate facts, while future is the domain of indeterminate events. Determinate facts
and indeterminate events are fundamentally different, as facts exist while future events refer to
something which does not exist so far and which might never come into existence.

What is the difference between Facts and Events?

The actual set of facts represents one certain state of universe. Evolution means change of
state, i. e., evolution is a process including the whole universe and producing one state after
the other and turning indeterminate events into determinate facts. Facts may be known or
unknown and future events may be anticipated.

Although there are seemingly many recurrent states from our experience it can be excluded
that evolution contains iteration loops, i. e., each state of universe is different from all the states
achieved in the past and all the states which will be achieved in the future.

What is Time

By comparing the flow of changes with certain seemingly recurrent events, mankind has intro-
duced the concept of time and by this generated a certain order into the elapsing evolution.

3
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EVOLUTION BASIC CONCEPTS

For instance the rotation of earth which be-
comes manifest by the daily sunrise and sun-
set is used to define days, or the earth revo-
lution which becomes manifest by the yearly
seasons which is used to define a year. As a
matter of fact, human beings have no direct
sense for the artificially introduced concept
time since the same time interval may seem
to pass very slow or very fast according to the
given situation. Thus, man needs clocks or
certain recurrent events themselves as tools
for orientation within the proceeding evolu-
tion.

 

Figure 1: A clock measuring the
elapsing time by certain recurrent
processes.

What is Space

Universe consists of many objects, some of them are visible for human beings others not. Similar
as in the case of time, man has defined a three dimensional space for comparing the outward
appearance of different objects by introducing systems of three-dimensional dimensions. The
corresponding coordinates enable the orientation within those parts of universe which from the
human perspective are persistent, i. e., hardly subject to evolution.

Similar as in the case of time, human beings have no direct sense for space or distance and need
complicated tools for evaluating quantities defined by the coordinates. Introducing coordinates
is useful and it is therefore justified. However, it should be clear that reality is different!

What is the Relation between Evolution and Man?

Mankind is part of the evolution, but human beings have no inner organ foreseeing the evolution
and telling what to do in a certain situation to remain in accordance with evolution. It seems
that many other creatures possess such an organ. If this is the case then one could not exclude
that they are in a certain sense closer to evolution than mankind.

The more a creature must learn in order to survive the less knowledge it has about the ongoing
evolution and, obviously, plants and animals need to learn less than man in order to survive.
Fortunately, evolution does not advance blindly, but follows rules and laws which by experience
can be discovered and utilized.

Strategies for Survival

The fact that evolution does not blindly advance, but follows rules enable mankind to survive
despite the lack of closeness to evolution. The rules refer to the relation between completed and
not completed evolution, i. e., the relation between past and future. For improving the chance
and the ability for surviving, huge amount of resources are invested in order to understand a
little bit of the rules of evolution and, thus, compensate to a certain extent the lack of close-
ness to evolution. Humans teach the acquired knowledge about the relations to the following
generations. From birth onwards human beings have to learn and to try to develop strategies
for surviving in an environment which is full of uncertainties for them. In fact mankind has
learnt to survive, however, there is one central human realm which neglects uncertainty so far
namely science and the main aim of this E-Learning program is to show, how uncertainty can
be dealt with scientifically.
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Examples

1. Space and Time

Karl Pearson notes in his book The Grammar of Science8:

Space and time are not realities of the phenomenal world, but the modes un-
der which we perceive things apart. They are not infinitely large nor infinitely
divisible, but are essentially limited by the contents of our perception.

2. Murder on the Orient-Express

The Orient Express started its first jour-
ney from Paris to Istanbul in 1883 and
since then it has captured the imagination
of the world (see announcement at the
left). The train has been the temporary
home of aristocrats, royalty, spies, film
stars and writers - as well as, of course
a certain fictional Belgian detective.
During one of the travels the following
message was disseminated by ticker:

Not far from Belgrade, the luxurious Ori-
ent Express train is halted by a snowstorm.
An American millionaire is found dead in
his compartment. The door was locked,
the window was open. But there were no
tracks in the snow.

 

Figure 2: Orient Express adver-
tisement.

• The identity of the killed millionaire as well as the identity of the murderer are facts,
i.e., determined. While the identity of the millionaire is known that of the murderer
is unknown, i.e., represents the existing ignorance which shall be removed by an
investigation process.

• The future investigation is part of the not completed evolution and, thus, the outcome
is uncertain. The investigations itself will consist of a series of activities by Hercule
Poirot, the murderer and the other persons concerned. The future activities are
subjected to randomness and therefore indeterminate.

• Based on our knowledge that Hercule Poirot is infallible, the detection of the murderer
is, of course, certain, however, the necessary time and other details remain uncertain.

3. The Bowl Filled with Chocolate Balls

Consider a bowl filled with chocolate balls. You plan to take a fistful of balls out of the
bowl.

• The number if balls in the bowl is fixed and not at all uncertain although it is possibly
unknown to you.

8Karl Pearson, The Universe of Science, London 1938, p. 229.
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• The number of balls you will obtain by taking the fistful balls is generally uncertain,
as it is not fixed (it does not exist), but will be the result of a so far not completed
process.

• Next consider that there are only three chocolate balls is the bowl, which you easily
can take by a fistful. In this case the future event about the number of balls is
completely determined by the fact that there are only three balls and you will take
them all.

4. Fishing in a Carp Pond

You fish regularly on Sunday morning in a nearby carp pond to spend your leisure time
and provide your family with a fish dish.

• The number of carps in the pond and their whereabouts is fixed when you start
fishing and not at all uncertain. However, you do not know neither the number nor
the whereabouts.

• Even if you would know the exact number of carps and their exact whereabouts in the
pond, the number of fishes you will catch during the morning is generally uncertain,
because it refers to a future event and, thus, is part of the not completed evolution.

• However, if during the week the water in the carp pond had been emptied for catching
the carps and consequently, there is no carp in the pond any more, then this fact
would determine completely your fishing result.

5. Solar System

In the solar system nothing seems to be subject of evolution. The revolution of planets
can be calculated by means of time and position and the future seems to be exactly
determined by the past.

• In contrast to the above expressed belief, it is a simple fact that neither future
positions nor future times of the planets in the solar system can be calculated exactly,
because these values do not exist so far and are not at all completely determined by
the past constellations.

• Moreover, even past and present positions of a planet within the solar system which
are fixed and thus certain cannot be assessed exactly, but only approximately by an
interval, which excludes those values which cannot be the true one. This illustrates
the fact that human knowledge refers to “what is not” and not at all to “what is”.

6. Migratory Birds

Migratory birds leave in autumn the northern countries and fly to southern countries
before temperatures become to cold and return when the winterly conditions draw to a
close.

• The birds have no global system of weather observation. Nevertheless, they leave the
northern countries and return in due time. Therefore, it seems that these birds have
a sense for the ongoing evolution.

• Even with a global system of weather observation installed, it seems that mankind
cannot compete with migratory birds as to long-term weather forecast. If this is
correct then we may conclude that man is more remote to evolution than animals.
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Unit 1.1.2: Connectivity

Target

The main goal of Learning Unit 1.1.2 is
to impart the knowledge that assuming
cause effect relations as the rules of evo-
lution prevents a better understanding
of evolution and, thus, prevents a bar-
rier to learning how to master problems
due to an undesired course of the evo-
lution.

Content

What is the Meaning of Connectivity?

Driving power of evolution, i. e., the continuous change universe passes trough, is the universal
connectivity of everything with everything which keeps the development running, limits the
number of future possibilities and determines the rules of change, i. e. the rules of evolution.

The best-known relation which indicates the all-inclusive connectivity is Gravitation which led
Newton formulate his well-known Law9:

Every particle in the universe attracts every other particle with a force that is directly
proportional to the product of their masses and inversely proportional to the square
of the distance between them.

Although, this Law of Nature cannot be verified in a strict sense, as a verification would assume
that all the masses in universe are known, it allows to exclude the possibility of the existence
of isolated objects or systems in the universe and leads to the conclusion that in universe,
everything is connected with everything similar as in any organism.

Note that talking about connectivity or interrelationship between different objects makes sense
only if it refers to future changes where the state of each object affects the change with respect
to each other object.

What are the Consequences of the Universal Connectivity?

Evolution makes universe continuously change from one state to the other. Because of the
connectivity there are no independent subsystems and any change is generated by everything
which exists in universe. Knowing the truth about universe is tantamount of knowing the state
of universe for a moment in each detail. However, note that even knowing the truth would be
without much value without knowing the rules of evolution.

As to the laws of evolution, the universal connectivity yields the following exclusions:

• The possibility of meaningfully break down the course of evolution into separate cause-
effect chains can be excluded, as no single cause exist within a totally interrelated system.

• The possibility that man will ever identify truth can be excluded, as this would assume
that every detail within universe is known.

9Definition from online-encyclopedia Wikipedia
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• The existence of deterministic universal Laws of Nature that describe precisely the evo-
lution can be excluded, as such laws assume the existence of identical initial conditions,
which is impossible.

Human Perception of the Universe

Modern Science is based on the belief that evolution can be described by means of a de-
terministic machine, which operates according to parallel proceeding cause-effect chains. If
this were correct, then each chain link, i. e., each cause-effect relation, constitutes an isolated
micro-system and truth could be decomposed in small parts each referring to a thus defined
subsystem.

However reality is different, because of the universal connectivity. Nevertheless, mankind
searches and searches for truth and identifies an unending sequence of non-existing cause-effect
relations, thus, preventing a better understanding of evolution.

The problem with an universal connectivity consists of how to take in into account. Working
with a system described by a cause-effect relation is extremely simple. Each cause yields exactly
one effect and, therefore, any cause-effect relation can be simply described by a mathematical
function. In a completely connected system any observed effect can be generated by a multitude
of different initial situations and any initial situation might generate a multitude of different
results, implying that the traditionally used way of modeling relations fails. Therefore, wishing
to take into account the universal connectivity necessitates the development of new methods
for describing and analyzing any process of interest.

Traditional Science and Education in the Light of the Universal Connectivity

Traditional science is based on the assumption of isolated systems and, unfortunately, contem-
porary educational systems take up this prevailing scientific view which is known as reduction-
ism. The mathematician Hyman Levy described the deplorable state of education already in
193210:

Man runs off easily along the tangent of speculation, isolating subjects and objects
from their context, and building up elaborate structures on these isolated paths. From
the changing matrix of the universe we separate out its biological, its chemical, its
historical features. Our schools and our universities are designed to accentuate the
isolation. Already at the school stage, and most certainly at the stages of higher
education, experts in these “subjects” deal with their fields as if these existed by
themselves, and as if their full significance could be derived from an internal study
of these matters. So deep-rooted has specialist study become that the primary sub-
ject, what might perhaps be called Social Culture, of which these are mere subsidiary
aspects, nowhere finds a place. The raw student emerging already highly specialised
from school life, enters on the next stage of his career to submit to still more inten-
sive specialisation. As a teacher he returns to school life to carry the process stage
further. From a generation or two of this kind of practice there naturally emerges
an elaborate philosophical justification embodied in such phrases as “Science for its
own sake,” as if the pursuit of anything could be a complete end in itself.

One of the major aims of Stochastikon Magister is to point out that science should not be
performed for its own sake and that the reductionist approach is the wrong one.

10Hyman Levy: The Universe of Science. Watts & Co., London, p. viii.
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Examples

1. Spring Tide

The tide is the vertical rise and fall of the sea
level surface. As the earth spins on its axis the
centrifugal force results in slightly deeper water
near the equator as opposed to shallower water
at the poles generating a flow from the poles to
the equator. The earth is also in orbit around
the sun creating not only another centrifugal
force but also a gravitational interaction. More-
over, the moon and the earth orbit each other
creating also a centrifugal and a gravitational
bulge. When sun and moon are aligned with
the earth they combine their attraction and the
combined effect of the sun and moon creates a
spring tide.

Thus, it is known that whenever sun, moon and earth are aligned there will be a spring
tide, defined as an unusually high rise of the sea level. However, this is not at all a
cause-effect relation, as the same constellation of sun, moon and earth may lead to rather
different values of the sea level on the one hand. Moreover, the same high sea level which
may occur in a spring tide may also occur without sun, moon and earth being aligned.

2. Health

Similar as the universe, each part of the human body is connected with each part. Hearing
bad news affects immediately the whole body and experiencing something joyful makes
pain disappear. An influenza leads to problems with almost any part of the body and a
ulcerated teeth may generate a great deal of different problems.

Although, the extremely close integration of the human body is well known, modern
medicine considers and treats the human body similar as a deterministic machine and
physicians search for cause-effect relations instead of regarding the entire organism which,
of course, includes the mental, social and personal affairs, which probably affect the health
in many instances much more than physical problems.

3. Ecological Systems

Recently, the trivial knowledge of connectivity has become popular in the realm of so-
called ecological systems. An ecosystem can be regarded as an assemblage of organisms
functioning within their specific environment as a connected unit where each part interacts
with each part and any change or damage to one part affects the whole system.

Considering an ecological system as a whole and not as a number of isolated systems, is
certainly an improvement. However, any ecological system is again only one part of a
interacting larger system and disregarding this fact may lead to completely wrong ideas
and decisions.
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Unit 1.1.3: Uncertainty

Target

The main goal of Learning Unit 1.1.3
is to define the term “uncertainty” un-
ambiguously and to distinguish clearly
between uncertainty and its sources ig-
norance and randomness, which gener-
ate human uncertainty and which must
be strictly distinguished and differently
handled.

Content

About the Meaning of Uncertainty

In everyday speech the word uncertainty has two different meanings:

• If uncertainty refers to a future development (i. e. to the not completed evolution) then
it indicates that the development might take different courses leading to different results.
This type of uncertainty is sometimes called “aleatory uncertainty”.

• If uncertainty refers to a fact (i. e. to the completed evolution) then it indicates that the
fact is not known. This type of uncertainty is sometimes called “epistemic uncertainty”.

Whether a future event will occur or will not occur, cannot be known or unknown because it
the decision will be made only in the future. The future can only be anticipated. In contrast
to future events, facts exist and, therefore, cannot be anticipated, but are known or unknown.
Anticipation with respect to future and ignorance with respect to past are two different things
and, hence, speaking in both cases of uncertainty is mistakable. Therefore, in order to avoid
confusion about the meaning, uncertainty is used in Bernoulli Stochastics exclusively with
respect to future events. As to unknown facts the more appropriate word ignorance is used.

The Problem of Uncertainty

Mankind would have no problems, if there would be no uncertainty about future develop-
ments. Thus, the ultimate problem of mankind is uncertainty about future and, therefore, it
is not surprising that a majority of human activities is devoted to overcome or at least reduce
uncertainty.

The activities aim at establishing initial conditions which shall more or less guarantee an
advantageous future. Such activities range from building up stocks to religious observance.
The wanted conditions must be selected so as to be in accordance with the relations between
past and future, i. e., in accordance with the rules of evolution. Only if these relations are known
sufficiently well, it is possible to determine the conditions which reduce risks and uncertainty.

Unfortunately, man does not have a sense for identifying the relations which have to be taken
into account, but must learn about them by own experiences or the experiences of others,
which, however, assumes the possibility to communicate and circulate information. Thus, the
language is a necessary means for reducing uncertainty by passing on knowledge.
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Traditional Methods for Overcoming Uncertainty

Predictions are direct means for overcoming uncertainty. Thus, already ages and ages ago
mankind developed divination for catching a glimpse on the future enabling appropriate deci-
sions. However, a reliable prediction assumes knowledge about the actual situation on the one
hand and knowledge about the rules of evolution on the other. If these preconditions are not
met relying on a prediction made without this knowledge is hazardous.

Clearly, many animals have a better intuitive feeling for evolution and, thus, are able to act in
many situations appropriately where man fails. Whether there are men, who have similarly an
intuitive access to the otherwise hidden rules of evolution shall not discussed here. However,
it is a fact that at all times swindlers took advantage of the belief in the practice of divination
and, therefore, mankind developed a second method for overcoming uncertainty.

The much younger second human attempt to reduce uncertainty is called science. The de-
velopment of its contemporary form started around the 16th century in Western Europe with
astronomy. The great success of science in forecasting orbits of planets and stars became the
basis of an unquestioned belief of man in science, which in some sense not only replaced to a
wide extent divination but also religion.

Sources of Uncertainty

Obviously, human uncertainty about the future development can have only two source: one
internal human source and one external source being independent of man. The internal source
is called ignorance and refers to facts, i.e., the initial condition. The external source is a char-
acteristic feature of evolution. It is called randomness and is the manifestation of the universal
connectivity which excludes isolated systems and, hence, cause-effect relations. Everything is
interrelated with everything and, therefore, no causes and effects exist, but an inherent vari-
ability in the outcome of all processes.

Randomness as the manifestation of universal connectivity yields order and, at the same time,
variability. Thus, the changes produced by evolution are not static transformations, but dy-
namic changes. Ignorance, on the other hand results in seemingly disorder and chaos, which
may lead to wrong decisions and produces the major problems mankind is facing. Presumably,
there is no other creature which is more stuck with ignorance than man and, as mentioned
before, ignorance is the main source of uncertainty about the future. Therefore, it is of utmost
importance for mankind to develop appropriate rules how to deal with and how to reduce uncer-
tainty, without the necessity to rely on subjective beliefs, which represent special manifestations
of ignorance.

Figure 1 below illustrates the general situation - transition from past to future and the un-
certainty involved. The figure shows knowledge or ignorance about the past on the left hand
side by a set of four potential initial conditions each represented by a circle. The true but un-
known initial condition is given by the black circle. The variability of the future development
due to randomness is shown by the set of six possible outcomes, which are the only outcomes
compatible with the true initial condition. The degrees of conformance between the true initial
condition and the compatible outcomes are given by the corresponding probabilities represented
by the horizontal bars set up in each of the future outcomes.

A prediction refers to a transition from past to future. Therefore, any mathematical model
used for generating predictions should include the elements illustrated in this figure. These are

• the set of potential initial conditions,

• the set of possible future outcomes and
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• the random structure over the set of possible outcomes.

The figure illustrates that starting with the initial condition reliably predicting a future event is
possible. On the other hand, starting from the future outcome, it is also possible to determine a
past fact. Therefore, the development of a set of rules how to describe and deal with uncertainty
would be desirable.

Figure 1: The general situation with respect to uncertainty - transition from past to future.

Rules for Dealing With Uncertainty

The rules for dealing with uncertainty must necessarily cover the following points:

• The quantities of interest of the future development. Identification of these quantities is
of utmost importance, as a reliable prediction is only possible for a very limited part of
the not completed evolution.

• The quantities of the past which are relevant for the quantity of interest in future.

• The existing ignorance as the internal source of human uncertainty.

• The structure of randomness as external source of uncertainty.

The rules should ensure that the resulting predictions are reliable implying that they must not
be based on belief, but on sound knowledge. Sound knowledge on the other hand necessarily
refers to what is not, as man will never be able to discover what is, i.e., the truth.

Examples

1. Ignorance versus Uncertainty

The following examples shall illustrate the difference between uncertainty and ignorance.

12
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• Murder on the Orient Express: Ignorance refers to the name of the murderer. Un-
certainty refers to the future result of the investigation of the crime.

• Bowl filled with chocolate Balls: Ignorance refers to the (unknown) number of balls
in the bowl. Uncertainty refers to the number of balls which will be drawn from the
ball.

• Fishing in the carp pond: Ignorance refers to the number of carps in the pond.
Uncertainty refers to the number of carps which will be caught during the Sunday
morning.

• Solar system: Ignorance refers to the actual position of the planets and the sun.
Uncertainty refers to any of their future positions.

2. Sources of Uncertainty and Uncertainty

The following examples shall illustrate the different sources which yield uncertainty.

• Bowl filled with chocolate balls: Assume that you can grab at least four and at most
six chocolate ball with one fistful. Assume further that the bowl contains exactly three
balls, but that this fact is unknown to you. In this case the complete uncertainty is
generated by your ignorance.

• Next assume that you know that the bowl contains at least 20 balls. In this case the
uncertainty about the number of balls you will draw is completely due to randomness.
The ignorance about the exact number of chocolate balls does not increase your
uncertainty.

• Fishing in a Carp Pond: Your uncertainty about the number of carps you will catch
is due simultaneously to your ignorance about the number of carps in the pond and
the randomness which rules your fishing.

• Solar system: The uncertainty of the future position of the planets in exactly 24 hours
is due to your ignorance with respect to the actual positions and to randomness which
yields certain variation in the orbits of the planets.

3. Attempts to Overcome Uncertainty

Humanity has developed many different methods for overcoming or at least reducing the
human uncertainty about the future development.

• The canonical Chinese book “I Ching” the Book of Change describes a method for
assessing the possible changes in future by means of throwing stalks of yarrow.

• Probably as old as the methods given in the I Ching are the methods developed in
astrology, which use the constellations of planets and suns for overcoming uncertainty.

• Modern science restricts the predictions to very special processes which is described
by a scientific theory, where the theory has been verified by controlled experiments.

Note that a majority of attempts to reduce uncertainty about the future development
use experiments which cannot be controlled by man, for instance, random experiments,
orbits of planets or putting a psychic into a trance. The results of such non-controllable
experiments are not biased by human subjectivity and were thus supposed to reflect the
universal connectivity which rules evolution.

13
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Unit 1.1.4: Prediction

Target

Learning Unit 1.1.4 shall explain the
concept of prediction since this term is
often misunderstood leading to many
errors and wrong decisions. The ques-
tions about the desirable properties of
predictions and the necessary form of
predictions are answered. In fact, in
stochastic predictions play a central
role in Bernoulli Stochastics reflecting
the fact that the Greek word “stochas-
tics” means “Science of Prediction” and
consequently predictions constitute the
heart of stochastics.

Content

Why Do We Need Good Predictions?

The problem is that one has to be prepared for what may occur in the future. To make an
appropriate decision in a given situation it is necessary to know what may happen. Any state-
ment saying what may happen in future is called a prediction. In case a prediction is available,
the decisions can be made accordingly. However, whether a decision based on a prediction
turns out to be appropriate depends on the quality of the prediction. A bad prediction can
hardly lead to a good decision except in the case of luck, however, a good prediction may lead
to an inappropriate decision, too. Hence, we conclude that a good prediction is a more or less
necessary, but not a sufficient condition for making successful decisions.

What Is The Quality of a Prediction?

Generally, there will be a loss, if a decision is based on a prediction which does not occur. Thus
the reliability of a prediction is of utmost importance.

Moreover, a prediction which is too vague, i.e., comprehends too many possible future events,
also generates losses, as the decision has to take into account all the predicted events. Thus,
the precision or accuracy of a prediction is another important feature.

We conclude that the quality of a prediction is determined by its reliability and its accuracy.
Besides reliability and accuracy there is another important quality characteristic of predictions.
Assume a reliable and accurate prediction, but it is communicated in a language which admits
different interpretations. In such a case, only those will identify the true predicted event, who
have found the correct interpretation. This leads to the demand that the prediction must be
communicated in an unambiguous way that allows only a unique interpretation.

How Does a Good Prediction Look Like?

The required unambiguity of predictions demands to use an unequivocal language. The only
unequivocal languages are formal languages with mathematics as the best developed one. It
follows that a good prediction should be formulated in mathematical language. Mathematics
uses numbers as letters and, therefore, quantification is obtained as a necessary requirement
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for making useful predictions.

Reliable predictions are the key for making appropriate decisions and, thus, for solving prob-
lems. However, a frequently made error is to assume that any good prediction must consist
of one point only. Generally, the only founded statement about a one-point prediction is that
it will not occur. The inherent variability due to randomness and the omnipresent human ig-
norance make it principally impossible to exactly foresee the indeterminate future. Therefore,
a reliable prediction is in general a set of points that corresponds to a certain event. The
higher the required reliability the larger is the set of points, i.e., the predicted event. Because
mathematics is used for formulating a prediction, the predicted event is necessarily a set of
numbers.

Ars Conjectandi

A stochastic prediction is given in the mathematical language. The predicted event is repre-
sented by a set, which is large enough to meet a specified reliability requirement with respect
to its occurrence. The predicted event should be as small as possible, as the size of the set
determines the accuracy of the prediction.

In 1713 Jakob Bernoulli’s masterpiece Ars conjectandi was published eight years after Jakob had
passed away. Jakob Bernoulli proposed to adopt prediction as the ultimate aim of scientific
endeavors and to accept probability as the fundamental concept in science. Bernoulli had
identified the degree of certainty of the occurrence as the characteristic feature of any future
event. Subsequently he quantified the characteristic feature of future events by means of the
concept of probability which constitutes the foundation of a science aiming at making reliable
and precise predictions.

Examples

1. Ambiguity of Predictions

A well-known example of an ambiguous prediction is the following: The Lydian king
Croesus asked the Oracle of Delphy if he should attack the Persian king Cyrus. The
Oracle made the prediction that if Croesus would cross the River Halys a great empire
would fall. Based on the prediction and believing that the addressed empire would be
Persia, Croesus attacked Persia, crossed the River Haly and was defeated by Cyrus.

2. Unambiguity of Predictions

Apollo 11 was the first American manned spacecraft to land on the Moon. It launched
from Florida on July 16, 1969, and four days later on July 20, mission commander Neil
Armstrong and pilot Edwin ’Buzz’ Aldrin became the first humans to set foot on the
Moon.

For each of the stages of the mission the control center had probably made prediction as
time intervals. For instance the time to reach the lunar orbit could have been predicted
by the following event:

{t | 43 h 20 min ≤ t ≤ 45 h 15 min}

Evidently, any prediction of such a form is unambiguous since the event is specified by
numbers which have a unique interpretation.
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3. Reliability of Predictions

The reliability of a prediction refers primarily to the prediction generating process. This
process yields reliable predictions if the predicted events generally occur.

The reliability of a predicted event will decrease with decreasing size of the corresponding
set. For instance, if in the example of the predicted arrival time for entering the lunar
orbit the interval is shortened, then the reliability of the prediction gets probably smaller.
If the interval shrinks to one point, then the predicted event will in general not occur with
certainty.

4. Precision of Predictions

If mathematics is used for formulating a prediction, then the involved quantities are
quantified and the predicted event is necessarily a set of numbers with a specified size.
The smaller the size of the set, the larger is the precision of the predictions. Thus, most
precise prediction are singletons.

A most precise prediction for entering the lunar orbit would be given, for example, by
{44 h 18 min 33.345 sec}. However, this time is more or less meaningless, as the only
founded statement which can be made about this most precise prediction is that it will
not occur.

16



BASIC CONCEPTS SCIENCE

Unit 1.1.5: Science

Target

Learning Unit 1.1.5 aims at making
clear that contemporary science which
is based on a deterministic and reduc-
tionist approach should be abandoned
in favor of stochastic science represent-
ing a holistic approach that takes into
account the inherent variability of all
real processes. Students shall learn
the weaknesses of contemporary science
and, thus, understand the benefits of a
change.

Content

What is Science?

Since hundred of years the question What is Science? is discussed by philosophers (not so
much by scientists) without arriving at a satisfactory answer. The inability of finding a solution
indicates that there is something wrong, probably with both science and philosophy. In order
to access meaning and significance of science one should first state its aim.

What is the Traditional Aim of Science?

Mankind dreams of omniscience and of acquiring the truth. Religion constitutes the traditional
way of pretending to possess truth based on the assumption that there is an omniscient creature
who promulgated truth to mankind, which makes predictions with respect to an eternal time
possible.

When science started in Europe about 1000 years ago under the name scholasticism, its aim
was defined as to verify the divine truths and thereby harmonize the Holy Scripture and reason.
However, when it turned out about 500 years ago that the divine truths as given in the Bible
were not consistent with reality, a new science evolved aiming at detecting the truth not in the
Bible, but in the divine Book of Nature. Since then scientists have detected and promulgated
endless human truths. Each of these truths has been refuted later or will be be refuted in future.

