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Abstract: A method of designing achromatic elliptical polarizers using a combination of 

multiple birefringent waveplates is demonstrated. This approach has a simple geometric 

interpretation and simplifies the problem of designing an achromatic elliptical polarizer to 

find overlapping arcs on the Poincaré sphere. The technique is applied to the design of 

achromatic elliptical polarizers for a broadband division-of-focal-plane full-Stokes imaging 

polarimeter for visible wavelength band (λ = 450nm to 650nm). An achromatic elliptical 

polarizer sample with a two-layer retarder is fabricated using liquid crystal polymer. The 

performance of the polarizer sample is measured and compared with the theoretical 

calculation. For comparison, a superachromatic polarizer design (λ = 400nm to 1μm) is also 

presented by using three-layer and four-layer retarder configurations. 

© 2017 Optical Society of America 

OCIS codes: (120.4570) Optical design of instruments; (120.4610) Optical fabrication; (120.5410) Polarimetry; 

(230.5440) Polarization-selective devices; (260.5430) Polarization. 
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1. Introduction 

Achromatic polarizers are optical filters that convert one polarization state to another over a 

broad wavelength range. This type of optical filter serves as an important component for 

many instruments with applications in photography, spectroscopy, ellipsometry, microscopy, 

polarimetry, display, and remote sensing, to name a few. In polarization imaging, the 

achromatic polarizer is a key and necessary component to realize a broadband full-Stokes 

camera. With a visible achromatic elliptical polarizer, we can measure the polarization of the 

entire visible spectrum, instead of only at one wavelength. This increases the amount of 

available light and improves the signal-to-noise-ratio of the measurement. An achromatic 

elliptical polarizer generally has two components: a retarder and a polarizer. A retarder 

introduces fixed phase retardance between two orthogonal polarization states, and this 

retardance is generally wavelength- and temperature- dependent. A polarizer transmits a fixed 

polarization state and blocks the orthogonal polarization state. An ideal polarizer has low loss 

for the transmitted state and high extinction ratio. Several designs have been studied for 

achromatic and superachromatic quarter-wave and half-wave retarders using multi-layer films 

[1–7]. In this paper, we consider the problem of designing an achromatic elliptical polarizer 

of arbitrary ellipticity. The achromatic elliptical polarizer consists of a multi-layer retarder 

and an achromatic polarizer, which can be either a linear or circular polarizer. In section 2, 

the design of the retarder using a multi-layer configuration is presented. For a two-layer 

retarder, the design problem has a simple geometric interpretation of finding two overlapping 

arcs on the Poincaré sphere. In section 3, the technique is applied to the design of elliptical 

polarizers that operate in the visible spectrum and can be used in an optimized polarimeter. It 

is shown that our achromatic elliptical polarizer design can be applied in existing polarimetry 

techniques [8–11] and provide a solution to full-Stokes measurement of broadband light. In 

section 4, the fabrication and testing of the achromatic elliptical polarizer are presented. The 

measured performance of the polarizer is compared with the theoretical calculation. In the 

final section, generalization of the technique to better performance by addition of retarder 

layer is discussed, with particular emphasis on flatter wavelength response and larger 

operating wavelength range. 
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2. Theory of achromatic elliptical polarizers 

In this section, we discuss the theory of designing an achromatic elliptical polarizer. By 

definition, analyzers are polarization elements that transmit a desired polarization state in 

maximum transmittance, while polarizers are polarization elements that generate a desired 

polarization state [12]. There are three main approaches to making an achromatic elliptical 

polarizer. One approach uses negative dispersion materials [13] or form birefringence [14–16] 

to reduce the variation of retardance due to the wavelength change. Another approach uses 

helical materials with variable pitch, such as cholesteric liquid crystal polymer, to achieve a 

broadband circular polarizer [17,18]. This method is generally applicable to circular 

polarization only. The topic of this paper is the third approach, which utilizes a combination 

of multi-layer retarders and one polarizer to form an achromatic elliptical polarizer. Similar 

techniques have been applied to the design of achromatic circular polarizers [19,20], but our 

design is applicable to any elliptical polarization with arbitrary ellipticity. Thus, our technique 

is more general and can be applied to a broader range of applications. 

