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Abstract: We propose a scheme for on-chip isolation in chalcogenide

(As2S3) rib waveguides, in which Stimulated Brillouin Scattering is used to

induce non-reciprocal mode conversion within a multi-moded waveguide.

The design exploits the idea that a chalcogenide rib buried in a silica matrix

acts as waveguide for both light and sound, and can also be designed

to be multi-moded for both optical and acoustic waves. The enhanced

opto-acoustic coupling allows significant isolation (> 20 dB) within a

chip-scale (cm-long) device (< 10 cm). We also show that the bandwidth

of this device can be dramatically increased by tuning the dispersion of the

waveguide to match the group velocity between optical modes: we find that

20 dB isolation can be extended over a bandwidth of 25 nm.
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1. Introduction

Optical isolation, whereby light is permitted to propagate in one direction but not in the other, is

an important capability for modern photonics devices [1–4]. Traditionally, isolation is achieved

using the non-reciprocity of Faraday rotation in magneto-optic materials [5], and there has

been much recent research that focuses on the incorporation of magnetic elements on a chip-

scale device [6–8]. To complement this magneto-optic approach, a number of researchers have

proposed alternative isolation schemes that make use of the non-reciprocal nature of optical

nonlinearities [9] in conjunction with resonators [10] and strongly modulated gratings [11],

or that create non-reciprocity by direct temporal modulation of the material properties of a

waveguiding material [3,4,12]. A flexible, chip-based isolation scheme that is capable of linear

operation over a range of wavelengths would be a powerful and useful addition to the range of

components available for modern integrated photonics.

We present here a scheme for all-optical isolation based on Stimulated Brillouin Scattering

(SBS) in highly-nonlinear chalcogenide (As2S3) rib waveguides. SBS is one of the strongest op-
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tical nonlinearities, and involves a coherent interaction between the optical and acoustic modes

within the material [13]. The central idea for an SBS-based isolator, first proposed in a fibre

geometry [2], is that two optical pumps are used to generate an acoustic field in a waveg-

uide via electrostriction; the density fluctuations in the acoustic mode then induce a travelling

photo-elastic grating which causes optical signals in the co-propagating direction to undergo

mode-conversion, while signals travelling in the counter-propagating direction are unaffected.

This scheme leads to operation that is independent of the power in the signal, and offers a

broader bandwidth of isolation than alternative SBS-based isolation schemes [14], in which the

signal itself generates the acoustic field.

The original proposal for an SBS-based isolation scheme [2] required 12 m of small-diameter

(1.34 µm) fibre suspended in air for effective operation. We demonstrate here that this scheme

can be extended to practical on-chip operation. An essential component to the operation of this

device is the use of highly-nonlinear chalcogenide waveguides [15]. These waveguides have

two key advantages for use in SBS experiments: firstly, the high refractive index leads to a

large Brillouin gain, some 100× that of a silica waveguide with equivalent dimensions [16,17].

Secondly, the material properties of chalcogenide are such that a waveguide can be formed for

both acoustic and optical waves using a buried As2S3 waveguide in silica [16]. This conveys a

significant advantage over free-standing or suspended waveguides.

The structure of the paper is as follows. First, we outline the principles of operation of the

device. We then examine the acoustic properties of chalcogenide rib waveguides and outline

how the fields are computed. Design curves are then presented showing the range of operation,

for realistic pump powers, of the isolation scheme. Finally, we show that the bandwidth of the

device can be markedly increased by tailoring the dispersion of the multi-mode waveguide.

Fig. 1. Schematic of isolator operation. Two pump modes are mixed into the fundamental

and first higher-order mode of a multi-mode chalcogenide rib waveguide. These pumps

excite a guided acoustic mode in the long central section, which drives a transition from

the signal in the fundamental mode at ω3 to a higher-order mode at frequency ω4. The

higher-order mode is then filtered out using symmetry. A signal propagating in the reverse

direction does not undergo mode conversion, and so can propagate from the right to the left

of the device unimpeded except for losses at the waveguide transitions.

