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Abstract-This paper documents results related to design op- 
timization, fabrication process refinement, and micron-level 
statiddynamic testing of silicon micromachined microgimbals 
that have applications in super-compact computer disk drives as 
well as many other engineering applications of microstructures 
and microactuators requiring significant out-of-plane motions. 
The objective of the optimization effort is to increase the in-plane 
to out-of-plane stiffness ratio in order to maximize compliance 
and servo bandwidth and to increase the displacement to strain 
ratio to maximize the shock resistance of the microgimbals, 
while that of the process modification effort is to simplify in 
order to reduce manufacturing cost. The testing effort is to 
characterize both the static and dynamic performance using 
precision instrumentation in order to compare various prototype 
designs. [93] 

I. INTRODUCTION 

UCH HAS BEEN said about the tremendous progress M made in the 1980’s and the impact that it has had on 

our lives in terms of electronics and computers. In the coming 

decade, consumer electronics and personal computers will 

merge, propelling us into the exciting era of integrated infor- 

mation electronics. By combining the functions of televisions, 

telephones, and computers, a new generation of productivity- 

oriented informatic electronics products will be introduced, 

providing us with tremendous capabilities for multimedia 

telecommunication and telecomputation. 

In order to keep up with the promised performance, we 

must continue to provide much of the high-bandwidth, servo- 

controlled precision mechanisms and mechanical systems in 

order to acquire, store, distribute, and process personal and 

business information at previously unimaginable speed, vol- 

ume and form-factor. Specifically, high-performance micro- 

electromechanical components and systems (MEMS) must be 

designed and commercially manufactured in order to facili- 

tate the introduction of a new generation of super-compact 

computer peripheral devices, for example, sub-2-inch-diameter 

magnetic recording rigid disk drives to accommodate the 

enormous data storage requirements in extremely challenging 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.  Major electromechanical components of a conventional high- 
performance magnetic recording rigid disk drive. 

and nontraditional computing environments, such as those in 
handheld consumer-oriented information and communication 

systems [6]. 
In two recent papers by Miu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al., we have introduced 

a design concept and demonstrated a preliminary fabrication 

process of a silicon-micromachined microgimbal for mounting 

sub-miniaturized (30%) read-write headslpico-sliders in small 

form factor disk drives. In the current work, we shall document 

additional results related to the design optimization, fabrication 

process refinement, and micron-level testing (both static and 

dynamic) of some working prototypes. 

In typical high-performance rigid disk drives (Fig. l), the 

major electromechanical components consist of a rotating 

disk coated with thin-film magnetic media, a spindle bear- 

inghrushless DC motor, a hydrodynamic gas-lubricated slider 

bearing (for holding the read/write head at hundreds or even 

tens of nanometer spacing to the recording surface), and 

an electromagnetic voice-coil rotary actuator for moving the 

slider across the disk surface. 

In addition, there also exists a stainless-steel suspension arm 

for attaching the slider to the actuator. In order to maintain 

proper head/media compliance (to maximize bit density), the 

design of the gimbal/suspension must be such that it is 

extremely soft in the vertical, pitch, and roll directions. On 

the other hand, in order to maximize the servo bandwidth (to 

increase track density), the suspension must be stiff in the 

remaining in-plane directions. Furthermore, it must also carry 

the electrical signals to and from the read/write transducers [SI. 
Fig. 2 shows our proposed silicon-micromachined mi- 

crogimbal/suspension, which has a number of potential 

operational advantages. First of all, since silicon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  a brittle 

1057-7157/95$04.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1995 IEEE 



TEMESVARY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: SILICON MICROGIMBALS FOR SUPER-COMPACT RIGID DISK DRIVES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA19 

Fig. 2. 
balhspension with built-in electrodes. 

The proposed design concept of an integrated silicon microgim- 

material, silicon suspensions cannot be plastically deformed 

during manufacturing and handling; quality assurance there- 

fore consists of only visual inspection. In comparison, plastic 

deformation of stainless steel suspensions (i.e., de-gramming) 

is the major contributing factor of reduced production yield 

and in-drive performance problems, representing a significant 

cause of revenue loss. 

