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Design Efficient Approximate Multiplication

Circuits Through Partial Product Perforation
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Abstract—Approximate computing has received significant at-
tention as a promising strategy to decrease power consumption of
inherently error tolerant applications. In this paper, we focus on
hardware level approximation by introducing the Partial Product
Perforation technique for designing approximate multiplication
circuits. We prove in a mathematically rigorous manner that in
partial product perforation the imposed errors are bounded and
predictable, depending only on the input distribution. Through
extensive experimental evaluation, we apply the partial product
perforation method on different multiplier architectures and
expose the optimal architecture–perforation configuration pairs
for different error constraints. We show that, compared with the
respective exact design, the partial product perforation delivers
reductions of up to 50% in power consumption, 45% in area
and 35% in critical delay. Also, the product perforation method
is compared with state-of-the-art approximation techniques, i.e.
truncation, Voltage Over-Scaling and logic approximation, show-
ing that it outperforms them in terms of power dissipation and
error.

Index Terms—Approximate computing, approximate multi-
plier, approximate arithmetic circuits, error analysis, low power

I. INTRODUCTION

IN modern embedded electronic devices, power consump-

tion is a first class design concern. Considering that a

large number of application domains are inherently tolerant to

imprecise calculations, e.g. Digital Signal Processing (DSP),

data analytics and data mining [1] approximate computing

appears as a promising solution to reduce their power dis-

sipation. Such applications a) process large redundant data

sets or noisy input data derived from the real world, b) do

not have a “golden” result, c) perform statistical/probabilistic

computations and/or d) demand human interaction, thus, their

exactness is relaxed due to limited human perception [2], [3].

Approximate computing can be applied at both software and

hardware level.

Hardware level approximation mainly targets arithmetic

units, such as adders and multipliers widely used in portable

devices to implement multimedia algorithms, e.g., image and

video processing. The most commonly used techniques for

the generation of approximate arithmetic circuits are truncation

[4], [5], Voltage Over-Scaling (VOS) [2], [6] and simplification

of logic complexity (i.e., alteration of the truth table) [7]–[9].

Extensive research has been conducted on approximate adders
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[6], [7], [10], [11] providing significant gains in terms of

area and power while exposing small error. However, research

activities on approximate multipliers are limited. Efficient

approximate multipliers introduced in [8], [9], [12], [13] target

the approximation of the partial product accumulation but do

not examine approximations on the partial product generation.

Approximate hardware circuits, contrary to software ap-

proximations, offer transistors reduction, lower dynamic and

leakage power, lower circuit delay and opportunity for down-

sizing. Motivated by the limited research on approximate

multipliers, compared to the extensive research on approximate

adders, and explicitly the lack of approximate techniques

targeting the partial product generation, we introduce the

Partial Product Perforation method for creating approximate

multipliers. Inspired from [14], we omit the generation of some

partial products, thus, reducing the number of partial products

that have to be accumulated, we decrease the area, power and

depth of the accumulation tree. The major contributions of this

work are summarized as follows:

• We adopt and apply, for the first time, the software based

perforation technique [14], on the design of hardware

circuits, obtaining optimized design solutions regarding

the power–area–error trade-offs.

• We analyze in a mathematically rigorous manner the

arithmetic accuracy of partial product perforation and

prove that it delivers a bounded and predictable output

error. Our error analysis is not bound to a specific

multiplier architecture and can be applied with error

guarantees to every multiplication circuit regardless of

its architecture. Such a rigorous analysis enables precise

error estimation over input data distributions.

• We explore and characterize the efficiency of the product

perforation method on several multiplier schemes expos-

ing its power–area impact on different architectures. This

is the first time that such an exploratory analysis over

different approximate multiplier architectures is offered

to the designer, enabling also, the selection of the op-

timum architecture–perforation configuration for given

error constraints.

• We show that partial product perforation outperforms

related state-of-the-art works in terms of power consump-

tion and error, as well as output quality, when applied to

image processing and data analytics algorithms.

More specifically, we apply the partial product perfora-

tion on 16 different multiplier architectures, using industrial

strength tools, i.e. Synopsys Design Compiler and PrimeTime.

Through extensive experimental evaluation, we present the
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optimal approximate multiplier configurations for various error

constraints. We show that, compared to the accurate multiplier,

product perforation offers reductions of up to 50% in power

consumption, 45% in area and 35% in critical delay for 0.1%

normalized mean error distance [15]. Moreover, it is compared

with state-of-the-art approximate computing works that use

either VOS [6], logic approximation [9], or truncation [4],

outperforming them significantly in terms of power dissipation

and error. Finally, we examine the scalability of our technique

by applying it on different bit-width multipliers and show that

the delivered savings increase with the width increase.

The rest of the paper is organized as follows: In Section

II, we discuss related literature with emphasis on circuit level

approximation. Section III introduces the partial product per-

foration technique providing the corresponding error analysis

error and error correction methods. In Section IV, we examine

product perforation on different multiplier architectures, ex-

posing the optimal architecture–perforation configuration pairs

under differing error constraints. Finally, Section V evaluates

the product perforation method by comparing it with related

state-of-the-art works and Section VI concludes the paper.

II. RELATED WORK

In this section, related research in the field of hardware

approximate computing is discussed. Both general-purpose ap-

proximation techniques [4], [6], [16] applied to any arithmetic

circuit, as well as circuit-specific approximation either to adder

[7], [10], [11] or multiplier designs [8], [9], [13], [17], [18],

have been presented.

Regarding to the general approximation techniques, VOS

[2], [6] and truncation [4], [5], [12] have been proposed. VOS

is applied in any circuit by lowering the supply voltage below

its nominal value. Decreasing the supply voltage reduces the

circuit’s power consumption, but produces errors caused by

the number of paths that fail to meet the delay constraints [2].

In [12], the authors proposed an automated generation of large

precision floating point multipliers in FPGAs, using sophisti-

cated truncation over underutilized DSPs. In [5], a truncated

multiplier with a constant correction term is proposed, signif-

icantly decreasing the error imposed by typical truncation. [4]

proposed a truncated multiplier with variable correction that

outperforms [5] in terms of error. Probabilistic pruning and

logic minimization techniques have been presented in [16], us-

ing a greedy approach to generate approximate circuits. These

techniques systematically eliminate circuit’s components and

simplify logic complexity according to the circuit’s activity

profile and output significance. Both techniques heavily de-

pend on the application’s characteristics, and in addition the

induced approximation error are not rigorously bounded.

Extensive research has been conducted targeting the im-

plementation of approximate adders [7], [10], [11]. In [11],

the authors developed a probability proof, estimating that the

longest carry chain in an n-bit adder is logn, and produced

a fast inexact adder limiting the carry propagation. In [10],

approximation is performed by decomposing the addition

circuit in an accurate and an approximate inaccurate part.

In [7], the authors build imprecise full adder cells, requiring

fewer transistors, by approximating their logic function and

then use them to build imprecise adders. Although the authors

propose the use of such adders targeting to build approximate

multipliers, it is not clear how they can be used in different

tree architectures and how their error scales in the case of

multi-operand addition. Targeting the creation of approximate

multipliers, [8] proposed a simplified imprecise 2x2 multiplier

cell used as the basic block for constructing larger multiplier

architectures. [9] presented two approximate 4:2 compressors

by modifying the respective accurate truth table, which were

then used to build two approximate multipliers outperform-

ing [8]. The approximate compressors of [9] are used in

Dadda tree with 4:2 reduction. However, different multiplier

architectures were not explored. Based on an approximate

adder that limits the carry propagation, [13] presented a fast

and low-power multiplier scheme with higher error than [9].