 

Fig. 1. The schematics of an achromatic elliptical polarizer are shown with (a) a linear 

polarizer and with (b) a circular polarizer. 

Figure 1 shows our design schematics of a unidirectional, achromatic elliptical polarizer. 

A bidirectional achromatic elliptical polarizer can be made by adding two similar retarder 

layers in front of the polarizer. Our design consists of two linear retarders and one achromatic 

linear or circular polarizer. The input light first passes the achromatic polarizer, which 

generates either linear or circular polarized light. The light then passes the two linear 

retarders, resulting in an elliptical polarized light. In general, each linear retarder has a 

different retardance but a fixed fast-axis orientation for different wavelength. By using two 

linear retarders, we show how to compensate for this variability and make the output 

polarization state nearly achromatic, in other words, as close as possible to the target elliptical 

polarization state. We apply our theory to an achromatic polarizer design for the visible band 

(λ = 450nm to 650nm). As the figure of merit of the performance of the achromatic elliptical 

polarizer, we use the following deviation function, 

 ( )2 2 2

1 2 3
( ) - max ( ( ) - cos(2 )) ( ) ( ( ) - sin(2 ))

450 650

target m
s s s s s

nm nm

λ λ ε λ λ ε

λ

= + +

≤ ≤

 (1) 

where s(λ) = [s1(λ), s2(λ), s3(λ)] = [S1(λ)/S0(λ), S2(λ)/S0(λ), S3(λ)/S0(λ)] contains the last three 

components of the normalized Stokes vector of the achromatic elliptical polarizer output state 

at the wavelength λ, and S0, 1, 2, 3(λ) are the Stokes vector. starget = [cos(2ε), 0, sin(2ε)] contains 

the last three components of the normalized Stokes vector of the target elliptical polarization 

with ellipticity ε. 
The operation of a linear retarder in converting polarization states can be understood 

geometrically. If we represent the input polarization state and output polarization state by 

points on the Poincaré sphere, then the output point can be obtained by rotating the input 
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point about vector [cos(2T), sin(2T), 0] by R degree, where T is the fast-axis angle with 

respect to the horizontal axis, and R is the retardance of the linear retarder. This behavior is 

illustrated in Fig. 2. An input broadband polarized light through a linear retarder forms an arc 

on the Poincaré sphere. 

 

Fig. 2. The schematics show the trajectory of the output state on the Poincaré sphere, when the 

input state passes through a linear retarder with fixed fast-axis orientation but varying 

retardances from 0 to 360 degrees. Each trajectory represents a different fast-axis orientation 

T. The input state is (a) s = [1, 0, 0] and (b) s = [ 2 / 3 , 0, 1/ 3 ]. 

We divide our analysis into two cases. In the first case, we consider the configuration of 

an achromatic elliptical polarizer using one linear polarizer and two linear retarders as shown 

in Figs. 1(a) and 3(a). The first retarder rotates the linear polarized (LP) light to Arc A. 

Considering the reverse direction, we see that the second retarder rotates the target state to 

Arc B. The length of the arcs is determined by the wavelength range. If both Arc A and Arc B 

exactly overlap each other, then the second retarder rotates Arc A back to the target point 

perfectly, and an achromatic elliptical polarizer is achieved. Geometrically, the two arcs can 

be nearly overlapping if they are tangent and bent in the same direction. This coincidence can 

be further improved by slightly shifting one arc toward the other. Once the gap between the 

midpoints of two arcs is equal to the gap between the endpoints, a maximal coincidence is 

achieved. 

We observe in Fig. 2 that all circles are centered on the equatorial plane. Hence, these 

circles can only be tangent at the equator. Therefore, we can make the conclusion that the 

midpoints of Arc A and Arc B are both located at the equator. Based on this, the optimized 

design for the achromatic elliptical polarizer can be calculated in the following way. First, we 

define the unit thickness of one linear retarder as a retardance range of 180-δ to 180 + δ 
degrees in the visible band (λ = 450nm to 650nm), where δ depends on the material’s optical 

properties. Since the first retarder layer rotates the LP state, which is on the equator, to an arc, 

whose midpoint is also on the equator, the relative thickness of the first layer, t1, is equal to 1. 