This is the actual state with respect to science. An incredible expense is made for obtaining
something which is called “truth”, but which will be refuted with certainty in some future as
it constitutes just a “guesses”, although often an ingenious one.

This last statement is acknowledged by scientist as for example by Michael Polanyi11, who
notes12:

The propositions of science thus appear to be in the nature of guesses. They are
founded on the assumption of science concerning the structure of the universe and
on evidence of observations collected by the methods of science; they are subject to
a process of verification in the light of further observations according to the rules of
science; but their conjectural character remains inherent in them.

11Michael Polanyi, Hungarian-British polymath who worked in many areas as physical chemistry, economics, and
philosophy.

12Michael Polanyi: Science, Faith and Society. The University of Chicago Press, Chicago, 1964, p. 31.
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Does Contemporary Science Allow for Reliable Predictions?

Contemporary science emerged about 500 years ago in Europe. It constitutes an attempt of
investigating all realms of universe for detecting the laws of evolution, which originally were
thought to be designed by God in the mathematical language and which constitute the divine
“Book of Nature”. Since its emergence a large number of Natural Laws were invented, where
a Natural Law explains reality by means of a causal relation and is believed to be universally
valid. In order to verify the quality of Natural Laws one should compare the predicted events
with the actually occurring ones. Such a comparison reveals that any prediction based on a
Natural Law is wrong with almost certainty. Thus, relying on a Natural Law is tantamount
(at least in general) with wrong decisions.

As a consequence when deciding on how to construct a device or executing a project, the
Natural Laws must generally be modified by correction terms and factors which are determined
by means of costly trial and error - experiments until the anticipated result is more or less
obtained.

In fact, Natural Laws are not formulated for the real world, but for imaginary, ideal and isolated
systems which do not exist. The Natural Laws are based on the assumption that evolution
proceeds according to cause-effect-relations and, therefore, different parts of evolution may be
considered as isolated processes.

That part of modern science which produces Natural Laws assuming a non-existing, ideal
universe is generally called fundamental science and scientists consider it as the core of science.
Thus, contemporary science cannot yield reliable predictions for any part of evolution, i. e., for
any real world process and in fact, as explained above, contemporary science is not aiming at
making reliable predictions.

The aim of contemporary science is to search and discover the truth which is believed to be
fixed by nature or God in the form of deterministic Natural Laws. Thus, modern science
and scholastic science are rather similar. Each aims at verifying an assumed divine truth.
Scholastic science aims at verifying the truth as given in the Holy Scripture and expressed by
certain religious authorities, modern science the truth as written in the Book of Nature in the
form of mathematical Natural Laws and formulated by scientific authorities. In either case the
methods for verifying are obscure and the used interpretations partly dictated by the aim. For
example in modern science, any observation deviating from the truth does not lead to doubts in
the so-called truth, but is declared to be an observation error. Believing in knowing the truth
makes the consideration of uncertainty more or less unnecessary.

What Should be the Aim of Science?

Almost any problem of mankind is caused by uncertainty about the future development which
makes appropriate decisions difficult or even impossible. As explained earlier reliable predictions
are a promising way out of this difficulty. Science could be defined as the Art of Making Reliable
Predictions. Following this idea, reliable predictions about future developments are set here
to be the ultimate aim of science. One decisive prerequisite for arriving at reliable predictions
should be mentioned already here. This is the exclusion of any subjective opinion or belief. If
scientific results are based on subjective belief, no founded statement on the achieved reliability
can be made.

The idea of an Art of Prediction was expressed 300 years ago by Jakob Bernoulli, who was pro-
fessor for mathematics at Basel University. He coined the name Ars conjectandi or Stochastics
for science, which means the art of making predictions.

18



BASIC CONCEPTS SCIENCE

The Question What is Science? Revisited

In ancient time divinationßindexdivination, astrology and other practices were used for making
predictions. In our times the task has been overtaken by science, which investigates inanimate
and animate nature in order to make predictions and supporting necessary decisions.

As a matter of fact both approaches failed at least from a more general point of view despite
the enormous efforts made during all times and by all nations and communities. The failure
of divination is obvious, the failure of science is concealed by a huge success of technology, but
becomes visible, if one looks at the poor state of mankind and the miserable state of the vital
systems (bio-diversity, air, water, soil, etc.) which are the basis of man.

However, more severe than the mere failure of science is the fact that training and education in
schools and universities is based on the belief in determinism resulting in causal thinking and,
hence, in an inappropriate handling of uncertainty. The consequences are wrong decisions and
chaotic conditions in most fields of human activities.

Thus, a science aiming at coping with uncertainty and helping to make appropriate decisions
has not emerged so far and it is high time for changing from an approach based on subjective
belief (as represented by divination and contemporary science) to an approach which is based
on objectively specifying what is not known. The latter approach is called stochastic science. It
takes up the above stated ultimate aim of science, defines requirements for scientific products
and develops the rules how to perform science. These rules make it possible to distinguish
between scientific and non-scientific products, where science is to be understood as stochastic
science.

The rules of stochastic science are developed and made available by Bernoulli Stochastics, which
is the content of this e-learning Program Stochastikon Magister. Hence, this learning program
is a means for the development of a science, which investigates real world as it presents itself
and not as mankind believes it should be.

The Truth and its Societal Role

Possessing truth has always been a position of power and the origin of violence as long as
mankind exists. The own truth had to be protected and had to be imposed upon those who
believed in a different truth. Therefore, any pretended truth will lead almost inevitably to
violence.

Religion, philosophy and also contemporary science represent the beliefs of certain groups of
persons and, of course, each of the believers may totally rely on the respective belief. However,
it should be clear that belief and truth are two extremely different concepts. Belief is necessarily
bonded to a human subject, while truth refers to a fact and is necessarily bonded to the evolution
and, particularly, independent of any human subject. In other words, any truth is universally
valid, while a belief is valid only for the believer. Unfortunately, not only religion, but also
contemporary science is based on belief. This fact may explain at least partially the strange
and self-destructing thinking and acting of human beings.

Therefore, declaring any belief a truth constitutes a severe intervention into the personal spheres
of other people, as already the declaration is an attempt to impose it upon others and, thereby,
question the freedom of belief. If freedom of belief is included in the human rights, then calling
a belief a truth must be regarded as a serious attack against human rights and, therefore, should
be forbidden by law.
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Examples

1. Aim of Modern Science

The aims of modern science are obscure and manifold depending on the individual who
formulates them. Hyman Levy13 quotes and comments14 in his book “The Universe of
Science” several individual opinions about the aims and problems of modern science:

• “Our problem;” according to Professor A.N.Whitehead15, “is to fit the world to our
perceptions and not our perceptions to the world.” Here Whitehead adopts the ideal-
istic position. His own perceptions are to him prime reality and the world is a system
fabricated to fit them. (pp 195 and 196)

• To Sir Arthur Eddington16, on the other hand, “Science aims at constructing a world
that shall be symbolic of the world of common-place experience.” He does not con-
sistently hold this view. He begins his Nature of the Physical World by drawing a
distinction between the table familiar to him in everyday experience on the one hand,
what Professor Whitehead would call the common-sense notion table – the table he
write on – and an contra-distinction to this his scientific table whose vast emptiness is
sparsely scattered with numerous electrons rushing about at great speeds, and “whose
combined bulk amounts to less than a millionth part of the table itself.” Quite in-
consistently, in spite of the “table itself,” he adds later on, “Modern physics has by
delicate test and remorseless logic assured me that my second scientific table is the
only one that is really there,” although what delicate tests these can be that involve
the “thereness” of the scientific table without involving also the same “thereness” of
the familiar table and of the testing apparatus he does not state. (pp. 196 and 197.)

• According to Mr. Bertrand Russell17, on the other hand, “The aim of physics, con-
sciously or unconsciously, has always been to discover what we may call the causal
skeleton of the world.” Elsewhere he says, “It is obvious that a man who can see
knows things that a blind man cannot know; but a blind man can know the whole
of physics. Thus the knowledge that other men have and he has not is not part of
physics.” (the Analysis of Matter, pp. 391 and 389.) If the knowledge that seeing
people have is knowledge of the world of reality, and if it be true that a blind man may
know the whole of physics, it seems evident that science cannot span the whole range
of reality. It seems relevant to inquire, not whether sight can be dispensed with and
yet leave the individual capable of knowing the whole of science, but which senses, if
any, are essential for this purpose. If one sense at least is required for an individual
to make contact with the world of reality, on what evidence can a distinction be drawn
for this purpose between one sense and another? What Mr.Russell actually implies is
that the scientific picture can be isolated from the world of sight, and that nothing that
it offers is thereby lost. This is surely an unsubstantiated assertion. . . . What in fact
Mr.Russell has done has been to ignore the terms “of the world” in his description
of the aim of physics “to discover the causal skeleton of the world.” If such a bony
structure is exposed, it is a mere disembodied skeleton, but an essential part of the
make-up of the world, and cannot be isolated from it without loss. (pp. 197 and 198)

• In his Grammar of Science, Professor Karl Pearson18 has stated that “the classifica-
tion of facts, the recognition of their sequence and relative significance, is the function

13Hyman Levy (1889-1975), Scottish mathematician and professor at the Imperial College of Science and Technology,
London.

14Levy, (1938), pp. 195-200.
15Alfred North Whitehead (1861-1947), English mathematician and philosopher.
16Arthur Stanley Eddington (1882-1944), British astrophysicist.
17Bertrand Russell (1872-1970), British philosopher, logician, mathematician, and historian.
18Karl Pearson (1857-1936), established the discipline of mathematical statistics at University College, London.
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of science,” while the scientific attitude is shown in “the habit of forming judgement
on these facts unbiased by personal feeling.” “The scientific man,” he says elsewhere.
“has a strive at self-elimination in his judgements.” In the same vein Dr.Dingle19

asserts in his Science and Human Experience that science is the “recording, augmen-
tation, and rational correlation of those elements of our experience which are actually
or potentially common to all normal people,” and he goes on to amplify the meaning
of this terms. (p. 199)

• “The object of all science.” Professor Einstein20 state in The Meaning of Relativity,
“is whether natural science or psychology, is to co-ordinate our experiences and to
bring them into a logical system.” (p. 199)

• These are the dicta of men of science, theorists and practitioners alike. We may
compare with them the point of view of a writer like J.W. Sullivan21, who derived
æsthetic inspiration from music and mathematics. “The ideal aim of science.” said
that writer in The Bases of Modern Science, “is to give a complete mathematical
description of phenomena in terms of the fewest principles and entities” (p. 22). Then
again (p. 226): “The present tendency of physics is towards describing the universe
in terms of mathematical relations between unimaginable entities.”

2. Gravitational Law

In 1687 Newton published his work on “The universal law of gravity” stating that that any
two particles having masses m1 and m2 and being separated by a distance r are attracted
by a gravitational force F given by:

F = g
m1 m2

r2
(1)

where g is a “universal constant”. Newton’s “Natural Law” was refuted only in the last
century and replaced by Einstein’s “Natural Law of Gravity.”

Newton’s Law is taught worldwide in secondary schools and used for predicting the falling
times of bodies. However, the teachers fail to explain that the “Law” does not hold on
earth and that the predicted results are wrong with certainty, because the assumptions
made are not met on earth and strictly speaking nowhere.

The philosopher Nancy Cartwright22 comments the Law of Gravitation with the following
words:

Does this Law truly describe how bodies behave?
Assuredly not. Feynman23 himself gives one reason why. ‘Electricity also exerts
forces inversely as the square of the distance, this time between charges . . .’ It
is not true that for any two bodies the forces between them are charged is given
by the law of gravitation. Some bodies are charged bodies, and the force between
them is not gm1 m2

r2 . Rather it is some resultant of this force with the electric
forces to which Feynman refers.
For bodies which are both massive and charged, the law of universal gravitation
and the Coulomb’s law (the law that gives the forces between two charges) in-
teract to determine the final force. But neither law itself truly describes how

19Herbert Dingle (1890-1978), British philosopher of science at University College London.
20Albert Einstein (1879-1955), German-American theoretical physicist and philosopher.
21John William Sullivan (1886-1937), popular science writer and literary journalist.
22Nancy Cartwright, born 1944, American philosopher of science.
23Richard Feynman (1918-1988), American physicist.
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bodies behave. No charged objects will behave just as the law of universal gravity
says; and any massive objects will constitute a counterexample to Coulomb’s law.
These two laws are not true; worse, they are not even approximately true. In the
interaction between the electrons and the protons of an atom, for example, the
Coulomb effect swamps the gravitational one, and the force that actually occurs
is different from that described by the law of gravity.
There is an obvious rejoinder: I have not given a complete statement of these
laws, only a shorthand version. The Feynman version has an implicit ceteris
paribus modifier in front, which I have suppressed. Speaking more carefully, the
law of universal gravitational is something like this:

If there are no forces other than gravitational forces at work, then two
bodies exert a force between each other which varies inversely as the
square of the distance between them, and varies directly as the product
of their masses.

I will allow that this law is a true law, or at least one that is held true within a
given theory. But it is not a very useful law. 24

Nancy Cartwrights words illustrate the following issues: Fundamental science formulates
laws not for this world, but for an imaginary world, which is called ‘ideal world’. The
results achieved for the imaginary world are not only useless but also dangerous, because
if applied might lead to a disaster. The reason for the failure of this type of science is
the fact that the universal connectivity is neglected and, instead, non-existing isolated
systems are considered. This becomes immediately obvious by the assumption “if there
are no forces other than the gravitational forces at work” since such a condition does not
hold in the entire universe.

As to Einstein’s Law, it is not refuted so far, but with certainty it will be refuted in future.

3. Schrödinger Equation

In 1925 Erwin Schrödinger25 described the time-dependence of quantum mechanical sys-
tems by means of a partial differential equation, which shall provide a quantitative de-
scription of the change of the (quantum) state of the system.

Just as in Newton’s physics Schrödinger’s partial differential equation does not allow for
taking into account the universal connectivity and consequently the omnipresent vari-
ability of evolution. It assumes a universe which can be separated into small isolated
systems which operate independently. Fortunately, this assumption is not met in universe
as otherwise evolution would probably proceed chaotically.

Although, the quantum mechanical model given by the Schrödinger equation, does not
include explicitly randomness, probabilities emerge by normalizing the wave function and
then taking its absolute value resulting in a number between 0 and 1. This is interpreted26

as the probability that the particle will be found in a certain location. This interpretation
is more or less arbitrary and has been questioned since it was adopted.

24Cartwright, N. (1983), p. 57.
25Erwin Schrödinger (1887-1961), Austrian theoretical physicist.
26There were several proposals how to interpret the wave function, finally, the “probability interpretation” proposed

by M. Born (1882–1970) was accepted.
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4. Engineering Science

Besides fundamental science which, strictly speaking, deals and investigates a non-existing
universe, there are the so-called engineering sciences, which develop technology. Engineers
apply in a certain sense scientific knowledge obtained in fundamental science to solve
technical problems. The crucial task of an engineer is to identify, understand, and integrate
the constraints imposed by real world for producing an operating product. In other
words, an engineer must try to correct the findings of fundamental science until reliable
predictions are possible.

The general method for arriving at a viable prediction procedure are trial-and-error, i. e.,
an option is tried, if it works, a solution has been obtained. If it doesn’t work, the option
constitute an error and another option is tried. Trial and error aims not to improving
understanding as it makes no attempt to discover why a solution works. Therefore, trial
and error does not improve knowledge, but only yields an isolated solution to a specific
problem.

The need for engineering science results from the fact that fundamental science is based
on the untenable assumption that evolution consists of cause-effect chains, which makes
the results of fundamental physics unfeasible. Nancy Cartwright writes about quantum
physics and classical physics in her book The Dappled World - A Study of the Boundaries
of Science as follows:

The conventional story of scientific progress tells us that quantum physics has
replaced classical physics. We have discovered that classical physics is false and
quantum physics is, if not true, a far better approximation to the truth. But
we all know that quantum physics has in no way replaced classical physics. We
use both; which of the two we choose from one occasion to another depends on
the kinds of problems we are trying to solve and the kinds of techniques we are
master of.27

If the word “use” means to develop technical devices and not to illustrate scientific exper-
iments, then Nancy Cartwright is wrong. Neither quantum physics nor classical physics
can be used, but simple and costly trials have to be made until finally the desired result
has been achieved. Unfortunately Cartwright’s does not explain her claim that quantum
mechanics is a better approximation to the truth than classical physics.

5. Genesis of Human Brain Cells

In Issue 20 of 2006 the title-story of the German newsmagazine Der Spiegel dealt with the
topic how new cells develop in the brain and that it is hoped to find a way to cure nerves
and brain by activating the development of new cells. On page 166 it is reported:

This hope is based on a phenomenon, which neuro-science during the last cen-
tury has stubbornly denied. The opinion of the Spanish brain-researcher and later
Nobel prize winner Ramón y Cayal was effective like a prohibition. In 1928 he
had simply claimed ‘In an adult brain the neurons are stable and unchangeable.
Each of them can die but nothing can regenerate.’
There were soon some doubts about the official doctrine, however, those experi-
menters, who expressed their doubts, where laughed at by their colleagues. Joseph
Altmann of Massachusetts Institute of Technology (MIT) in Cambridge gave ra-
dioactive marked DNA material to adult rats, cats and guinea pigs.

27Cartwright, 1999, p.2.
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Subsequently he was able to detect the DNA material in neurones: In the course
of the cell division they were built into the cell nucleus - a proof that neurones
had newly developed in the brain. The scientific community, however, ignored
Altmann‘s findings. MIT refused to give him a tenure track position – he found
a position only in the remote Indiana and fall into oblivion.
Ten years later Michael Kaplan of the University of New Mexico presented pho-
tos of newly developed nerve cells taken with an electron microscope. But, he,
too, was confronted with preconception. Kaplan remembers that the then influ-
ential brain-researcher Pasko Raskic of Yale University commented his findings
by the words: ‘The cells may look like neurones in New Mexico, but they do not
in New Haven.’
Rakic even developed a theory why human nerve calls cannot divide: In some
stage of the human developing process our ancestors had exchanged their ability
to develop new neurones against the ability to store memories by maintaining
a constant number of neurones. The brain of the Homo sapiens cannot develop
new cells because of reasons of stability.’

This example illustrates the fact that scientific theories are in general not based on empir-
ical observation, but, contrary, observations are neglected, because they contain evidence
that the theory is wrong. In this special case, the consequences with respect to wrong di-
agnoses and wrong treatments can hardly be guessed. Moreover, the generations of highly
talented researches misled by the belief in an authority constitute an incredible waste of
human resources.

6. Guardian of Order of the Universe

Edmund Byrne28 describes in [4] how man seeks truth for proving the order of universe.
For him there is continuity in this aim throughout the different stages of the development
of science up to or times:

Medieval thinkers, taking their cue from the Hellenic ancestors, were no less im-
bued with the love for order. Just as the Roman law smoothed out the unpleasant
complexities of political life for the sake of what is still known as “the common
good”, so too did the Scholastics maintain order and discipline in matters intel-
lectual. Greek cosmology remained important as a foundation for the medieval
world-order, but became in fact but a visible sign of higher, spiritual order: the
order of faith. Thus the guardian of order and regularity was no longer merely
the political ruler nor even the religious leader, but the leader of the new intel-
lectualism, the theologian, to whom fell the awesome task of describing and at
times even creating order in a universe permeated with the divine.

Since that time, of course, a few changes have been made. The science of order
par excellence, mathematics, has blossomed forth in marvellous profusion; and
with the aid of the new mathematics undreamed of patters of regularity have been
partly found, partly introduced into the physical universe. The mathematician –
or, in the eyes of the masses, the physicists – has become the guardian of order
in the universe. So powerful, indeed, has become the new mathematics, both in
its pure and in its applied aspects, that one can no longer say readily where “sci-
ence” leaves off and its object begins. The “universe”, once somewhat naively
looked upon as something to be discovered and explained, tends to be more and
more the product of man’s cogitation and creation. Thus, at least, did the great
German philosopher Immanuel Kant envision the relationship between scientific

28Edmund F. Byrne (born 1933), American philosopher.
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thought and its object. It is no longer au courant to refer to oneself as being
Kantian; but few philosophers of science have been able to escape Kant’s radical
dichotomy between subject and object. The denouement of post-Newtonian abso-
lutism, which was in fact a kind of naive mathematical realism, has led to what
might be called, by comparison, mathematical idealism. The search for order is
by no means less intense than in former days; quite the contrary. It is just that
man is now much more conscious of the fact that the order of which he speaks is
perhaps due as much to thought as to things; and the thought from whence that
order arises is, as often as not, the thought of the mathematician.29

Byrne describes how man does not look at the universe in order to describe it, but shapes
it according to his own cogitation, which change from the Hellenistic an Roman times to
the religious leaders of medieval times and finally arrived at mathematics and physics.
But the aim remained the same, not to describe reality, but to explain it.
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Unit 1.1.6: Bernoulli Stochastics

Target

The aim of Learning Unit 1.1.6 is twofold:

1. The relation between mathematics and
science shall be made clear, i.e., math-
ematics is solely a language with
some superior properties when com-
pared with natural languages. How-
ever, mathematics and reality have al-
most no relation to one another.

2. The rules developed in Bernoulli
Stochastics and defining stochastic sci-
ence shall be explained and illustrated.

Content

Science and Mathematics

Before explaining the role of Bernoulli Stochastics within Science, we have to look at science
and at mathematics in order to avoid common misunderstandings. One possibility to clarify the
situation is to identify aim and constraints of science and mathematics and thus find differences
and similarities.

• As explained in the previous learning unit science should aim at coping with uncertainty
about future developments (evolution of universe) by detecting the constraints imposed
by the past on the future development. Based on these findings, the future developments
should then be predicted in an unambiguous, reliable and sufficiently accurate way.

• Mathematics aims at developing a system of notions and relations between numbers built
on some abstract basic requirements (axioms). Any new proposition (statement of a
relation) becomes part of mathematics, if it meets the constraints imposed by logic, where
logic constitutes a set of rules how to infer new propositions from already established ones
starting from the axioms.

Evidently the aims of science and mathematics have nothing in common. Science deals with
real world and the relations between past and future, while mathematics deals with abstract
entities and their formal (logic) relations. However, the requirement of unambiguity of scientific
statements cannot be warranted unless mathematics is used as language. Therefore, mathe-
matics constitutes a necessary means for science. Mathematics is based on numbers and this
leads to an important precondition for using mathematics as scientific language: The situations
investigated have to be quantified beforehand.

Mathematics is the scientific language but does not include any rules or directives how to
perform science and in particular it contains no hints, which allow for explaining, describing
or handling uncertainty. Therefore, starting with a mathematical concept and not with a real
world entity leads often to unsolvable problems of interpretation.

Bernoulli Stochastics

Mathematics could not have been developed without a set of rules how to deduce propositions
from previous ones. This set of rules is called logic. Similarly, science cannot develop without
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a set of rules how to describe and handle uncertainty. This set of rules is called Bernoulli
Stochastics. The rules must answer the following questions

• What must the sources of uncertainty be quantified?

• How can uncertainty of future developments be mathematically described or modelled?

• How should a scientific statement be organized?

• Which requirements (specifications) should a scientific proposition meet?

• How shall the conformity with the specifications be checked?

Thus, the role of Bernoulli Stochastics is similar within science as logic is within mathematics.
Just as logic enables to distinguish what is part of mathematics and what not, stochastics
makes it possible to decide upon scientific and non-scientific statements. Bernoulli Stochastics
provides the general directives and specifications for science.

Stochastic rules shall guarantee that:

• Scientific statements are unambiguous, as ambiguous statements lead to misunderstand-
ings and wrong decisions.

• Scientific statements must not be based on assumptions or beliefs as otherwise science
would reflect not real world but a subjective opinion.

• Any scientific statement is incomplete, if it is not accompanied by the degree of its relia-
bility, since otherwise the risk of wrong decisions is unknown.

• The correctness of a scientific statement must be checkable.

Rules of Bernoulli Stochastics

Because in the real world everything is connected with everything, a model of the entire evo-
lution is impossible and, therefore, should not be attempted. Below the stochastic rules are
stated in a rather informal way:

• Identify those aspects of the future development which are of interest. Quantify all the
aspects of interest by assigning to each possible outcome a number according to the rules
of quantification.

Quantification of the future aspects of interest yields the corresponding variables. Because the
future value of such a variable is indeterminate and depends on some random developments,
these variables are called random variables denoted by a symbol, e.g., X.

Predictions are possible only because everything is connected with everything. This universal
connectivity excludes a deterministic evolution in favor of a stochastic evolution. A scientific
prediction is based on the relation between the future evolution and the actual, already com-
pleted state of evolution. For describing the relation between past and future, it makes sense
to start with the actual state, i. e., the so-called initial conditions.

• Identify all aspects of the initial conditions being relevant for the already identified random
variables. Quantify all these aspects of the initial conditions by assigning to each potential
value a number according to the rules of quantification.
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The result is a representation of the initial conditions by variables. The values of these variables
are determinate and, therefore, the corresponding variables are called deterministic variables
denoted by a symbol, e.g. D.

The pair of variables (X, D) represents the aspects of interest of the future and those aspects
of the past which affect the future development with respect to X. Any scientific description
of the considered process must start with the pair of variables (X,D). It should be clear that
the same process may lead to many different pairs of variables depending on the interests at
hand.

The initial conditions (represented by the deterministic variable D) affect the future develop-
ment. Generally, the actual value of the deterministic variable D is unknown and, therefore, it
cannot be taken as starting point for the desired prediction. But, there is no case thinkable, in
which D can adopt any real number. It is always possible to exclude with certainty almost all
numbers. Those numbers which cannot be excluded, constitute the set of potential values of
D describing the existing ignorance and resulting in the next stochastic rule:

• Identify all potential values of D by excluding all those values of D which are not compatible
with the available knowledge about the initial conditions.

The initial conditions affect the future development by ruling out almost all values for the
specified random variables X. The set of remaining admissible values must be specified:

• Identify for each of the values of D that cannot be excluded, a set of values which the
random variable X may eventually adopt in future.

The initial conditions not only limit the future developments to a certain set, but also attract
each possible value of X with a different degree of strength. The initial conditions thereby
define a structure on the set of possible future outcomes of X by assigning to each future
event a probability or, equivalently, by distributing the probability mass on the possible future
outcomes. The probability of a future event is the degree of certainty of its occurrence and,
thus, reflects the strength of attraction emanating from the initial condition.

• Identify for each set of potential initial conditions the corresponding probability distribution
of the random variable.

The above indicated rules describe the tasks that have to be solved in Bernoulli Stochastics.
What is still needed are detailed instructions how to solve the corresponding problems, i.e.,
how to select, improve and verify the different set-functions needed to arrive at a complete
stochastic model and to exploit and improve a given model.

Examples

1. Geometry

Geometry is the first branch of mathematics which was build on axioms and logic. The
first set of axioms was formulated in the Elements of Euclid of Alexandria (ca. 325 BC
– 65 BC) where all theorems (“true statements”) are derived from a finite number of
axioms. Euclid gives five axioms:

• Any two points can be joined by a straight line.

• Any straight line segment can be extended indefinitely in a straight line.

• Given any straight line segment, a circle can be drawn having the segment as radius
and one endpoint as center.
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• All right angles are congruent.

• Parallel postulate. If two lines are drawn which intersect a third in such a way that
the sum of the inner angles on one side is less than two right angles, then the two
lines inevitably must intersect each other on that side if extended far enough.

Note that the quantities like points, lines, angles are completely abstract quantities with
not real meaning. Assigning a real meaning to them must be looked upon as an interpre-
tation which might be justified or not.