In addition, due to the difference in process technology, 

much smaller features can be realized in silicon than in 

stainless steel (using various anisotropic wet and dry etching 

techniques), providing much needed additional degrees of 

design freedom. For example, in our design, we fabricate very 

intricate serpentine planar microsprings at the four comers of 

the microgimbal (see Fig. 3) in order to satisfy the conflicting 

out-of-plane compliance, lateral stiffness, and shock resistance 

design requirements. 

Furthermore, with silicon, it is relatively easy to incor- 

porate electrodes (or even pre-amps) in the suspension arm 

as well as an electrical coupler in the gimbal area, thereby 

allowing the possibility of automating not only the mechanical 

but also the electrical interconnect manufacturing procedures. 

Currently, in many state-of-the-art products, assembly of the 

head/gimbal/suspension subsystem represents nearly half of 

the total manual labor cost. 

11. DESIGN OPTIMIZATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As was described in Miu et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. [8], the design objectives 

of the silicon microgimbal are basically two-fold: it must 

have a very high in-plane/out-of-plane stiffness ratio (to satisfy 

both tracking bandwidth and headlmedia compliance require- 

ments) while maintaining a low strain-to-displacement ratio 

(to maximize shock resistance). Intuitively, this corresponds to 

designing a planar serpentine spring with very high effective 

length and relatively high width-to-thickness aspect ratio. Our 

constraint of course is the available real estate; in order to be 

consistent with the product requirement, we need to maintain 

a specific form factor for the overall gimbal/suspension as- 

sembly which prevents us from having excessively long and 

wide beams. 

During our initial testing, we observed that for a given 

out-of-plane displacement of the center coupon, the resulting 

deformation is not equally shared among the various con- 

centric coils of the serpentine gimbal spring, frequently with 

fracture occurring at the outermost turn. It therefore seemed 

Fig. 3. 
microsprings at the four corners (width of the beam is about 80 pm).  

SEM micrograph of a silicon microgimbal with serpentine planar 

Center Coupon 
(only one-quarter is shown) \ ~ ... 

. anchor to silicon substrate 
Fig. 4. 
microsprings at the four corners (only one-quarter is shown). 

Finite-element model of a silicon microgimbal with serpentine planar 

logical that our first task should be to optimize the widths of 

the individual beams, making it wider at the outside coils than 

the inside, while maintaining a constant overall size. 

Fig. 4 shows a finite-element model (FEM) analyzing the 

serpentine microgimbal as illustrated in Fig. 3, except that the 

current design has non-uniform beam widths and the wrap 

angle has been reduced from 270" to 90". This change in 

wrap angle is primarily a result of our desire to minimize the 

overall profile of the silicon microgimbal. 

In the original design concept illustrated in  Fig. 2, in order 

to minimize the lateral dimensions of the microgimbal, we 

designed the center coupon to be smaller than the slider. 

However, in doing so, we increased the vertical thickness 

of the suspension/gimbal/slider assembly since we must have 

enough clearance between the serpentine microsprings and the 

slider in  order to avoid physical contact due to steady-state or 

transient pitching and rolling motions. For our applications, a 

high-profile gimbal is not acceptable since disk-to-disk spacing 

is currently a major performance constraint for super-compact 

form factor disk drives, which would impede any effort to 

maintain the traditional volumetric data density advantage of 

magnetic storage products over solid-state memory devices 

and optical storage systems. 
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Fig. 5. 
(with constant widths). 

Von Mises stress along the length of the serpentine microgimbal 

In the latest design, we have relocated the serpentine mi- 

crosprings outside of the slider and instead of putting them 

symmetrically at the four corners as is shown in Figs. 2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3,  
we put them in the front and back of the center coupon (which 

now has the same size as the slider), enabling us to have zero 

clearance between the center coupon and the slider, hence a 

lower-profile microgimbal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a result, the wrap angle of the 

individual serpentine microspring is reduced to 90", which has 

the additional benefit of a higher in-plane/out-of-plane stiffness 

ratio [SI. 
Fig. 5 shows FEM results analyzing a serpentine mi- 

crospring design with uniform widths, where the Von Mises 

stresses of each element along the center-line of the beam are 

plotted for the entire length of the beam, starting at the anchor 

point at the center coupon and ending at the outside where 

the gimbal spring is attached to the silicon substrate. Since 

at the vicinity of the various 180" turns (points A through 

D), the stress states are quite complicated (see Fig. 4), we 

have summarized the results by plotting only the peak stresses 

around the turns. 