The actual thickness depends on the material properties, which in our experiment are 

measured by a polarimeter, and is equal to the thickness of a retarder with an average 

retardance of 180 over the wavelength range of interest. Similarly, the second layer translates 

the target state into an arc, whose midpoint is also on the equator. Thus, the relative thickness 

of the second layer, t2, is equal to β/180°, where β is the rotation angle to rotate the target state 

to the equator. Figure 3(a) shows a schematic of Arc A and Arc B on the Poincaré sphere. 
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Fig. 3. The geometry of overlapping arcs on a Poincaré sphere is shown for (a) an input state of 

linear polarized light and (b) an input state of circular polarized light 

In 3D space, a circle of radius r centered at point C


can be described by a parametric 

equation: 

 ( ) cos( )* sin( )*( )P t r t u r t n u C= + × +
    

 (2) 

Here, n


 is the unit normal vector to the plane of circle, and u


 is any unit vector 

perpendicular to n


, in other words, any unit vector on the plane of the circle. The parameter, 

t, is the angle between the line CP and the unit vector, u


. The values of n


, u


, C


, r and t for 

Arc A and B are given below. Here θ1,2 and t1,2 are the fast-axis orientation and thickness of 

the two retarder layers, and m1,2 are the distances from the origin to the centers of curvature of 

the two arcs. 
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  2180Bt tδ δ< < +

 (3) 

Note that the m1 can be derived from θLP, which is the angle of the linear polarizer’s 

transmission axis respect to the horizontal. 

 1

1 1cos ( ) / 2LP mθ θ −= +  (4) 

Combining Eq. (2) and Eq. (3), we can find the coordinates of the midpoints and 

endpoints of two arcs. The coordinates of the midpoints of Arc A and Arc B are given by 

 

2 2

1 1 1 1 1 1 1 1

2 2

2 2 2 2 2 2 2 2

(180) 1- sin(2 ) cos(2 ), - 1- cos(2 ) sin(2 ),0

(180) 1- sin(2 ) cos(2 ), - 1- cos(2 ) sin(2 ),0

A

B

P m m m m

P m m m m

θ θ θ θ

θ θ θ θ

 = + + 
 = + +
 



  (5) 

The coordinates of the endpoints of Arc A and Arc B are given by 

 

2

1 1 1 1

2 2

1 1 1 1 1

2

2 2 2 2 2 2

2 2

2 2 2 2 2 2 2

(180 - ) [ 1- cos( )sin(2 ) cos(2 ),
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+

= +
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

  (6) 
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The midpoints and endpoints are all on the unit sphere, and the dot product of two points 

is a good figure of merit of the amount of gap between the two points. 

 

2 2

1 2 1 2 1 2

2 2

1 2 2 1 1 2

2 2

2 1 2 2 1 2
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1 2 1 2 2

2 2
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 (7) 

When Arc A and Arc B achieve maximal coincidence, the gap between midpoints should 

be equal to the gap between endpoints. Hence, in the case of maximal coincidence, the two 

dot products are equal. 

 2(180 - ) (180 - ) (180) (180)A B A BP P t P Pδ δ• = •
   

 (8) 

Combining Eq. (7) and Eq. (8), we have 

 2 2 1 2 2

2 2
1 2 1 2 1 2

1 cos( ) cos( ) sin( )sin( ) (1 cos( )) (1 cos( ))

tan[2( )] sin[2( )] 1 1

t t m t m

m m

δ δ δ δ δ δ

θ θ θ θ

− − −
− = −

− − − −
 (9) 

Note that both t2 and m2 can be calculated from θ2 by simple geometric derivation. 

 
2 2

1

2 2

cos(2 )*cos(2 )

cot (cot(2 )*sin(2 )) /180

m

t

ε θ

ε θ−

=

=
 (10) 

Combining the Eq. (9) and Eq. (10), m1 can be expressed in terms of θ1 and θ2. Therefore, 

the dot product of the two midpoints is a function of only θ1 and θ2. 