2. Principal of operation and theory

We consider the device shown in Fig. 1. Two CW pump sources at frequencies ω1 and ω2 are

mixed by a mode coupler [18,19] into the fundamental and higher-order optical modes, respec-

tively, of a multi-mode rib waveguide. These modes have propagation constants β1 and β2, and

should be sufficiently far from cutoff that their dispersion curves are very nearly parallel (see
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Fig. 2(a)). The beat pattern between these two modes will then excite density fluctuations with

frequency Ω = ω2 −ω1 and propagation constant q = β2 −β1 via electrostriction; if the pair

(q,Ω) lies on the dispersion curve of an acoustic mode then the acoustic mode will be reso-

nantly excited by the optical fields. The acoustic field will drive inter-band transitions between

the forward-propagating fundamental and higher-order optical modes over a large bandwidth:

as shown in Fig. 2(a), a forward-propagating signal in the fundamental optical mode at fre-

quency ω3 will interact with the acoustic wave via the elasto-optic effect to form a higher-order

optical mode with frequency ω4 = ω3 +Ω. For a signal travelling in the reverse direction this

transition is not possible as there is no optical mode that fulfills the required energy-momentum

conservation – the rib waveguide therefore acts as a non-reciprocal mode converter. The higher-

order mode at ω4 can then be filtered out, for example by exploiting the difference in symmetry

between the modes. For the anti-symmetric higher-order mode depicted in Fig. 1, a simple

transition to a single-mode waveguide can be used as a mode filter. Because of symmetry, the

overlap between the higher-order optical mode and the fundamental mode of a narrow waveg-

uide is exactly zero, however the higher-order mode is beyond cut-off in the narrow waveguide

and so cannot propagate further.

Fig. 2. (a) Dispersion diagram showing the optical and acoustic modes: energy and momen-

tum conservation must be satisfied to drive the transition from one optical mode to another;

(b) Rib waveguide design used in our simulations.

The isolation attainable in such a device depends on the degree of mode conversion in the

multi-mode rib, which in turn depends on the interaction between optical and acoustic fields

over the length of the waveguide. This interaction can be modeled using coupled-mode theory,

and we now give an outline of the formalism, following for the most part the more comprehen-

sive derivation of Huang and Fan [2]. In the interaction there are four optical fields, consisting

of two pumps (at ω1 and ω2) and two signals (at ω3 and ω4). For a waveguide oriented along

the z-axis, the electric fields of each mode can be expanded:

Ek(x,y,z, t) = ak(z, t)ek(x,y)e
i(βkz−ωkt) + c.c . (1)

Here the (three-dimensional) vector ek represents the electric field of the kth mode with fre-

quency ωk and propagation constant βk, and ak(z, t) is an envelope function, which is assumed

to be slowly varying in both time and in the z-direction. For the following analysis we normal-

ize each optical mode so that
∫∫

A ||ek||
2dxdy = 1, where the integral extends over the waveguide

cross-section. The corresponding expansion for the acoustic field is

ρ(x,y,z, t) = b(z, t)ρac(x,y)e
i(qz−Ωt) + c.c . (2)
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where b(z, t) is a slowly-varying function that describes the acoustic field envelope along the

waveguide. The function ρac describes the dilatation of the acoustic mode, which satisfies the

wave equation [20]

∇ 2
⊥ρac +(

Ω2
ac

V 2
ac

−q2)ρac = 0 , (3)

where Vac(x,y) is the longitudinal acoustic velocity in the material and Ωac is the angular fre-

quency of the acoustic mode with wavenumber q. In writing Eq. (3) we have assumed that the

major part of the acoustic field consists of pressure waves and that contributions from shear

waves can be neglected. This choice is valid in situations where the dominant coupling mech-

anism is electrostriction and where the waveguide is far enough from cutoff that effects from

radiation pressure can be neglected [21]. The appropriate boundary conditions to be applied for