From Fig. 5 ,  one can observe that the serpentine spring 

is basically a collection of five individual curved cantilever 

beams joined together end-to-end, each with boundary condi- 

tions similar to those of clamped-clamped beams such that the 

stresses are always higher at the turns (i.e., clamped ends) and 

lower at the mid-spans. Furthermore, as expected the stresses 

are higher at the outside coil with the critical point being the 

very last turn (point D). To better utilize the available real 

estate, we proceed to optimize the widths of the individual 

beams, such as by lowering the peak stresses and making them 

more uniformly distributed. 

In order to properly compare the results from various FEM 

runs, however, the calculated stresses need to be normalized 

since in addition to stresses, the spring constants will also 

change as a function of beam geometry. In practice, we typi- 

cally wish to achieve a particular spring stiffness as required 

by the applications. So as we change the width, we need to 

compensate by varying the beam thickness in order to keep 

the stiffness and therefore the loading conditions constant. 

For design purposes, instead of iterating the beam thickness 

t ,  it is better to normalize the calculated stress (T with stiffness 

I Normalized Peak Stress 
0 0 .  

1 Out-of-Plane Stiffness (slope = 2.8) 
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Fig. 6. 
out-of-plane stiffness as a function of gimbal thickness. 
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Fig. 7. 
with different beam widths. 

Comparison of normalized peak stresses for serpentine microgimbals 

K such that we can compare quantities that are independent 

of t .  Recall that for a simple cantilever beam, K varies with 

t3 (from FEM results, we actually have K a t2.8 for the more 

complicated serpentine spring as shown in the bottom trace of 

Fig. 6) while (T varies with t -2  (middle trace). Consequently, 

to be independent o f t ,  we have multiplied all calculated values 

of (T by K2I3 (or more accurately, by K2/2.8 as shown in the 

top trace of Fig. 6). 
Fig. 7 compares the normalized peak stresses of three 

serpentine gimbal designs with various beam widths. The one 

annotated with long-dashes has a constant width of 70 pm and 

is the same as that shown in Fig. 5. When the width of the 

inner most coil is reduced to 44 pm (as shown in the trace 

with solid line), the peak stress of the inside turn (point A) 
goes up as expected. However, with the excess real estate, we 

can afford to increase the widths of the two outer coils (to 84 

and 94 pm, respectively), which has the net effect of bringing 

down the peak stress of the overall design (point D). Therefore, 

this is a much better design than the one with uniform widths, 

confirming our intuition. 

On the other hand, if the widths of both the inner and outer 

most coils are increased (to 90 pm as is done with the trace 

annotated with short-dashes), then it is possible for stresses 

at the middle turn (point C) to significantly increase beyond 

that of the last turn (point D), moving the critical point inward 

and as a result, making it a weaker design. In our prototype 

serpentine gimbal design, we have therefore adopted non- 

uniform widths, increasing progressively from the inside to 

the outside. 
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Fig. 8. 
relief hole. 

Finite-element model of the serpentine microspring with a stress 

It should be noted that besides the first-order effect of reduc- 

ing the peak stress, varying the widths of the serpentine springs 

also changes other second-order performance parameters, such 

as in-plane stiffness and resonant frequencies. A much more 

elaborate optimization scheme than the one described here 

would have to be used in order to more accurately quantify 

the various design tradeoffs. 

Our second optimization task has to do with reducing the 

stress concentration around the various 180" tums, which have 

been the primary failure points. Fig. 8 shows a detailed FEM 

analyzing the stresses around a single turn where we have 

fixed the beam width to 50 pm, spacing between beams to 

20 LLm, and outside radius to 100 pm. 

Fig. 9 shows the calculated peak stress around the turn and 

the corresponding out-of-plane stiffness as functions of the 

inside radius of the stress relief hole, which varies from 0 
(sharp comers) to 70 pm. It is quite clear that as the stress 

relief hole gets bigger, the spring will become softer since 

there is less structural material to support the load. On the 

other hand, the peak stress is quite high when there is no relief 

hole (radius = 0) and decreases substantially when a circular 

hole is introduced (giving the sharp turn some curvature). 