 1 2(180) (180) ( , )A BP P G θ θ• =
 

 (11) 

G(θ1,θ2) is a function of the two fast-axis angles and has multiple local maximums. Our 

goal is to find the two arcs with the most overlap, and the solution of the problem can be 

found by maximizing G(θ1,θ2). The expression for G(θ1,θ2) is complicated and difficult to 

maximize analytically; however, the solution can be easily solved numerically by using 

MATLAB optimization toolbox. The only parameter in the optimization is δ, which depends 

on material properties of the linear retarders. Once θ1 and θ2 are determined, t2 can be 

calculated using Eq. (9), and θLP can be calculated using Eq. (4), Eq. (9) and Eq. (10). 

We next consider the second case for the configuration of achromatic elliptical polarizers 

using one circular polarizer and two linear retarders as shown in Figs. 1(b) and 3(b). For this 

case, the first retarder rotates the circular polarized (CP) light to Arc C. Considering the 

reverse direction, we see that the second retarder rotates the target state to Arc B. The 

problem becomes maximizing the coincidence of Arc B and Arc C. Since the first retarder 

layer rotates the CP state, which is on the pole, to Arc C, of which the midpoint is on the 

equator, the rotation angle of the midpoint is 90 degrees, and the relative thickness is equal to 

1/2. The relative thickness of the second retarder layer t2 is equal to β/180°, which is the same 

as the first case. Figure 3(b) shows a schematic of Arc C and Arc B on the Poincaré sphere. 

For Arc C, the values of n


, u


, C


, rC and tC are given as follows: 

 
[ ] [ ]
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From Eq. (12), we can find the coordinates of the midpoints and endpoints of Arc C. The 

coordinate of the midpoint of arc C is given by 

 [ ]1 1(90) sin(2 ), -cos(2 ),0CP θ θ=


 (13) 

The coordinate of the endpoint of Arc C is given by 

 1 1(90 - / 2) [cos( / 2)sin(2 ), -cos( / 2) cos(2 ),sin( / 2)]CP δ δ θ δ θ δ=


 (14) 

The dot products of midpoints and endpoints are 
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When the two dot products are equal, we obtain the following equation: 

 
2 1 2 2

2

2

2
1 2
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2 2
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2
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m

m
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δ
θ θ
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 (16) 

Since both t2 and m2 can be derived from θ2, using Eq. (10), Eq. (16) is simply a relation 

between θ2 and Δθ = θ1-θ2, and it can be rewritten in a simpler form to solve Δθ from θ2. 

 2 2 2( ) cos[2 ] ( )sin[2 ] ( )a b cθ θ θ θ θΔ + Δ =  (17) 

Here, coefficients a, b and c are all functions of θ2. 
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The solution of this equation is 

 

1
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2 2 2 2

sin ( )

2
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c
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φ

θ

φ φ

− −
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Similarly, by combining Eq. (15) and Eq. (19), we find that the dot product of the two 

midpoints is a function of only θ2. 

 2(180) (180) ( )A BP P H θ• =
 

 (20) 

As in the previous case, the problem now becomes one of maximizing H(θ2). Once the 

optimized θ2 is determined, θ1 can be derived using Eq. (19), and t2 can be derived using Eq. 

(10). After we have the optimized values of θ1, θ2, t1, t2 and θLP, we can assemble an 

achromatic elliptical polarizer using the retarder and polarizer layers with the calculated 

optimized angles and thicknesses. 
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3. Application of achromatic elliptical polarizer to broadband full-Stokes 
imaging 