Mathematics consist of deriving statements from the set of axioms using the rules of logic.

2. Train Journey

Consider travelling on 25 March 2006 by train from Würzburg Central Station to Frank-
furt/Airport. The departure is schedule at 11.09 a.m. and the arrival 10.26 a.m. The
problem is to predict the travel time in a reliable way.

• The aspect of interest of the future development is the travel time from Würzburg
to Frankfurt. As the aspect of “time” has been quantified long ago, quantification
consists of selecting an appropriate time-unit, say minutes, and the symbol to be
used for the corresponding variable, say T .

• The relevant aspects of the given situation before the train leaves Würzburg determine
the range of variability of T and the random structure on this range of variability.
The relevant aspects and the corresponding variable must be selected appropriately
aand are combined to the deterministic variable D.

• Next, those values for D which are not compatible with the given situation may be
excluded resulting in a set of potential values of D.

• As soon as the potential initial conditions are available, the set of all those values for
the travel time T which cannot be excluded on condition of the potential values of
D must be derived.

• Finally the structure of randomness given by the probabilities of the possible out-
comes must be determined,

After the situation before leaving Würzburg, has been described as outlined above, it
becomes possible to make a prediction or answer any other question with respect to the
travel time.
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Unit 1.1.7: Variability

Target

Learning Unit 1.1.7 aims at introduc-
ing variability as the central concept
for describing evolution and the state
of human knowledge. The variability
refers to the future value of any ran-
dom variable, and it becomes manifest
by the fact that for each repetition of a
process the corresponding random vari-
able will adopt a different value.

Content

Randomness and Variability

Uncertainty refers to the future development and particularly to the future outcome of a spec-
ified random variable X, which at the time being is indeterminate, because of the universal
connectivity of universe. Thus, the future development which will produce the outcome of in-
terest may take the one or the other course. However, the universal connectivity does not only
generate variability, it also limits variability. Thus, the connectivity provides something like
a dynamic order and prevents chaos, which would be almost inevitable if the universe would
consist of independent and isolated systems. The set of possible courses of development is
generally rather small, but contains always more than one course and therefore more than one
outcome of X. The actual selection of one of the possible courses or outcomes of X happens
by random and, thus, randomness provides variability within evolution.

Note, that the above described variability cannot be excluded as a characteristic feature of
evolution. Moreover, this variability is independent of human knowledge. Even if the truth
(about the initial conditions) were exactly known, the variability would not vanish. This
distinguishes randomness from ignorance. An almighty God is free of any ignorance, however,
randomness as a characteristic property of the universe precludes the knowledge about the
exact future outcome.

Ignorance and Variability

A decision should consider the possible future developments or more precisely said the variability
in the future outcome of X. The variability is determined by the initial conditions, i. e., by facts.
Because of the universal connectivity, mankind will never be able to know these facts completely.
The available knowledge about the initial conditions is the result of excluding all impossible
conditions yielding a set of potential conditions which includes the actual or true one. Any
of the potential conditions might be the true one and, therefore, each of them, represented
by a value of the deterministic variable D, has to be taken likewise into account. Thus, due
to ignorance one has to take into account some variability with respect to the deterministic
variable D although the latter is determinate. Clearly, the variability with respect to the
deterministic variable D increases the variability which has to be considered with respect to
the random variable X.

Variability and Knowledge

Uncertainty about a future development is expressed by variability and, therefore, variability
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should be the main object of interest in science. The variability of the deterministic variable D
represents ignorance. Any diminishment of ignorance means a reduction of the variability of D
or, equivalently an increased knowledge about the initial conditions, i.e., the past. Increasing
the knowledge about the past conditions leads to a better understanding of the variability of X
reflecting the dynamics of evolution. Thus, decreasing ignorance about the past makes better
predictions about the future possible.

Examples

1. Variability and Evolution

Gregor Johann Mendel (1822 –
1884) was an Augustinian monk
who investigated the laws of in-
heritance by conducting plant hy-
bridity experiments. The signifi-
cance of Mendel’s work was not
recognized until the turn of the
20th century.

His results are known as Mendel’s
Laws of Heredity and consists of
statements about the variability
exhibited by offsprings of given
parents. The following figure
shows the variability in the off-
springs of a black and a white rab-
bit.

Figure 130: Variability among the offsprings of a

white and a black rabbit.

2. Variability and Ignorance

Limited and structured variability is an inherent feature of evolution. In contrast, igno-
rance generates a seemingly variability which does not exist, but has to be taken into
account when making predictions or decisions.

Consider a car racing through the Western Sahara and let the number X of cars reaching
successfully the goal be the quantity of interest. If the number n of participating cars is
known, then the random variable X may adopt a value between 0 and n. However, if n
is unknown and only an upper bound n + m is known, then the range of variability for X
which has to be taken into account increases to the set of integers between 0 and n + m.

30Figure taken from From Wikipedia, the free encyclopedia
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Unit 1.1.8: Randomness

Target

Learning Unit 1.1.8 aims at intro-
ducing randomness , which repre-
sents the principle of order within
evolution as it admits only few fu-
ture developments and, moreover,
gives priority to some of them.
Randomness includes, for exam-
ple, each of the natural forces con-
sidered in physics.

Content

What is Randomness?

Jacques Monod31 believed that the evolution of all living things is brought about by natural
selection operating through entirely random variations. These are “the only possible source of
modifications in the genetic text.” Hence chance alone is at the source of every innovation, of
all creatures in the biosphere.” The concept that “pure chance, absolutely free but blind” is the
basis of evolution, is now “the sole conceivable hypothesis, the only one compatible with observed
and tested fact.” Moreover, there is no warrant whatever for supposing the “conceptions about
this sole, or ever could, be revised.”

In fact, the conception that chance or randomness acts “absolutely free but blind” is widespread.
Probably it goes back to the quantification of games of chance in the famous correspondence
between Blaise Pascal and Pierre de Fermat and the subsequent works by Christiaan Huygens,
Pierre Rémond de Montmort and Abraham de Moivre, where chance is by construction “blind.”
Another source of this conception might be the belief in a deterministic world where the observed
variability is caused by ignorance.

However, the number of scientists recognizing that randomness does not act “blindly” is in-
creasing. Schilling32 notes Replying to Einstein’s familiar question, Joseph Ford of the Georgia
Institute of Technology declares, “God plays dice with the universe. But they’re loaded dice.
And the main objective of physics is to find out by what rules they were loaded, and how we can
use them for our own ends.”

As explained in the previous learning units randomness as a characteristic feature of evolution
is not at all free (of any structure) or even blind, but constitute the (only) universal principle
of order.

Randomness as Manifestation of Connectivity

The past is characterized by facts which do not exhibit any variability, future exhibits variability
and stands for evolution of universe. The available experience allows to exclude the existence
of isolated systems, which yields a universal connectivity including inanimate and animate
nature. The universal connectivity makes cause-effect relations impossible and does not –
strictly speaking – allow for recurrent processes. Hence, future is characterized by variability

31Chance and Necessity, London 1972, cited according to S. Paul Schillling (1991): Chance and Order in Science and
Theology. Theology Today 47, 1-11

32Paul Schillling (1991): Chance and Order in Science and Theology. Theology Today 47, 1-11
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generated by the universal connectivity. As it is common practice, we say that the future
development is subjected to randomness.

Randomness as manifestation of connectivity is the clear opposite of chaos which leads to
disorder and confusion. In contrast randomness means not only limited, but also structured
variability of the future development. The structure leads to the well-known fact that in similar
situations (with respect to the initial conditions) some events occur more frequently than others.

Randomness the Principle of Order

As explained, randomness is generated by the universal connectivity and becomes manifest by
variability of future developments. It may be quantified by the extent and the structure of
variability. An unstructured variability would mean that each of the possible outcomes has the
same chance of occurrence, while a structured variability means that some of the outcomes are
preferred while others are so to say penalized. Some of the possible outcomes are attracted by
the initial conditions more than others.

This latter fact reminds of attracting and repelling forces in physics. From a stochastic point of
view each of the physical forces is a manifestation of universal connectivity and makes certain
events more likely, others less likely and a vast majority of events impossible. Thus, the physical
forces of nature can be looked upon as an important part of randomness as a characteristic
feature of evolution.

Randomness and Gambling

During the 16th century Blaise Pascal and Pierre de Fermat started to investigate games of
chance. This was the beginning of the development of a new branch of mathematics originally
called Aleae Geometria by Blaise Pascal and which later became known as Probability Theory.
There is an decisive difference between chance in the sense of gambling and randomness as it
is introduced here. Randomness represents connectivity and, thus, order, while chance within
gambling represents independence and, thus, disorder or chaos. Games of chance are designed
by symmetries in a way that the range of variability is fixed, but no special structure is imposed
on the future course of the game. Thus, chance in the sense of gambling can be looked upon as
a man-made degeneration of randomness. This idea is also expressed in the above citation of
Joseph Ford, where the “rules they were loaded” are the rules of evolution, i. e., the relations
between facts and the future development.

Examples

1. Fundamental Interactions in Physics

From physics it is known that particles interact with each other. Such interactions can be
observed between galaxies as well as between quarks jiggling around inside a proton. The
observed interactions enable to exclude the existence of isolated systems and necessitate
the consideration of randomness as done in Bernoulli Stochastics.

In physics four types of forces are identified gravity, electromagnetism, the weak interac-
tion, and the strong interaction. In Bernoulli Stochastics these interactions are part of
the overall interactions which altogether generate randomness.

Physics has acknowledged that phenomena as the movements of galaxies, the development
black holes, the expansion of the universe, the orbits of planets, the falling of objects, etc.,
etc are generated by these interactions, i. e., by randomness as expression of the universal
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connectivity. Nevertheless, physics insists of following reductionism which neglects the
universal connectivity that is the driving force of evolution.

2. Herd Instinct

Besides the interactions within the inanimated nature, there are, of course, also interac-
tions among creatures although they are not as well investigated as the physical interac-
tions.

The “herding instinct” among human beings is an often observed tendency among man to
identify themselves with a larger group of individuals and to copy behaviors and beliefs.
The herding instinct of humans manifests in a number of ways, for example buying the
same goods and performing the same activities, believing in the same doctrines and being
of the same opinion.

In numerous cases the herding instinct among humans has been exploited and is exploited
for prompting people to act against their own interests. The herding instinct shows that
the existence of interactions of rather different types than the physical ones cannot be
excluded and, therefore, have to be taken into account when modeling uncertainty.

3. Interactions Among Animals

Even more striking than the herding instinct among humans are observed interactions
among animals. Ants are a species which exhibits extreme interactions between the in-
dividuals. They form highly organized colonies or nests and the ant colonies may be
described as superorganisms because they appear to operate as a single entity. For in-
stance, although there are millions of ants in a colony which frequent the narrow streets
in a colony, traffic jams like in congested areas of humans cannot be observed.

Figure33 1: Ants Highway.

Clearly, any “social behavior” among creatures constitutes a form of connectivity which
immediately changes the structure of randomness.

33Figure taken from From Wikipedia, the free encyclopedia: Ants forming a highway seen in Thailand near a tropical
forest (Nakhon Phanom province) made by myself Work by Matthias Sebulke AKA Mattes
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Unit 1.1.9: Probability

Target

Learning Unit 1.1.9 introduces the con-
cept of probability , which is due to
Jakob Bernoulli, for the quantification
of the structure of randomness. The
most important aim of this unit is to
show that the concept of probability
has a unique interpretation in contrast
to many textbooks on probability the-
ory and statistics, where several and in-
consistent interpretations are given.

Content

Randomness and Determinism

Quantification is a prerequisite for investigating randomness in an unambiguous way, as ex-
plained in previous learning unit. However, quantification of randomness assumes that it has
been acknowledged as an inherent part of the physical universe necessary for describing uncer-
tainty. Exactly at this point the difficulties start. Since traditional science emerged in Europe
more than thousand years ago, it was and is dominated by the dogma of determinism34, which
left no space for randomness. Instead of considering randomness, the search for the truth
dominated all scientific efforts. First science aimed at searching and verifying the determinate
truth of the Holy Scripture and after this period, it changed smoothly to search for the divine
truths as written in the Book of Nature. Even later, science started to search in imaginary
ideal systems being the result of the human dream of possessing the truth.

Despite the discoveries of many physical and biological phenomena which cannot be explained
by deterministic laws, determinism is still prevailing in contemporary science. The professor of
systematic theology S. Paul Schilling ([6] notes (Chance and Order in Science and Theology.
Theology Today 47, 1-11, 1991):

”Obviously, the deterministic postulate dies slowly; it is preserved in name even when
redefined to stand for something quite different from its historic meaning. But clearly
for increasing numbers of scientists, the traditional notion of a tightly-knit universe
with no loose ends is no longer tenable. Even chance is seen to behave in orderly
fashion; whether in microscopic particles or everyday complexity it operates to stable,
universal laws.”

If determinism is abandoned from physics in order to detect the rules of randomness, then
necessarily the deterministic approach based on the Hamilton formalism must be replaced by
something more appropriate based on the notion of probability.

Jakob Bernoulli and the Science of Prediction

When the Swiss mathematician Jakob Bernoulli investigated more than 300 years ago some
problems related to gambling posed by Christiaan Huygens, he realized that mankind is in
need of a Science of Prediction in order to cope with uncertainty. He named this new science

34Determinism goes, at least partly, back to the belief in divine providence.
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Stochastics35 and his masterpiece Ars conjectandi, which was published in 1713 eight years
after he had passed away, introduced the fundamental concepts of the new science and the
analytical proof that in fact the proposed science can be developed. One of the fundamentals
consists of the quantification of randomness by the concept of probability.

The Concept of Probability

Uncertainty refers to the question which of the possible events will occur in future. If the
question could be answered, almost no decision problem would exist. However, the question
can be answered only after the occurrence, i. e., after the future event has been turned into a
fact. However, different events are attracted with different strength by randomness depending
on the initial conditions. Thus, the degree of certainty of the occurrence of a given event varies
according to the actual force of attraction. Jakob Bernoulli realized intuitively this relation
and defined the probability of an event as the degree of certainty of its occurrence36

This degree is independent of any subjective opinion or knowledge as it is completely determined
by the actual conditions and quantifies randomness. The subsequent problem of how to measure
a probability was also solved by Jakob Bernoulli. He developed a measurement procedure37 for
experimentally determining the numerical value of the probability of a specified event for given
initial conditions.

Let X be a the aspect of interest in the future and d be the given initial conditions. Then the
notation X|{d} is introduced for the future aspect of interest X subject to the initial conditions
d. Let E be a specified event with respect to the aspect X.

Then the probability of the event E is denoted by PX|{d}(E). The probability is a degree and,
therefore, it may adopt values between 0 and 1, i. e.

0 ≤ PX|{d}(E) ≤ 1 (2)

Moreover, if E1 and E2 are two mutually exclusive events with respect to X, then the probability
must meet the following more or less obvious requirement:

PX|{d}(E1 ∪ E2) = PX|{d}(E1) + PX|{d}(E2) (3)

The probability is a characteristic feature of a future event for fixed initial conditions. It reflects
the strength of attraction between the initial condition and the event in question.

Probability and Mathematics

From a mathematical point of view, the concept probability is defined as a non-negative (see
(2)), normalized (see (2)) and additive (see (3)) set-function on a σ-field, which is generally
called a probability measure. Consequently, probability theory as a special branch of mathe-
matics investigates non-negative, normalized and additive set-functions. The axiomatic basis
for this branch of mathematics was laid by A.Kolmogorov in 1933 (see [5], p. 2ff). The complete
absence of any real-world meaning of the mathematical concept of probability is stressed by
Kolmogorov:

35Greek: Science of Prediction.
36Jakob Bernoulli’s definition of probability has been widely looked at as a means for quantifying subjective opinions

and not for quantifying objective randomness. This is concluded from the following words in the Ars conjectandi: “In
themselves and objectively, all things under the sun, which are, were, or will be, always have the highest certainty.”
However, Bernoulli continues: “Unless, indeed, whatever will be will occur with certainty, it is not apparent how the
praise of the highest Creator’s omniscience and omnipotence can prevail. Others may dispute how this certainty of future
occurrences may coexist with the contingency and freedom of secondary causes; we do not wish to deal with matters
extraneous to our goal.” (Translations from Sylla [3], 2006, p.315.) With these words Jakob Bernoulli indicates some
doubts without wanting to go into details.

37Note that quantification is a necessary condition for measurement.
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In accordance with the above, in §1 the concept of a field of probabilities is defined
as a system of sets which satisfy certain conditions. What the elements of this set
represent is of no importance in the purely mathematical development of the theory
of probability (cf. the introduction of basic geometric concepts in the Foundation of
Geometry by Hilbert, or the definitions of groups, rings and fields in abstract algebra).

In this context it is worth noting that the axioms of mathematical probability theory do not
include random variables in the sense as introduced here. The random variables considered in
mathematics are defined as measurable functions and, therefore, should not be confused with
the identically named quantities in Bernoulli Stochastics.

Probability and Relative Frequency

In many textbooks (e.g. [1], p. 31,32) on probability or statistics, the probability of an event
is defined as the limit of the relative frequency of its occurrence in an infinite sequence of
independent and identical repetitions of the corresponding experiment. Note that this definition
is motivated by the problem of determining the actual value of the probability of a given event
and, therefore, is not appropriate for describing the development of evolution, which - obviously
- does not depend on any sequence of experiments.

Scientific Ambiguity of the Concept Probability

Because the different nature of past and future is not adequately taken into account in contem-
porary science, the concept probability was not defined clearly leading to many misunderstand-
ings and misuse. George Boole ([4], p. 187) cites Poisson in order to define probability:

A distinguished writer38 has thus stated the fundamental definitions of the science:

“The probability of an event is the reason we have to believe that it has taken
place, or that it will take place.”

“The measure of probability of an event is the ratio of the number of cases
favorable to that event, to the total number of cases favourable or contrary, and
all equally possible” (equally likely to happen).

The first definition opens officially the way of belief into science. In fact, science is based on
belief, however, this fact has always be concealed until probability was introduced as scientific
notion of the degree of belief. The second definition reduces the concept of probability to a
special case, namely to the case of uniform probabilities, which, strictly speaking, can be found
only in the field of gambling.
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Examples

1. Probability and Facts

Facts characterize the completed evolution regarding certain aspects. They exist and,
hence, are determinate. As soon as the aspect in question is quantified by a variable D,
the corresponding fact can be expressed by a number, say d. One could say that with
respect to the aspect quantified by D the event {d} has occurred. Thus, the degree of
certainty of the occurrence of the event {d} is 1.0, as it is a fact.

Assigning any other value than 1.0 as probability to an event which has already occurred
is meaningless. Similar, if an event of the completed evolution is considered which has not
occurred, i. e., which has not become a fact, then the degree of certainty of its occurrence
is 0 and any other value is meaningless.

2. Tomorrow’s Weather

Weather forecasts are made on
numerous observations (see satel-
lite picture at left) and sophis-
ticated calculations by means of
the largest and fastest super com-
puters nowadays available. How-
ever, although it is obvious that
the weather development is sub-
ject to randomness, deterministic
models based on systems of dif-
ferential equations are generally
used for making the forecasts. Figure 1: Satellite Picture of Europe.

Regarding tomorrow’s weather many aspects could be of interest. For instance:

• Whether or not it will rain during a given time period, say from 10 in the morning
to 3 in the afternoon.

• The lowest or highest temperature during a given time period, say from 8 in the
morning to 5 in the afternoon.

• The amount of rain during a given time period, say from 6 in the morning to 8 in
the afternoon.

The first aspect is quantified by a so-called indicator variable X for the event “rain”,
which can adopt only two values namely 0 and 1, where 0 stands for the event “no rain”
and 1 for the event “rain.” There are only three possible events which may occur. These
are {0}, i. e., “no rain”, or {1}, i. e., “rain”, or {0, 1}, i. e., “no rain” or “rain.” Clearly,
the last event occurs with certainty and hence its probability is 1.0. The probabilities of
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the two other events depends on the actual weather conditions quantified by the variable
D with actual value d. Then we have:

PX|{d}({0}) = 1 − PX|{d}({1}) (4)

and the task would be to identify d and to determine the unknown value PX|{d}({1}) or,
equivalently, PX|{d}({0}).

The other aspects are quantified by selecting an adequate temperature scale and volume
scale, respectively. Again the relevant weather aspects have to be quantified by a variable
D and its actual value d must be identified yielding the variable X|{d} with probability
measure PX|{d}.

3. Next Year’s Gross National Product

The state and development of a nation’ economy is often measured by its gross national
product (GNP) and, therefore, predictions of the GNP play an important role in many
decision making processes. However, as long as the probability of such a predicted event is
not known, the predictions is more or less meaningless and should not be used for making
decisions.

Quantification of the GNP is done by selecting an appropriate money unit leading to a
random variable X. Much more difficult is the identification of the relevant factor D,
which constitute the deterministic variable of the starting situation and specifying its
actual value d.

Once the actual random variable X|{d} has been obtained, the corresponding probability
measure must be determined as a necessary condition for making useful predictions.
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Unit 1.1.10: Ignorance

Target

Ignorance about the actual facts is the
major source of human uncertainty about
the future development. Unit 1.1.10 aims
at showing how human ignorance can be
quantified in order to handle ignorance
and to purposefully reduce it, where re-
ducing ignorance represents a learning
process.

Content

Human Ignorance

This unit deals with human ignorance, because Bernoulli Stochastics is a human invention
aiming at dealing with human uncertainty. Moreover, only little is known about the ignorance
of animals and plants.

While randomness is a characteristic property of evolution, ignorance is a characteristic property
of the animated nature and, particularly, of mankind. Randomness takes care of order by
generating a structured variability with respect to what will be. In contrast, human ignorance
refers to what is and generates an unstructured seeming variability.

Ignorance is the opposite of knowledge. Knowledge and, hence, ignorance refer to facts, i. e., to
the past, i. e., to the completed evolution. In case of ignorance, the facts on hand quantified by
the variable D are not known. Knowledge refers to what is not and enables to exclude almost
all values for the unknown d except for a bounded set of values.

Variability Generated by Ignorance

Similar as randomness generates variability with respect to the future outcome, ignorance
generates variability with respect to the past. However, in contrast to the indeterminate future,
the past is fixed and, therefore, the variability generated by ignorance exists only seemingly.

Moreover, if in a thought experiment a probability structure should be assigned to the set of
potential states, then the actual state gets the probability value 1 and to all the other states
the probability value 0. Such a deterministic probability distribution is sometimes referred to
as a degenerate probability distribution or a one-point probability distribution.

Because the actual state is unknown, the existing (degenerate) structure is unknown. Preferring
some state to other states in such a situation would be tantamount to relying on subjective
belief, which would violate the aim of science to overcome human subjectivity. Therefore, no
state within the set of potential states must be preferred.

The only way to reduce the seemingly existing variability is to reduce ignorance by means of a
learning process.

Learning Means Exploiting Randomness

Ignorance is quantified by the set of potential states which includes the actual one. This set is
necessarily bounded and obtained by excluding all those states which cannot be the actual one.
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Of course, excluding states assumes that there is some knowledge about the actual situation.
However, there is no situation thinkable where it is impossible to state explicitly a finite or
bounded set which covers the initial condition, i.e., the actual situation.

Reducing ignorance assumes necessarily a learning process, i. e., a process which is started
and which (hopefully) results after completion in the exclusion of some more elements of the
set of potential states. At the start of the learning process its outcome is indeterminate. As
soon as the outcome of the (random) learning process is available, those elements of the set of
potential states can be excluded, which are not consistent with the obtained outcome. Thus,
learning is possible only by performing a process with random outcome, which shows that all
our knowledge is based on randomness.

The Learning Process

Learning about the past means to use the stochastic relation between past and future for
reducing the set of potential states and, thus, ignorance. The relation between past and future
indicates those pairs of initial conditions and future outcomes, which are compatible and those
which are incompatible. Thus, each possible outcome of the learning process allows to exclude
the incompatible states from the set of potential states. If the set of potential states does
not include any of the incompatible states, the learning process was in vain, otherwise it was
successful. The more states can be excluded the larger was the learning success.

Examples

1. Ignorance and Belief

A professor of theology at the University of Würzburg kept saying that “belief is knowledge
which we rely in,” however, without ever specifying the meaning of knowledge. Defining
“knowledge” by “knowing the truth”, it is obvious that mankind will never reach the
state of knowledge. Therefore, it makes much more sense to operate with the concept
of ignorance for describing the state of human insight. Using ignorance as basic concept
leads immediately to the following statement about belief: “Belief is ignorance which is
not acknowledged as such.” In fact belief is one of the most dangerous forms of ignorance,
since many people tend to impose their own belief upon those who believe in something
different.

2. Measurement and Ignorance

Determination of facts is usually called “measurement,” at least if the facts are quantified.
Thus, for reducing ignorance about the actual values of e.g. weights, temperatures, areas,
etc. measurement procedures and measurement devices are used. These devices exploit
some random process which is more or less closely related to the fact which shall be as-
sessed. If the measurements are repeated several times, then generally different outcomes
will be observed. Moreover, a measurement result may be obtained by different facts. In
other words, there is no measurement procedure by means of which it is possible to deter-
mine exactly the given fact. It is only possible to exclude more or less many of the values
which must be considered as potentially possible at the start of the measurement. The
set of values which after the measurement still cannot be excluded represent the reached
state of ignorance about what is, or the state of knowledge about what is not.
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3. The Learning Process and Ignorance

Clearly, any learning process aims at reducing ignorance. Moreover, any learning process
is a random experiment with many possible outcomes. Consider the process of learning
a foreign language. It is well known that the learning success depends decisively on the
persons. Some learn extremely fast and well, while others fail completely. Thus, the
individual capability is one of the main relevant factors which have to be quantified by
means of the deterministic variable D. Besides the individual capability, the design of
the learning process is another relevant factor. To increase the probability of success the
learning experiment should be designed by taking into account the individual capability,
the design of the learning process, and many other factors.
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Unit 1.1.11: Knowledge

Target

The Learning Unit 1.1.11 aims at prepar-
ing for the second module by elaborating
the next task to be performed in Bernoulli
Stochastics. The next task is closely re-
lated to knowledge and ignorance. While sci-
ence searches for truth, Bernoulli Stochastics
just aims at reducing ignorance. The sec-
ond goal of this unit consists of showing that
mankind’s knowledge about the evolution is
extremely limited and that other creatures
have possibly a better understanding of evo-
lution than human beings.

Content

Object of Knowledge

Evolution advances continuously and yields a permanently changing universe. Knowledge refers
to facts, i. e., to the completed part of evolution and the question arises which facts are rel-
evant, if a future development, i. e., a part of uncompleted evolution is of interest. Because
of the universal connectivity, the completed part of evolution determines the extent of future
variability on the one hand and the structure of randomness on the other. Thus, due to the
connectivity also extent and structure of future variability are facts and, therefore, may be part
of human knowledge implying that both should be the objects of knowledge.

Acquiring Knowledge

The continuously increasing completed part of evolution includes the extent and structure of
future variability and represents what is. The universal connectivity enables man to catch a
limited glimpse on the past, but prevents that the completed part of evolution, i. e., (what
is), will ever be entirely identified. This ever changing what is constitutes truth implying that
mankind will never be able to acquire truth. As to evolution, even the extremely limited human
experience allows to exclude that the states of universe at two different points of evolution are
identical and, therefore, even if the universe would be deterministic and the truth would be
known an exact prediction about the course of the uncompleted part of evolution would not be
possible.