This is so even when the actual load-carrying area has been 

reduced. However, it is clear that when the radius of the hole 

increases beyond a critical dimension, the disadvantage of 

a narrower beam far outweights the advantage of the stress 

relief hole and the peak stress increases. 

In our prototype design, the radius of the stress relief 

hole is typically between 20 to 30 pm (the exact dimension 

depends on the amount of undercut introduced during the 

fabrication process). For a truly optimized design, the size 

of the stress relief holes should vary with the beam width. 

But for simplicity, we have compromised on a fixed hole size 

here. 

111. PROCESS IMPROVEMENT 

The fabrication process for the silicon microgimbal is rather 

simple and consists of only two major steps: reactive-ion 

etching (RIE) using SFc;/02 plasma to define the microspring 

on the front surface of the wafer and anisotropic chemical 

etching on the back to create a trapezoidal cavity which would 

Stress Relief Hole Radius (Microns) 
Fig. 9. 
serpentine microsprings with stress relief holes of various radius. 

Calculated peak stresses and corresponding spring stiffnesses for 

allow the attachment of the read/write slider directly under the 

center coupon. For etch stop, we use epi-wafers which consist 

of a 20- to 30-pm-thick lightly doped epitaxial layer on top 

of a 4-pm heavily boron-doped buried layer.' 

In [SI, we have described the original process flow where 

RIE was performed first using electron-beam evaporated alu- 

minum as the mask, followed by low-pressure chemical-vapor 

deposition (LPCVD) of low-temperature oxide (LTO) serv- 

ing as the protection mask for subsequent chemical etching. 

Although not necessary at the time, we had chosen LTO 
instead of other high-temperature processes (such as thermal 

exide or LPCVD nitride) because we envisioned incorporating 

metal electrodes in the final products. However, LTO has the 

disadvantage that step coverage is usually very poor, which 

requires thick (about 2 pm) and therefore long (about 2 hours) 

deposition, making i t  an expensive process step. 

For the anisotropic etching, we used ethylenediamine pyro- 

catechol (EDP), which has the advantage that it does not attack 

silicon oxide (as opposed to potassium hydroxide, KOH), but 

i t  has the disadvantage that i t  is carcinogenic and has been 

(or will soon be) banned from usage in any industrial settings. 

One of our first tasks was to find a replacement for EDP. 

We have tried different compositions of ammonium hydrox- 

ides, for example, ammonium hydroxide, and water, NH40H, 

and tetramethyl ammonium hydroxide, (CH3)4NOH or TMAH 

[9]. After some experimentation, we finalized on TMAH 

because its etch rate of silicon is about the same as that of 

EDP and although its etch rate of silicon oxide is higher, i t  is 

tolerable (see Table I for etch rate data for TMAH and EDP).2 

Also, i t  is commercially available and is relatively inexpensive. 

However, it does have a number of disadvantages compared 

to EDP. 

First of all, the selectivity of TMAH for undoped over 

boron-doped silicon is much lower than that of EDP (only 

about 20 : 1 to 100 : 1 depending on the process temperature 

and doping concentration as opposed to much more than 

500: 1 for EDP), which makes the boron-layer a much less 

' The doping also contains a small amount of germanium to help minimize 

We wish to thank our colleagues Ms. Svetlana TatiC-LuZiC and Mr. Fukang 

residual stresses; see [3] for more details. 

Jiang for their experimental data and references on EDP etching. 
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Fig. 11. 
the improved process. 

SEM micrograph of a five-turn silicon microgimbal fabricated using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 10. Processing steps for the silicon serpentine microgimbal. 

effective etch stop in TMAH. As a result, we typically etch at 

90°C for about 7-112 hours and then switch to 80°C for the 

remaining time with very careful monitoring. 

The other problem with TMAH has to do with comer com- 

pensation. Our experience with TMAH is that the relationship 

between the etch rates along different crystalline planes is not 

a constant and varies significantly depending on the age and 

concentration of the chemical. This makes the design of the 

comer compensators an almost impossible task. In our original 

process, in addition to cavities (which have no protruding 

comers), we also etch troughs around the gimbal/suspension 

in order to individualize the finished parts. In our new process, 

we have eliminated all comers from the mask and as a result, 

the parts are now separated using a dicing saw. This requires 

some careful considerations during mask design in order to 

avoid sawing through any part of the wafer that has been 

back-etched. 