Full-Stokes imaging records the polarization property of objects and has a variety of 

applications including biomedical imaging, remote sensing, and space exploration. There 

have been many approaches to the design of full-Stokes camera [21–25]. Many of these 

approaches are limited to one wavelength, such that the camera cannot record the polarization 

of different colors simultaneously. One reason for this limitation is the lack of achromatic 

circular and elliptical analyzers, which are necessary to record the information of all 

components of the Stokes vector. The transmitted flux of an elliptical analyzer depends on the 

fraction of the desired elliptical polarization in incident light. The principle of a full-Stokes 

camera is to capture the polarization property of an object by measuring the intensity response 

of the incident light through different analyzers. To design a broadband full-Stokes camera, 

achromatic elliptical analyzers are often required. In this section, the relationship between 

achromatic elliptical polarizers and broadband full-Stokes imaging are discussed. To achieve 

full-Stokes imaging, a minimum of four intensity measurements through four different 

elliptical analyzers is required. The relationship between the four intensity measurements [I0, 

I1, I2, I3] and the input Stokes vector S = [S0, S1, S2, S3] can be described as 
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Here, W is the so-called measurement matrix, and it is the combination of the first row of 

the Mueller matrix of each elliptical analyzer. In the broadband full-stokes imaging, the 

measurement matrix needs to be achromatic. Therefore, for each elliptical analyzer, the first 

row of its Mueller matrix needs to be achromatic. We assume that the elliptical analyzers are 

made by a series of linear retarders followed by a linear polarizer. The incident light first 

transmits through these linear retarders and then through the linear polarizer. The Mueller 

Matrix can be calculated as follows: 

 2 2 1 1( ) ( , ) ( , ) ( , )analyzer LP LP LR N N LR LRM M M M Mθ δ θ δ θ δ θ=   (22) 

where MLP(θ) represents the Mueller matrix of a linear polarizer, which has its transmission 

axis oriented at an angle θ with respect to horizontal. MLR(δ, θ) represents the Mueller matrix 

of a linear retarder, which has its fast axis oriented at an angle θ with respect to the horizontal 

and its retardance equal to δ. The two Mueller matrices are given by 
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The transpose of Eq. (23) is 
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We find that the transposition of the analyzer’s Mueller matrix is actually a linear 

polarizer followed by a series of linear retarders, which is an elliptical polarizer. Realizing 

that the first row of the analyzer is achromatic, the first column of the transposed matrix is 

also achromatic. In other words, the polarizance of the elliptical polarizer is achromatic, 

which makes the polarizer an achromatic elliptical polarizer. Once we have an achromatic 

elliptical polarizer made by a linear polarizer followed by a series of linear retarders, we can 

rotate each retarder by π/2, reverse the order of the polarizer and retarders, and finally get an 

achromatic elliptical analyzer which has an achromatic first row in its Mueller matrix. The 

analyzer can be then applied to a broadband full-Stokes camera. 

Figure 4(a) shows the four elliptical polarizers adopted for our broadband full-Stokes 

camera design. The advantage of this design is that the four elliptical polarizers form a 

tetrahedron on the Poincaré sphere, which minimizes the measurement noise [26, 27]. 

Another advantage of this design is that the four elliptical polarizers are symmetrical and can 

be fabricated by conventional photoalignment technique [28]. The elliptical polarizer (EP) 

can be made by combining one linear polarizer and two linear retarders. Once we have the 

first elliptical polarizer (EP1), the second elliptical polarizer (EP2) can be obtained by 

rotating EP1 by 90 degrees. The third and fourth elliptical polarizer (EP3 and EP4) can be 

obtained by first flipping each layer of EP1 around the horizontal and then rotating it by +/− 

45 degrees. The four elliptical polarizers can be combined to form a 2x2 macro pixel in a 

division of focal plane (DoFP) configuration as shown in Fig. 4(b). 

 

Fig. 4. (a) The regular tetrahedron adopted for a broadband full-Stokes camera is shown along 

with the Poincaré sphere. The coordinates of vertices 1, 2, 3, 4 are [ 2 / 3 , 0, 1/ 3 ], 

[ 2 / 3− , 0, 1/ 3 ], [0, 2 / 3 , 1/ 3− ], [0, 2 / 3− , 1/ 3− ] respectively. (b) A 

design of a DoFP broadband full-Stokes camera shows the array of four elliptical polarizers. 

The macro pixel of each layer is displayed on right. 