However, in all the aforementioned approaches, the imposed

error cannot be predicted as it depends on carry propagation

and the circuits’ implementation and requires simulations over

all possible inputs in order to be calculated.

Recently, [17], [18] proposed the use of m×m multipliers

to perform an n× n multiplication (with m < n). In [17] the

authors statically split the multiplicand in three m-bit segments

and perform the multiplication utilizing the segment contain-

ing the most significant 1 (leading one). However, as stated in

[18], m needs to be at least n/2 to attain acceptable accuracy,

thus limiting the energy savings and the scalability of this

approach. In [18] the authors extended the idea of leading-one

segments to enable dynamic range multiplication and added

a correction term. Although [18] delivers higher accuracy

designs than [17] using smaller values for m, their approach

requires the allocation of extra complex circuitry, i.e. two

leading one detectors, two complex multiplexers for segment

selection, one log(n)-bit comparator, a log(n)-bit adder, and

one 2n-bit barrel shifter. These extra components are expected

to highly increase the circuits complexity introducing non

trivial delay, area, and energy overheads that may considerably

decrease the approximation benefits [17]. This is expected to

be more evident in designs targeting too small error values, in

which the need of larger m values is required.

In this paper, we target the design of power–error efficient

multiplication circuits. We differentiate from previous works

by exploring approximation on the generation of the partial

products. The proposed method can be easily applied in any

multiplier architecture without the need of a special design,

in contrast to related works. In addition, the error imposed by

perforation depends only on the configuration parameters and,

in contrast to existing work, can be analytically calculated

without the need of exhaustive simulations. The latter is

critical as, given the application’s inputs, a precise estimation

of the output quality can be extracted. Finally, the knowledge

of the induced error permits the selection of the configuration

that maximizes the power savings for a specific error bound.

III. ANALYZING PARTIAL PRODUCT PERFORATION

A. Method Analysis

In this section, the partial product perforation method for

the design of approximate hardware multipliers is described.
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(c) Accurate Wallace

(b) Approx. Array
Delay gain: 8 time units
Area gain: 112 area units
Power gain: 7.8%

Stage 1

Stage 2

Stage 1

Stage 2

(h) Approx. Dadda 4:2
Area gain: 127 area units
Power gain: 7.8%

(g) Accurate Dadda 4:2

Stage 1

Stage 2

Stage 1

Stage 2

(f) Approx. Compr. 4:2
Area gain: 112 area units
Power gain: 7.5%

(e) Accurate Compr. 4:2

Fig. 1. The partial product reduction process for 8×8 multiplication with a) Accurate Array, b) Approx. Array c) Accurate Wallace, d) Approx. Wallace, e)
Accurate Compressor 4:2, f) Approx. Compressor 4:2, g) Accurate Dadda 4:2 h) Approx. Dadda 4:2. Approximation is performed by perforating the 3rd and
4th partial products. The boxes with 4 dots are 4:2 compressors, those with 3 are full adders and those with 2 are full or half adders.

Consider two n-bit numbers A and B. The result of their

multiplication A×B is obtained after summing all the partial

products Abi, where bi is the ith bit of B. Thus,

A×B =

n−1
∑

i=0

Abi2
i, bi ∈ {0, 1}. (1)

The partial product perforation technique omits the genera-

tion of k successive partial products starting from the jth one.

A perforated partial product is not inserted in the accumulation

tree and hence, n full adders can be eliminated. Applying

product perforation with j and k configuration values on the

multiplication A×B produces the approximate result

A×B|j,k =

n−1
∑

i=0,
i/∈[j,j+k)

Abi2
i, bi ∈ {0, 1}. (2)

Note that j ∈ [0, n− 1] and k ∈ [1,min(n− j, n− 1)].
Similarly, when Modified Booth Encoding (MBE) [19] is

used for generating the partial products, the result of the

approximate multiplication is given by:

A×B|j,k =

n/2−1
∑

i=0
i/∈[j,j+k)

Ab
MB

i 4i, b
MB

i ∈ {0,±1,±2}. (3)

Fig. 1 depicts an example of applying the partial product

perforation method on different 8-bit multipliers with j=2

and k=2 configuration values. For each architecture, the dot

diagrams [19] of the accurate and the respective perforated

tree are presented. The “dots” represent the bits of the partial

products that have to be accumulated, while the “stages” the

delay of the reduction process followed by each tree. The

dashed boxes with four dots are 4:2 compressors, those with

three are full adders and those with two are either full- or

half-adders. Through the proposed approximation technique,

the power, area and delay of the multiplication circuit are

decreased, making though the computation imprecise. The

higher the order of a perforated partial product, the greater

the error imposed at the final result. Also, since the addition

is an associative and commutative operation, when more than

one partial products are perforated, the total error results from

the addition of the errors produced from the perforation of

each partial product separately.

We use the notation D[j,k,c] to label the different approx-

imate multiplier architectural configurations. The parameter

“D” refers to the tree architecture, j is the order of the first

perforated partial product and k the number of the perforated

partial products. If no j and k are specified, the respective

notation refers to the exact design. Finally, c corresponds to

the partial product generation technique and takes the values

“s” for Simple Partial Products (SPP) or “m” for MBE. For

example, Fig. 1a depicts the array[s] configuration, while Fig.

1b the array[2,2,s].

Partial product perforation should not be confused with

the truncation technique. Truncation eliminates the circuit

that produces specific least significant bits (LSB) of the

accumulation tree, while perforation skips the generation of

partial products and thus, decreases the number of operands

to be accumulated. For example, in an 8-bit array multiplier,

perforating a partial product removes 8 full adders from the

accumulation tree and reduces its delay. In order to attain

similar circuit reduction using truncation, the 6 LSB have to be

truncated. However, truncating the 6 LSB does not offer any

delay reduction. Moreover, in this example, truncation delivers

in all cases incorrect results, whereas the outputs of perforation

are 50% correct. Finally, perforating one partial product (out of

eight) results in a 12.5% loss of information while truncating

the 6 LSB (out of 16) results in a 37.5% information loss.

In Section V, the perforation and truncation techniques are

quantitatively compared in greater detail regarding error and
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power metrics, in order to further expose their differences.

B. Error Analysis

A critical issue for the approximate computing is the error

imposed during computations and how it affects the final

result. In this section, an error evaluation analysis of the partial

product perforation technique is presented. We evaluate error

utilizing the error metrics proposed in [15], i.e. Error Distance

(ED), Mean Error Distance (MED) and Normalized MED

(NMED), as effective metrics for quantifying the accuracy of

approximate arithmetic circuits. ED is defined as the absolute

distance of the fully accurate product P and the approximate

one P ′, ED = |P−P ′|. The MED is the average of EDs for all

inputs and NMED = MED/Pmax, where Pmax = (2n−1)2

in the case of an n-bit multiplier [13]. The Relative Error

Distance (RED) is defined as RED = ED/P and the Mean

RED (MRED) is similarly obtained [13].