Mankind has no direct access to facts, but accumulates knowledge indirectly by identifying
what is not, i. e., not by observing existing facts, but by excluding not existing states. For
example, there is no measurement device, which yields a true value, i. e., an existing fact. By
measuring something it is only possible to exclude those values which are not compatible with
the outcome of the measurement process. Thus a meaningful measurement result must be a
set (or interval), which hopefully contains the true value.

The human knowledge acquiring process consists of reducing ignorance by excluding states,
which are not consistent with a given situation. The result is a set containing necessarily more
than one state of universe. The larger the set of potential states, which cannot be excluded,
the larger ignorance and the lesser knowledge are.
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Thus, knowledge is the compliment of ignorance and just as man cannot acquire complete
knowledge, man cannot abandon ignorance completely and, therefore, believing to possess truth
constitutes always a severe error. Thomas Jefferson shall have said (www.wisdomquotes.com):

Ignorance is preferable to error, and he is less remote from the truth who believes
nothing than he who believes what is wrong.

Improving Knowledge

Improving knowledge is equivalent of reducing ignorance and means to exclude further states
from the set of potential states, which so far could not be excluded. Thus, learning means to
approaching ”truth” without ever reaching it. Pretending of having reached “truth” is equiv-
alently of self-delusion and, therefore, of a failure of the learning effort. Evidently, excluding
further states, i. e., improving knowledge, is possible only if the set of potential states con-
tains more than one element. A singleton as set of potential states, which is tantamount to
the belief of possessing truth, makes any continuous learning process impossible. The late Li-
brarian of (U.S.) Congress Daniel J. Boorstin has expressed this fact in the following words
(www.wisdomquotes.com):

The greatest obstacle to discovery is not ignorance - it is the illusion of knowledge.

Representation of Knowledge

The main problem which has to be solved is to find an appropriate representation of the state
of knowledge or equivalently of the state of ignorance. Note that belief is not considered
as knowledge here, because belief is not the result of an exclusion process, but the result of
individual preference leading to a seeming truth, which, if quantified, can be represented by a
singleton.

As above stated knowledge refers to facts. These facts also include features of the future
development namely extent and structure of variability. What is needed, is a quantified rep-
resentation of “what is known” or more precisely “what is unknown” about the relevant facts
with respect to the question of interest.

Therefore, before one can learn or acquire knowledge the question should be answered how
knowledge or ignorance can be represented. Unfortunately, this question has not been an-
swered so far within the realm of traditional science. Ignorance has never been quantified and,
consequently, mankind failed to develop methods of purposefully reduce the existing ignorance.
The obvious results of this shortfall are wars, terror and catastrophes, which hit the human
communities as well as the human individuals.

The Pitfall of Human Learning

Mankind is proud about its capabilities of learning and believes that these capabilities distin-
guish human beings from the rest of the animal kingdom. George Box39 presents three different
stages of learning and illustrates them by the following figure:

39Box, G. (1997): Scientific Method: The Generation of Knowledge and Quality. Quality Progress, January 1997,
47-50.
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Figure 1: The three phases of human knowledge
according to Box.

Box explains his figure as follows:

History shows that humans have always learned, but progress once depended on the
chance coming together of a informative event and a perceptive observer. Scientific
method has accelerated that process in at least four ways:

• Providing in a better understanding of the interactive nature of learning.

• Deducting the logical consequences of a group of facts, each individually known
but not previously brought together.

• Passively observing and analyzing systems already in operation and data coming
from the systems.

• Deliberately staging artificial experiences by experimentation.

As to the third stage of democratized scientific learning, Box states:

A special contribution for which the quality movement is responsible is the democra-
tized and comprehensive diffusion of scientific methods. . . . Providing the work force
with simple tools (such as control charts, flow-charts, and SPC40 tools) and empow-
ering their use can ensure that thousands of deductive-inductive brains are actively
producing information on how products and processes can be improved.

As a matter of fact the methods of human learning have not changed since pre-diluvial times
and rest still on chance. Michael Polanyi41 claims that scientific discovery is an art, and he
states42

Since an art cannot be precisely defined, it can be transmitted only be examples of
the practice which embodies it. He who would learn from a master by watching
him must trust his example. He must recognise as authoritative the art which he
wishes to learn and those of whom he would learn it. Unless he presumes that the
substance and method of science are fundamentally sound, he will never develop a
sense of scientific value and acquire the skill of scientific enquiry. This is the way of
acquiring knowledge, which the Christian Church Fathers described as fides quaerens
intellectum, ’to believe in order to know’.

40SPC = Statistical Process Control.
41Michael Polanyi was a Fellow of the Royal Society of England and wrote many books on the philosophy of science.
42Michael Polanyi: Science, Faith and Society. The University of Chicago Press, Chicago and London: 1964, p. 15.
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As long as ignorance is not quantified, but just denied and replaced by belief, mankind will
not be able to learn how to manage successfully its problems, but contrary continue to blindly
tumble in ever increasing problems and ends in situations like that illustrated by the figure
below:

Figure43 2: The result of not taking appropriate into account the initial condition.

Examples

1. Driving Time: Facts

Assume that W. Tannenbaum is planning to leave Würzburg at 12 a.m. to drive by car
to Frankfurt/Airport. The quantity of interest is the driving time.

The relevant facts which have an impact on the driving time refer to:

• W. Tannenbaum,

• W. Tannenbaum’s car,

• the actual traffic situation,

• the actual highway condition,

• the selected route, and

• the actual weather conditions.

The values adopted by the above outlined facts represent the initial conditions, which
relate to the future development. The question how to select the details and how to
determine the actual values of the facts will be discussed in the next modules.

Knowledge refers to the facts per se and their potential values. If a relevant fact is
erroneously considered as irrelevant, any value is assumed to be admitted. Note that
strictly speaking any fact affects the ongoing evolution. However, the effect of almost
all facts is so small that it can be neglected for most purposes. Therefore, we classify a
fact as being irrelevant, if its effect on the future development may be neglected without
endangering the purpose.

43Taken from: www.tagesschau.de, 23 January 2007.
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2. Driving Time: Variability

Clearly, the driving time is limited by a minimum and a maximum value, which are fixed
according to the given set of facts. For instance, if W. Tannenbaum owns a fast car and
likes to drive fast, the minimum driving time is smaller compared with a situation, where
Tannenbaum owns an old and slow car and drives never fasten than 80 km/h. If the
weather conditions are bad with snow and ice the range of the driving time is moved to
larger values. If Tannebaum selects the Highway and the traffic conditions are favorable
the range is shifted to the smaller values. If the driving day falls on the end of the summer
vacations in the Netherlands than the traffic will be dense and the driving time longer.

As shown, the initial conditions determine the range of variability. The knowledge about
the range of variability is obtained by excluding all those values, which are not compatible
with the given situation.

3. Driving Time: Random Structure

Similar as the given facts, i. e., the initial conditions, determine the range of variability
of the driving time, they also determine the probabilities of the possible events, i. e., the
degrees of certainty of their occurrence. For instance having a fast car and liking to drive
fast attracts events consisting of small times, while an old and slow car would lead to the
exclusion of these events. Using rural roads, bad weather or bad traffic conditions would
again lead to the exclusion of “fast” events.

Again the initial conditions determine the structure of randomness. Knowledge about
this structure must be obtained similar as in the case described above, i. e., by excluding
structures that are not compatible with the given situation and selecting those which
reflect the available knowledge and do not assume non-existing knowledge.

4. Search for Truth

Byrne44 describes the human search for truth as follows:

For many years, man has been seeking after truth. He seeks it in many different
ways, from many different sources, and he has by this time found a considerable
variety of ways in which to describe it. He is not even sure, at time, that there is
such a thing as truth or, if truth does exist, that it is attainable. Still, man seeks
truth. And, being the orderly creature that he is, he wants truth to be orderly as
well. Thus he has always shown a marked tendency to make truth after his own
image, so that he might present it in a neat and, if possible, little package. This,
of course, has not infrequently required considerable ingenuity. For, whatever
truth may be in the final analysis, it seldom appears to us to be neat and orderly.
Man realizes this, at least in those moments when he is honest with himself,
but the realization disturbs rather than pleases him. He simply does not like an
untidy world. Thus, the more he learns about the complexity and intricacy of
the world in which he lives, the more he seeks to express what he has learned by
means of pregnant words, symbols, and formulas. These are , to be sure, often
no more than time- and labor-saving devices by means of which he avoids the
unpleasant task of pointing out (at some length, it must be added) that the world
really is not as simple as all that.45

44Byrne, E.F. (1968): Probability and Opinion. A Study in the Medieval Presuppositions of Post-Medieval Theories of

Probability. Martinus Nijhoff, The Hague.
45Byrne, from author’s preface, p. XVIII
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Module 1.2: Quantification

Content, Aim and Benefits of the Module Quantification

Introductory Remarks

The British physicist Sir William Thomson, Lord Kelvin of Largs (1824–1907) once said:

“when you can measure what you
are speaking about, and express
it in numbers, you know some-
thing about it; but when you can-
not measure it, when you cannot
express it in numbers, your knowl-
edge is of a meagre and unsatis-
factory kind.”

To express something in numbers means to use mathematics as language for communication
instead of using some spoken languages. The latter one have the decisive disadvantage that
they are ambiguous and, therefore, not well suited for passing over information, as any in-
formation which is expressed by means of a natural language must lead almost necessarily to
misunderstandings and to non-ending discussions about an appropriate interpretation.

The content of this module is to derive the rules how and tools for describing a part of evo-
lution by means of the mathematical language. These rules are derived by firstly considering
the characteristic properties of evolution and mankind, respectively, and only then selecting
the appropriate mathematical tools for expressing them. Proceeding like this avoids the dif-
ficulties of interpretation which generally arise if one starts with mathematical concepts and
only subsequently tries to adapt evolution to the tools. A prominent example for such difficul-
ties is quantum physics where the mathematical derivations still wait for a generally accepted
interpretation46. In fact, despite of the Copenhagen interpretation, the discussion about the
meaning of the mathematical formalism of quantum mechanics has never stopped. Another
prominent example of the difficulty of interpretation of mathematical concepts is given by the
mathematical concept “probability.” In books of probability theory and statistics a multitude
of different interpretations are offered, which, by the way, are one of the reasons for the complete
confusion with regard to the treatment of uncertainty.

At the beginning of modern science, there was the belief that evolution follows mathematical
laws. From this belief it was concluded that evolution cannot be explained based on observa-
tions, but only by deriving the underlying mathematical laws. This has led to a science, which
is more or less independent of reality.

Quantification starts with reality and means to to translate the observed details into the lan-
guage mathematics aiming at being able to communicate information about evolution in a
unambiguous way.

Passing this module successfully should enable to describe any part of evolution that is of
interest by using the language mathematics. It should also make clear that the traditional
methods and rules for describing parts of evolution must fail and must lead to misunderstandings
and wrong decisions. Therefore, this module represents the core of ´Bernoulli Stochastics and
if applied it leads directly to stochastic science.

A successful passing of this module should further deepen the understanding of the universe

46The Copenhagen interpretation of quantum mechanics was developed during the 1920s. It is based on Bohr’s cor-
respondence principle, Born’s statistical interpretation of the wave function, and Bohr’s complementarity interpretation
of certain atomic phenomena.
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and its continuously proceeding evolution. Particularly, it should motivate to abandon causal
thinking in favor of thinking in stochastic relations.

Note that stochastic models, i. e., a quantitative images of parts of evolution, which are derived
in this module are completely different than those used in physics. However, physical models
are in some sense covered by stochastic models and, therefore, may be used as starting points
for developing stochastic models.

Abandoning causal thinking would not only change science, but it would also change most of
the decision-making procedures in all parts and levels of human society, which are based on
assumed cause-effect relations.

Last but not least the rules developed in this module can be regarded as rules which can be
used to distinguish ‘science’ from ‘non-science’.
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Unit 1.2.1: Features and Variables

Target

The goal of the Learning Unit 1.2.1,
is to explain the quantification of the
most simplest quantities, namely fea-
tures or characteristics or attributes.
They are quantified by variables, i.e.,
a mathematical quantity that is defined
by a symbol and a set of numbers which
is called range of variability.

Content

Quantification and Mathematics

Quantification of a situation means to describe it by means of the mathematical language.
There are at least three advantages of using mathematics:

• The situation can be described in an unambiguous way, because mathematics is based on
numbers.

• The description is consistent, because mathematics is developed according the rules of
logic.

• The mathematical tools for describing an analyzing complex situations become available.

These three advantages are decisive for developing the stochastic science. If a description of
the situation happens to be ambiguous, then all the subsequent efforts would be focussed on
overcoming the ambiguity, while solving the underlying problem would be neglected. The
second advantage means that the different features entering the description will not contradict
one another. In order to illustrate the third advantage, let us consider a four dimensional
situation and let us try to describe its properties and feature by means of any natural language.
It is simply impossible, because the perception of mankind is basically restricted to three
dimensions. Any further complication lies beyond the human perception and, thus, outside
the human (natural) languages. By using mathematics instead, one overcomes this difficulty
and the fourth dimension can be added in a more or less natural way, without any additional
technical complexity.

The first step of quantification, namely, describing a given process by using mathematics as
language, consists of identifying the relevant features (features of interest or relevance) and
replacing them by variables. This first step of quantification is extremely important, because
it constitutes the base of all the subsequent steps.

Different Types of Features Require Different Rules of Quantification.

A feature can adopt different values and quantification means to assign a number to each of
the different values. The rules of how to assign the numbers depend on the nature or type of
the feature.

• Nominal Feature:

The values of a nominal feature represent categories, without any order. There is only
one rule for quantification: Each selected number must represent exactly one value.
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• Ordinal Feature:

The values of an ordinal feature define a hierarchy or ranking. Thus, quantification must
assign to each value a different number in such a way that the hierarchy or ranking is
preserved.

• Metric Feature:

The values of a metric feature establish a metric, e.g. a distance. The quantification must
assign to each value a different number and the numbers must be selected in a way that
they preserve the given metric. For a metric feature, two different subtypes are often
distinguished.

– Feature without natural point of origin:

If the considered feature has no natural point of origin, which corresponds to the zero
in mathematics, then zero can be assigned to an arbitrarily selected value. However,
in this case ratios of two selected numbers have no real-world meaning.

– Feature with natural point of origin:

If the considered feature has a natural point of origin, which corresponds to the zero
in mathematics, then zero must be assigned to the distinguished value. In this case,
ratios of two selected numbers do have a real-world meaning.

Subsequent Steps of Quantification

The first step of quantification consists of replacing all the involved features by the correspond-
ing variables. In the subsequent steps, the relations between the variables have to be described
by functions.

Thus, the complete quantified image of a process involves variables and functions, where the
former stands for the features and the latter for the relations between the features.

Examples

1. Murder on the Orient-Express

The time until Poirot’s investigations
of the murder are terminated, either
because the murderer is identified, or
Hercule Poirot (see photo on the right)
has admitted his failure, is an aspect of
the future development. If it is of in-
terest, it is represented by the random
variable X defined by below. Figure 1: Hercule Poirot

X = number of days starting with the day of the murder-event

until Poirot’s investigation will be terminated

2. Bowl Filled with Chocolate Balls

Consider a child trying to take as many chocolate balls out of the bowl as possible. Clearly,
the number of interest is indeterminate, before the process of taking out the balls gets
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completed. In this case, the following random variable X is identified:

X = number of chocolate balls the child

will take out of the bowl

3. Fishing in a Carp pond

Assume that the aspect of interest is the weather on a particular fishing day. The question
is, whether or not it is going to rain on that day. In this case, the aspect of interest is
quantified by a random variable X, which is given by a so-called indicator variable:

X =

{

0 if it will not rain
1 if it will rain

A random variable X represented by an indicator variable constitutes the simplest case of
an aspect of interest. The entire future is divided into one event and its complementary
event.

4. Solar System

Suppose, you are not provided with electric power, so that you could read a book after
the sunset. Therefore, you are interested in the time of sunset, when it will get too dark
for reading. For this, the random variable X is defined in the following way:

X = time in hours and minutes when

it will become too dark for reading
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Unit 1.2.2: Random Variable

Target

The goal of Learning Unit 1.2.2 is to re-
alize that modeling evolution must nec-
essarily start with identifying the as-
pects of interest of the future develop-
ment. Once these aspects have been
identified, the first step of quantifica-
tion can be taken up, where the first
step of quantification always refers to
the introduction of the necessary vari-
ables.

Content

Future Aspect of Interest

Strictly speaking, because of the universal connectivity, evolution encompasses the entire uni-
verse and, therefore, is indivisible. However, for mankind almost nothing is of interest except
for some very few features of the future development of universe. Clearly, for human individuals
the number of features of interest is even much smaller.

From the viewpoint of mankind it is therefore justified to restrict quantification of the future
development to the few aspects of interest. Note that identification of these aspects of interest
is of utmost importance. They constitute the object of interest and determine almost every
further step of quantification process.

Quantification of Future Aspects

For quantification of a future aspect a variable is introduced. A variable is one of the elementary
concepts of mathematics. It consists of a name (= symbol) and a range of variability which
includes all those real numbers47 which are admitted for the variable.

In Bernoulli Stochastics variables representing future aspects are often symbolized by the capital
letter X. The value of the variable X is indeterminate, but restricted to a certain set determined
by the actual conditions. This bounded set of possible values which might be adopted in future
defines the range of variability of X. The symbol together with the range of variability completes
the quantification of the future aspect of interest. However, at this first step of quantification,
it is sufficient to introduce a symbol, say X, representing the identified aspect of interest.

The real number, which will be adopted by X in future, is selected by randomness in the course
of evolution. It does not exist at the start of the considered process. Variables representing
future aspects are therefore called random variables. Clearly, random variables representing
the future development constitute the center of stochastic science.

Note, that one should strictly distinguish between a variable and the actual value adopted by
the variable. In Bernoulli Stochastics, variables are denoted by capital letters, e.g. X, while
the corresponding numbers are represented by corresponding small letters, e.g. x.

47There are also complex variables, which may adopt complex numbers. However, complex variable are of no relevance
for our purpose.
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Examples

1. Murder on the Orient-Express

The time until the investigations of the murder are terminated either because the murderer
is identified or Hercule Poirot has admitted his failure is a random variable:

X = number of days starting with the murder

until Poirot’s investigation will be terminated

2. The Bowl Filled with Chocolate Balls

The number of balls that will be
taken by the child is a random
variable:

X = number of chocolate balls

the child will take out of

the bowl Figure 1: Delicious chocolate balls.

3. Fishing in a Carp pond

The indicator variable of the event of rain during a future fishing day is a random variable:

X =

{

0 if it will not rain
1 if it will rain

4. Solar System

The time of sunset is a random variable since it refers to a future sunset:

X = time in hours and minutes when

it will become too dark for reading
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Unit 1.2.3: Deterministic Variable

Target

After the aspect of future evolution has
been quantified by the random variable
X, the relevant facts of the completed
evolution have to be identified and rep-
resented by a variable, say D, which is
called deterministic variable.

The aim of modeling uncertainty con-
sists of describing the relation between
the past, represented by the determin-
istic variable D, and the future, repre-
sented by the random variable X.

Content

Determinate Past

Evolution advances according to intrinsic laws which heavily depend on the past development,
i. e., on the actual achieved state. Thus, foreseeing a future development depends essentially
on the amount of knowledge with respect to the actual state.

Perception of mankind is not much refined and, therefore, a rather rough idea about a future
development is often sufficient. Consequently, only a rough idea about the actual state turns
out to be necessary. A useful description of the actual state does not need to cover all facts
in the universe, which would be impossible. Only some few key features must be considered.
The influence of all other features lies not within human resolution and is thus irrelevant and
can be neglected. Therefore, after having identified and quantified the aspects of interest in
the future, the aspects of relevance of the past, i. e., the actual state, have to be identified and
quantified.

Quantification of Past Aspects

Just as in the case of introducing random variables, an aspect of the past is quantified by a
variable, i. e., a symbol together with a range of variability.

The value of any variable representing an aspect of the past is fixed by the completed evolu-
tion, i. e., it is determinate. Therefore, variables used for representing past facts are named
deterministic variable often denoted by D. The value a deterministic variable D may adopt is
fixed, i. e., certain, however, generally unknown.

Past and Future

Note that in stochastic science future is represented by a random variable X and strictly
distinguished from past which is represented by a deterministic variable D. The value of X
does not exist so far, it will be selected in future (by randomness) and, therefore, it is uncertain.
The value of the deterministic variable is fixed by the completed evolution. Therefore, it is not
uncertain, but might be unknown.

In any situation which shall be scientifically analyzed (in the sense of stochastic science), one
has to identify the random variable X and subsequently the deterministic variable D. The pair
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DETERMINISTIC VARIABLE QUANTIFICATION

of variables (X, D) represent the quantity of interest, X referring to the future and D to the
past.

Without having identified the pair (X, D) it is not possible to describe the situation related to
the two variables, i. e., that part of evolution which will lead from the past – represented by
the deterministic variable D – to the future – represented by the random variable X.

Representation of the Deterministic Variable

The identification of those quantities of the actual state which have to be taken into account
when describing a future development constitutes a major problem. Because of the universal
connectivity, any fact has an influence on the future development. However, most facts have
only a marginal influence on the process at hand and, therefore, can be neglected. Only those
quantities have to be taken into account, which have a major impact on the random variable
X. However, this raises new questions:

• What distinguishes a major from a minor impact?

• How does an impact on X become manifest?

These questions will be dealt with in subsequent learning units. Note that the representation
of the deterministic variable D is by no means unique. Any one-to-one transformation of a
deterministic variable D defines a new equivalent deterministic variable. The same statement
holds, of course, also to the random variable X, however, in a different sense. The random
variable X represents an aspect of interest and, therefore, transformations are restricted to
something like scale-transformations. For example if a time is of interest, one can measure it
in days, hours or minutes, but it makes no sense to transform it to something of completely
different nature. In contrast, the deterministic variable is not of primary interest and there
are no limitations for the transformation. Thus, one could search for a transformation which
reduces the number of key factors in order to simplify the situation.

At the time being, it is assumed that the key factors for the process in question have been
identified and are denoted by the deterministic variable D.

Examples

1. Murder on the Orient-Express

In order to identify the murderer Hercule Poirot decides to have each suspicious person
take part in a test for excluding the innocent persons by watching their reactions quantified
by the random variable X. Poirot designs the test in a way that innocent persons will
react differently than the murderer. The murderer constitutes one of the key factors and
is represented by a deterministic variable D. The quantification of D could be done by
numbering the involved persons (1, 2, . . . , n), which would assign a specified, but unknown
integer to the murderer:

D = number of the murderer

2. The Bowl Filled with Chocolate Balls

Let the random variable X be the number of chocolate balls the child will take out of the
bowl. The size of the child’s hand is one of the key factors represented by a deterministic
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QUANTIFICATION DETERMINISTIC VARIABLE

variable:

D = size of the child’s hand in cm2

3. Fishing in a Carp Pond

Let the random variable X be the number of carps you will fish during the morning. Then
one of the key factors represented by a deterministic variable is the number of carps in
the pond.

D = number of carps in the pond

4. Solar System

Assume that the time until the next lunar eclipse at a specified location is of interest.
Then the actual constellation of moon earth and sun are key factors:

D = relative position of moon, earth and sun
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IGNORANCE SPACE QUANTIFICATION

Unit 1.2.4: Ignorance Space

Target

The major source for man’s uncertainty
about the future development is hu-
man ignorance. In Learning Unit it
is shown how human ignorance can be
built into the model. This is of ut-
most importance, because reducing un-
certainty means particularly reducing
ignorance.

Content

Ignorance and Knowledge

Ignorance refers to the actual value d0 of the deterministic variable D which is generally un-
known. However, it can be excluded that nothing at all is known about the relevant facts,
because in such a case one should not try to model the resulting uncertainty.

Thus, by means of the knowledge about what is not, it is always possible to exclude almost all
real numbers D could adopt in the given situation and to specify a bounded set of potential
values for the deterministic variable D denoted D meeting the following conditions:

• Let d0 be the actual value, then d0 ∈ D.

• If d ∈ D, then it cannot be excluded that d is the unknown actual value.

The larger D is, the larger is the ignorance at hand. Therefore, the set D is called Ignorance
Space. Note that the existing knowledge refers to what is not, but not to what is.

The ignorance space D is necessarily bounded, i. e., has a finite size, as infinity can always be
excluded as an actual value of a fact. The size of the ignorance space denoted by |D| is defined
as follows:

|D| =

{

number of elements of D for a discrete set D
Lebesgue measure of D for a continuous set D

No Ignorance

In the case of complete knowledge or no ignorance at all, the Ignorance Space is a singleton
containing only the true or actual real number d0.

Strictly speaking, complete knowledge (no ignorance) would be tantamount of knowing the
”truth” and, therefore, it is not possible. However, the deterministic variable D consists of
only those key-factors, which have a substantial impact on the indeterminate outcome of the
quantity of interest. Often, there are only very few key-factors to be taken into account and,
therefore, the case of complete knowledge about the key-factors may actually occur.

Ignorance and Belief

In Bayes Statistics a parameter space is considered which is similar to the Ignorance Space.
Moreover, a so-called prior distribution over the parameter space is assumed assigning to each
element of the parameter space a degree of belief which, subsequently, is taken into account.
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QUANTIFICATION IGNORANCE SPACE

One of the major aims of (stochastic) science is to overcome subjectivity (opinon and belief)
in order to meeting some reliability requirements. Bayes Statistics does not try to overcome
subjectivity, but makes it an inherent part of its methods. It follows that applying Bayesian
methods is tantamount of not knowing the risks and, therefore, applying Bayesian methods is
simply hazardous. In Bernoulli Stochastics each element of the Ignorance Space D might be –
according to the available knowledge – the actual one and, therefore, each element has to be
taken into account equally.

Ignorance and Mankind

Ignorance is a characteristic feature of man and one aim of science is to reduce ignorance.
However, pretending that the “truth” is known as it is done in traditional science, does not
leave room for reducing ignorance. Therefore, describing a given situation in stochastic science
starts with stating explicitly the existing ignorance.

Examples

The following examples refer to deterministic variables considered in the examples of the pre-
vious learning unit.

1. Murder on the Orient-Express

Before starting the test Hercule Poirot takes all known facts for excluding as many of the
involved persons from the suspicion of being the murderer as possible. The remaining six
persons are numbered from 1 to 6 yielding the following ignorance space:

D = {1, 2, 3, 4, 5, 6}

Each element of the ignorance space represents one of the suspects and with certainty one
element is the murderer.

2. The Bowl Filled with Chocolate Balls

The size of the child’s hand is determined by estimating its length (8.0 cm ± 1.0cm) and
width (4.0 cm ± 1.0 cm). Thus, the ignorance space with respect to D is given by:

D = {d ∈ R | 21.0 ≤ d ≤ 45.0}

Note that admitting every real number between 21.0 and 45.0 for d constitutes an approx-
imation, because neither length nor width are continuous quantities.

3. Fishing in a Carp Pond

Assume that an upper bound of the actual carp population is given by the number N of
carps released into the pond. A trivial lower bound is, of course, 0. Thus, the following
ignorance space is obtained:

D = {d ∈ N | 0 ≤ d ≤ N}
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VARIABILITY FUNCTION QUANTIFICATION

Unit 1.2.5: Variability Function

Target

Besides ignorance uncertainty is nur-
tured by the variability exhibited by
evolution. This learning unit is devoted
to quantify the amount of variability
and to show that ignorance about facts
and variability of future developments
are completely different.

Content

Random Variable and State of Ignorance

The relationship between past and future affects especially the range of variability of the random
variable X. Generally, each potential value of d ∈ D determines a different range of variability
of the random variable X.

Moreover, also the existing ignorance about the relation between past and future has to be
considered when regarding the future variability.