4. Fabrication and optical characterization of an achromatic elliptical polarizer 

In this section, we describe the process of fabricating an achromatic elliptical polarizer using 

liquid crystal polymer (LCP) as the retarder layer. The LCP is RMM141C reactive mesogen 

manufactured by EMD Chemicals. The LCP is photo-aligned using ultraviolet light (UV) and 

a linearly photopolymerizable polymer ROP108 (LPP) made by Rolic Technologies to form a 

linear retarder layer. Figure 5(a) shows the retardance curve of RMM141C (17% weight-to-
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weight ratio in toluene and spin coating at 8000rpm) as a function of wavelength. This 

retardance curve can be fit to the measurement results by using a theoretical retardance 

equation of LCP derived from a single-band birefringence dispersion model [29]. 
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Here, Δφ is the retardance, Δn is the birefringence, C is a proportionality constant, t is the 

thickness, λ is the wavelength, and λ* is the mean resonance frequency of the band. 

Utilizing the measured retardance curve, the optimized achromatic elliptical polarizer, i.e. 

EP1, is found to have the following parameters: θ1 = 82.76°, θ2 = 3.48°, t1 = 1, t2 = 0.446, θLP 

= 0.63°. Here t1 = 1 means that the film thickness satisfies the relation Δφ (λ = 450nm) + Δφ 

(λ = 650nm) = 2π. 

 

Fig. 5. (a) The retardance curve of liquid crystal polymer RMM141C is plotted as a function of 

wavelength. (b) The plot shows the deviation curve of the optimized achromatic elliptical 

polarizer made of RMM141C. (c) The curve of the optimized achromatic elliptical polarizer 

output state on the Poincaré sphere is shown for wavelength range from 450nm to 650nm; (d) 

The magnified view of (c) is shown. The green dot is the target state. 

Figure 5(b) shows the deviation curve of the optimized achromatic elliptical polarizer. 

The deviation is defined as the absolute value of the difference between the last three 

components of the normalized Stokes vector of the achromatic polarizer’s output state and the 

last three components of the normalized Stokes vector of the target elliptical polarization 

state. Figure 5(c) shows the trajectory of the output polarization state on the Poincaré sphere. 

The detail of the trajectory is shown in Fig. 5(d). 

Figure 6 shows a schematic diagram of the fabrication process of the achromatic elliptical 

polarizer. The fabrication process consists of three parts: (1) fabrication of the second 

retarder, (2) fabrication of the first retarder, and (3) integration of retarders with a wire-grid 

linear polarizer. The two retarders are made by LCP and LPP on a glass substrate. The 

broadband wire grid linear polarizer is a laminated film manufactured by Asahi Kasei (model 

WGF). Detailed steps are described below. 
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1) The LPP is spin coated on soda lime glass substrate at 2500rpm for one minute. The 

glass substrate is 1.5 inches in diameter and has a flat cut on the edge to help with 

the angle alignment. 

2) The substrate is hard baked at 170 °C for 5 minutes and exposed under 10mW UV 

light at 365nm for 10 minutes with a UV linear polarizer on top in order to produce 

linearly polarized UV illumination (LPUV). The linear polarized UV light defines 

the fast-axis orientation of LCP. 

3) The LCP solution is made by adding RMM141C to toluene at a 17% weight-to-weight 

ratio and then spin coated at 8000rpm for 30 seconds. The LCP aligns with the LPP 

and forms a linear retarder layer. The fast-axis orientation is defined by the 

orientation of anisotropically cross-linked LPP. 

4) The substrate is hard baked at 53 °C for 5 minutes and exposed with 10mW UV light 

at 365nm for 2 minutes to cure the LCP. 

5) A 50nm silicon oxide layer is deposited onto the substrate using electron beam 

evaporation technique. The silicon oxide layer is used as isolation between the two 

linear retarder layers. The silicon oxide layer appears to reduce the retardance of the 

thin film by about 3 percent. 

6) The sample is characterized by an Axometrics polarimeter. A re-optimization is 

performed to determine the best fast-axis orientation for the second retarder layer 

based on the measured retardance. 