1) Error Evaluation: When applying the product perfora-

tion on a n-bit multiplier using SPP generation, the ED of

multiplying two numbers A, B is calculated as follows:

ED(A,B) =
∣

∣P − P ′
∣

∣ = A

n−1
∑

i=0

bi2
i −A

n−1
∑

i=0,
i/∈[j,j+k)

bi2
i

= A

j+k−1
∑

i=j

2ibi = A2jxB ,

(4)

where xB ∈ [0, 2k) and

xB =

k−1
∑

i=0

2ibj+i = ⌊B/2j⌋ mod 2k. (5)

If pA and pB are the probability density functions of A and

B, respectively, then the MED is calculated from:

MED =
∑

∀A,B

pA(A)pB(B)ED(A,B). (6)

Without loss of generality, the rest of our analysis considers

a uniform distribution over the overall n-bit numbers, i.e.,

(A,B) ∈ [0, 2n)2. Hence, pA(A) = 1/2n ∀A and pB(B) =
1/2n ∀B. Therefore, MED is given from:

MED =
∑

∀A,B

ED(A,B)

2n2n
=

1

22n

∑

∀A

∑

∀B

ED(A,B). (7)

Assuming that EDA is the sum of EDs ∀B for a given A,

then:

EDA =
∑

∀B

ED(A,B) = 2n−k
∑

∀xB

xB2
jA

=
2n2j(2k − 1)A

2

(8)

and the sum of all EDs is:

∑

∀A

EDA =
∑

∀A

2n2j(2k − 1)A

2
=

2n2j(2k − 1)

2

(

2n−1
∑

A=0

A
)

=
2j22n(2k − 1)(2n − 1)

4
.

(9)

Using (9), (7) equals:

MED =
2j22n(2k − 1)(2n − 1)

22n4
=

2j(2k − 1)(2n − 1)

4
. (10)

(a)

(b)

Fig. 2. The Pareto power–NMED graph of a 16-bit Dadda 4:2 multiplier with
a) uniform input distribution in [0, 216) and b) inputs obtained from audio
benchmarks. All the configurations that feature NMED < 5 × 10−5 are
presented. Next to each point is denoted the respective (j, k) configuration.

Thus,

NMED =
MED

(2n − 1)2
=

2j(2k − 1)

4(2n − 1)
. (11)

Similarly,

RED(A,B) =
ED(A,B)

A×B
=

xB2
j

B
(12)

and

MRED =
2n

22n

∑

∀B

xB2
j

B
=

∑

∀B

xB2
j

2nB
. (13)

Previous analysis provide rigorous expressions of error

metrics, enabling fast error analysis of differing product per-

foration configurations. As shown later in Section IV, these

analytical error expressions are used in an exploration loop

for deriving optimized approximate design solutions. The an-

alytical equations (11) and (13) consider uniform distribution,

thus in case of differing distributions1 they should be adjusted

according to the new probability density functions (PDF),

since the power–error efficiency of approximate designs highly

depends on the multiplier’s operands distribution. In most

applications, e.g. multimedia, the inputs are highly correlated

[16]. As an intuitive example, Fig. 2a depicts the power–

NMED Pareto graph for a 16-bit Dadda 4:2 multiplier when A,

B follow the uniform distribution over the overall range of n-

bit numbers, while Fig. 2b presents the same graph with inputs

derived from the GSM 06.10 audio benchmark [20]. As shown,

increasing k values result to lower power consumption but

increased error values, while the selection of the j value mostly

depends on the input distribution. Intuitively, for a uniform

distribution over all possible n-bit numbers (Fig. 2a), where all

the bits have equal probability of being one or zero, j should be

kept small to minimize the error. This is also confirmed from

Fig. 2a where the 58% of the Pareto configurations feature

1In case of different input distributions, starting from equation (6) we
apply the same steps given the respective PDFs of the input operands.
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j = 0 and the 42% j = 1. However, as presented in Fig. 2b,

when the inputs are correlated without following a uniform

distribution, we observe that the Pareto front is formed by

configurations featuring many different j values, i.e., 0, 2, 6,

and 15. Previous example shows that there is not a “golden”

value for the j and k but their selection highly depends on the

error constraints and the inputs PDF.

2) Error Correction Methods: In this section, we introduce

two methods to decrease the error induced from the application

of partial product perforation. They are implemented as extra

components complementing the multiplication circuit, thus

their area, power and delay overheads as well as the error

reduction they offer, do not depend on the architecture of

the multiplier. Although multiplication is commutative, i.e.

A×B = B×A, this does not apply in perforated multipliers.

From (4), when multiplying A × B, the imposed error is

proportional to the multiplicand A and the term xB and thus,

decreasing one of these operands decreases the error delivered

to the output. As a result, comparing A,B or xA, xB before the

multiplication and swapping accordingly A,B can reduce the

error.

• Method 1: Comparing xA, xB

In this method xA, xB are compared before the multiplica-

tion and, if xB > xA, A and B are swapped. Therefore, the

imposed error is ED(A,B) = A2jxB , when xA ≥ xB , and

ED(A,B) = B2jxA, when xB > xA. Hence, MED equals:

MED =
∑

∀A,B

pA(A)pB(B)ED(A,B)

= 2j
(

∑

∀A,B:
xA≥xB

pA(A)pB(B)xBA

+
∑

∀A,B:
xA<xB

pA(A)pB(B)xAB
)

.

(14)

If A, B follow the uniform distribution in [0, 2n) (14) equals:

MED = 2j
(

∑

∀A,B:
xA≥xB

xBA

2n2n
+

∑

∀A,B:
xA<xB

xAB

2n2n

)

=
2j

22n

(

∑

∀A,B:
xA=xB

xBA+ 2
∑

∀A,B:
xA<xB

xAB
)

.

(15)

Every number A can be written in the form:

A = MA2
j+k + xA2

j + LA, where MA ∈ [0, 2n−(j+k)) ,

xA ∈ [0, 2k) and LA ∈ [0, 2j). MA and LA are computed

similarly to xA.

The sum (S1(y)) of all numbers A that have xA = y, where

y is a constant and y ∈ [0, 2k), is given by:

S1(y) =
∑

∀A:
xA=y

A =
∑

∀A:
xA=y

(

MA2
j+k + xA2

j + LA

)

=
∑

∀MA

∑

xA=y

∑

∀LA

(

MA2
j+k + xA2

j + LA

)

= 2j
(2n−(j+k) − 1)2n−(j+k)

2
2j+k+

+ 2n−(j+k)2jy2j+

+ 2n−(j+k) (2
j − 1)2j

2
.

(16)

Supposing that B is fixed and xB = z, we get that:

2
∑

∀A:
xA<z

xAB = 2n−k2B
∑

xA<z

xA = 2n−kz(z − 1)B (17)

and
∑

∀A:
xA=z

zA = z
∑

∀A:
xA=z

A = zS1(z). (18)

By evaluating (17) for all B, we obtain:

2
∑

∀A,B:
xA<xB

xAB =
∑

∀B

2n−kz(z − 1)B

= 2n−k
2j−1
∑

z=0

z(z − 1)S1(z).

(19)

By evaluating (18) for all B, we obtain:

∑

∀A,B:
xA=xB

xBA =
∑

∀B

xBS1(xB) = 2n−k
2j−1
∑

z=0

zS1(z). (20)

Using (19) and (20), (15) is equal to:

MED =
2j2n−k

22n

(

2j−1
∑

z=0

z2S1(z)
)

(21)

and NMED =
2j2n−k

22n(2n − 1)2

(

2j−1
∑

z=0

z2S1(z)
)

. (22)

The sum of all REDs is given by:

∑

∀A,B

RED(A,B) = 2j
(

∑

∀A,B:
xA≥xB

xB

B
+

∑

∀A,B:
xA<xB

xA

A

)

= 2j
(

∑

∀A,B:
xA=xB

xB

B
+ 2

∑

∀A,B:
xA>xB

xB

B

)

.
(23)

Denoting CI = 2k − 1 and using that
∑

∀A,B:
xA>xB

xB

B
=

∑

∀B

∑

∀A:
xA>xB

xB

B
=

∑

∀B

(xB

B
2n−k(CI − xB)

)

(24)

and
∑

∀A,B:
xA=xB

xB

B
=

∑

∀B

∑

∀A:
xA=xB

xB

B
=

∑

∀B

(
xB

B
2n−k),

(25)