Our second task in improving the original process is to 

eliminate LPCVD. One alternative to LPCVD oxide is thermal 

oxide. But in order to do thermal oxidization, we must reverse 

the process such that TMAH is performed before RIE. The 

reason is more than just simply wanting to perform high- 

temperature processes prior to metalization. More importantly, 

once RIE is performed, the boron-layer would be exposed 

and during thermal oxidation, boron would diffuse into the 

silicon oxide (and into silicon), lowering the concentration of 
the etch-stop layer. Subsequent chemical etching would then 

cause severe undercuts in the microstructures, making them 

extremely fragile. 

The original reason for wanting to do back-side TMAH 

etch at the very end is that we want to perform as many of the 

critical photolithography process steps as possible on a robust 

substrate. Therefore the only practical way of reversing the 

process would be to do it in such a way that all lithographic 

steps (including the one for the metal electrodes) are performed 

prior to both TMAH and RIE. Fortunately, this is possible 

since TMAH does not attack certain metals (such as nickel 

or chrome, or even aluminum if enough silicon has been 

dissolved in the solution). 

Fig. 10 shows a summary of the improved processing steps 

that require only three masks. The silicon wafer is first 

thermally oxidized at 1050°C to form a 3000-A-thick silicon 

oxide layer on the top and bottom surfaces, which serves 

as the protection coating for TMAH as well as insulation 

for the electrical interconnect. Two-hundred-A-thick chrome 

and 1000-A copper are then thermally evaporated on the top 

surface and patterned using the first mask to form a seed layer 

for the electrodes. A 2000-A-thick chrome is evaporated on 

top of the seed layer and patterned using the second mask to 

define the microsprings. The third mask is used to pattem the 

silicon oxide on the back surface for the cavities. 

Once the photolithographic steps are finished, the wafer is 

ready for TMAH. Since the copper seed layer is protected by 

the chrome RIE mask, it will not be attacked by TMAH. After 

TMAH back-etch and removal of silicon oxide, we perform 

RIE using pure SF6 until the microgimbals are completely 

free-standing. This is then followed by chemical removal of the 

chrome, once again revealing the copper seed layer. The very 

last step before dicing is to electroplate the copper electrodes. 

Fig. 11 shows an example of the microgimbals fabricated 

using the improved process described in Fig. 10, which was 

designed and optimized using the finite-element model shown 

in Fig. 4. All test structures documented in the remainder 

of this paper are fabricated using this new process (TMAH 

instead of EDP, etc.). 
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Fig. 12. 
microgimbals. 

Specially developed, high-precision static-load tester for silicon Fig. 14. 
loading. 

Close-up view of a five-turn silicon microgimbal under static 
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Fig. 13. 
gimbal. 

Loading and unloading of a five-turn silicon serpentine micro- 

IV. STATIC/DYNAMIC TESTING 

Testing of the silicon microgimbals involves both static and 

dynamic measurements. Fig. 12 shows a specially designed 

high-precision mechanical fixture for static testing. At the 

center of the picture (the small white disk) is a holder for 

the silicon specimen, which is mounted on top of a load-cell 

(the stainless steel cylinder) for measuring applied force. The 

load-cell (wtich has a 10-grams maximum range with a 0.01- 

grams resolution) is in tum mounted on a x-y-z microstage 

for positioning the specimen under a fixed sharp stylus (the 

angled probe above the holder; see also Fig. 14 for details). 

In addition, orl the vertical stage, there is a LVDT (linear 

voltage differential transformer) for measuring the vertical 

displacement of the microgimbal (with 2.5-pm resolution).3 

Fig.' 13 shows an example of the measured data where we 

plot the resulting applied force (in grams) as a function of 

imposed vertical penetration of the probe (in microns). It can 

be seen that the stiffness of the microgimbal is very linear 

(the spring constant of this particular microgimbal is about 80 

N/m). In addition, as expected, silicon does not exhibit any 

hysteresis behavior during the load-unload cycle. 