Any state of ignorance with respect to the deterministic variable D is represented by a subset
D0 of the ignorance space D. Let TD(D) denote a suitable system of subsets of D, which
generally includes

• the singletons {d} with d ∈ D and

• the entire ignorance space D.

Each element D0 ∈ TD(D) generates a random variable denoted by X|D0, which represents the
aspect of future X on the condition that one of the elements of d ∈ D0 is the actual one. In
fact, X|D0 stands for the set of random variables X|{d} with d ∈ D0. The set of all values
which may be adopted by these random variables is called range of variability of X|D0.

The Variability Function

The function which assigns to each considered state of ignorance D0 ∈ TD(D) the corresponding
range of variability of the random variable X|D0 is called variability function denoted by X
with

X : TD(D) → TX(Rs) (5)

where TX(Rs) is a suitably selected system of subsets of the set of s-dimensional real numbers
and s is the number of components of X.

The selection of the systems of subsets TD and TX is an important issue and depends on the
aims of the investigation and also on mathematical feasibility. In the one-dimensional case, the
systems of intervals are of special importance. However, the types of intervals differ with the
aims, as will became clear in the learning units about predictions.

For the singletons {d} ∈ TD(D) the values X ({d}) of the variability function X denote the set of
possible values of the random variable X|{d}, while for the entire ignorance-space D ∈ TD(D)
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QUANTIFICATION VARIABILITY FUNCTION

the image X (D) gives the overall range of variability of X for any of the admitted initial
conditions.

Obviously, for any D0 ∈ TD(D) the following must hold:

X (D0) =
⋃

d∈D0

X ({d}) (6)

where X ({d}) is the range of variability of the random variable X|{d}.

Thus, the only ’mathematical’ property of the Variability Function consists of the additivity (6),
which is a natural requirement implied by its meaning. The images of the variability function
represent the ranges of variability of the corresponding random variable, and depend on the
assumed state of ignorance with respect to the deterministic variable D.

Size of the Range of Variability

The random variable X represents the issue of interest of the future development. Of course,
only those values of X should be taken into account, which can actually be observed.

The resolution of any human observation tool is necessarily finite and, therefore, any image of
the variability function and, hence, any range of variability of a random variable is finite, too.
Therefore, the following relation

|X (D)| < ∞

always holds. If instead a continuous set is used, it is a matter of approximation.

Range of Variability and Ignorance Space

The Ignorance Space includes all those initial conditions, which cannot be excluded in a given
situation. Only one of them is the actual value of the deterministic variable D and all the
others are wrong. Because the actual value is unknown each of the potential values given
by the Ignorance Space must be considered likewise, as otherwise one would rely on belief or
subjective opinion which would contradict one of the maxims of stochastic science.

The situation with respect to the range of variability of the random variable X is completely
different. There is no actual value and any of the possible values can be the outcome of future
evolution. However, the initial conditions exert different forces of attraction to different future
events. Thus, the possible outcomes should not been considered likewise, but according to their
probabilities. Consequently, modeling must be extended, which is done in the next learning
unit.

Examples

The following examples refer to the random variables considered in the examples of Learning
Unit 1.2.1 and the deterministic variables considered in the Learning Units 1.2.2 and 1.2.3.

1. Murder on the Orient-Express

Because Hercule Poirot must leave as soon as the Orient-Express reaches after three
more days Istanbul, an upper bound for the number of days until termination of the
investigations is given. Poirot plans the test which hopefully will unmask the murderer
the next day and until then no further activities are planned. Because a failure of the test
cannot be excluded with certainty, the following variability function is obtained:

X ({d}) = {1, 2, 3} for d ∈ D
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VARIABILITY FUNCTION QUANTIFICATION

2. The Bowl Filled with Chocolate Balls

From some experiments it is known that a child with hand-size of 21 cm2 will grab at
least two chocolate balls and at most 4 balls. For increasing the lower and upper bound
by one ball the size has to be at least 25 cm2 and to increase the bounds by two balls at
least 35 cm2. An increase of three balls requires a hand size of at least 50 cm2, which can
be excluded for the actual child. Assume further that there are with certainty more than
six chocolate balls in the bowl, then the following variability function is obtained:

X ({d} =







{2, 3, 4} for 21 ≤ d < 25
{3, 4, 5} for 25 ≤ d < 35
{4, 5, 6} for 35 ≤ d ≤ 45

3. Fishing and Rain

Assume that the weather and particularly the question whether or not it will rain is the
aspect of interest during the fishing day. In this case the aspect of interest is quantified
by a random variable X, which is given by a so-called indicator variable with range of
variability:

X ({d} = {0, 1} for d ∈ D

where x = 0 means no rain, while x = 1 means rain.

4. Fishing in a Carp Pond

You arrive at the carp pond at 9 a.m. and have to leave at latest at 11 a.m., the time
for preparing and casting the fishing rod takes at least 5 minutes. The time needed after
a fish has bitten takes at least 10 minutes. Moreover, at 10 o’clock you plan to make a
break of at least 30 minutes for drinking a beer and having a sandwich. Finally, you have
experienced several times that your efforts were in vain and you haven not caught a single
fish. Thus:

X ({d}) = {x ∈ N | 0 ≤ x ≤ 10} for d ∈ D

62



QUANTIFICATION RANDOM STRUCTURE FUNCTION

Unit 1.2.6: Random Structure Function

Target

Learning Unit 1.2.6 is devoted to the
quantification of the random structure
modelled on the range of variability.

This learning unit shall support the un-
derstand of the random structure and
the methods how the random structure
can be quantified.

Content

Introduction

Randomness is a kind of attraction exercised by the past on the various future events. The
strength of attraction refers to the conformance between the actual state and the considered
future event. This strength is quantified by the probability of the event, which was introduced
by Jakob Bernoulli as the degree of certainty of its occurrence. Thus, randomness assigns
to each future event a probability. The future events represent the variability and the corre-
sponding probabilities generate a structure on the future developments. This structure makes
it possible to order the events and to make statements about probable and improbable future
developments.

Quantification of the Random Structure

The structure refers to the future events, i. e., to subsets of the corresponding range of variability
and is adequately described by a probability measure, i. e., a set-function which assigns to each
subset of the range of variability (representing a possible event) its probability, i. e., a number
between 0 and 1.

Random Structure Function

The situation with respect to the random structure is similar as in the case of the variability
function. Each state of ignorance generates a set of random variables and each random variable
is characterized by the corresponding range of variability and the corresponding probability
measure. The range of variability is obtained by means of the variability function, while the
set of probability measures is obtained by the so-called random structure function denoted P
and given as follows:

P : TD(D) → P (7)

where P is the set of probability measures.

A probability is a feature of a future event and represents the degree of certainty of its occur-
rence. The random structure of a random variable X|{d} over a range of variability X ({d}) is
given by the totality of probabilities of the possible events, i. e., the subsets of X ({d}). A func-
tion defined on the system of subsets of X ({d}) with co-domain given by a set of probabilities
is called probability measure and investigated in mathematical probability theory.
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RANDOM STRUCTURE FUNCTION QUANTIFICATION

Significance of the Random Structure

The random structure function specifies the relation between any given state and the possible
future states. The relation is a stochastic one and hence specified by probabilities. For any
given state {d} ⊂ D and specified future state {x} ⊂ X ({d}), the image P({d}) = PX|{d} of
the random structure function fixes the degree of certainty PX|{d}({x}) that {x} will actually
occur.

Thus, the random structure function specifies the transition probabilities of any potential given
state to any of the possible future states. In fact, evolution consists of permanent changes or
transitions, which happen in an indeterministic and irreversible way. Therefore, wishing to
describe quantitatively evolution, i. e., the sequence of permanent transitions, then this cane be
done only by means of transition probabilities and exactly this is done by the random structure
function P .

Examples

1. Quantum Mechanics

The first example shall illustrate the fundamental importance of the random structure
function for the entire science. The example consists of a citation from one of Nancy
Cartwright’s books and refers to quantum mechanics and the interpretation of quantum
probabilities.

We began with the question, what are quantum probabilities probabilities of?
Practitioners of quantum theory have been reluctant to adopt either non-standard
logics or non-standard probabilities. They have rejected the first proposal alto-
gether. Quantum probabilities are not probabilities that the system is ‘located
at r’, but rather, as Merzbacher48 says, that it ‘will be found at r in a position
measurement’. This answer is no more trouble-free than the first. It suppose
that an electron passes through neither one slit nor the other when we are not
looking. When we do look, there, suddenly, it is, either at the top slit or at the
bottom. What is special about looking that causes objects to be places where they
would not have been otherwise? This is just another version of the notorious
measurement problem, which we first discussed in the last section.

I find neither of these two conventional answers very satisfactory, and I propose
a more radical alternative. I want to eliminate position probabilities for all the
classic dynamic quantities. The only real probabilities in quantum mechanics, I
maintain, are transition probabilities. In some circumstances a quantum system
will make a transition from one state to another. Indeterministically and irre-
versibly, without the intervention of any external observer, a system can change
its state: the quantum number of the new state will be different and a quan-
tum of some conserved quantity – energy or momentum, or angular momentum,
or possibly even strangeness – will be emitted or absorbed. When such a situ-
ation occurs, the probabilities for these transitions can be computed; it is these
probabilities that serve to interpret quantum mechanics.49

This citation illustrates the unsolvable dilemma of quantum mechanics, which starts with
a completely deterministic model (Schrödinger equation) and suddenly by a simple trick
arrives at something which is called probability. In order to follow Nancy Carwright’s

48Eugen Merzbacher, born 1921 in Berlin, American phycisist.
49Cartwright, N. (1983), p.178/179.
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QUANTIFICATION RANDOM STRUCTURE FUNCTION

proposal, it would be necessary to abandon the entire approach and develop something
like stochastic quantum mechanics.

The next examples refer to the random variables considered in the examples of Learning
Unit 1.2.4 and shall illustrate how to select the random structure function.

2. Murder on the Orient-Express

Based on the experiences with Hercule Poirot’s capability in clearing up crimes and setting
up traps for detecting criminals and his love for striking scenes, one can exclude with
certainty all distributions except a monotonic one with maximum for x = 1 yielding:

PX|{d}({1}) > PX|{d}({2}) > PX|{d}({3})

However, specifying the actual values of the above given probabilities is possible only on
the basis of observations made in comparable situations by applying a stochastic measure-
ment procedure, which will be dealt with in the next course of Stochastikon Magister.

3. The Bowl Filled with Chocolate Balls

In this case one also can exclude compound distributions and among the simple ones
the constant and the monotonic types (see Learning Unit 1.3.6), because the two extreme
outcomes are realized only in the rare cases of extremely disadvantageous or advantageous
circumstances. Thus, arriving at a distribution of uni-modal type, with

PX|{d}({2}) < PX|{d}({3}) > PX|{d}({4}) for 21 ≤ d < 25
PX|{d}({3}) < PX|{d}({4}) > PX|{d}({5}) for 25 ≤ d < 35
PX|{d}({4}) < PX|{d}({5}) > PX|{d}({6}) for 35 ≤ d ≤ 45

For specifying the above probabilities experiments would be necessary and a stochastic
measurement procedure for determining the unknown probability values.

4. Fishing in a Carp Pond

You are an experienced angler and know where the fishes use to stay during the morning
hours. Moreover, you have selected a bait which the carps in the pond prefer and, finally,
the fishing conditions are each morning the same and not subject of abrupt changes. The
latter makes it possible to exclude compound distributions, while the former leads to the
exclusion of the constant and the monotonic type of probability distribution. Thus, a
uni-modal type of distribution must be taken for modeling the random structure:

PX|{d}({0}) ≤ PX|{d}({1}) ≤ . . . ≤ PX|{d}({x
∗}) ≥ . . . ≥ PX|{d}({10})

where the probabilities and the mode x∗ have to be determined by appropriate stochastic
measurement procedures based on the outcome of a measurement process.
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PROBABILITY FUNCTIONS QUANTIFICATION

Unit 1.2.7: Probability Functions

Target

Learning Unit 1.2.7 introduces the ma-
jor probability functions used for han-
dling problems in calculating probabil-
ities for given events or determining
events for given probabilities.

Moreover, some important quantities
related to probability distributions are
defined.

Content

Introduction

Randomness of an event is quantified by its probability, i. e., the degree of certainty of its
occurrence. The structure of randomness refers to the totality of possible future events and,
thus, the structure of randomness is quantified by a function which assigns to each of the events
the corresponding probability of occurrence. There are a number of equivalent functions derived
in probability theory, which may be taken for quantification. Below, these functions and their
properties are briefly introduced.

Probability Measure

A probability measure P ∈ P over a given (finite) range of variability X is a set-function which
assigns to each subset of X , which represents a future event, a number between 0 and 1, called
the probability of the event. Thus, a probability measure quantifies the degree of certainty of
occurrence of each element of the set of possible events. Therefore, it must meet the following
intuitive properties:

• The probability of the empty set is given by P (∅) = 0. The empty set stands for an
impossible event and, therefore, a function assigning a positive probability to an impossible
event is clearly not appropriate.

• The probability of the entire set X is given by P (X ) = 1. The entire set X includes
everything which may happen in future. Therefore, its occurrence is certain and, thus, its
probability must necessarily be 1.

• Let E1 and E2 two disjoint events. Then the probability of the union of E1∪E2 is given by
P (E1∪E2) = P (E1)+P (E2). Consider, the special case of E2 = X \E1, then it is evident
that a function P not meeting the additivity property cannot be used for representing the
degree of certainty of the involve events.

A probability measure is a set-function and working with set-functions is rather cumbersome.
Therefore, instead of the probability measure there are a number of probability functions de-
rived, which are simpler to work with. Assume a given probability measure P on a range of
variability X , then each of the following functions are equivalent with P :

The Probability Mass Function

The probability mass function
f : R → {p | 0 ≤ p ≤ 1}
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QUANTIFICATION PROBABILITY FUNCTIONS

is the most simplest of the probability functions. For a given probability measure P it is defined
by

f(x) = P ({x}) (8)

Thus the probability mass function assigns to each event represented by a singleton the prob-
ability of its occurrence.

The probability mass function f is equivalent to the corresponding probability measure P ,
because for any event E ⊂ X we have

P (E) =
∑

x∈E

f(x)

Because P (X ) = 1 we have:
∑

x∈X

f(x) = 1.0

The Probability Distribution Function

The probability distribution function

F : R → {p | 0 ≤ p ≤ 1}

is defined by
F (x) = P ({y | y ≤ x}) (9)

Thus the probability distribution function assigns to each event of the form {y | y ≤ x} the
probability of its occurrence.

The probability distribution function F is equivalent to the corresponding probability mass
function f and, thus, also to the underlying probability measure P . Let, without loss of
generality, the elements of the range of variability be ordered, i. e., X = {x1, x2, . . . , xN} with
x1 < x2 < . . . < xN then we have:

f(xi) =

{

F (x1) for i = 1
F (xi) − F (xi−1) for 1 < i ≤ N

The Probability Survival Function

The probability survival function

F : R → {p | 0 ≤ p ≤ 1}

is defined by
F (x) = P ({y | y ≥ x}) (10)

Thus, the probability survival function assigns to each event of the form
{y | y ≥ x} the probability of its occurrence.

The probability survival function F is equivalent to the corresponding probability mass function
f and, thus, also to the underlying probability measure P . Let, without loss of generality, the
elements of the range of variability be ordered, i. e., X = {x1, x2, . . . , xN} with x1 < x2 < . . . <
xN then we have:

f(xi) =

{

F (xi) − F (xi+1) for 1 ≤ i < N
F (xN) for i = N
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PROBABILITY FUNCTIONS QUANTIFICATION

The Upper Probability Quantile Function

The upper probability quantile function

Q(u) : {p | 0 < p ≤ 1} → X

is defined by
Q(u)(p) = min

x∈X
{x |F (x) ≥ p} (11)

Thus, the upper probability quantile function assigns to each probability p the upper bound
of the smallest event of the form {y | y ≤ x}, which has a probability of not less than p. The
upper quantile function is in some sense inverse to the distribution function.

The upper probability quantile function Q(u) is equivalent to the corresponding probability
distribution function F and, thus, also to the underlying probability measure P , because

F (x) = max
p

{p |Q(u)(p) = x}

The Lower Probability Quantile Function

The lower probability quantile function

Q(ℓ) : {p | 0 ≤ p ≤ 1} → X

is defined by
Q(ℓ)(p) = max

x∈X
{x |F (x) ≥ p} (12)

Thus, the lower probability quantile function assigns to each probability p the lower bound of
the smallest event of the form {y | y ≥ x}, which has a probability of not less than p. The lower
quantile function is in some sense inverse to the survival function.

The lower probability quantile function Q(ℓ) is equivalent to the corresponding probability
survival function F and, thus, also to the underlying probability measure P , because

F (x) = min
p
{p |Q(ℓ)(p) = x}

Remarks:

Note that the mass function, the distribution functions and the survival function may be used to
calculate the probability of a given event, while the quantile functions may be used to determine
an event for a given probability.

The mass function reflects directly the distribution of the probability mass on the corresponding
range of variability. In the univariate case, i. e., for a one-dimensional random variable X, there
are simple distributions and compound distributions referring to simple or compound processes.
Within the set of simple distributions one can distinguish three types. Consider the random
variable X, then we have:

• Type 1: Constant probability distribution with the probability mass function adopting
the same value for each possible outcome.

• Type 2: Monotonic probability distribution with a monotonic decreasing or monotonic
increasing probability mass function.

• Type 3: Uni-modal probability distribution with a probability mass function which first
monotonously increases until an inner maximum is adopted and subsequently decreases.
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Example

1. Murder on the Orient-Express

Ignorance is large about the probability distribution of the random variable X|{d} repre-
senting the time until Hercule Poirot’s investigation will be terminated. It is only known
that

PX|{d}({1}) > PX|{d}({2}) > PX|{d}({3})

holds.

One possible probability mass function is the following:

fX|{d}(x) =







0.900 for x = 1
0.075 for x = 2
0.025 for x = 3

with the corresponding probability distribution function

FX|{d}(x) =







0.900 for x = 1
0.975 for x = 2
1.000 for x = 3

and survival function

FX|{d}(x) =







1.000 for x = 1
0.100 for x = 2
0.025 for x = 3

Finally the corresponding upper and lower quantile functions are as follows:

Q
(u)
X|{d}(p) =







1 for 0 ≤ p ≤ 0.900
2 for 0.900 < p ≤ 0.975
3 for 0.975 < p ≤ 1.00

Q
(ℓ)
X|{d}(p) =







1 for 0.100 < p ≤ 1.000
2 for 0.025 < p ≤ 0.100
3 for 0.000 ≤ p ≤ 0.025
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Unit 1.2.8: The Moments of a Probability Distribution

Target

This learning unit introduces the mo-
ments of a probability distribution and
shows that they can be used as a
generic representation of the initial con-
ditions. In other words, the moments
of a random variable X can be used
as convenient deterministic variable D,
which represent the holistic approach
in stochastics.

Content

Introduction

The initial conditions represented by the actual value d of the deterministic variable D deter-
mine uniquely the corresponding probability distribution PX|{d}, which is used to quantify the
random structure of X in the given situation {d}. Observing D in a given situation assumes
that the key factors are known, a requirement which often is not met in practice. Moreover,
even if the key factors are known and, thus, can be observed, the relation between the key fac-
tors and the probability distribution are generally unknown, which leads to another unpleasant
problem. It would therefore be extremely convenient, if it would be possible to transform D
into an equivalent representation, which has a known relation to the probability distribution
and which can directly be observed. In order to simplify the considerations, it is assumed here
that the random variable X has only one component implying that the range of variability
X ({d}) is a subset of the set of real numbers R.

Relation between D and PX|{d}

Let D represent all factors having an impact on the future development given by the random
variable X. Let d be the actual value of D, then

d ⇔ PX|{d}

where the range of variability X ({d}) is necessarily bounded.

For a bounded range of variability X ({d}), there is another deterministic variable, say Dµ, the
actual value µ of which determines uniquely the probability distribution PX|{d} on X ({d}):

PX|{d} ⇔ µ

implying that for given X ({d}) we have:

d ⇔ µ

The deterministic variable Dµ consists of the so-called moments of PX|{d} or of X|{d}, where
the nth moment denoted by E [(X|{d})n] for n = 0, 1, . . . is defined by

E [(X|{d})n] =
∑

x∈X ({d})

xnfX|{d}(x)

The probability distribution PX|{d} determines uniquely the sequence
µ = (µ0, µ1, µ2, . . .) and vice versa, where necessarily µ0 = 0 holds. Therefore, even if the
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key factors and hence the deterministic variable D are not known and, consequently, cannot
be observed, the probability distribution of X|{d} can be determined by observing the corre-
sponding moments E[X|{d}].

The nth moment of a random variable X|{d} gives the barycenter of the set {xn |x ∈ X ({d})}
with respect to the probability mass. The barycenter of a set specifies its location and, therefore,
the first moment describes the location of X ({d}) or of X|{d}. This is the reason, why the first
moment is often called a measure of location for the considered random variable.

The First Moment E[X]

The first moment E[X] of a random variable X is often called expectation of X. The name is
not really suitable, because µ1 is in general not an element of the range of variability of X and,
therefore, should not at all be expected to occur.

The term expectation is rather old, however, it was not used neither in the famous correspon-
dence between Blaise Pascal and Pierre de Fermat nor by Christiaan Huygens in the original
Dutch version of his treatise on gambling. However, in the Latin translation De ratiociniis in
ludo aleae of Huygens book, which was published by Huygens teacher van Schooten50 in 1657 as
an appendix of Schooten’s Exercitationum Mathematicarum Libri Quinque, the word expectatio
is used, which was translated to English by expectation. The same word appears in De Moivre’s
Doctrine of Chances (1718) and the later works.

The expression gained further popularity in the context of the St. Petersburg Paradox, which
had an infinite expectation and which was discussed in the early 18th century by the most
famous contemporary scientists. In a letter of Gabriel Cramer51 dated 21st May 1728 the
expression “l’espérance mathématique” was used probably for the first time, which is the French
equivalent for “mathematical expectation.”

The expectation or expected value were used in the field of gambling as a fair game was defined
by equal expectations for each player. All the first books on probability dealt with gambling
and fair games and, therefore, with the concept of expectation. In the sequel the expectation
gained an inappropriate importance in probability theory and its application and very often
interest is focussed exclusively on the expectation ignoring the fact that an isolated value of
the first moment has almost no meaning at all.

In the following those moments of a random variable, which have the largest impact on the
probability distribution, are identified.

The Key-Moments

The aim is to determine the probability distribution by means of the corresponding moments.
Therefore, the question about the significance of the different moments arises.

In the development of mathematical probability theory as well as its application the first mo-
ment E[X|{d}] and the second central moment V [X|{d}] played an important role. The central
moments of X|{d} are defined as the moments of the random variable X|{d}−µ1, where µ1(d)
denotes the value of E[X|{d}]. Because of

V [X|{d}] = E[X2|{d}] − (E[X|{d}])2

the pair of variables (E[X|{d}], E[X2|{d}]) and (E[X|{d}], V [X|{d}]) are equivalent, as the
values of the one determine uniquely the values of the other. The following considerations show
that the emphasis on the two first moments is well founded.

50Frans van Schooten, 1615 – 1660, Dutch mathematician.
51Gabriel Cramer, (1704-1752) Swiss mathematician.
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Range of Variability

If the moments of a random variable are numbered beginning with n = 0, then the value of
µ0(d) stands for the range of variability X ({d}), which must be known necessarily for defining
or calculating all the other moments. Thus, we conclude that the range of variability X ({d})
has highest significance and, therefore, belongs to the key-moments.

First Moment

For given range of variability X ({d}) of X|{d} the theoretical values of the first moment are
restricted to the interior of X ({d}). Any value of the first moment on the boundary of X ({d})
would lead to a one-point distribution violating X ({d}).

Because the restrictions imposed on the first moment by the range of variability are rather mild,
the first moment is generally also one of the key-moments for the probability distribution.

Second Moment

The question arises about the restrictions imposed by the range of variability and the first
moment on the second moment. Let

a(d) = minX ({d})
b(d) = maxX ({d})
µ1(d) =

∑

x∈X ({d})

xfX|{d}(x)

µ2(d) =
∑

x∈X ({d})

x2fX|{d}(x)

Then it is easy to show that the following relations holds:

(µ1(d))2 < µ2(d) < (a(d) + b(d))µ1(d) − a(d)b(d) (13)

Thus the restriction imposed on the second moment by the range of variability and the first
moment are considerable. In Figure 1 the restrictions are illustrated by an example. Only
values between the two curves are admitted for the second moment E[X2|{d}].

6 8 10 12 14
First Moment

50

100

150

200

250

Second Moment

Figure 1: Relations between the first moment and the second moment for the range of
variability given by X ({d}) = {x | 5 ≤ x ≤ 15}.

The restrictions imposed by the range of variability and the first moment on the variance are
easily obtained:

0 < σ2(d) < −

(

µ1 −
a + b

2

)2

+

(

a − b

2

)2

(14)

In Figure 2 the relation between the range of variability, the first moment and the variance is
illustrated. Accordingly, the variance can adopt only values below the parabola in Figure 2.
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6 8 10 12 14
First Moment
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Variance

Figure 2: Relations between the first moment and the variance for the range of variability
given by X ({d}) = {x | 5 ≤ x ≤ 15}.

The variance has maximum freedom for µ1 = a+b
2

and gets more and more restricted the more
µ1 approaches one of the boundaries of the range of variability. This behavior of V [X|{d}] is
intuitively clear. The more µ1 approaches one of the boundaries, the more is the probability
mass concentrated in a neighborhood of the corresponding boundary which limits the value of
the second moment or the variance.

In many cases also the second moment or equivalently the variance appears to be a key-moment
the value of which must be known for deriving an appropriate probability distribution.

Moment of Higher Order

The restrictions imposed on the moments of order higher than two become very quickly ex-
tremely severe, which means that the values of the moments of smaller order determine to
a large extent the values of the moments of higher order. Consequently, in many cases the
moments of order higher than two are not any more key-moments and they may therefore be
neglected.

Examples

The following examples refer to the random variables considered in the examples of the previous
learning units.

1. Murder on the Orient-Express

The aspect of interest and, hence, the random variable X is the time measured in days until
the end of Hercule Poirot’s investigation. The relevant facts or key factors with impact
on the future outcome of the test include among many other facts the murderer. They
determine the probability distribution over the range of variability. Thus, by changing
from the situation-related deterministic variable D to a distribution-related deterministic
variable Dp, the following pair of variables with corresponding Bernoulli Space is obtained:

• Random variable X with

X = number of days until the end of Hercule Poirot’s investigation

• Deterministic variable Dp with

Dp = (D(1)
p , D(2)

p )
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and

D(1)
p = probability of the event {1}

D(2)
p = probability of the event {2}

2. The Bowl Filled with Chocolate Balls

Similar as in the case of the murder on the Orient-Express, the situation-related deter-
ministic variable including the hand-size, a distribution related deterministic variable Dp

is selected. Thus, the following pair of variables with corresponding Bernoulli Space is
obtained:

• Random Variable X with

X = number of chocolate balls, which will be drawn from the bowl

• Deterministic Variable Dp with

Dp = (D(3)
p , D(4)

p , D(5)
p )

and

D(3)
p = probability of the event {3}

D(4)
p = probability of the event {4}

D(5)
p = probability of the event {5}
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Unit 1.2.9: The Stochastic Model

Target

Learning Unit 1.2.9 combines the dif-
ferent quantified pieces and builds up a
completely quantified model of uncer-
tainty for a process of interest in a given
situation.

The aim is to illustrate the differences
between a stochastic model and mo-
dels which are used in mathematics and
traditional science and to show that
the conventional models are incomplete
and, therefore, should not be used.