(23) is equal to:

∑

∀A,B

RED(A,B) = 2j2n−k
∑

∀B

(

xB

B

(

1 + 2(CI − xB)
)

)

= 2j2n−k
2n−1
∑

B=1

(

xB

B

(

1 + 2(CI − xB)
)

)

(26)

and MRED is calculated as a relation of j and k from:

MRED =
2j

2n+k

2n−1
∑

B=1

(

xB

B

(

1 + 2(CI − xB)
)

)

. (27)

• Method 2: Comparing A,B

In this method A,B are compared before the multiplication

and, if A > B, A and B are swapped. As a result the induced
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(a)

(b)

Fig. 3. The percentage reduction of a) NMED and b) MRED achieved by
the correction Methods 1 and 2 with respect to the NMED and MRED values
obtained by product perforation without correction. The x-axis contains all
the [j, k] configurations.

error ED(A,B) = A2jxB , when A ≤ B and ED(A,B) =
B2jxA, when A > B. Similarly to Method 1:

MED =
2j

22n

(

∑

∀A,B:
A≤B

xBA+
∑

∀A,B:
A>B

xAB
)

=
2j

22n

(

∑

∀A,B:
A=B

xAA+ 2
∑

∀A

∑

∀B:
B<A

xAB
)

=
2j

22n

2n−1
∑

A=1

xAA
2,

(28)

NMED =
2j

∑2n−1
A=1 xAA

2

22n(2n − 1)2
, (29)

and MRED =
2j

22n

2n−1
∑

B=1

(xB

B
+ 2xB

)

. (30)

Fig. 3 depicts the error improvement achieved by Methods

1 and 2, for a 16-bit (n=16) multiplier and all the product

perforation configurations (j,k). Fig. 3a presents the NMED

reduction attained by the correction methods with respect to

the NMED of product perforation without an error correction

method. Fig. 3b illustrates the respective graph for the MRED

metric. The proposed corrective methods offer both NMED and

MRED reduction. Method 1 offers higher NMED reduction,

while Method 2 achieves higher MRED reduction. On average,

Method 1 offers 30% NMED and 24% MRED reduction, while

Method 2 offers 26% and 50% reduction, respectively. As a

result, the selection of a corrective method depends on the

application in which the perforated multiplier will be used. If

the magnitude of the error is more important than its absolute

distance from the accurate result, then Method 2 should be

preferred; if not, then Method 1 should be selected. However,

the implementation of Method 1 requires a k-bit comparator,

while Method 2 requires a n-bit one and thus, Method 1

induces smaller area and power overheads. As a result, since

both methods offer significant NMED and MRED reductions

and Method 1 induces less power overhead, it should be

preferred in the case the application is unknown.

Fig. 4. The normalized delay, power and area metrics achieved by applying
product perforation with correction and with j=1 and k=1..8 on a Dadda 4:2
multiplier, with respect to those of the accurate design.

Methods 1 and 2 decrease the error metrics, but their imple-

mentation requires an additional comparator. Fig. 4 presents

the impact of correction Method 1 or 2 on the delay, power,

and area on the Dadda 4:2 multiplier, in respect to the accurate

design. Since the complexity of the comparator is mainly

affected by the perforation variable k, Fig. 4 depicts perforation

configurations that feature j=1 and k= 1 to 8 (similar results are

obtained for other j and for MBE designs). As expected, using

Method 1 with perforation induces 13% overhead on critical

delay, but also retains 26% and 20%, on average, power and

area saving. The respective values for Method 2 are 20%, 26%,

and 17%.

The NMED and MRED analytical relations show that the er-

ror imposed by the product perforation method is bounded and

predictable. Therefore, when the application’s input dataset is

determined, it can be used to calculate the optimal combination

of j and k that produce an error less than a desired upper bound.

IV. EXPLORING THE EFFICIENCY OF

PARTIAL PRODUCT PERFORATION

In this section, the partial product perforation method is

applied to various multiplier architectures in order to explore

how their power consumption, area, delay, and accuracy be-

have considering the perforation configuration variables j and

k. This analysis targets to expose the optimal architecture–

configuration pair for determined error values regarding both

power dissipation and area complexity. This is critical, since

different configurations may not have the same impact on a

multiplier architecture, e.g. an architecture may be the power

optimal one when accurate calculations are performed, but

suboptimal when partial product perforation is applied.

Both SPP and MBE techniques are considered in our

analysis. Regarding the accumulation tree, the most com-

mon architectures are used: 1) Array, 2) Balanced delay, 3)

Compressor 4:2, 4) Counter 7:3, 5) Dadda, 6) Dadda with

4:2 compressors, 7) Redundant binary and 8) Wallace [19],

[21], [22]. The Array is the simplest way to accumulate the

partial products. It consists of successive Carry-Save Adders

(CSA) and has the least complexity but the highest delay. The

Wallace tree reduces to the least possible the number of partial

products in each layer and is theoretically the fastest multi-

operand adder. However, it has very complex interconnections

that do not permit practical implementations. The Balanced

delay tree provides a more regular routing and minimizes

the number of wiring trucks. The Compressor 4:2 tree has

also a regular structure and sums the partial products as a

binary tree does, using 4:2 compressors instead of CSAs.

Unlike the Wallace tree, Dadda makes the fewest reductions



7

Partial Product 
Perforated

Multiplier Generator

Tree 
Architecture Design 

Compiler
(Synthesis)

Approximate 
Multiplier

Delay Area

Netlist 
& SDF Modelsim

(Gate Simulation)

Simulation 
Activity File

Prime Time
(Power Calculation)

n j k

SPP / 
MBE

Error 
Analysis

(Section III.B)

NMED 
MRED

n j k

Power

SPP / 
MBE

Pareto 
designs

Fig. 5. The flow used to evaluate the Partial Product Perforation method on
different multiplier architectures.

needed in each layer and can achieve similar overall delay, but

requires less gates. The Dadda tree is based on 3:2 counters

(full adders) but also 2:2 counters (half adders) to reduce the

hardware complexity. The Dadda 4:2 and Counter 7:3 trees use

the same reduction strategy with the Dadda tree using though

4:2 and 7:3 compressors, respectively. In the Redundant binary

tree, the partial products are in a redundant representation and

the addition is performed by redundant binary adders [23] in

the form of a binary tree. A Carry Look-Ahead adder is used

as the final adder in all multipliers. Fig. 1 depicts some typical

reduction schemes of the aforementioned tree architectures and

the respective perforated trees with configuration j=k=2. Using

the unit gate model2 [24], the area of the Array is decreased

by 112au and its delay by 8tu. The respective values for the

Wallace tree are 115au and 4tu. The delay of the Dadda 4:2

and Compressor 4:2 is not decreased but their area decrease

is 127au and 112au, respectively.

Exploration and analysis: The flow used for our evaluation

is summarized in Fig. 5. For our analysis, 16-bit unsigned3

multiplier architectures are considered. They are implemented

in structural Verilog and synthesized using Synopsys De-

sign Compiler and the TSMC 65nm standard cell library.

We simulate the designs using Modelsim and calculate their

power consumption with Synopsys PrimeTime triggering the

average mode of calculation. All the possible combinations

of j and k are explored and 1376 architectural configurations

are examined in total. The metrics measured for each design

are the NMED, MRED, minimum delay and, at the relaxed

period of 2ns, its power consumption and area complexity.

In [25], a detailed power, area and delay characterization and

analysis of the examined perforated multiplier architectures

has been performed showing that the aforementioned metrics

are scaling gracefully, i.e. average slope -0.16%, -242% and

-0.03% respectively, for increased values of k.