In subsequent experiments, we have tested many specimens 

to fracture and the maximum load for the five-turn design is 

3We wish to thank Drs. Paul Smith and Josh Harrison of the Applied 
Magnetic Corporation for their assistance in building the static-load tester. 
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Fig. 15. 
silicon serpentine microgimbal. 

Measured stiffness as a function of lateral distance for a five-turn 

typically on the order of 4 to 5 grams (corresponds to about 

2000 to 2500 g's of acceleration). In fact, some specimens 

were able to sustain maximum out-of-plane displacements on 

the order of 1 mm (for a 20-pm-thick microgimbal)! Fig. 14 

shows a close-up view of the deformed microgimbal (similar 

to the one shown in Fig. 11) .  

For our applications, in addition to vertical stiffness, i t  is 

also very important to characterize the pitch and roll stiffness 

of the microgimbals. If we assume the center coupon to be 

rigid, then the stiffness constants are related simply as follows: 

where K,  and KO are the equivalent vertical and pitch 

stiffness, respectively, and K,, is the actual measured stiffness 

when the load point is some lateral distance 7' away from the 

stiffness centroid of the microgimbal. Very often the location 

of the centroid (where the measured stiffness is maximum, 

i.e., no contribution from pitch) can be slightly different from 

the geometric center (usually less than 50 /mi) due to the 

nonuniformity of the finished comer serpentine microsprings. 

In Fig. 15, we have plotted the measured stiffness of the 

microgimbal as a function of lateral distance. 

From Fig. 15 we can indeed observe the inverse square 

relationship between measured stiffness K ,  and distance 7'. 

On the other hand, in Fig. 16, we have re-plotted the same 

data in terms of compliance versus distance squared. It can be 
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COMPARISON OF MEASURED VERTICAL STIFFNESS (Nlm) AND PITCH 
AND ROLL STIFFNESS (pN-m/DEG.) OF THE SILICON MICROGIMBALS 

USING STATIC AND DYNAMIC MEASUREMENT TECHNIQUES 

Fig. 17. 
metric dynamic testing of microgimbals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11). 

Laser Doppler Vibrometer (LDV) setup for noncontact interfero- 

5-turn coil 3-tum coil 
vert pitch roll vert pitch roll 

slider) 80 2.29 0.62 183 6.85 1.25 

(wlslider) 88 2.07 0.65 224 5.24 1.50 

(wlslider) 87 1.86 0.71 223 4.91 1.46 

static (wlo 

static 

dynamic 

seen that the relationship is linear as described by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1). From 

Fig. 16, we can easily calculate the slope which is equal to the 

reciprocal of the equivalent pitch stiffness KO and the intercept 

which is that of the vertical stiffness K,. Our experience is that 

compared to a single-point measurement, this is a more reliable 

method of accurately characterizing the spring stiffness of the 

microgimbals. 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 summarizes the results of static measurements for 

two prototype microgimbals, one with five turns (the data of 

which have been shown in Figs. 13, 15, and 16) and a slightly 

different design which has only three turns. It can be seen that 

as expected, the stiffness of the microgimbal is much higher 

when there are fewer number of turns (the stiffness is about 

2.3 times higher for vertical, three times for pitch and two 

times for roll). 

We have also tested the microgimbals with a 30% slider 

bonded under the center c ~ u p o n . ~  If the coupon is rigid, 

then bonding of a slider will have no effect on the static 

stiffness. However, one can observe that there is a slight 

increase in the spring constant (except for pitch) suggesting 

that the coupon is in fact flexible. It also makes sense that the 

effect is higher for the stiffer microgimbal since in comparison, 

much more deformation will be exerted on the flexible coupon 

and therefore more contribution to the overall compliance 

(the increase in vertical stiffness is about 20% for the stiffer 

three-turn design but only 10% for the five-turn). 

In addition to static measurement, we also performed dy- 

namic measurements. Fig. 17 shows a laser Doppler vibrom- 

eter (LDV) setup designed especially for measuring micron- 

level in-plane and out-of-plane dynamic motion of the silicon 

microgimbals (as well as other MEMS devices). At the center 

4We wish to thank Dr. Chak Leung of the Read-Rite Corporation for his 
assistance in obtaining the dummy sliders. 

. . . . . . . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAout-of-plane 
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Fig. 18. 
of a five-tum silicon microgimbal. 

Measured frequency spectra of in-plane and out-of-plane motions 

of Fig. 17 is a small piezoelectric shaker (the small ceramic 

disk on top of the polished aluminum plate) for mounting and 

exciting the microgimbals. 

On the left hand side of Fig. 17 is the commercially avail- 

able LDV which consists of a frequency stabilized HeNe 

laser and an acoustooptical modulator for upshifting the laser 

frequency by 40 MHz. The shifted signal beam emitted by the 

LDV is redirected and focused onto the microgimbal mounted 

on a high-resolution motorized x-y stage, allowing very precise 

positioning of the specimen under microscope. The reflected 

beam is then collected by the LDV and recombined with the 

reference beam to provide a frequency-modulated (FM) signal 

with a carrier at 40 MHz and a modulation signal proportional 

to the velocity of excited motion of the microgimbal. 

This signal is then fed to a FM demodulator and the output 

signal is connected to a spectrum analyzer which also provides 

the excitation signal for the shaker. The frequency spectra 

captured at various locations on the microgimbal are then sent 

to a laboratory workstation which stores the data and composes 

the animation to display the various mode shapes. 

Fig. 18 shows the measured spectra for both in-plane and 

out-of-plane motions of the five-turn silicon microgimbal 

(with slider attached). The three lowest out-of-plane modes 

correspond to the vertical, roll, and pitch motions. The first 



TEMESVARY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: SILICON MICROGIMBALS FOR SUPER-COMPACT RIGID DISK DRIVES 2s 

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI11 TABLE IV 

COMPARISON OF MEASURED RESONANT FREQUENCIES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( k H Z )  COMPARISON OF CALCULATED EQUIVALENT INERI I A  PROPERTIES OF 

.ASD IN-PLANE AND OUT-OF-PLANE MOTIONS OF THE SILICON THE MICROGIMBALS AND MEASURED VALUES OF THE BONDED SLIDER 

5-turn coil .?-turn coil slider 
MICROGIMBALS WITH AND WITHOUT SLIDERS ATTACHED 

5-turn coil .?-turn coil mass (mg) 0.15 0.12 I .8 

plane vert pitch roll plane vert pitch roll pitch inertia (mg.mm2) 0.064 0.050 0.34 
LWO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 3.8 6.5 5.8 - 7.0 11.9 11.6 

. i ~  6.0 1.1  2.6 1.9 12.7 1.7 4.3 2.8 

Yaw In-Plane 

Fig. 20. Four different silicon microgimbals designs. 

Fig. 19. 
five-turn silicon microgimbal. 

Measured mode shapes of in-plane and out-of-plane motions of a 

Therefore, for comparison purposes, we can calculate the 

in-plane mode corresponds to the side component of the 

roll motion; the second in-plane mode corresponds to the 

lateral bending of the serpentine microcoils (in-phase) and the 

third in-plane mode corresponds to the yaw motion (out-of- 

phase). The measurements are repeated at various locations 

of the sliderhicrogimbal to extrapolate the corresponding 

mode shapes of the measured resonances, which are shown 

in Fig. 19. 

When operating in a disk drive, the roll motion of the 

microgimbal will be greatly suppressed due to the stiffness 

and inherent damping of the self-acting gas-lubricated slider 

bearings [4]. On the other hand, the in-plane and yaw modes 

will be unconstrained and will severely limit the bandwidth of 

the tracking servo system. Therefore, their frequencies need 

to be as high as possible (at least >6 kHz, which is the 

fundamental reason for our desire to maintain a very high 

in-plane stiffness throughout the design process of the silicon 

microgimbals. 