Content

Introduction

A description of the relation between past and future that can be used for making reliable
predictions must connect the future aspect of interest X and the relevant past facts D. Thus,
it refers to a pair of variables (X,D). It must necessarily

• cover human ignorance as a characteristic feature of man, and

• include randomness as the characteristic feature of evolution.

The former is simply described by the amount of ignorance with respect to D, while the latter
is represented by the range of variability of X and the corresponding probability structure.

The entire model is called Bernoulli Space denoted by BX,D and given by

BX,D = (D,X ,P) (15)

where

• the set D is called the ignorance space and represents the amount of ignorance,

• the variability function X assigns to each level of ignorance the amount of future variabil-
ity, which has to be taken into account,

• the random structure function P assigns to each level of ignorance a probability distribu-
tion.

Note that each of the three components of the Bernoulli Space is necessary for describing
uncertainty about the future development of a real-world process. Neglecting ignorance would
be tantamount to pretending to knowing the “truth” or to be like God. Not considering
the variability and the random structure of the future development would be tantamount to
neglecting age-old experiences by believing in determinism, although no deterministic process
has ever been observed.

Any mathematical model, which does not include the three components of a Bernoulli Space,
is necessarily incomplete, violates reality and is based on belief.
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Bernoulli Space versus Probability Space

In 1933 the Russian mathematician A. Kolmogorov succeeded in axiomatizing probability the-
ory and in fact Kolmogorov’s axioms constituted a huge step for mathematics as it paved the
way for a new, genuine branch of mathematics dealing with measurable functions based on a
probability space.

However, for science Kolmogorov’s axioms meant a drawback! Kolmogorov’s probability space
takes into account the needs of mathematics, but neglects totally the needs of science. Kol-
mogorov’s probability space is based on an abstract set – the set Ω of elementary events – which
has no direct counterpart in reality and which cannot be specified even in the simplest realistic
case. The next component of a probability space is a σ-field S over Ω, which just as Ω cannot
be specified for a realistic process. The σ-field meets many mathematical requirements, but
from a more realistic point of view, it contains almost only irrelevant elements. Finally, there
is a normed, total-additive set-function P : S → {p | 0 ≤ p ≤ 1}, which as Kolmogorov states,
may have infinite different real-world interpretations.

The probability space does not allow for including ignorance about the relevant facts about
the future of interest. Thus, a probability space is not appropriate for describing mathemati-
cally what is known about the relation between past and future aiming at controlling human
uncertainty about the future development of a part of evolution.

Bernoulli Space versus Mathematical Models in Physics

Physics is basically built up on deterministic models pretending to represent “truth.” Similar
as the Bernoulli Space, physical models refer to a pair of variables (X, D), where X represents
the aspect of interest in the future, and D the initial conditions, i. e., the relevant facts of past.
However, physical models assume complete knowledge and consequently the ignorance space D
shrinks to a singleton {d}. The second assumptions refers to a deterministic evolution which
does not allow for any variability of X|{d}. Thus, the range of variability X ({d}) of X|{d}
also shrinks to a singleton {x}, while the probability distribution PX|{d} of X|{d} degenerates
to a so-called one-point probability distribution.

To sum up, from a stochastic point of view, physical models constitute more or less trivial and
degenerate descriptions of real world completely based on belief and not consistent with any
experience or observation.

Bernoulli Space and Science

Mankind has started many attempts for reducing uncertainty about evolution. The most
important one, modern science was started during the 16th century. It is believed to be the
most most successful one, as it led to the development of modern technology and modern
civilization. However, with respect to reducing uncertainty about evolution modern science
represents a total failure. Except for some tiny areas in physical sciences no advantages in
predicting evolution have been made. Reliable predictions should lead to preventing or solving
of problems mankind is or will be faced with. Looking at the history of mankind one has to
realize that number and weights of problems have not been reduced. Contrary, local problems
have spread out to become global ones and future seems to be more uncertain than ever.

The main reason for the failure of modern science in developing methods for controlling success-
fully the future development is doubtlessly the neglect of universal connectivity and to focus
on isolated systems and cause/effect chains.

Modeling evolution by cause effect chains is as wrong as the attempt to model it according
to the Christian Bible. Both approaches must necessarily lead to a distorted way of thinking.

76

http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000239-00.html
http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000314-00.html


QUANTIFICATION THE STOCHASTIC MODEL

The Bernoulli Space, which includes cause effect chains as degenerated cases, opens the way
of accepting man’s ignorance and modeling the mysterious and at the same time controlled
diversity of evolution.

Bernoulli Space and Stochastic Procedures

The Bernoulli Space enables to compile a list of necessary stochastic procedures:

• Verification

Procedures are needed for verifying that a Bernoulli Space does not include wrong as-
sumptions.

• Utilization

A Bernoulli Space is developed aiming at making reliable and accurate predictions. There-
fore, prediction procedures are needed.

• Improving

The predictions can be made more precise, if the actual situation is better known, which
immediately leads to an improvement of the stochastic model, i. e., the Bernoulli Space.
Thus procedures are needed for

1. reducing the ignorance space D,

2. improving the variability function X , and

3. improving the random structure function P.

As a matter of fact, at the time being only a small part of the desirable procedures are available.

Bernoulli Space and Mathematical Independence

The mathematical concept of stochastic independence plays a central role in probability the-
ory and mathematical statistics. Hence, the question arises about the interpretation of the
mathematically defined stochastic independence.

In mathematics two elements, say E1 and E2 of a given σ-field S are called independent if they
meet the condition:

P (E1 ∩ E2) = P (E1)P (E2) (16)

In order to find a meaningful interpretation of (16), we have to introduce a random variable
X, a deterministic variable D and, finally, a Bernoulli Space BX,D which connects X and D.
Then E1 and E2 are two subsets of X (D) and may be interpreted as two possible future events
with respect to the random variable X on condition D.

If E1 and E2 are disjoint, then only one of them can happen in future. If they are not disjoint
both events may happen. If E1 = E2 then they are equal and with certainty they will happen
both or not happen both. Both events E1 and E2 refer to the same process specified by X.
Comparing the events from a realistic point of view can lead to the result that they are disjoint,
that they are similar, or that they are equal, that one is more disliked than the other, that one
is more liked than the other, etc., but there is no meaning of stating that E1 is independent of
E2.

Thus, we conclude that the concept of mathematical independence of events as introduced in
probability theory has no meaningful realistic interpretation and must be abandoned within
the stochastic model.
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Bernoulli Space and Stochastic Dependence

A Bernoulli Space describes mathematically the stochastic relations between past and future
and, therefore, gets by without a concept of independence of events or random variables. The
relations described by the Bernoulli space are generated by the key-factors which are represented
by the deterministic variable D.

Assume that two random variables X1 and X2 are given, together with the corresponding
deterministic variables D1 and D2 and Bernoulli Spaces

BX1,D1 = (D1,X1,P1)
BX2,D2 = (D1,X1,P1)

Next consider the bi-variate random variable X = (X1, X2) with deterministic variable D. Let
D1 = (D1,1, . . . , D1,n1) and D2 = (D2,1, . . . , D2,n2). If there are no pairs of components D1,i and
D2,j referring to the same fact, then

D = (D1,1, . . . , D1,n1 , D2,1, . . . , D2,n2)

and the corresponding ignorance space is obtained as direct product of the single ignorance
spaces:

D = D1 ×D2

As the initial condition with respect to X1 does not include any key-factor with respect to X2

and vice versa, the variability function X is obtained as follows:

X ({(d1, d2)}) = X1({d1}) ×X2({d2})

The joint random structure P function is obtained analogously:

P
(

{(d1, d2)}
)

= PX|{(d1,d2)} = PX1|{d1} ⊗ PX2|{d2}

which coincides with the mathematical concept of independent random variables.

To sum up, two random variables X1 and X2 are called stochastic independent, if the corre-
sponding deterministic variables have no joint components. In this case the joint ignorance
space D is the direct set product of the ignorance spaces D1 and D2, the images of the joint
variability function X are the direct set products of the corresponding images of the variability
functions X1 and X2 and, finally the images of the joint random structure function P are the
sets of product measures of the corresponding probability measures.

Remark:

Two random variables X1 and X2 refer to two aspects of the future development. The values of
both variables are not existing at the time being and, therefore, neither of them can influence
the other. Thus, stochastic dependence or independence between two random variables refers
to the relations of the common past on the development of the two processes represented by
X1 and X2. If the corresponding key-factors represented by the deterministic variables D1 and
D2 have joint components, then the always existing dependence between the two considered
developments cannot be neglected. For example if the two first moments depend on the same
factors in similar manner, then an increase of the value of the first moment of one random
variable is accompanied by an increase of the value of the first moment of the second variable.
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Examples

The following examples refer to the random variables considered in the examples of the previous
learning units.

1. Murder on the Orient-Express

The aspect of interest and, hence, the random variable X is the time measured in days until
the end of Hercule Poirot’s investigation. The relevant facts or key factors with impact
on the future outcome of the test include among many other facts the murderer. They
determine the probability distribution over the range of variability. Thus, by changing
from the situation-related deterministic variable D to a distribution-related deterministic
variable Dp, the following pair of variables with corresponding Bernoulli Space is obtained:

• Random Variable X with

X = number of days until the end of Hercule Poirot’s investigation

• Deterministic Variable Dp with

Dp = (D(1)
p , D(2)

p )

and

D(1)
p = probability of the event {1}

D(2)
p = probability of the event {2}

• Bernoulli Space BX,Dp
= (Dp,X ,P) with

Dp =
{

(p1, p2) | 0 ≤ 1 − (p1 + p2) ≤ p2 < p1 ≤ 1
}

X ({p1, p2}) =







{1} for p1 = 1
{1, 2} for p1 < p1 + p2 = 1
{1, 2, 3} for p3 > 0

P({(p1, p2)}) = PX|{(p1,p2)} with probability mass function

fX|{(p1,p2)}(x) =







p1 for x = 1
p2 for x = 2

1 − (p1 + p2) for x = 3

2. The Bowl Filled with Chocolate Balls

Similar as in the case of the Murder on the Orient-Express, the situation-related deter-
ministic variable including the hand-size, a distribution related deterministic variable Dp

is selected. Thus, the following pair of variables with corresponding Bernoulli Space is
obtained:

• Random Variable X with

X = number of chocolate balls, which will be drawn from the bowl

• Deterministic Variable Dp with

Dp = (D(3)
p , D(4)

p , D(5)
p )
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THE STOCHASTIC MODEL QUANTIFICATION

and

D(3)
p = probability of the event {3}

D(4)
p = probability of the event {4}

D(5)
p = probability of the event {5}

• Bernoulli Space BX,Dp
= (Dp,X ,P) with

Dp =
{

(p3, p4, p5) | 0 < 1 − (p3 + p4) < p3 > p4 > p5 = 0

∨ 0 < p3 < p4 > p5 = 1 − (p3 + p4) > 0

∨ 0 = p3 < p4 < p5 > 1 − (p4 + p5) > 0
}

X ({p3, p4, p5}) =







{2, 3, 4} for p5 = 0
{3, 4, 5} for p3p5 > 0
{4, 5, 6} for p3 = 0

P({(p3, p4, p5)}) = PX|{(p3,p4,p5)} with probability mass

functions:

p5 = 0 : fX|{(p3,p4,p5)}(x) =















1 − (p3 + p4) for x = 2
p3 for x = 3
p4 for x = 4
0 for x > 4

p3p5 > 0 : fX|{(p3,p4,p5)}(x) =























0 for x = 2
p3 for x = 3
p4 for x = 4
p5 for x = 5
0 for x = 6

p3 = 0 : fX|{(p3,p4,p5)}(x) =























0 for x = 2
p3 for x = 3
p4 for x = 4
p5 for x = 5

1 − (p4 + p5) for x = 6

Remark:

The above two Bernoulli Spaces are characterized by rather large ignorance spaces. Con-
sequently the uncertainty about the future development is too big for making useful pre-
dictions possible. In such a case it is necessary to improve the Bernoulli Space by means
of learning experiments.

3. Future Height and Weight of a Person

In order to illustrate the concept of stochastic independence, take a given child of age
t = 10 years and consider the following two-dimensional random variable X = (X1, X2)
with:

X1 = weight of the child at the age of t = 20 years
X2 = height of the child at the age of t = 20 years
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As deterministic variable D certain key-moments E[XjXk], for given values of j, k are
selected, which determine the joint probability distribution the two-dimensional random
variable. The weight of the person depends on its height and therefore the first moment
of X2 depends on the first moment of X1 and hence the joint distribution function is not
the product of the marginal distribution functions.
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Unit 1.2.10: Stochastic Science

Target

This learning unit aims at recapitulat-
ing the main differences between con-
temporary science and stochastic sci-
ence. The learner should understand
the necessity for a change to stochastic
science in view of efficiency and useful-
ness of science.

Content

Introduction

The Bernoulli Space is the basis of the development of Stochastic Science. If the goal of science
is defined as being the reduction of human uncertainty about future development by making
reliable predictions, then the different varieties of science, which have been developed so far, as
scholastic science or modern science do not deserve the name “science,” because they are based
on subjective opinions of authorities and it is therefore impossible to specify the reliability of
a prediction.

The scientific theories developed in all branches of contemporary science represent passing fads,
which have not been refuted so far, because they do not contain the ever existing ignorance
and reflect not sufficiently well the inherently observed variability of evolution.

The escapist nature of contemporary science becomes also manifest by the fact that there are
two different sciences necessary: fundamental or pure science and engineering or applied science.
Fundamental science produces theories about an imaginary (ideal) world which does not exist.
The most acknowledged method in fundamental science is the “flash of genius,” while the most
common method in engineering science is to proceed by “trial and error.” Both methods are
extremely inefficient and will hardly lead to a deeper understanding of evolution, although they
brought forward an advanced technology. However, in view of the environmental and societal
damages caused by these advantages, it is questionable that they represent a real progress for
mankind.

There is another aspect concerning fundamental and engineering science. Karl Wulff52 notes
that not technology, but natural philosophy constitutes the root of modern science. Technical
progress and the advances of scientific theories proceeded more or less independently in parallel.

Unfortunately, many scientist believe that strict rules or specifications for the advancement of
science would ruin science. For example the British professor of physical chemistry Michael
Polanyi notes53:

Admittedly, there are rules which give valuable guidance to scientific discovery, but
they are merely rules of art. The application of rules must always rely ultimately on
acts not determined by rule. Such acts may be fairly obvious, in which case the rule
is said to be precise. But to produce on object by following a precise prescription is
a process of manufacture and not a creation of a work of art.

52Karl Wulff (2006): Naturwissenschaften im Vergleich. Verlag Harry Deutsch, Frankfurt am Mein, p. 347.
53Michael Polanyi: Science, Faith and Society. The University of Chicago Press, Chicago, 1964, p. 14.
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Emergence of Stochastic Science

Already a the end of the 17th century Jakob Bernoulli had proposed the development of stochas-
tic science. However, the 17th century is distinguished by a series of ingenious theories about
evolution, which looked so much more attractive than Jakob Bernoulli’s proposal and since
then almost nothing has changed. Mankind still believes in authorities and their brain waves.
There are only two evident changes between the 17th century and the 21st century. The num-
ber of flashes of genius has decreased, but the expenditures for having one have been increased
enormously. As one consequence of this development, the value of scientific research is assessed
almost exclusively by the amount of expenditures invested, while the results become more and
more insignificant.

Stopping this development is tantamount to completely reformulate aims and rules for science
and exactly this is done in Stochastic Science. Science should not deal with imaginary many-
worlds’ perceptions or imaginary theories on the one hand and it should not be based on trial
and error methods, because either of them is too expensive and whether or not they will end
in a useful result is also uncertain. Scientific research should proceed in a more purposeful
way by defining the aim and starting with deriving the corresponding Bernoulli Space. As
soon as the Bernoulli Space is available, the appropriate methods for reaching the aim become
more or less evident. As a matter of fact, stochastic science is based on precise rules and,
therefore, according to Michael Polanyi not an art but a process of manufacture, and exactly
as in manufacturing the products of stochastic science must meet specifications, which shall
assure the quality of the products.

Appraisal of Contemporary Science

Clearly, the results of contemporary science are valuable also in the framework of stochastic
science, as they reflect certain aspects of the relation between the initial conditions and future
outcome of interest. However, a universal appraisal of the available results can not be made.
The results can only be evaluated on an individual basis. In any case the results have to be
newly interpreted and integrated into the corresponding Bernoulli Spaces.

One obvious difference between contemporary science and stochastic science is that the former
is based to a large extent on unrealistic cause-effect relations and the latter on realistic stochas-
tic relations. Explaining a situation by a cause-effect relation often means to walk around
wearing blinkers, while stochastic science avoids this shortcoming by always considering the
entire situation including ignorance and randomness in order to come to a safe decision.

Another main difference between stochastic science and contemporary science is that stochastic
science is open for any process of interest within the inanimate or the animate nature. There
is nothing which cannot be described “scientifically” allowing reliable predictions and reducing
ignorance. Therefore, stochastic science can be used for investigating scientifically any part of
evolution using the same rules and the same methods.

In contrast contemporary science is divided into exact or mathematical sciences and hermeneu-
tical sciences, i. e., in two parts based on completely different methodologies. The exact sciences
are restricted at least strictly speaking to those parts of evolution, in which randomness ex-
hibits a relatively small variability. The “exact” methods fail in those parts of evolution, where
randomness produces a relatively large variability and, therefore, hermeneutical sciences could
survive.

Advantages of the Stochastic Approach

The Bernoulli Space includes explicitly all sources of uncertainty and constitutes a macroscopic,
holistic and abstract stochastic model for the uncertainty of real world. It makes it possible
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to transform any available quantitative/qualitative knowledge into a quantified model. The
stochastic model can therefore be improved in principle by means of each additional observation
and, thus, remains always up-to-date.

Prediction procedures constitute the basis of all stochastic procedures implying that stochastics
can be build up as a unified theory for systematically investigating the elements of uncertainty.

The unified theory allows to draw up a complete list of desirable procedures for prediction and
measurement purposes.

The quality of a stochastic procedure may readily be determined by means of the known
reliability level and the given accuracy.

The Book of Change and Stochastic Science

In this context it is worthwhile to look at other ap-
proaches to develop a cosmology than that of modern
science. The Chinese classic I Ging or Yijing (Book of
Change)54, which goes back to the early Zhou dynasty
(about 1000 BC), is based on a world-view which seems
to be close to that of Stochastic Science. It is based
on the two concepts Yin and Yang which constitute the
fundamental concepts of the Chinese world-view. They
represent the primal opposing but complementary forces
that are inherent in all things of the universe and which
may smoothly change from one to the other.

Figure 1: The Yin Yang
symbol representing “a con-
trastive relationship”.

The Book of Change describes a formal system which may be used for decision making. The
system is based on two complementary types of lines55, an unbroken solid line and a broken line
with a gap in the center. These lines are used to build 64 hexagrams where each hexagram is
a figure of six of these lines. The arrangement of the lines is determined by a random process,
traditionally by a complex random drawing process of sound and broken yarrow stalks.

 

Figure 2: The 64 hexagrams of the Yijing.

Decisive for the interpretation is the ar-
rangement of the lines within the hex-
agram. The interpretation and hence
the statements depend on

• the hexagram as such,

• the position of each single line
within the hexagram, and

• a number between six and nine,
which is assigned to each line dur-
ing the drawing process.

The number assigned to each line quantifies the degree of its stability, i.e., the strength of
tendency to change to the complementary line.

Each hexagram stands for one human situation where the lines represent the different aspects of
the situation and the numbers describe the tendency, or in other words, the degree of certainty
that the aspect change to its complement.

54For details see: Karl Wulff (2006): Naturwissenschaften im Kulturvergleich. Harry Deutsch, Frankfurt, pp. 91.
55The line represent the two complementary principles Yang and Yin.
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As stated by K. Wulff, the entire system of hexagrams represents a concept to describe the
laws of evolution which govern not only mankind, but the entire universe. Mankind represents
the microcosm within the macrocosm, where both are related to each other. Each hexagram
and hence each human situation contains the possibility to change to one of the 63 other states
implying that a human situation should not be looked at as isolated, but with regard to possible
changes.

The Book of Change constitutes a rational system that is based on the assumption of a dynamic
evolution and that aims at providing mankind some insight into the complex universal connec-
tivity. The Book of Change reflects the knowledge that the universal connectivity produces
fixed laws. There is an essential difference between the Chinese approach represented by the
Book of Change and the Western approach as represented by modern science. In contrast to
modern science, the Book of Change is not based on the belief in causal relations, but on what
is called here stochastic relations. The same situation might lead to different developments ac-
cording to the underlying tendencies which are quantified by the numbers six to nine assigned
to each line of a hexagram.

Comparing the approach described in the Book of Change with Stochastic Science reveals
fundamental similarities. Both approaches are based on

• universal connectivity,

• stochastic relations, and

• continual changes.

The difference refer to the technical details. The book of Change assumes the existence of
a (universal) random experiment that reflects the universal connectivity and can be applied
to reveal the relations in any given human situation. Moreover, the situation and especially
the procedures’ outcomes are quantified only partially. In contrast Stochastic Science develops
for each given situation a specific and fully quantified process, which enables to answer the
important questions about the procedures’ reliability and accuracy. Such questions cannot
adequately be dealt with in the Yijing system. Compared with modern science, however,
the Yijing system appears to be rational and represents a formidable progress away from an
irrational belief in ghosts and devils which probably was its starting point.

Examples

The following examples refer to the random variables considered in the examples of the previous
learning units.

1. Murder on the Orient-Express

Clearly, the murder on the Orient-Express, which as shown in the previous learning units,
can be an object of stochastic science is accessible for methods used in contemporary
science, particularly for DNA-investigations or other forensic examinations.

However, it should be clear that the interpretation of the results obtained by a forensic
analysis should take into account adequately randomness that affects the evidence pro-
ducing process and the applied forensic experiment itself. if the random effects are not
considered adequately then doubtful evidence is produced and may lead to judicial errors.
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2. The Bowl Filled with Chocolate Balls

Similar as in the case of the murder on the
Orient-Express, also the trivial process of
grabbing chocolate balls out of a bowl can
be analyzed in Stochastic Science in contrast
to conventional science which is based on
the Hamiltonian Formalism (William Rowan
Hamilton reformulated Newtonian mechan-
ics and developed a mathematical formalism
that appealing in view of its simplicity and
generality). Stochastic science makes avail-
able the appropriate rules and methods for
investigating this everyday process.

Figure 3: William Hamilton
(1805 – 1865), Irish scientists.

Note, that the property that stochastic science may be applied for modeling any part of
evolution is one of the most striking difference to contemporary science. Contemporary
science yields useful results only in the cases that the random variability is sufficiently
small and therefore can be neglected. Unfortunately, this is the case only in extremely
rare cases and engineers have to add to the results obtained so-called safety margins as
otherwise the products would not work or even be a danger.
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Module 1.3: The Bernoulli Space

Content and Aim of the Module The Bernoulli Space

In the previous module the Bernoulli Space has
been introduced as general stochastic model of the
relation between past facts and future develop-
ment. In this module the concept Bernoulli Space
shall be further investigated. Different situations
with respect to knowledge or ignorance are distin-
guished and some new terms and principles related
to uncertainty are developed.

As a matter of fact the Bernoulli Space represents uncertainty about the future development
of interest without assuming ideal conditions with respect to uncertainty as done in modern
sciences, since Galileo Galilei formulated his famous Law of Falling Bodies. The Bernoulli
Space as the stochastic model per se enables reliable and precise predictions and, thus, supports
appropriate decisions.

Module 1.3 aims primarily at imparting the capability for deriving a Bernoulli Space in a given
situation and for a given objective, where the Bernoulli Space is based on the complete, available
knowledge, but not on postulates, belief or subjective opinions.

The second aim of this module is to show again that traditional science cannot really support
understanding of the ongoing universal evolution. The artificial segmentation of the universal
system prevents understanding the entire system. It leads necessarily to wrong decisions as can
be seen of the present state of earth, which is characterized by a frightening physical and social
disorder.

A successful passing of this module should enable to understand a given Bernoulli Space and to
derive independently new Bernoulli Spaces for given situations. Moreover, understanding that
everything and everybody has an impact on the future development should lead to a new sense
of responsibility not only for the physical environment but also the entire human community.

Note that the Bernoulli Space constitutes The Stochastic Model, which must be necessarily used
in order to describe the always existing ignorance of human beings and the inherent randomness
of the evolution of universe.
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Unit 1.3.1: The Deterministic Case

Target

Learning Unit 1.3.1 aims at illustrat-
ing the traditional scientific approach
from view of the Bernoulli Space. The
learner shall understand the limitations
of deterministic models compared with
stochastic models and realize that de-
terminism prevents a deeper under-
standing of evolution.

Content

The Bernoulli Space in a Deterministic World

In a deterministic world there is no randomness and no variability within evolution. The future
development is completely determined by the facts, i. e., by the past. Thus, there is no principle
difference between past and future. Future is simply a transformation of past.

There is no randomness in a deterministic world and no probability. Therefore, the image of
the variability function X for any singleton {d} is again a singleton {x(d)} and the image of
the random structure function degenerate to a set which contains only one element and this
element is a so-called one-point probability distribution, where the event {x(d)} for given d
occurs with probability 1.

Uncertainty about the future development is solely generated by ignorance about the initial
conditions given by the ignorance space D.

Similar as in the case of a Bernoulli Space, the model of a process in the deterministic world
refers to a pair of variables (X,D), where X represents the aspect of interest in the future and
D the relevant aspects of the initial conditions. However, the future value of the variable X
is not indeterminate, but is uniquely fixed as x(d) by the actual value d of the deterministic
variable D.

In a deterministic world the Bernoulli Space BX,D has the following components:

D = {d}

X ({d}) = {x(d)}

P({d}) = PX|{d}

with PX|{d}({x}) =

{

1 for x = x(d)
0 for x 6= x(d)

Generally, when formulating deterministic laws, knowledge about the initial conditions is as-
sumed and, hence, the ignorance space reduces to a singleton D = {d}.

Consequently, in a deterministic world it is sufficient to specify the function x(d), which maps
the past given by d onto the future given by x(d). Once the function x(d) is known, the entire
evolution from its beginning to its end is in principle established.

Most of the models and Natural Laws in contemporary science assume a deterministic world
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and are of the above given form, despite the fact that none of the predictions made by means
of such a model can actually be observed.

Modern Science excludes (with some tiny exceptions) a stochastic evolution and is founded
on the postulate of a deterministic world neglecting all empirical experiences. Consequently,
the Natural Laws do not allow a stochastic evolution. In contrast Stochastic Science does not
exclude a deterministic evolution, since all our experiences are not enough evidence for allowing
to exclude determinism with certainty. The ignorance about the nature of evolution is expressed
in Stochastic Science by admitting both a deterministic and a stochastic evolution. As shown
above a stochastic models includes both possibilities and, therefore, Stochastic Science gets by
without the necessity to rely on belief.

However, the Bernoulli Space reveals that deterministic models are at the edge of possible
models representing pathological or degenerate cases.

Deterministic World and Reality

A deterministic world is based on the assumption that the evolution is completely determined
and fixed by (divine) ‘Providence’ for all eternity. Clearly, mankind will never be able to prove
this assumption, but this it not at all decisive. All experiences of man with evolution contradicts
this assumption and even physical science had to give up this assumption in certain areas of
evolution.

All the more it is surprising that mankind does not abandon the conception of determinism
neither in science nor in the individual realms. Whenever a problem occurs, i. e., an effect is
observed, a search for ‘the cause’ is started, in order to eliminate the cause and, thus, prevent
its future occurrence. By proceeding like this the universal connectivity which leads to a
complex interplay of all existing things is neglected. Generally, mere symptoms are interpreted
as ‘causes’ and, again very often, the reasons for declaring something as ‘cause’ have hardly
anything to do with the observed effect.