Since power, area, and delay metrics scale differently for

each multiplier architecture when different error values are

considered, we illustrate in Fig. 6 the power–area Pareto

curves for different NMED values in order to distinguish the

optimal designs. We consider the NMED values of 10−4, 5×
10−4 and 10−3 which enclose a large set of different partial

product perforation configurations while keeping the error

2Area/delay of a full adder is 7 area units (au)/ 4 time units (tu), of a
half adder 3au/2tu and of a 4:2 compressor 14au/6tu

3Applying product perforation to signed multiplication is performed
similar to the unsigned one, except that we do not perforate the last partial
product. Therefore, no extra circuit is needed and similar results are expected.

Fig. 6. The Power–Area Pareto curves for different NMED values4.

Fig. 7. Box plots of power consumption for NMED < 5× 10−4.

small. The optimal accurate design is the Dadda[m]. Moreover,

the Dadda4:2[m]5 architecture appears in all curves but with

different product perforation configuration (i.e., different j and

k values), depending on the NMED bound. In respect to the

accurate design, perforation achieves up to 50% power, 45%

area and 35% delay reductions for only 0.1% error (i.e.,

NMED < 10−3).

Aiming to elucidate the impact of partial product perfora-

tion on each multiplier architecture, we examine their power

variation (i.e., the range of power values) for a bounded error.

Fig. 7 presents the box plot diagram for all the architectures

with regard to power, considering all the product perforation

configurations that result to NMED < 5×10−4. The MBE-

based architectures exhibit smaller variation and lower median

than the respective SPP-based ones. The lowest median and

variation values are observed for the counter7:3[m] archi-

tecture. Thus, its power consumption for various perforation

configurations is concentrated in a smaller range, making its

power behavior more predictable. The same conclusion is

confirmed in Fig. 6 where the counter7:3[m] for NMED values

5×10−4 and 10−3 is the Pareto optimal point with the lowest

power.

V. EXPERIMENTAL EVALUATION

A. Comparative Study on Circuit Level

In this section, we extensively evaluate the efficiency of par-

tial product perforation in terms of power, area, and error, and

we compare it with state-of-the-art approximation techniques,

which apply either truncation [4], logic approximation [9] or

the VOS technique [6]. Using the two inexact 4:2 compressors

of [9] at the 16 LSB columns, two approximate 16-bit multi-

pliers ACM1 and ACM2 are implemented in structural Verilog

4The respective MRED values of the designs can be derived in a
straightforward manner from the error equations presented in Section III-B
utilizing the annotated j and k parameter values.

5In the remainder, we consider as driver circuit the Dadda 4:2.
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(a)

(b)

Fig. 8. Comparison of partial product perforation with ACM1, ACM2 [9],
TR10, TR16, and VOS for (a) SPP and (b) MBE architectures.

and synthesized at 2ns using Synopsys Design Complier and

PrimeTime. Error metrics calculation is performed through

exhaustive Matlab simulation. In order to compare the partial

product perforation with the VOS technique, we use the

Synopsys Composite Current Source model (CCS) [26]. CCS

models are proven to deliver signoff-level accuracy to within

2% of HSPICE simulation, are designed to be scalable for

voltage, temperature and process, and offer better accuracy

than the Non-Linear Delay and Power Models [26]. For the

exact multiplier architectures of Section IV, we scale the

supply voltage from 1V (nominal) to 0.80V and measure their

power consumption and error metrics using 105 randomly gen-

erated inputs. Regarding truncation, two truncated multipliers

with variable correction [4] that use the Dadda 4:2 tree to

accumulate the partial products are implemented. In the first

one (TR10) the 10 LSBs are truncated while in the second

(TR16) the 16 ones. For the perforated multipliers, the error

correction Method 1 (Section III-B2) is used.

Fig. 8 presents comparative results on the power, area,

NMED, and MRED metrics after applying: i) the four different

partial product perforation configurations, ii) the approximate

compressors according to the technique presented in [9]

(ACM1 and ACM2), iii) the VOS technique and iv) the trunca-

tion (TR10 and TR16) on a 16-bit Dadda 4:2 multiplier using

SPP (Fig. 8a) and MBE (Fig. 8b). The examined perforated

designs exhibit different order of perforation (j variable) and

they are on (designs Dadda4:2[0,8,s] and Dadda4:2[1,5,s])

or close to (designs Dadda4:2[2,2,s] and Dadda4:2[3,4,s])

the power-NMED Pareto optimal curve of the Dadda 4:2

(a)

(b)

Fig. 9. a)The Probability Density Function of the ED for the ACM2 [9] and
the partial product perforation Dadda 4:2 multiplier with j = 1 and k = 5. ED

is in the Q0.32 number format (fixed point representation of 32-bit integers in
the range [0:1)). b) The respective Probability Density Function of the RED.

architecture. Similar selection has been performed for the

MBE-based designs.

The proposed Partial Product Perforation for the SPP-

based designs, included in Fig. 8a, delivers power savings

of up to 49% and area reduction of up to 40% compared

to the respective accurate design, while the NMED value is

6.5×10−4 at most and the MRED one goes up to 1.1×10−2.

The respective values for MBE-based configurations (Fig.

8b) are 47% power savings, 38% area reduction, NMED

1.8×10−3, and MRED 2.5×10−2. The approximate com-

pressors multipliers ACM1, ACM2 [9] with SPP (Fig. 8a)

have 15%, 20% power and 15%, 18% area savings, respec-

tively, over the accurate Dadda 4:2 multiplier. Their NMED

values are 2×10−5 and 1.5×10−5, while their MRED ones

are 5.3×10−3 and 5.6×10−3, respectively. For the MBE (Fig.

8b), ACM1, ACM2 have 16%, 23% power savings and 8%,

11% area reduction, respectively, over the accurate Dadda 4:2

multiplier. Their NMED values are 2.4×10−4 and 1.6×10−4

while their MRED ones are 17 and 24 respectively. Regarding

the MBE-based designs, [9] is less efficient since less partial

products compared to the SPP technique are accumulated in

the tree and and an error occurring in one column has a greater

impact on the output. VOS does not deliver any area reduction,

offering though significant power savings compared to the

accurate design. When decreasing the supply voltage of the

SPP-based design to 0.80V (Fig. 8a), the power consumption

is 1.06mW (i.e., 37.9% less than the accurate one). Similarly,

the power consumption of the MBE-based design (Fig. 8b) is

0.94mW (i.e., 37.7% less than the precise design). However,

even for small power savings (10% at 0.95V), the NMED

and MRED values of VOS are too large, more than 0.65 and

10 respectively, as VOS errors are mainly impacting MSBs,

resulting to large ED. The truncated multipliers TR10 and

TR16 [4], when SPP is used, offer 14%, 46% power savings

and 18%, 44% area reduction for 1.1×10−7, 1.2×10−1 NMED

and 0.4, 0.8 MRED, respectively. The respective values for

the MBE-based designs are 15%, 44% power savings, 20%,

46% area reduction, 2× 10−5, 5.0×10−4 NMED and 4.2, 4.3

MRED.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 10. The a) 16-bit input image and the result of the geometric mean filter using the b) accurate multiplier Dadda4:2[s], c) Dadda4:2[1,5,s] w/o correction,
d) Dadda4:2[1,5,s] w/ correction Method 1, e) Dadda4:2[3,4,s] w/o correction, f) Dadda4:2[3,4,s] w/ correction Method 1 and g) ACM2.

(a) (b) (c) (d) (e) (f) (g)

Fig. 11. The a) 16-bit input image and the result of the Canny edge detection using the b) accurate multiplier Dadda4:2[s], c) Dadda4:2[1,5,s] w/o correction,
d) Dadda4:2[1,5,s] w/ correction Method 1, e) Dadda4:2[3,4,s] w/o correction, f) Dadda4:2[3,4,s] w/ correction Method 1 and g) ACM2.