Table 111 summarizes our dynamic testing results for both 

the five-tum and the three-turn design (same as those presented 

in Table 11). Recall that for a simple lumped-parameter model 

(where inertia can be assumed to be dominated by the slider 

and flexibility by the microgimbal), the resonant frequencies 

of the microgimbal can be estimated as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w,, = and w, = /I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMs 

where w,. and w,, are the measured resonant frequencies 

with and without bonded sliders, respectively, K ,  and Mc are 

the equivalent spring constant and the effective mass of the 

microgimbal, respectively, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMs is the mass of the added 

slider. 

equivalent spring constants of the microgimbals using the 

dynamic data tabulated in Table 111. Such results have been 

summarized in Table I1 (bottom row) and one can see that 

the static and dynamic values are quite close, confirming 

the accuracy of our static measurements. Finally, Table IV 

compares the calculated equivalent mass and rotary inertia of 

the microgimbal with the measured values of the slider, which 

shows that the inertial properties of the microgimbal are about 

an order of magnitude lower than those of the slider, verifying 

the assumption of (2). 

Our remaining testing efforts are concerned with a uni- 

formity study of the fabrication process. Fig. 20 shows four 

different microgimbal designs: Design A is the three-turn 

design described earlier, Design B is a slightly modified 

three-tum design where we have increased the radius of the 

microcoils, Design C is a two-turn design while Design D is 

a radically different design where the anchor points have been 

moved to the left- and right-hand sides of the center coupon. 

For each design, we fabricated a total of 30 samples (all with 

the improved fabrication process as described in Fig. 10, but 

half of the samples are coated with LTO instead of thermal 

oxide in order to investigate the effects, if any, of the high- 

temperature process on mechanical properties). On each of 

the ,samples, we performed dynamic testing to determine the 

spring stiffness. We found that the stiffness of the LTO samples 

is typically 5% higher than that of the thermal oxide samples 

(since the thickness of the LTO layer is about 2 pm while that 

of the thermal oxide is less than 2000 A, after TMAH). On the 

other hand, once the oxide layer is removed, the behaviors of 

the two sets of samples are basically the same. Fig. 21 shows 

the distribution of the measured vertical stiffness for Design 

A (with oxide removed). 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21. 
microgimbal. 

Distribution of measured vertical stiffnesses of Design-A three-turn 

TABLE V 

STIFFNESSES ( ~ L N - ~ ~ D E G . )  OF ALL Fom MICROGIMBAL DESIGNS 

A B C D 

SUMMARY OF MEASURED VERTICAL ( N h )  AND PITCH AND ROLL 

vert 576+4% 524+2% 704?3% 404+6% 
pitch 12.8*4% 12.3+1% 15.0+6% 5.5f2% 
roll 4.0+3% 3.4?2% 4.2f2% 3.3+4% 

Note that the average vertical stiffness value is quite a bit 

higher than that shown earlier in Table I1 (576 as opposed 

to 223 N/m). This is due to a thicker epi-layers (30 instead 

of 20 pm) and an improved RIE process (lower power, lower 

flow rate and lower process pressure) resulting in much smaller 

undercut, therefore wider beams (approximately 15 pm wider) 

and higher spring stiffness. 

We also find that uniformity in RIE is very important in 

terms of uniformity of the thickness of the finished silicon 

microgimbals. If RIE is not uniform, then once some of the 

microstructures are released, the plasma will start to etch the 

silicon from the backside causing damage to the silicon epi- 

layers. In our process, we typically rotate the wafers two to 

three times in order to compensate for any variation in etch 

rate and sometimes even coat photoresist to the backside of 

the silicon microgimbal if necessary to increase protection. 

From Fig. 21 one can see that the resulting variation is 

very small (less than 5%) demonstrating that our fabrication 

process is indeed very reliable and uniform. Similar results 

are obtained for other samples and Table V summarizes the 

testing results of all four designs. 

V. CONCLUSION 

High-performance small form factor disk drives are becom- 

ing increasingly important for the emerging portable integrated 

computationkommunication market. Silicon micromachining 

techniques offer many exciting opportunities for fabricating 

both passive microstructures and active electromagnetic mi- 

croactuators for form factor reduction and recording density 

increase of future information storage products. In earlier 

papers, we have demonstrated a design concept for a silicon 

microgimbal/microsuspension which has certain performance 

advantages. In this latest paper, we document additional re- 

sults related to design optimization, process improvement 

and statiddynamic micron-scale component-level testing of a 

number of prototype designs. 

In addition to computer disk drives, the results presented 

here have very wide applications, for example, in microre- 

lays [2], microvalves [ 131, and many other micromachining 

applications requiring substantial out-of-plane motions [ 121. 
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