7) Steps 1 to 5 are repeated for the fabrication of the first retarder layer. The LCP 

solution for the first retarder is made by adding RMM141C to toluene at a 30% 

weight-to-weight ratio. The LCP solution is spin coated at 4000rpm for 30 seconds. 

8) A wire grid linear polarizer film is oriented and put in the front of the two retarder 

layers. 

 

Fig. 6. The schematic shows the fabrication process of an achromatic elliptical polarizer. 
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The sample is characterized by an Axometrics Mueller matrix polarimeter. Figure 7(a) 

shows the deviation curve of the sample and the comparison to the theoretical curve predicted 

by the optimization. The experimental result and theory prediction match well within 

measurement errors. Figure 7(b) shows the trajectory of the sample’s output state on the 

Poincaré sphere. Figure 7(c) shows the magnified view of the experimental curve. The sample 

has a maximum deviation of about 4% at for wavelength of 450nm to 650nm, which makes it 

a good achromatic elliptical polarizer. 

 

Fig. 7. (a) A comparison of the deviation curve of the fabricated sample and theoretical 

prediction is shown. The bar represents the measurement error of the Axometrics polarimeter. 

(b) The trajectory of the sample’s output state is shown on the Poincaré sphere for wavelength 

range from 450nm to 650nm. (c) The magnified view of the trajectory in (b). The blue curve is 

the trajectory of theoretical prediction. The green dot is the target state. 

5. Discussion and conclusion 

In this paper, a general theory of achromatic elliptical polarizers is presented. A sample 

consists of two-layer retarder and one-layer polarizer is fabricated and tested with 

performance agreed well with our calculation. A better performance of achromatic elliptical 

polarizer, i.e. a flatter wavelength response, can be achieved by adding a third retarder layer 

or additional retarder layers. In this case, the first retarder layer and the last retarder layer 

rotate the input state and the target state to an input arc and an output arc, respectively, and 

the remaining retarder layer or layers can be understood as transformations of arcs. These 

transformations should transform the input arc to a curve that matches the output arc. With 

addition of more retarder layers, more degrees of freedom are introduced, reducing the 

difference between the input and output arcs and resulting in a flatter wavelength response 

and a larger operating wavelength range. In this final section, we explore the theoretical 

performance of achromatic elliptical polarizer with more than two retarder layers. 

MATLAB optimization toolbox is used to find the optimized design of three-layer 

retarder and four-layer retarder configuration, for visible band (λ = 450nm to 650nm) and a 

wider band (λ = 400nm to 1µm). The material for the retarder layer and the target state are the 

same as that in section 4. For three-layer and four-layer configurations, geometrical analysis 

is so complicated that the number of optimization variables cannot be reduced into one or 

two, as in the case of the two-layer configuration. Instead, we directly optimize the thickness 

and fast-axis orientation for all retarder layers using the MATLAB optimization toolbox. 

Although we have performed the calculation using many iterations, we cannot ascertain that 

the results are the global minimum. The optimization results are likely to be local minimum, 

but they provide a general trend for addition of retarder layers and a good set of designs with 

low deviation. Figure 8 shows the deviation curves of two-layer, three-layer and four-layer 

configuration. For visible band, the maximum deviation is reduced from 2.3% to 0.3% and 

0.04% by using three-layer and four-layer configuration, respectively. When the operating 
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wavelength increases from 650nm to 1µm, the two-layer configuration has a high deviation of 

12%, while the three-layer and four-layer have a better performance, with maximum 

deviation of 1% and 0.7%, respectively. Our calculations show the general trend that 

additional layers of retarder can flatten the deviation and increase the operating wavelength 

range of the achromatic elliptical polarizer. 

 

Fig. 8. The deviation curve of optimized 2, 3, 4 retarder layer configurations for wavelength 

range of (a) λ = 450nm to 650nm and (b) λ = 400nm to 1μm. 

In conclusion, we present one design approach for the achromatic elliptical polarizer and 

apply our design to broadband full-Stokes imaging. The achromatic elliptical polarizer is 

comprised of a minimum of two linear retarders and one linear or circular polarizer. Our 

technique can be applied to the design of polarizer of any ellipticity, including circular 

polarization. 
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