On average, the partial product perforation configurations,

illustrated in Fig. 8, exhibit lower MRED values than ACM2,

but higher NMED. The large NMED value of partial product

perforation implies that it may produce large ED. However, the

small value of MRED shows that such large ED is insignificant

compared to the accurate result. The aforementioned points

can be further explained based on the error analysis of Section

III-B. As shown, the ED is proportional to the inputs and,

thus, it can be as large as the input numbers. However,

RED = xB2
j/B and since few partial products are removed,

the nominator is much smaller than B, resulting to small

relative error values. On the other hand, [9] produces smaller

ED, but its errors are of greater significance compared to the

exact results. This behavior is also captured by Fig. 9 where

the Probability Density Function (PDF) of the ED and RED for

ACM2 and Dadda4:2[1,5,s] is presented. ACM2 exhibits lower

NMED but higher MRED compared with Dadda4:2[1,5,s].

Fig. 9a depicts the PDF of the ED for the aforementioned

multipliers. ACM2 has significantly greater error probability,

but its probable error values are concentrated in a smaller

range. In contrast, the Dadda4:2[1,5,s] errors are spread to a

wider range and have almost equal, but very low, probability

to appear. Fig. 9b depicts the same graph for the RED metric.

As presented in Fig. 9b, ACM2[s] produces larger RED values

than Dadda4:2[1,5,s] and with greater probability.

To summarize, the partial product perforation technique

shows significant gains compared to the accurate design and

state-of-the-art approximate techniques. On average, compared

to VOS, partial product perforation configurations attain 3%

lower power consumption and 96% lower MRED, when SPP

is used, and 9% and 99%, respectively, when MBE is used.

Compared to [9] for SPP schemes, their power consumption

and their MRED are 6% and 9% lower, respectively. For

MBE schemes, the respective values are 17% lower power

and 3 orders of magnitude lower MRED. Compared with

the SPP truncation [4], the perforated multipliers of Fig. 8

deliver on average 3% higher power for 99% lower MRED,

while for MBE the respective values are 4% lower power

and 2 orders of magnitude lower MRED. Finally, Table I

offers a more straightforward comparison among the examined

approximation schemes, by ranking them according to their

TABLE I
RANKING OF THE SAVINGS AND ERRORS OF THE APPROXIMATE

MULTIPLIERS

Design Power Gain Area Gain NMED MRED

SPP MBE SPP MBE SPP MBE SPP MBE SPP MBE

[0,8,s] [0,4,m] 1 1 2 2 8 7 6 3

TR16 2 2 1 1 11 8 11 9

VOS 0.80 3 3 11 11 10 11 9 7

VOS 0.85 4 5 11 11 9 9 8 6

[1,5,s] [1,2,m] 5 6 3 6 5 3 2 2

ACM2 6 8 5 7 2 4 5 11

[3,4,s] [0,2,m] 7 7 7 5 6 1 3 1

ACM1 8 9 6 8 3 5 4 10

TR10 9 10 4 3 1 2 10 8

[2,2,s] [2,3,m] 10 4 8 4 4 10 1 4

VOS 0.95 11 11 11 11 7 6 7 5

savings and error metrics. The examined designs have been

grouped in four sub-groups each one with designs exposing

similar power and/or error characteristics. In each sub-group,

the perforated multipliers deliver the lowest power and MRED

values and, in most cases, the lowest NMED and area as well.

B. Comparative Study on Real Life Applications

In this section, we evaluate the efficiency of the proposed

technique on real-life use cases from the image processing

and data analytics domains. For our analysis, we consider

the Canny edge detection [27] and Geometric Mean filters

from the image processing domain and the K-means clustering

[28] from the data analytics domain, respectively. All the

examined algorithms are implemented in C++, while for the

image processing ones, OpenCV library is used.

Geometric mean filter removes noise from images, offering

better results than the arithmetic mean filter for Gaussian type

noise. The geometric mean filter with parameter r filters an

image by replacing each pixel’s value by the geometric mean

of the values of all the neighboring pixels that are inside a

(2r + 1) × (2r + 1) block centred on that pixel. For our

evaluation, the r parameter is set to 3. We approximate the

Geometric mean by replacing the multiplication between the

pixels with an approximate 16 × 16 multiplier. We used as
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input the 16 bits (16 bits/pixel) grayscale image depicted in

Fig. 10a. To evaluate the accuracy of the output images of the

Geometric mean we use the Peak Signal Noise Ratio (PSNR).

Canny edge detection [27] filter, is considered to be an

optimal edge detector. Specifically, i) it masks the image by

applying a Gaussian filter to remove the noise, ii) it calculates

the gradient of the image to find the edge strength, iii) it

applies a non-maximum suppression to keep only the local

maxima, iv) it determines the potential edges by thresholding,

v) and, finally, it tracks edges by hysteresis, i.e, suppresses all

the edges that are weak and not connected to strong edges.

The size of the Gaussian kernel is 7 × 7 with 1.1 standard

deviation value and uses 16-bit fixed point arithmetic. We

approximate Canny edge by replacing the multiplication in

the Gaussian filter with an approximate 16×16 multiplier. We

used as input the 16 bits grayscale image depicted in Fig. 11a.

The percentage of the edges detected using the approximate

multiplier over those detected using the accurate one is used

as our quality metric.

K-means is a popular algorithm for clustering data points

from a multi-dimensional space into k clusters. It uses a two

phase iterative method and aims to partition the data points

into sets, so as to minimize the within-cluster sum of distance

functions of each point in the cluster to the center. We use the

Euclidean distance as a distance function. We approximate

the K-means algorithm by replacing the multiplications in

the calculation of the Euclidean distance with an approximate

16 × 16 multiplier. We use a random generated input dataset

of 100,000 4-dimensional points with 16 bits per dimension.

The input dataset is clustered in 100 clusters. To evaluate the

accuracy of the K-means algorithm we use the average relative

L2-Norm, i.e.,
〈

|xacc−xapprox|2
|xacc|2

〉

.

Similar to [9], [10], the approximate multiplier is considered

as part of a general processing system that implements the

aforementioned algorithms. The rest of hardware components

(except the multiplier) are considered to deliver accurate re-

sults and thus, any applications inaccuracy and energy savings

result from the usage of the approximate multiplier. The

energy values of each multiplication operation are delivered

by post-synthesis simulations of the approximate multipliers

on the input data traces extracted by the applications execution.

Note that in the Canny edge detection and Geometric mean

algorithms the number of the multiplications depends only on

the image size and thus, it is the same for the accurate as

well as the approximate version of the algorithm. On the other

hand, the iterations performed by the K-means algorithm are

not constant and as a result, the number of multiplications

in the accurate may differ from the ones in the approximate

version.

Fig. 10 depicts both the input image and the output image of

the geometric mean filter when using the accurate multiplier

Dadda4:2[s], the perforated multipliers Dadda4:2[1,5,s] and

Dadda4:2[3,4,s] with and without any correction method, and

the approximate multiplier ACM2. Fig. 11 shows the same

images for the Canny edge detection. Table II summarizes

the values of the energy savings and quality metrics of each

application when using the aforementioned multipliers.

The use of the Dadda4:2[1,5,s] multiplier results in 85.95

dB PSNR for the geometric mean and 91.04% edges detected

for the Canny edge detection. The application of the corrective

Method 1 with the Dadda4:2[1,5,s] results in a small decrease

of the energy savings (7.41%), but delivers better outputs as

the PSNR increases by 2.9% and the edges detected by 7.6%.