The decomposition of evolution in cause-effect-chains which are out of touch with reality pre-
vents a deeper understanding of evolution and opens the floatgates to quacksalvers and hidden
persuaders. In all times including the present time cruelties and wars are started and founded
on ridiculous causes. History shows that mankind follows willingly such evidently false argu-
mentation, probably because humans are trained to think in causalities from their birth until
they pass away.

Natural Laws, Determinism and the Bernoulli Space

Most of the Natural Laws formulated in physics are of deterministic type. In Wikipedia, the
free encyclopedia the following features of physical laws are listed under the entry Physical law
citing two sources56. Physical laws are:

• true (a.k.a.57 valid). By definition, there have never been repeatable contradicting obser-
vations.

• universal. They appear to apply everywhere in the universe. (Davies)

• simple. They are typical expressed in terms of a single mathematical equation. (Davies)

• stable. Unchanged since first discovery, although they may have been shown to be ap-
proximations of more accurate laws.

56Paul Davies (1992): The Mind of God, ISBN 0.671-79718-2, and Richard Feynman (1965): The Character of Physical

Law, ISBN 0-679-60127-9.
57also known as
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• eternal. They appear unchanged since the beginning of the universe (according to obser-
vations). It is thus presumed that they will remain unchanged in the future. (Davies)

• omnipotent. Everything in the universe must comply with them (according to observa-
tions). (Davies)

• generally conservative of quantity. (Feynman)

• often expressions of existing homogeneities (symmetries) of space and time. (Feynman)

• typically theoretically reversible in time (if non-quantum), although time itself is irre-
versible. (Feynman)

If this list is meant seriously, it is revealing physical laws as fraud. A physical law given by
a simple mathematical equation can never represent the universal connectivity and, therefore,
will never be true or valid, universal, omnipotent or eternal. It appears that physicists are
drunken by the ‘intellectual beauty’ of their mathematical derivations and cannot see reality
anymore.

The attempt to derive from the physical laws the corresponding Bernoulli Spaces will readily
show that most of the physical laws are either trivial or wrong statements.

Examples

1. The Universal Law of Gravitation

Figure 1: Sir Isaac Newton.

Sir Isaac Newton who has been regarded for
almost 300 years as the founder of modern
physical science, published in 1687 his fa-
mous Law of Gravitation, which states that
every particle in the universe attracts every
other particle with a force that is directly
proportional to the product of their masses
and inversely proportional to the square of
the distance between them. In other words,
every particle is related to every other parti-
cle demonstrating the universal connectivity.

The mathematical formulation of the Law of Gravitation is given by:

F = g
m1 · m2

r2

where g is a universal constant, m1 and m2 the masses of the two particles and r the
distance between the two particles.

Newton’s law has been refuted by now, but nevertheless it was looked upon as a Universal
Law of Nature for a long time. Clearly, the law does not describe reality, because an
isolated system with only two particles does not exist in this universe. By the way this
statement follows from the law. The law describes a certain tendency of the two particles,
but applying it in a special case would be tantamount to obtain with certainty a wrong
result.

The law gives no room for the always existing ignorance in a special situation and does
not allow to analyze the observed variability for making reliable and precise predictions
on the one hand and to learn more about the special features of a given situation.
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2. The Ideal Gas Law

The ideal gas law describes the state of an ideal gas. It says that the state of an amount
of gas is determined by its pressure, its volume and its temperature. The mathematical
model is as follows:

p V = n r T

where
p = pressure
V = volume
n = number of moles of gas
r = gas constant
T = temperature

Similar as in the case of the Law of Gravitation the Law of Ideal Gas describes a tendency
and, in fact, rather roughly. In any case the obtained values are never observed and
whether they are useful or not depends on the situation and the aim of the investigation.
A law, which yields results which are less far away from reality is the so-called Van der
Waals Equation, but even this equation is only an approximation which cannot be used
for making reliable predictions.

3. Speed of Light

One of the postulates which Albert Einstein needed for developing the special relativity
states that the speed of light is in the empty space (which obviously does not exist) always
the same and which is independent of the motion of the emitting body.

Einstein’s postulate were necessary for developing mathematically further hypotheses,
which changed the entire cosmology. However, one should be aware that Einstein deriva-
tions were not based on observations or experience, but rather on some puzzles.

In order to prove the statement one must exclude the contrary with certainty, which is, of
course, not possible as humanity has not the possibility to control the velocity of photons.
However, it is also impossible to disprove the statement because of the same reason. Thus,
the existing ignorance is overcome be subjective belief, which as we have seen, makes any
founded statement about the achieved reliability impossible.

4. Schrödinger Equation

The famous Schrödinger wave equation is a mathematical model describing the evolution
of a wave. For a single-particle system let each eigenstate be denoted by |r〉, where r
is a position vector and |r〉 is interpreted as the state of the particle at position r. The
wavefunction is ‘defined’ as the projection of the state vector of a |ψ(t)〉 on the position
basis and is given by:

ψ(r, t)〉 ≡ 〈r|ψ(t)〉

By normalization one obtains
∫

Ω

|ψ(r, t)|2d3R = 1

where Ω denotes the entire space. Because of the normalization, the absolute square of
the wavefunction is a number between 0 and 1. Hence it may be formally interpreted
as a probability. However, the corresponding event is difficult to identify. According to

91



THE DETERMINISTIC CASE THE BERNOULLI SPACE

the Copenhagen interpretation, the event refers to finding the particle in the infinitesimal
region of volume d3r around the position r.

The derivation of the wavefunction has been done completely mathematically based on
postulates without reference to reality. Moreover, the wavefunction is completely deter-
ministic and no randomness disturbs the evolution of the imaginary world of Schrödinger’s
wavefunction. The interpretation of the absolute square of the wavefunction as a proba-
bility has no real meaning and is primarily based on the fact that the integral over the
whole space had been normalized.

The main problem with all these mathematical derivation is that they do not start with
experience, but with a postulated truth in which one has to believe just as in the case of the
divine truths in scholastic science. The rest is mathematics and obscure interpretations.
This last claim shall be illustrated by the well known thought-experiment “Schrödinger’s
Cat”.

 

Figure 2: The thought experiment Schrödinger’s Cat.

A cat, a flask containing a poison and a radioactive source are sealed in a box shielded
against environmentally induced quantum decoherence. If an internal Geiger counter
detects radiation, the flask is shattered, releasing the poison that kills the cat. The
Copenhagen interpretation of quantum mechanics implies that after a while, the cat is
simultaneously alive and dead. However, if we open the box, the cat is either alive or
dead, not both alive and dead.
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Unit 1.3.2: The Case Without Ignorance

Target

Scientific investigations of gambling led
to the development of probability the-
ory and the scientific handling of ran-
domness. This learning unit aims at
showing that gambling does not repre-
sent the true nature of randomness, but
is much more related to ignorance.

Content

The Bernoulli Space in Case of Complete Knowledge

Clearly, no ignorance or complete knowledge is a special, rare case and strictly speaking not
possible, because of the universal connectivity. However, historically this case has played and
plays a decisive role in science and caused in some sense many erroneous developments in
dealing with uncertainty and its quantification. No ignorance means possess the truth and
actually this is the dream and the aim of scientists.

No ignorance refers to the deterministic variable D and means that the ignorance space D
contains only the true value, say d0. In this case the domains and co-domains of the variability
function X and the random structure function P are singletons, too. The co-domain of the
variability function contains only one set namely the range of variability of X|{d}, and the
co-domain of the random structure function only one probability distribution namely that of
X|{d}. Thus, the Bernoulli Space for the pair of variable (X, D) can be represented by a
singleton, a finite set and a set containing only one probability measure:

BX,D =
(

{d0},X ({d0}), PX|{d0}

)

(17)

In this case randomness is the exclusive source of uncertainty. The stochastic nature of the
situation modelled is evident by the set X ({d0}) and the corresponding probability distribution
PX|{d0}.

If a deterministic cause-effect relation were to be assumed, X ({d0}) would shrink to a singleton,
say {x0}, and PX|{d0} would degenerate. Thus, deterministic relations – as generally used in
physics – are also covered by the approach adopted here, but emerge as more or less trivial and
degenerated edge cases.

Figure 1 illustrates a notional example of a complete knowledge univariate case, where X ({d0})
is discrete.
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Figure 1: Graphical illustration of a Bernoulli Space in case of complete knowledge.

Gambling and Uncertainty

The process of quantification of uncertainty started with the quantification of gambling dur-
ing the late Middle Ages leading to the famous correspondence between Blaise Pascal and
Pierre de Fermat, which is regarded as the beginning of probability theory, although the word
“probability” does not occur within the correspondence.

Assuming that the dice used for gambling are not loaded leads immediately to the fact that
each possible outcome has the same probability. Or in other words the dice are purposefully
produced symmetrically in such a way that none of the possible outcomes, when throwing them,
is preferred. In gambling the situation with respect to the future development is completely
known, as soon as the set of possible outcomes are known, because the number of outcomes
determines completely the random structure, i.e., the probability distribution. For instance,
when throwing two dices, the set of outcomes is given by:

X ({d0}) = {(1, 1), (1, 2), . . . , (2, 1), (2, 2, . . . , (6, 6)}

implying that there are 36 equi-probable possible outcomes and, hence:

PX|{d0}({(i, j)}) =
1

36
for i = 1, 2, . . . , 6 and j = 1, 2, . . . , 6

Consequently, gambling represents a situation in which the man-made evolution does not prefer
any of the possible outcomes. This situation leads to maximum uncertainty and is therefore
called chaos. In contrast to this man-made chaos, natural randomness always prefers certain
outcomes and therefore may be looked upon as a principle of order. If each possible outcome
occurs with equal probability, each outcome must be regarded likewise, just as in the case
of ignorance. This similarity has led to the conclusion that randomness means disorder and
represents blindness. Further more, randomness and ignorance were not clearly distinguished,
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but randomness was equated with ignorance. Clearly, this equalization supported the prevailing
determinism and was immediately accepted.

Thus, the scientific occupation with randomness and uncertainty did not foster the abandon-
ment of determinism, but even strengthen its position.

Example

In the 1st and 3rd part of his masterpiece Ars con-
jectandi Jakob Bernoulli deals with gambling and,
thus, with the case without ignorance. Only in
the 4th part of his master piece Ars conjectandi,
Jakob Bernoulli turns to the case with ignorance
which necessitates to develop a measurement pro-
cedure. According to his own statements, he spent
20 years of research to this question and he judged
the result as the major achievement of his life. The
following examples are taken from the third part.

Figure 2: Jakob Bernoulli (1655 –
1705.

1. Somebody puts a white and a black ball in an urn and promise a reward to three players
A,B,C for the one who draws first the white ball. Each player has one draw. A should
start, followed by B and finally followed by C. If none of the players draws the black ball,
then none of the three gets the reward. After each draw the ball drawn is replaced in the
urn. What are the odds of the three players?

The aspect of interest is the outcome of the draws of the players A,B,C, as this sequence
determines who will get the payoff. Thus, the random variable is given by

X = (XA, XB, XC)

where

XA =

{

1 for A draws a black ball
0 for A draws a white ball

Let the random variable XB and XC be defined analogously. The deterministic variable
D stands for the set of rules, including the number of balls in the urn, the number of
players, the order of draws, the number of draws of each player and the rule of payoff.
Because the rules imply the case of no ignorance, we omit a detailed definition of D and
D = {d}.

The domain of the variability function is the singleton {d}, while the co-domain, which
consists of a system of subsets, is also given by a singleton, namely by the set of possible
outcomes of X|{d}:

X ({d}) = {(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1),
(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}

The range of variability X ({d}) of X|{d} determines the corresponding probability struc-
ture function:

P({d}) = PX|{d}

with

PX|{d}({(i, j, k)}) =
1

8
for i, j, k = 0, 1
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The starting player A will win the payoff, if he draws the white ball. There are four
corresponding outcomes, which represent the event EA that player A wins:

EA = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}

Player B is the second one to draw a ball. He wins if he draws a white ball and A has
not drawn a black ball. Thus, player’s B winning event EB is given by:

EB = {(1, 0, 0), (1, 0, 1)}

The third player C wins, if he draws a white ball and player A and B have drawn each a
black ball implying that the winning event EC is a singleton:

EC = {(1, 1, 0)}

Finally, the stakeholder wins if none of the players has drawn a white ball. His winning
event ES is therefore given by:

ESt = {(1, 1, 1)}

The probabilities of the winning events for the four participants in the game are as follows:

PX|{d}(EA) = 4
8

= 1
2

PX|{d}(EB) = 2
8

= 1
4

PX|{d}(EC) = 1
8

PX|{d}(ESt) = 1
8

2. Six person A, B, C, D, E and F take part in a game, where the latter persons are preferred
by the stakeholder: First A and B play against one another, the winner plays against C.
Again the winner plays against D and so on until the last player F is reached. The winner
of the last play gets the payoff. In each play the two players have equal chance of winning.
What are the odds of the three players?

Each player plays according to the above given order against each of the other players
leading in all to 25 = 32 different plays. Each game has two outcomes coded as 0 and 1,
where 0 stands for the success of the player with alphabetically smaller order and 1 for
the success of the player with alphabetically higher order. The random variable describes
the outcome of the five plays, i. e. X = (X1, . . . , X5) with range of variability given by:

X ({d}) = {(i1, i2, . . . , i5) | ij = 0, 1 and j = 1, 2, . . . , 5}

with 25 = 32 equiprobable outcomes.

Let EA, EB, EC , ED, EE and EF be the winning events for the five players. Then we
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have:
EA = {(0, 0, 0, 0, 0)}
EB = {(1, 0, 0, 0, 0)}
EC = {(0, 1, 0, 0, 0), (1, 1, 0, 0, 0)}
ED = {(0, 0, 1, 0, 0), (0, 1, 1, 0, 0), (1, 0, 1, 0, 0), (1, 1, 1, 0, 0)}
EE = {(0, 0, 0, 1, 0), (0, 0, 1, 1, 0), (0, 1, 0, 1, 0), (1, 0, 0, 1, 0),

(0, 1, 1, 1, 0), (1, 0, 1, 1, 0), (1, 1, 0, 1, 0), (1, 1, 1, 1, 0)}
EF = {(0, 0, 0, 0, 1), (0, 0, 0, 1, 1)(0, 0, 1, 0, 1), (0, 1, 0, 0, 1),

(1, 0, 0, 0, 1), (0, 0, 1, 1, 1), (0, 1, 0, 1, 1), (0, 1, 1, 0, 1),
(1, 0, 0, 1, 1), (1, 0, 1, 0, 1), (1, 1, 0, 0, 1), (0, 1, 1, 1, 1),
(1, 0, 1, 1, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 1), (1, 1, 1, 1, 1)}

The probabilities for the different winning events are easily obtained by determining the
size of the events:

PX|{d}(EA) = PX|{d}(EB) =
1

32

Thus, player A and B have the same winning probability.

Player’s C winning probability is given by:

PX|{d}(EC) =
2

32
=

1

16

For player D two of his five plays are irrelevant and, therefore his winning event consists
of four elements:

PX|{d}(ED) =
4

32
=

1

8

For player E three of his five plays are irrelevant and, therefore, his winning event consists
of eight elements:

PX|{d}(EE) =
8

32
=

1

4

Finally, for player F only one play is relevant and, therefore, his winning event consists
of sixteen elements:

PX|{d}(EF ) =
16

32
=

1

2

Only the players A and B have equal odds. The odds for the other players are doubled
from C to F .
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Unit 1.3.3: The General Case

Target

Learning Unit 1.3.3 shall illustrate the
necessity of specifying ignorance within
a stochastic model, because ignorance
is a characteristic feature of mankind
and the main source of uncertainty
about the future development. Speci-
fying ignorance opens the possibility to
learn systematically in order to reduce
it. Otherwise, the learning process me-
anders and gets generally inefficient.

Content

Introduction

The general case is characterized by ignorance, which is also called “incomplete knowledge”. It
means that the values of some relevant facts of the initial conditions represented by a determin-
istic variable D are unknown - this is the situation most commonly encountered in practice. It
is clear from what has gone before, that in this case one should not assume that the value of d
of D is known, but admit all those values of D which cannot be excluded in the given situation
and which form the ignorance space D.

Consequently, the set D is no longer a singleton implying that the image sets of the two functions
X and P contain possibly also more than one element. The larger the set D, the larger the
degree of ignorance. Reversing this logic, it now seems intuitively reasonable to suggest that
the existence of partial knowledge will ensure that D is at least bounded.

The concept of ’ignorance’ has been introduced as lack of knowledge concerning the true value of
the initial conditions represented by the deterministic variable D. The given process determines
the variability function as well as the random structure function.

Consider for example the situation of repeating independently a Bernoulli experiment with
the number of successes being the aspect of interest. Then the type of the corresponding
variability function as well as the random structure function are determined by the given
process arrangement.

The above example refers to the case that the type of the variability function and the type of
the random structure function are completely known. In general, this is not the case and the
variability function as well as the random structure function are not known and have to be
specified by exclusion procedures similar to that for selecting the ignorance space.

Selection of the Variability Function X

The images X ({d}) for d ∈ D are selected in the same way as the ignorance space itself. Any
value x which is out of the question is exclude. Those values x which cannot be excluded in
the given situation form the range of variability X ({d}) to be selected.

It is of great importance not to exclude values which in the given situation may occur. Therefore,
only those values may be excluded which in fact cannot occur.
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Any available knowledge (about what is not, should be used to select the range of variability
X ({d}) for d ∈ D. However, it is critical that only confirmed knowledge be exploited in this
manner. Using unconfirmed knowledge may lead to a set X ({d}) which no longer contains all
the possible outcomes of X|{d}.

Selection of the Random Structure Function

The images of the random structure function P are probability measures, where each probability
measure is a member of a certain family of probability distributions which are introduced in
Learning Unit 1.2.7. The existing partial knowledge or experience about the given process
generally allows to exclude most of the families of probability measures by knowing, for instance,
that the frequency of values x is decreasing (or increasing) with increasing x. For other processes
it is known that the frequency of values x is decreasing with the distance |x − x0|, where x0

might be known or unknown.

Selection of the family of probability distributions should be based on the knowledge about
the initial conditions and on available knowledge about the process in question. However, it
should not be based on a given set of observed data and a best fit criterion, because the data
are the outcome of randomness and fitting the probability distribution to randomly generated
data may lead to a nonconforming result.

Complete Ignorance

Situations involving complete ignorance about what is not are not amenable to quantitative
analysis - one must wait until sufficient knowledge about the process on hand is available
in order to have the chance to describe it in an useful way. This leads to the question of the
required minimum amount of knowledge, which will be answered later. The fact that situations
with complete ignorance are not treated, does not diminish the real–world applicability of the
scientific approach being developed here. In real world, when there is no prior knowledge, only
’inspiration’ can be employed - and inspiration is not amenable to quantitative modeling!

Graphical Representation

A graphical illustration of the Bernoulli Space for a notional incomplete knowledge situation is
provided in Figure 1 below. Here, the deterministic variable D takes one of four possible values,
i. e., D = {d1, d2, d3, d4}. For each value di of D, there is the range of variability X ({di}) and
the corresponding probability distribution PX|{di} of the random variable X|{di}. As was the
case with the example in the preceding Learning Unit 1.3.2, the random variable X is again of
discrete type.

The overall range of variability of X is given by

X (D) =
4

⋃

i=1

X ({di})

Two of the individual ranges; X ({d1}) and X ({d4}), are highlighted in Figure 1. They are
disjoint. Therefore, if a value x of X|D is observed, it can be used to exclude one of the two
values d1, d4 from D and thus reduce ignorance. This demonstrates, in a rather direct manner,
how observations may be employed to reduce D, and the overall range of variability for X.
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Figure 1: Graphical illustration of a Bernoulli Space in case of ignorance.

Necessity of Specifying the Ignorance

Besides the artificial case of gambling and some other constructed situations, where the initial
conditions are designed in a way that none of the possible outcomes is preferred to others, there
is always more or less large ignorance about the initial conditions and in most of these cases
ignorance constitutes the major source of uncertainty. Therefore, it is of utmost importance to
specify the existing ignorance, as otherwise it would not be possible to reduce it systematically.

Including ignorance explicitly in the stochastic model reflects strikingly the stochastic approach
which is based on the knowledge that human beings will never be able to grasp what is, i. e.,
truth, but will be restricted to realize what is not. Thus, there will be always a more or less
large amount of ignorance.

Examples

1. Drawing without Repetition from a Set

Consider a set of N = 10 elements with d elements being of Type A and 10 − d elements
being of Type B. The process consists of randomly58 selecting by one draw n = 4 elements
out of the set, and the aspect of interest is the future number of elements of Type A among
them.

Thus, we obtain the following variables:

• Random variable:
X = number of Type A elements among those selected.

• Deterministic variable D:
The probability distribution of X is completely determined by the known value of

58The meaning of “randomly” is that each subset of four elements has the same probability to be selected.
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the overall number of elements, N = 10, the known number of elements to be drawn,
n = 4 and the unknown value d of the elements of type A. Because the value of the
overall number of elements and the number of elements to be drawn are known, it
is not necessary to include them in the ignorance space. Therefore, the following
deterministic variable D is obtained:

D = number of type A elements within the set.

If there is no knowledge at all about the value of D, we obtain the following ignorance
space D:

D = {0, 1, . . . , 10}

The variability function X is given by:

X ({d}) = {max
d∈D

(0, 4 − (10 − d)), max
d∈D

(0, 4 − (10 − d)) + 1, . . . , min
d∈D

(d, 4)}

The random structure function P is given for d ∈ D by:

P({d}) = PX|{d} with PX|{d} ∼ H(10, d, 4), where H denotes the Hypergeometric Proba-
bility Distribution, i. e., for x ∈ X ({d}):

PX|{d}({x}) =

(

d

x

)(

10−d

n−x

)

(

10
4

)

2. Drawing by Repetition from a Set

Consider the same situation as described in the previous example, except for the mode
of drawing. In the previous example all the n = 4 elements were selected by one draw.
Now, only one element is drawn, but the process is repeated four times, where repetition
means that the original situation is restored before each of the draws. In this case we get
the same pair of variable as in the previous example:

• Random variable:
X = number of Type A elements among those selected.

• deterministic variable:
D = fraction of type A elements within the set.

If there is no knowledge at all about the value of D, we obtain the following ignorance
space D:

D =
{

0, 1
10

, . . . , 9
10

, 1
}

The variability function X is given by:

X ({d}) =







{0} for d = 0
{0, 1, . . . , 10} for 0 < d < 1

{10} for d = 1

The random structure function P is given for d ∈ D by:

P({d}) = PX|{d} with PX|{d} ∼ Bi
(

4, d
10

)

, where Bi denotes the Binomial Distribution,

i. e., for x ∈ X ({d}) with PX|{d}({x}) =
(

4
x

)

dx(1 − d)4−x.
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Unit 1.3.4: Uncertainty Space

Target

As demonstrated in the earlier learning mod-
ules, the source of human problems is the
uncertainty about future developments. For
solving the problems, reliable and precise
predictions are necessary leading to the de-
velopment of stochastic science. The identifi-
cation of the amount of existing uncertainty
is of great importance. This learning unit
introduces the corresponding concept.

Content

Two Important Classes of Tasks with Respect to Uncertainty

The stochastic approach is based on the pair of variables (X,D). As already indicated in
Learning Unit 1.2.6, there are several general classes of problems that may be solved using
the stochastic approach. Two of these classes, which correspond to the division of uncertainty
have already been identified, namely the reduction of uncertainty related to X and reducing
ignorance related to D, respectively.

The existence of the first problem class is already well established here. It relates to predicting
the future value of a given process quantity of interest X. In order to make reliable and accurate
predictions, the appropriate deterministic variable D, its values d ∈ D and the probability
distributions PX|{d} must be considered. Any meaningful prediction for X is necessarily a
subset of X (D).

The second problem class relates to discover or determinate an unknown, fact. To determine the
unknown fact a process or ’experiment’ must be designed and an appropriate random variable
X must be selected that relates to the unknown fact represented by the deterministic variable
D. Following general practice in science, procedures to determine a fixed, but unknown value
are called measurements procedures.

Applying a measurement procedure makes only sense, in case the true value is not known and,
hence, D contains more than one element. The general aim of a measurement procedure is to
arrive at a smaller D and, thus, to reduce the degree of ignorance. Any meaningful measurement
is necessarily a subset of D.

The Uncertainty Space

The extent of the uncertainty (nurtured by ignorance and randomness) characterizing any real-
world situation is quantified by

UX,D =
{

(x, d)
∣

∣

∣
x ∈ X ({d}), d ∈ D

}

(18)

Irrespective of the problem class, the overall purpose is to reduce the size of the set (18) defined
by the corresponding Bernoulli Space which will be referred to as the uncertainty-space.

Uncertainty has tow parents or two dimensions, namely ignorance and randomness. Ignorance
features no structure and, therefore, represents maximum disorder or chaos. Randomness on
the other hand stands in general for structure and, thus, for order. One of the most difficult
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THE BERNOULLI SPACE UNCERTAINTY SPACE

problems in this context is the identification of the deterministic variable and the establishment
of its relation to the random structure. Therefore, a representation of the deterministic variable
D for a given random variable X with innately specified connection between D and X would
be of great advantage and is derived in the subsequent learning unit.

Example

1. Uncertainty Space for Drawing without Repetition

Consider the first example of the previous learning unit, i.e., from a set of N = 10 elements
with d elements being of Type A and 10 − d elements being of Type B a set of n = 4
elements is randomly drawn with the aspect of interest being the number of elements of
Type A among them.

The uncertainty space for a given situation contains everything which cannot be excluded
as initial condition as well as everything which might happen in the future. The uncer-
tainty space for the above described process of drawing is given in Figure 1:
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✻
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Figure 1: The uncertainty space for the process of drawing 4
elements out of the set of 10 elements with d elements being of

Type A and 10 − d elements of Type B.

Note that there is nothing new or surprising with regard to the quantitative description
of the drawing process except for the fact that the existing ignorance is explicitly incor-
porated in and stated by the model. By this it becomes possible to take the existing
ignorance into account when making a reliable prediction.

For example, if it would be known that the number d of elements of Type A cannot be
smaller than 5 and larger than 8, the uncertainty space would be as displayed in Figure
2.
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Figure 2: The uncertainty space for the process of drawing 4 elements
out of the set of 10 elements when the number of elements being of

Type A is not smaller than 5 and not larger than 8.
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THE BERNOULLI SPACE REPRESENTATION OF PROBABILITY DISTRIBUTIONS

Unit 1.3.5: Representation of Probability Distributions

Target

One central topic in probability theory is the
development of different families of probabil-
ity measures. From a mathematical point
of view a family of probability distributions
should be as general as possible containing
a multitude of different types of probability
distribution. From a practical point of view
such a general family is rather useless, as it
cannot be assigned to a special type of situ-
ation.

A system of families of probability distributions is useful only if the members of the families
can be distinguished by means of qualitative properties. This learning unit introduces a
unified representation of probability distributions, which subsequently is used in Learning
Unit 1.3.6 for defining the announced families.

Content

There are numerous types of probability distribution proposed and investigated in probability
theory. Unfortunately, this diversity is a major problem when selecting an appropriate proba-
bility distribution for a given situation. This is due to the fact that there is not a one to one
correspondence between possible situations and available distributions as neither situations nor
probability distributions are classified. Only in some rare cases, a probability distribution in-
vestigated in probability theory is uniquely determined by the process and the random variable
X in question. Generally, for each situation there are many seemingly appropriate distributions
and selection must be made using inadequate criteria.