The Dadda4:2[3,4,s] multiplier detects the 84.79% of the edges

and its PSNR is 89.93 dB. The use of correction Method 1

with the Dadda4:2[3,4,s] decreases the energy reduction by

10%, detects 16.6% more edges, and increases its PSNR by

3.1%. When ACM2[s] [9] is used, the output image has 86

dB PSNR and 97.85% edges detected. When we compare

Dadda4:2[1,5,s] with ACM2, we observe that the former offers

25.6% higher energy reduction, detects 7% less edges, and

has the same PSNR as the latter. When we compare ACM2[s]

with Dadda4:2[3,4,s] using Method 1, we find that the latter

delivers 18.6% lower energy savings, detects 1.8% more

edges, and has 7.8% higher PSNR. Finally, when we compare

Dadda4:2[1,5,s] using Method 1 with ACM2[s], the former

achieves 16.3% higher energy reduction, detects 0.5% more

edges, and has 2.8% higher PSNR. Regarding to the K-means

algorithm, using a correction Method with product perforation

does not deliver any quality improvement. This is explained

by the fact that in the Euclidean distance the multiplier is

used as a squarer and as a result swapping the multiplicands

does not decrease the multiplication’s error. Moreover, we

observe that using ACM2[s] in the K-means algorithm does

not offer any energy reduction. The implementation of the K-

means algorithm with ACM2[s] fails to converge and exits

after reaching a maximum number of allowed iterations. As

a result, although ACM2[s] has lower power consumption

compared with the accurate multiplier, the increased number

of multiplications results in an energy increase of the K-means

algorithm.

C. Impact of Bit-width Scaling

In this section, we examine the scalability of the proposed

technique in terms of increased multiplier’s bit-width. More

specifically, we study the impact of scaled bit-widths, i.e. 16-

up to 128-bits, on the proposed perforation technique focusing

on the delivered accuracy (NMED, MRED) and power and area

gains. We consider the Dadda 4:2 as our driver architecture

solution and NMED ≤ 10−4 as our quality constraint. Fig.

12a depicts for each of the examined bit-widths the power and

area reduction delivered by the perforated Dadda 4:2 solutions

in respect to their accurate designs. In a complementary

manner and for the same scaled bit-widths, Fig. 12b presents

the NMED and MRED values when targeting 50% power

reduction. Specifically, for NMED ≤ 10−4, the power and

area gains for 16-bit width is 21% and 31%, respectively. The

respective gains in the case of 128-bit width design scales

up to 74% and 91% regarding to power and area, respectively.

Similarly, Fig. 12b shows that for the same relative power gain,

i.e. 50%, the 16-bit solution delivers an NMED and MRED

value of 1.95 × 10−3 and 2.61 × 10−2, respectively. For the

128-bit solution, NMED and MRED reduce to 1.73×10−18 and

2.05 × 10−16, respectively. Thus, partial product perforation
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TABLE II
EVALUATION OF PARTIAL PRODUCT PERFORATION IN IMAGE PROCESSING AND DATA ANALYTICS ALGORITHMS

Multiplier

Canny Edge Geometric Mean K-Means

PSNR Energy Gain Edges Detected Energy Gain avg. Relative L2-Norm Energy Gain

(dB) (mJ) (%) (mJ) (%) (mJ)

Accurate Dadda4:2[s]a Inf. 0 100.00 0 0 0

Dadda4:2[1,5,s] 85.95 1.18× 10−3 91.04 1.94× 10−2 5.08 18.94

Dadda4:2[1,5,s] - Meth. 1 88.45 1.09× 10−3 98.33 1.79× 10−2 5.08 18.04

Dadda4:2[3,4,s] 89.93 8.51× 10−4 84.79 1.40× 10−2 7.18 9.13

Dadda4:2[3,4,s] - Meth. 1 92.75 7.63× 10−4 99.58 1.25× 10−2 7.18 8.04

ACM2[s] 86.00 9.38× 10−4 97.85 1.54× 10−2 8.97 -6.06

aThe energy required for the accurate multiplication process in the Canny Edge, the Geometric mean, and the K-means algorithm is 3.73 × 10−3mJ,
6.13× 10−2mJ, and 45.14mJ, respectively.

offers better results as the multiplier’s bit-width increases, i.e.,

higher power and area reduction for the same error constraints

or lower error values for the same power savings.

This good scaling behavior for increased multiplier’s bit-

widths can be also theoretically confirmed utilizing the error

analysis of Section III-B. Let us assume two multipliers

M1,M2 with different bit-widths n1, n2 with n1 < n2 having

the same j value for the partial product perforation. For both

multipliers to achieve the same NMED the following relation

should hold, according to Eq. (11):

2j(2k1 − 1)

4(2n1 − 1)
=

2j(2k2 − 1)

4(2n2 − 1)
=⇒

(2n2 − 1)

(2n1 − 1)
=

(2k2 − 1)

(2k1 − 1)
. (31)

Given that n1 < n2 =⇒ k1 < k2. High k values

imply the perforation of more partial products. Thus, for two

approximate multipliers with the same NMED but different

bit-widths, the higher the multiplier’s bit-width the higher the

the number of partial products that should be perforated, and

thus the higher the power gains achieved in respect to their

accurate counterparts.

VI. CONCLUSION

In this paper, we proposed the partial product perforation

technique for producing approximate hardware multipliers.

The proposed technique omits a number of partial products

enabling high area and power savings, while retaining high

accuracy. Through a rigorous error analysis, we analytically

characterised the induced error metrics proving that the error is

bounded and predictable and we proposed two error correction

methods that trade a small increase in power for high error

reduction. We explored product perforation on a large set

of multiplier architectures, evaluating its impact on different

architectures and error bounds. In comparison to state-of-the-

art approximation techniques, we showed that the proposed

approach achieves significant gains in power, area, and quality

metrics of image processing and data analytics algorithms.

Finally, we showed that our technique is scalable, offering

better results as the multiplier’s bit-width increases.

REFERENCES

[1] V. K. Chippa et al., “Analysis and characterization of inherent appli-
cation resilience for approximate computing,” in Design Automation

Conference, May 2013, pp. 1–9.

(a) (b)

Fig. 12. Impact of multiplier’s bit-width scaling on partial product perforation.
a) Power and area gains for NMED ≤ 10−4, and b) NMED and MRED

values when targeting 50% power savings.

[2] R. Venkatesan et al., “Macaco: Modeling and analysis of circuits for
approximate computing,” in Int. Conf. on Computer-Aided Design, Nov.
2011, pp. 667–673.

[3] S. T. Chakradhar and A. Raghunathan, “Best-effort computing: Re-
thinking parallel software and hardware,” in Design Automation Con-

ference, Jun. 2010, pp. 865–870.

[4] E. King and E. Swartzlander, “Data dependent truncated scheme for
parallel multiplication,” in Proc. of the Thirty First Asilomar Conference

on Signals, Circuits and Systems, 1998, pp. 1178–1182.

[5] M. Schulte and E. Swartzlander, “Truncated multiplication with correc-
tion constant,” in VLSI Signal Processing VI, Oct 1993, pp. 388–396.

[6] Y. Liu et al., “Computation error analysis in digital signal processing
systems with overscaled supply voltage,” IEEE Trans. VLSI Syst.,
vol. 18, no. 4, pp. 517–526, Apr. 2010.

[7] V. Gupta et al., “Impact: Imprecise adders for low-power approximate
computing,” in Int. Symp. on Low Power Electronics and Design, Aug.
2011, pp. 409–414.

[8] P. Kulkarni et al., “Trading accuracy for power with an underdesigned
multiplier architecture,” in 24th Int. Conf. on VLSI Design, Jan. 2011,
pp. 346–351.

[9] A. Momeni et al., “Design and analysis of approximate compressors for
multiplication,” IEEE Trans. Comput., vol. 64, no. 4, pp. 984–994, Apr.
2015.

[10] N. Zhu et al., “Design of low-power high-speed truncation-error-tolerant
adder and its application in digital signal processing,” IEEE Trans. VLSI

Syst., vol. 18, no. 8, pp. 1225–1229, Aug. 2010.

[11] A. K. Verma et al., “Variable latency speculative addition: A new
paradigm for arithmetic circuit design,” in Design, Automation and Test

in Europe, Mar. 2008, pp. 1250–1255.

[12] Banescu et al., “Multipliers for floating-point double precision and
beyond on fpgas,” SIGARCH Comput. Archit. News, vol. 38, no. 4, pp.
73–79, Jan. 2011.

[13] C. Liu et al., “A low-power, high-performance approximate multiplier
with configurable partial error recovery,” in Design, Automation and Test

in Europe, Mar. 2014.

[14] S. Sidiroglou et al., “Managing performance vs. accuracy trade-offs with
loop perforation,” in Foundations of software engineering (ESEC/FSE),
Sep. 2011, pp. 124–134.



12

[15] J. Liang et al., “New metrics for the reliability of approximate and
probabilistic adders,” IEEE Trans. Comput., vol. 62, no. 9, pp. 1760–
1771, Jun. 2012.

[16] Lingamneni et al., “Synthesizing parsimonious inexact circuits through
probabilistic design techniques,” ACM Trans. Embed. Comput. Syst.,
vol. 12, no. 2s, pp. 93:1–93:26, May 2013.

[17] S. Narayanamoorthy et al., “Energy-efficient approximate multiplication
for digital signal processing and classification applications,” Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 23, no. 6,
pp. 1180–1184, June 2015.

[18] S. Hashemi et al., “DRUM: A dynamic range unbiased multiplier for
approximate applications,” in Proceedings of the IEEE/ACM Interna-

tional Conference on Computer-Aided Design, 2015, November 2015,
pp. 418–425.

[19] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs.
NY: Oxford University Press, 2000.

[20] C. Lee et al., “Mediabench: a tool for evaluating and synthesizing
multimedia and communications systems,” in Microarchitecture, 1997.

Proceedings., Thirtieth Annual IEEE/ACM International Symposium on,
Dec 1997, pp. 330–335.

[21] D. Zuras and W. McAllister, “Balanced delay trees and combinatorial
division in vlsi,” Solid-State Circuits, IEEE Journal of, vol. 21, no. 5,
pp. 814–819, Oct 1986.

[22] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,
vol. 34, no. 5, pp. 349–356, Mar 1965.

[23] B. Jose and D. Radhakrishnan, “Delay optimized redundant binary
adders,” in Electronics, Circuits and Systems, 2006. ICECS ’06. 13th

IEEE International Conference on, Dec 2006, pp. 514–517.
[24] N. Weste and D. M. Harris, Datapath Subsystems, CMOS VLSI Design:

A Circuits and Systems Perspective. Addison-Wesley, 2010.
[25] G. Zervakis et al., “Approximate multiplier architectures through partial

product perforation: Power-area tradeoffs analysis,” in Proc. of the 25th

Great Lakes Symposium on VLSI, 2015, pp. 229–232.
[26] G. Mekhtarian, Composite Current Source (CCS) Modeling Technology

Backgrounder. Synopsys, Inc., Nov. 2005.
[27] J. Canny, “A computational approach to edge detection,” Pattern Analy-

sis and Machine Intelligence, IEEE Transactions on, vol. PAMI-8, no. 6,
pp. 679–698, Nov 1986.

[28] C. Ranger et al., “Evaluating mapreduce for multi-core and multiproces-
sor systems,” in High Performance Computer Architecture, 2007. HPCA

2007. IEEE 13th International Symposium on, Feb 2007, pp. 13–24.

Georgios Zervakis received his Diploma at the
Department of Electrical and Computer Engineering
from the National Technical University of Athens,
Greece in 2012. Since 2012 he is a Ph.D. student at
the National Technical University of Athens in the
field of digital and microprocessor system design.
His research interests include approximate comput-
ing, VLSI arithmetic circuits, low power design and
cryptography.

Kostas Tsoumanis received his Diploma at the
Department of Electrical and Computer Engineering
from the National Technical University of Athens
in 2010. He is currently working on his Ph.D.
thesis at the National Technical University in the
Department of Electrical and Computer Engineering.
His research interests include hardware-efficient im-
plementation of arithmetic operations and low-power
design of Digital Signal Processing algorithms. He is
a co-author in research papers published in interna-
tional conferences. He is an IEEE student member.

Sotirios Xydis received the Diploma and the Ph.D.
degree in electrical and computer engineering from
the National Technical University of Athens, Athens,
Greece, in 2005 and 2011, respectively. He was for
two years as Post-Doctoral Research Fellow position
with Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, Italy. Cur-
rently, he is a Research Associate at National Tech-
nical University of Athens. His research interests
include design space exploration for system level
and datapath synthesis, design and optimization of

arithmetic VLSI circuits and power management multi-/many-core and re-
configurable architectures. He has published over 60 technical and research
papers in scientific books, international journals and conferences. Dr. Xydis
is the recipient of the two best paper awards from the NASA/ESA/ IEEE
International Conference on Adaptive Hardware and Systems 2007 (AHS
2007) and from the 4th Workshop on Parallel Programming and Run-Time
Management Techniques for Many-core Architectures (PARMA 2013).

Dimitrios Soudris Dimitrios Soudris received his
Diploma in Electrical Engineering from the Uni-
versity of Patras, Greece, in 1987. He received the
Ph.D. Degree in Electrical Engineering, from the
University of Patras in 1992. He was working as
a Professor in Dept. of Electrical and Computer
Engineering, Democritus University of Thrace for
thirteen years since 1995. He is currently working
as Associate Professor in School of Electrical and
Computer Engineering, Dept. Computer Science of
National Technical University of Athens, Greece.

His research interests include embedded systems design, reconfigurable
architectures, reliability and low power VLSI design. He has published
more than 340 papers in international journals and conferences. Also, he is
coauthor/coeditor in seven books of Kluwer and Springer. He is leader and
principal investigator in numerous research projects funded from the Greek
Government and Industry, European Commission (ESPRIT II-III-IV and 5th &
7th IST), ENIAC-JU and European Space Agency. He has served as General
Chair and Program Chair for PATMOS 99 and 2000, respectively, General
Chair of IFIP-VLSI-SOC 2008 and General Co-Chair of PARMA Workshop
2013. Also, he received an award from INTEL and IBM for the EU project
LPGD 25256, awards in ASP-DAC 05 and VLSI 05 for EU AMDREL project
IST-2001-34379.

Kiamal Pekmestzi received his Diploma in Electri-
cal Engineering from the National Technical Uni-
versity of Athens, Athens, Greece, in 1975, and
the Ph.D. degree in Electrical Engineering from
the University of Patras, Patras, Greece, in 1981.
From 1975 to 1981 he was a Research Fellow
with the Electronics Department, Nuclear Research
Center ”Demokritos”. From 1983 to 1985, he was
a Professor with the Higher School of Electronics,
Athens, Greece. Since 1985, he has been with the
National Technical University of Athens, where he

is currently a Professor with the Department of Electrical and Computer Engi-
neering. His research interests include efficient implementation of arithmetic
operations, design of embedded and microprocessor-based systems, architec-
tures for reconfigurable computing, VLSI implementation of cryptography,
and digital signal processing algorithms.