Let the range of variability of the univariate random variable X be given by

X = {x1, x2, . . . , xN} with x1 < x2 < . . . < xN

Note that the range of variability of any real-world random variable has necessarily the above
form.

The problem is to derive a generic representation of the corresponding probability mass function
given by

fX(xi) = PX({xi}) = pi > 0 for i = 1, . . . , N (19)

Having in mind that in many cases a continuous approximation of the realistically discrete
probability distribution would be of a great use, a function f : R → R

+ is needed, which is
positive for any real x and which meets the relations given by (19).

It is easily seen that the following representation meets the requirements:

fX(x) = e

N
∑

i=0
λi xi

(20)

where the coefficients λi are defined as solutions of the following equations:

fX(xi) = pi for i = 1, 2, . . . N
N
∑

i=1

fX(xi) = 1
(21)

105

http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000313-00.html
http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000313-00.html
http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000077-00.html
http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000063-00.html
http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000043-00.html


REPRESENTATION OF PROBABILITY DISTRIBUTIONS THE BERNOULLI SPACE

With (20) a simple and universally applicable representation of a probability distribution in
the univariate case is available and the problem can be addressed whether it is possible to
decompose the total set of probability distributions into disjoint families each representing
exactly one type of situation.

The Set of Probability Distributions

With (20) the following set of probability distributions over a range of variability X represented
by the corresponding probability mass functions is obtained:

fPX
=

{

e

∞
∑

i=0
λix

i ∣

∣

∣

∑

x∈X

e

∞
∑

i=0
λix

i

= 1, λi ∈ R

}

(22)

Having derived a generic representation of a probability distribution, the problem has to be
solved to find a partition of PX into families, where each family represents a real world situation
with some characteristic properties.

Examples

1. Throwing a Die

The aspect of interest when throwing a die is the thrown number. Hence:

X = thrown number

The probability mass function is constant with the following representation:

fX(x) =
1

6
for x ∈ {1, 2, . . . , 6} (23)

A different but equivalent representation is obtained as follows:

fX(x) = eλ0 for x ∈ {1, 2, . . . , 6} (24)

with λ0 = − log 6.

2. General Case

Assume a random variable X together with a deterministic variable D with actual value
d and with the probability distribution given by the probability mass function or in case
of a continuous approximation by the density function:

PX|{d}({x}) = fX|{d}(x) for x ∈ X (25)

or equivalently:

PX|{d}({x}) = elog(fX|{d}(x)) for x ∈ X (26)

Expand log
(

fX|{d}(x)
)

as a Taylor series around x = 0, then for x ∈ X :

PX|{d}({x}) = e
log(fX|{d}(0))+

∞
∑

i=1

di

dxi
log(fX|{d}(x))

∣

∣

∣

x=0
i!

xi

= e

∞
∑

i=0
λi(d)xi

(27)

with λ0(d) = log
(

fX|{d}(0)
)

and λi(d) =

di

dxi log(fX|{d}(x))
∣

∣

∣

x=0

i!
for

i = 1, . . ..

106

http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000053-00.html
http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000053-00.html
http://132.187.98.10:8080/encyclopedia/index.jsp?subsystem=encyclopedia&lang=en&start=topic-0000043-00.html


THE BERNOULLI SPACE FAMILIES OF PROBABILITY DISTRIBUTIONS

Unit 1.3.6: Families of Probability Distributions

Target

In probability theory there is a huge vari-
ety of probability distributions and for one
and the same case a multitude of differ-
ent probability distributions seem to be ad-
equate. This learning unit shall order the
possible distribution according to given situ-
ations aiming at assigning exactly one family
for one type of situation.

Content

The main subject of investigation in Bernoulli Stochastics is the structure of variability in the
outcome of real-world processes. Any classification of the structure for use in stochastics must,
therefore, be based on properties describing possible patterns of variability. These patterns are
expressed essentially by the curve of the probability mass function. From mathematical curve
sketching it is known that a curve may be adequately described by its zero and its extremes.
As a probability mass function has no zeros, number and types of extremes must be taken
for describing the curve and for deriving an appropriate partition of the set of probability
distributions into disjoint families.

Note that the information about the number of extremes is basically of qualitative nature and
does not include quantitative information as, e.g., location and extent of the extremes. Note
further that classifying the probability mass functions according to their extremes coincides
with the purely mathematical classification according to the degree of the polynomials in the
exponent of the density function in its generic representation.

Family of Constant Probability Distributions

The simplest case is characterized by the fact that no points of inclination or disinclination of
X can be observed and, therefore, implying that the density function is constant.

In this case the range of variability X = {x1, x2, . . . , xN} constitutes the only quantitative
information necessary for determining “exactly” the probability distribution:

fX(xi) =

{

1
N

for i = 1, 2, . . . , N
0 otherwise

(28)

In view of the generic representation of f derived in the previous learning unit the following
values of the distribution parameters are obtained:

λ0 = − log N
λk = 0 for k = 1, 2, . . .

(29)

The conditions (29) on the values of λi define the family of constant probability distributions
denoted by P0. Note that the probabilities are completely determined by the size of the range
of variability X . This fact indicates the decisive role of the range of variability.
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Family of Monotonic Probability Distributions

There are real processes exhibiting the qualitative property that the smaller (or the larger) the
value is the more often it is observed. In this case there is exactly one maximum either at the
left or right bound of the range of variability and a minimum at the opposite side.

The above described qualitative property leads to random variables with monotone density
functions with two cases “the smaller the more probable”, and, “the larger the more probable”.
In the former, the exponent of the exponential probability mass function decreases monotoni-
cally, whilst in the latter it increases monotonically.

Thus, the family of monotonic distributions is divided into two sub-families given by:

fX(x1) > fX(xN)

fX(xi) ≥ fX(xi+1) for i = 1, . . . N − 1

and, respectively,

fX(x1) < fX(xN)

fX(xi) ≤ fX(xi) for i = 1, . . . N − 1

The entire family of monotonic probability distributions is denoted P1

Family of Uni-Extremal Probability Distributions

The next family is defined by the existence of exactly one extreme in the interior of the range
of variability X . Similar as in the case of monotonic distributions, there are two different sub-
families, the one refers to an inner maximum, i. e., a peak, and the other to an inner minimum,
i. e., a sink. Again the family defining property is a merely qualitative one, which might be
deduced by knowledge about the process in question and, of course, by past observational
experiences.

The two sub-families of uni-extremal probability distributions are formally defined by the fol-
lowing two sets of conditions:

There is exactly one xm ∈ X with 1 < m < N and

fX(x1) < fX(xm) > fX(xN)
fX(xi) ≤ fX(xi+1) for i = 1, 2, . . . , m − 1
fX(xi) ≥ fX(xi+1) for i = m,m + 1, . . . , N − 1

(30)

or, respectively,
fX(x1) > fX(xm) < fX(xN)
fX(xi) ≥ fX(xi+1) for i = 1, 2, . . . , m − 1
fX(xi) ≤ fX(xi+1) for i = m,m + 1, . . . , N − 1

(31)

The entire set of uni-extremal probability distributions is denoted P2.

The variability of a very large number of random variables follows a uni-extremal probability
distribution with one peak. This extremely important case is called uni-modal and denoted
P2,1 with the mode being the value for which the peak is adopted.

Moreover, under rather general conditions the probability distribution of a sum of sufficiently
many copies of an arbitrary random variable is uni-modal. Very often this property is obtained
already for a rather small number of copies. Thus, one can state that the uni-modal probability
distributions have paramount importance.
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THE BERNOULLI SPACE FAMILIES OF PROBABILITY DISTRIBUTIONS

Family of Multi-Extremal Probability Distributions

The generalization to families with k relative extremes is straightforward. The family of k-
extremal probability distributions for a random variable X with range of variability X is char-
acterized by the following conditions:

There are exactly k different elements xmj
∈ X , j = 1, . . . , k with

x1 < xm1 < . . . < xmk
< xN . For each k there are again two sub-families, with different

requirements for k even or k uneven.

• k even:
x1 < xm1 > xm2 < . . . > xmk

< xN

monotonic progression between subsequent extrema
(32)

or, respectively

x1 > xm1 < xm2 > . . . < xmk
> xN

monotonic progression between subsequent extrema
(33)

• k uneven:
x1 < xm1 > xm2 < . . . < xmk

> xN

monotonic progression between subsequent extrema
(34)

or, respectively

x1 > xm1 < xm2 > . . . > xmk
< xN

monotonic progression between subsequent extrema
(35)

The entire set of k-extremal probability distributions is denoted Pk for
k = 3, 4, . . ..

Simple and Compound Random Variables

The above given families of probability distributions give reason to distinguish between simple
and compound random variables or random processes.

If the probability distribution of a random variable belongs to the constant, monotonic or
uni-modal family the random variable is called simple and otherwise compound.

A process of interest may be a simple or a compound process. A simple process is a one step
process, which proceeds directly to the future terminal state. A compound process proceeds
in at least two steps, where the properties of the second step may depend on the result of the
first one.

The probability mass function of a compound random variable may have more than one inner
extremum. In many cases the considered compound process proceeds in as many steps as there
are maxima (or minima). The random structure of any step depends on the state reached by
the preceding one, where the number of different states may determine the number of inner
maxima or minima of the probability mass function.

Examples

1. Income Distribution

Consider a given population, where each individual has an income. Let the process consists
of selecting one person randomly, with the outcome of interest X being that person’s
income. For real-world populations, the type of distribution of X is well-known.
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Figure 1: Vilfredo Pareto

The Italian engineer, sociologist, economist,
and philosopher, Vilfredo Pareto discovered
that the income in human populations is
monotonically decreasing. Accordingly he
proposed a power law probability distribu-
tion for modeling income which is known as
Pareto distribution. The Pareto distribution
is a continuous approximation given by the
density function:

fX(x) =
αxα

min

xα+1
for x > xmin

where xmin is the smallest possible income.

2. Physical Measurements

Most physical measurement procedures are assumed to be processes generating a random
variable X with a uni-modal probability distribution. Thus, the probability mass function
is uni-modal, i.e., fX ∈ P2,1.

3. Drawing Randomly from Different Sets

The probability mass function has two or more maxima, if the random variable is based
on different sub-processes which become active with certain probabilities. Consider for
example the process of drawing one element from a set consisting of several subsets with
different numerical representations. In this case there will be in general as many maxima
of fX as there are different subsets.
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THE BERNOULLI SPACE GENERIC DETERMINISTIC VARIABLE

Unit 1.3.7: Generic Deterministic Variable

Target

Learning Unit 1.3.7 aims at develop-
ing a generic representation of the de-
terministic variable D, which is sim-
ple and nevertheless characterizes the
random structure and, thus, the actual
probability distribution.

Content

As already mentioned, for any realistic situation the range of variability X of a random variable
X is finite and, hence, in particular bounded. This fact follows because of two reasons:

• Human resolution even of the best measurement devices is finite.

• The universe is must be considered as finite.

Therefore, in the here considered univariate case, the probability distribution PX of X is com-
pletely determined59 by the sequence

(µ1, µ2, . . . , µK) (36)

of values of the moments E
[

Xk
]

, k = 1, 2, . . . , K. The moments of a random variable have
an easy to grasp meaning and it is generally not difficult to derive procedures for determining
their actual values. Hence, the following generic representation of the deterministic variable D,
for a given random variable X, is selected:

D =
(

E[X], E[X2], . . . , E[XK ]
)

(37)

with actual value d = (µ1, µ2, . . . , µK) ∈ D.

Assume that for d = (µ1, µ2, . . . , µK) ∈ D the corresponding probability distribution or equiv-
alently the probability mass function

fX|{d}(x) = e

K
∑

j=0
λj(d) xj

shall be determined. This is a purely mathematical problem consisting of finding the solution
(λ0(d), λ1(d), . . . , λK(d)) of the following system of equations, where µ0 = 1.

∑

x∈X ({d})

xk e

K
∑

j=0
λj(d) xj

= µk for k = 0, . . . , K (38)

If a continuous approximation is used, the sums in the above equations are replaced by integrals.

59For a proof see Hausdorff, F., (1921). Summationsmethoden und Momentenfolgen. Math. Z. 9, 74-108, 280-299.
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GENERIC DETERMINISTIC VARIABLE THE BERNOULLI SPACE

Example

1. Production Process

Consider a manufacturing process of a technical product. Of interest is the question
whether or not the product to be produced will be conforming with the specifications or
not. If it is conforming to the specifications it can be delivered to the customer, otherwise
it should not be delivered. In this case the random variable describing the aspect of
interest in the future is a so-called indicator variable, which adopts the value 1 if the
event of interest occurs and the value 0, if it does not occur.

X = indicator variable for the event of producing a conforming item

Production processes are often very complicated and describing the actual relevant state is
difficult if not impossible. In order to have the probability distribution completely defined
in this simple case, the value of the first moment of X is needed. Hence, we obtain the
following deterministic variable D:

D = E[X] (39)

The value of the first moment E[X] is just the success probability, i. e., the probability
that the event of interest will occur.

2. Technical Measurement Procedure

All technical measurement procedures operate according to the same principle. If the
actual value m of a variable M shall be determined, a measurement experiment must be
performed, where the probability distribution of a random variable X defined by the future
outcome of the experiment depends more or less heavily of the value m to be determined.

The probability distribution of almost all random variables X defined by a measurement
experiment is uni-modal. The deterministic variable D to be selected is given by

D = (E[X], E[X2], . . . , E[XK ]) (40)

where the values of the moments depend on the value m to be determined. Obviously,
the problem of selecting an appropriate number K is of utmost importance and will be
solved in the next Learning Unit 1.3.8.
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THE BERNOULLI SPACE SELECTION OF PROBABILITY DISTRIBUTIONS

Unit 1.3.8: Selection of Probability Distributions

Target

In statistics probability distributions
are generally obtained by first selecting
a family of distributions (often the fam-
ily of normal distributions) and subse-
quently fitting the distribution to some
observations. In this learning unit a
new selection principle is introduced,
which is closely related to the classi-
fication of probability distributions de-
veloped in Learning Unit 1.3.6.

Content

Introduction

In order to select an appropriate random structure function for a given random variable X in
a meaningful way, the corresponding family of probability distributions should necessarily be
known.

This knowledge is available, if number and type of extremes of the corresponding probability
mass function have been identified by sufficient empirical experience or by theoretical insight
in the process of interest enabling the exclusion of any other family.

If an identification of the family is impossible, then the description of the random structure
must cover more than one family and, therefore, it is to be expected that the achieved results
are more or less useless because of inaccuracy. In the following it is assumed that the available
knowledge is sufficient to exclude all families of probability distributions except for the actual
one.

Principle of Minimum Information

The question has to be answered how much quantitative information about the actual value of d
of the deterministic variable D is necessary for selecting an appropriate probability distribution
PX|{d} in a given situation with identified family of probability distributions Pk.

Clearly, the range of variability X ({d}) of X|{d} must be given in any case, because, if the
possible outcomes of X|{d} are not given, it is impossible to assign probabilities to them. In
the following it is assumed that the range of variability of X|{d} for d ∈ D is given as:

X ({d}) = {x1(d), . . . , xN(d)}

• Constant Probability Distributions

A constant probability distribution PX|{d} is uniquely determined by the range of variabil-
ity X ({d}) of X|{d}, i. e.

fX|{d}(x) =
1

|X ({d})|
=

1

N
(41)
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SELECTION OF PROBABILITY DISTRIBUTIONS THE BERNOULLI SPACE

• Monotonic Probability Distribution

Clearly, the selected probability distribution should exhibit the same monotonic behavior
as the true probability distribution. The simplest exponent generating this behavior is
the linear function:

λ̂0(d) + λ̂1(d)x

with
λ̂1(d) 6= 0

λ̂i(d) = 0 for i = 2, 3, . . .

where λ̂0(d) and λ̂1(d) have to be selected in a way that the resulting probability mass
function may be used as an approximation of the true probability mass function.

Thus, the minimum amount of quantitative information which might yield a useful model
consists, besides the range of variability X ({d}), of the numerical values of the parameters

λ̂0(d) and λ̂1(d). However, once λ̂1(d) is known, the value λ̂0(d) is given as follows:

λ̂0(d) = log
1

N
∑

i=1

eλ̂1(d)xi

(42)

Thus, we have to look for a characteristic property of the true probability distribution or a
key factor of the initial conditions which may be used for determining λ̂1(d) appropriately.
In terms of the deterministic variable D in its generic representation the first moment
constitutes a characteristic property on the one hand and determines the value of λ̂1(d)
uniquely. Thus, the minimum amount of quantitative information in the case that the
true probability distribution belongs to the monotonic family, is given by the range of
variability X ({d}) and the value µ1(d) of the first moment E[X|{d}]. If µ1(d) is known,

the necessary value of λ̂1(d) is obtained as solution of the following equation:

N
∑

i=1

xie
λ̂0(d)+λ̂1(d)xi = µ1(d) (43)

which together with (42) yields the following equation:

µ1(d) =

N
∑

i=1

xie
λ̂1(d)xi

N
∑

i=1

eλ̂1(d)xi

(44)

The minimum amount of information in terms of the deterministic variable D is given in
case of a monotonic probability distribution by the value of the first moment of X|{d},
i. e.,

D = (E[X|{d}]) (45)

• Uni-Modal Probability Distribution

Proceeding analogously as in the case of the monotonic family, the simplest property-
conserving exponent in case of a uni-modal distribution is identified as a quadratic poly-
nomial
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λ̂0(d) + λ̂1(d)x + λ̂2(d)x2

with

λ̂2(d) 6= 0

λ̂i(d) = 0 for i = 3, 4, . . .

where the normalizing constant λ̂0(d) is uniquely determined by the values of λ̂1(d) and

λ̂2(d).

The minimum amount of information in terms of the deterministic variable D in case
of a uni-modal probability distribution is given by the values of the first and the second
moment of X|{d}, i. e.,

D =
(

E[X|{d}], E[X2|{d}]
)

(46)

Equivalently, one can replace the second moment E[X2] by the variance V [X|{d}], i. e.,
the second central moment of X|{d}].

Let µ1(d) and µ2(d) be the actual values of the moments, and X ({d}) the range of vari-

ability of X|{d}. Then, the values of the coefficients λ̂i(d), i = 0, 1, 2 are obtained as
solutions of the following system of equations.

N
∑

i=1

xk
i e

λ̂0(d)+λ̂1(d)xi+λ̂2(d)x2
i = µk(d) for k = 0, 1, 2 (47)

with µ0 = 1.

• m-Extremal Probability Distribution

For preserving the property of the true density function of having m inner extremes by the
model, a polynomial with a degree not less than m+1 is necessary. Thus, the polynomial
which represents minimum information is given by:

λ̂0(d) + λ̂1(d)x + . . . + λ̂m+1(d)xk+1 (48)

with λ̂m+1(d) 6= 0.

In order to determine the coefficients λ̂i(d) in a way that a useful approximation for the
true density function is obtained, the values µi(d) of the first m + 1 moments must be

available. Once they are available, the coefficients λ̂i(d), i = 0, . . . , m +1, are obtained as
solutions of the following system of equations:

N
∑

i=1

xk
i e

λ̂0(d)+λ̂1(d)xi+...+λ̂m+1(d)xm+1
i = µk(d) for k = 0, 1, 2, . . . , m + 1 (49)

with µ0 = 1.

The above method for selecting a probability distributions is based on the idea that the amount
of necessary information depends on the degree of complexity of the given situation with respect
to the probability distribution. The degree of complexity is measured by the number of extremes
of the probability mass function. The larger the number of extremes the larger is the amount
of necessary information.
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The approach determines the minimum amount of information which is necessary to preserve
the most striking properties of the true probability distribution. It is therefore named Minimum
Information Principle.

Maximum Entropy Principle

Using the criterium of minimum information for selecting a probability distribution of one of
the above given families of probability distributions is equivalent to selecting the family member
with maximum entropy.

The Entropy of a probability distribution with finite support quantifies the amount of un-
certainty represented by the considered probability distribution. It follows that a minimum
information probability distribution exhibits maximum uncertainty among all other members
of the considered family having the same values of the considered moments. A minimum infor-
mation probability distribution belongs to the same distributional type and coincides with the
most important properties of the true probability distribution. Furthermore it covers the true
distribution with respect to uncertainty.

In information theory, the maximum entropy principle is proposed for selecting an unknown
probability distribution:

Consider the discrete random variable X with probability distribution PX about
which certain information are available. The maximum entropy distribution P̂X is
the probability distribution which is consistent with the given information and has
maximum entropy, i.e., represents maximum uncertainty.

As a matter of fact, the maximum entropy principle does not include any hints about the mini-
mum amount of information necessary to obtain a useful probability distribution and therefore
using this principle is very dangerous. For example, if the true distribution is of uni-model
type, but the available information is limited to the first moment, then the maximum entropy
principle yields generally a monotonic distribution which is completely unusable.

Examples

1. Throwing a Die

Consider a symmetric die marked on each of its six faces with a different number (from 1
to 6) of circular pits. The process consists of throwing the die and observing the number
of pits on the face that is uppermost when it comes to rest. Then we have the following
situation:

X = number of pits on the uppermost face

X = {1, 2, 3, 4, 5, 6}

• Minimum Information Distribution:

If the die is not loaded, then because of the symmetry all types of distribution can be
excluded except for the family of constant distributions, implying that the minimum
information distribution is given by:

fX(x) =







1
|X |

= 1
6

for x ∈ X

0 for x /∈ X
(50)
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• Maximum Entropy Distribution:

Suppose that besides X also the value µ of the true value of the first moment E[X]
is given:

µ = 3.5

Then the obtained maximum entropy distribution is the same as the minimum in-
formation distribution (50). However, if the true value of E[X] is not given exactly,
then the maximum entropy distribution yields a monotonic distribution, which under
certain circumstances would be not usable.

2. Monotonic Probability Distribution

Recently a Children-Cancer Study was performed in Germany in order to answer the
question, whether there is an increased probability of getting cancer for children younger
than five years in the neighborhood of nuclear power plants.

Consider a nuclear power plant in Germany located in a densely populated area. Assume
that the study should cover children living up to 50 km from a nuclear power plant. An
unknown mechanism selects children, which subsequently get cancer. The question is
whether or not the selection mechanism depends on the nuclear power plant. Of interest
is the distance between the power plant and the living places of the cancer cases.

The environment of the nuclear power plant is divided into the ten disjoint areas around
the power plant:

K5 = {x | 0 < x ≤ 5}
K10 = {x | 5 < x ≤ 10}
K15 = {x | 10 < x ≤ 15}
K20 = {x | 15 < x ≤ 20}
K25 = {x | 20 < x ≤ 25}
K30 = {x | 25 < x ≤ 30}
K35 = {x | 30 < x ≤ 35}
K40 = {x | 35 < x ≤ 40}
K45 = {x | 40 < x ≤ 45}
K50 = {x | 45 < x ≤ 50}

(51)

It is well-known that children may get cancer even if there is no nuclear power plant in the
neighborhood. Assuming a more or less equal population density in the area considered
means that with increasing i of Ki the population number.

The random variable X of interest is given as follows:

X = number of area code, of the next cancer case

with range of variability:

X = {5, 10, 15, . . . , 50}

Because of the increasing population number with increasing area code, all types of prob-
ability distributions except for the monotonic family can be excluded.
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• Minimum Information Distribution

Because the true probability belongs to the monotonic family, it is sufficient to con-
sider the first moment E[X] as relevant deterministic variable:

D = E[X] (52)

with actual value µ1. If µ1 is known, the probability mass function of the minimum
information distribution is obtained as follows:

fX|{µ1}(x) = eλ0(µ1)+λ(µ1)x for x ∈ X ({µ1}) (53)

where the range of variability is given by:

X ({µ1}) = {5, 10, 15, . . . , 50} (54)

and the coefficients λ0(µ1) and λ(µ1) are the unique solutions of the following system
of equations:

∑

x∈X ({µ1})

fX|{µ1}(x) = 1
∑

x∈X ({µ1})

xfX|{µ1}(x) = µ1
(55)

• Maximum Entropy Distribution

If the same information are used as in the case of the minimum information dis-
tribution, then the same probability distribution is obtained. However, if less or
more information is used, then applying the maximum entropy principle will lead to
probability distribution which should not be used as it may result in a wrong decision.

3. Uni-modal Probability Distribution

Wind turbines for producing energy have become very popular during the last years. In
order to be safe and efficient the turbines’ design must stand the possible loads during its
entire life.

The predicted long-term loads for wind turbines determine turbine cost and reliability
and, therefore, the definition of the maximum loads, which might realistically occur during
the turbine’s lifetime are of considerable importance. The difficulty with predicting the
extreme loads derives from the involved uncertainties. Uncertainty refers to the wind and
materializes in variability in the sense that wind speed and load magnitude vary in time,
even if the meteorologic conditions do not change. Therefore, the problem is to describe
the variability of the loads in a way that allows reliable and at the same time accurate
predictions of the maximum loads the turbines have to withstand. The predictions must
have a specified reliability, as otherwise the inherent risks would be unknown and they
should be accurate, as otherwise the cost of manufacturing the turbines (in case of too
high load values) or the cost of occurring damages (in case of too low loads) would become
excessive.

The random variable is defined as follows:

Xi = maximum load during one load cycle at wind condition wi

The problem is to define appropriately the wind condition wi which represent the value
of the deterministic variable (initial condition). The maximum load in a load cycle at
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constant wind condition varies, but excessively small values as well as excessively large
values are observed only seldom. Generally, the load values concentrate in an area in
between. This is a typical situation for a uni-modal probability distribution. Hence, all
types of probability distributions are excluded except for the uni-modal one.

• Minimum Information Distribution

From the Principle of Minimum Information, it is concluded that in this case an
appropriate deterministic variable is given as follows:

Di = (E[Xi], V [Xi]) (56)

Hence, for each load type of interest a finite number of wind conditions (wi = (µi, σ
2
i ),

i = 1, 2, . . . , k, are considered with the mean wind speed at hub height, µi, and the
variance σ2

i . The random variable of interest is the maximum load per cycle time on
wind condition wi denoted by Xi, where the cycle time is defined by the turbine and
the load.

In this case it seems appropriate to use a continuous approximation for Xi. Assume
that the actual value (µi, σ

2
i ) of D is given, then the variability function specifies the

range of variability of Xi:

X ({(µi, σ
2
i )}) =

{

x | x((µi, σ
2
i )) ≤ x ≤ x((µi, σ

2
i ))

}

(57)

where x((µi, σ
2
i )) and x((µi, σ

2
i )) have to be determined.

For given (µi, σ
2
i ) the corresponding density function is obtained as:

fXi|{(µi,σ
2
i )}(x) = eλ0(µi,σ

2
i )+λ1(µi,σ

2
i )x+λ2(µi,σ

2
i )x2

for x ∈ X ({(µi, σ
2
i )})

(58)

with the coefficients λ0(µi, σ
2
i ), λ1(µi, σ

2
i ) and λ2(µi, σ

2
i ) are the unique solutions of

the following system of equations:
∫

x∈X ({(µi,σ
2
i )})

fX|{(µi,σ
2
i )}(x)dx = 1

∫

x∈X ({(µi,σ
2
i )})

xfX|{(µi,σ
2
i )}(x)dx = µi

∫

x∈X ({(µi,σ
2
i )})

(x − µi)
2fX|{(µi,σ

2
i )}(x)dx = σ2

i

(59)

• Maximum Entropy Distribution

Similar as in the preceding example, the maximum entropy principle yields the min-
imum information distribution, if the same prior information are used. However, if
this is not the case, then the maximum entropy distribution may lead to a completely
unusable distribution.
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