Eq. (3) are then continuity of the value of ρ⊥ across material boundaries, together with homoge-

neous Dirichlet conditions on those surfaces where the solid material boundary connects with a

gaseous or vacuum boundary [20]. We additionally apply homogeneous Dirichlet conditions on

the edge of the computational domain in the x direction, and choose this domain large enough

that the acoustic mode is not affected by this boundary. With these boundary conditions, Eq. (3)

becomes a well-posed eigenvalue problem for the acoustic modes. We normalize these modes

by setting
∫∫

A |ρac|
2dxdy = 1.

By substituting the expansions (1) into Maxwell’s equations and Eq. (2) into Eq. (3), applying

the mode normalizations, and taking into account the slow-varying behavior of the envelopes,

we obtain the coupled amplitude equations for the acoustic field b(z) and the optical modes

ak(z). In deriving these equations, other nonlinear effects are neglected because the pumps and

signals are CW [2, 13]. We choose the frequencies of the pump modes ω1 and ω2 to exactly

match the zero-detuning point from the SBS resonance, so that ω2 −ω1 = Ωa and β2 −β1 = q.

This is the most efficient operating point for the generation of phonons, and at this point we

obtain the steady-state solution for the acoustic field:

b(z) = ε0Q′′
12a∗1(z)a2(z) , (4)

with the coupled amplitude equations for the pump modes:

da1

dz
=

iω1Q12

2n1c(1−K1)
a2b∗ ,

da2

dz
=

iω2Q21

2n2c(1−K2)
a1b . (5)

In the above equations, n1,2 denotes the effective index of modes 1 and 2, and the coefficients

Q12, Q′′
12 and K1,2 are overlap integrals defined by:

Qi j =
∫ ∫

A

γe

ρ0
ei · e∗j ρ∗

acdx dy , Q′′
i j =

∫ ∫

A

γe

ΓB
∇ 2

(

ei · e∗j
)

ρ∗
acdx dy , (6)

K j =
∫ ∫

A
|[e j]z|

2 +
1

2iβ j

(

[e j]
∗
z ∇ ⊥ · [e j]⊥ +[e j]

∗
⊥ · ∇ ⊥[e j]z

)

dx dy . (7)

Here γe(x,y) is the local coefficient of electrostriction [13] of the waveguide material, that is,

the coefficient of the material at position (x,y). ρ0(x,y) is the material density at equilibrium,

and ΓB(x,y) is the intrinsic Brillouin linewidth [13] of a bulk solid consisting entirely of the

material at position (x,y). We use ∇ ⊥ and [e j]⊥ to denote projections onto the transverse (x,y)
plane.

The acoustic field generated by the two pumps creates a grating via the elasto-optic effect,

resulting in coupling between the signals located at frequencies ω3 and ω4. At this point we

depart from the treatment in [2], and note that in general the difference in the signal modes

will be detuned by an amount ∆β = q− (β2 −β1) from the centre of the Brillouin resonance.
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Assuming that the signals are much smaller in amplitude than either of the pump modes, the

coupled amplitude equations for the signal modes are then

da3

dz
=

iω3Q34

2n3c(1−K3)
e−i∆βza4b∗ ,

da4

dz
=

iω4Q43

2n4c(1−K4)
ei∆βza3b . (8)

The two coupled sets of equations (4)-(5) and (8) can be solved numerically to determine the

power carried by the signal modes, and hence to compute the degree of mode conversion along

the waveguide. The “raw” optical isolation, that is, the isolation achievable provided the modes

can be perfectly filtered, is then given by

IdB = 10log10

(

P3(z = zmax)

P3(z = 0)

)

, (9)

where zmax is the length of the waveguide and Pk(z) denotes the power carried by the kth mode,

given by

Pk = 2ε0nkc|ak|
2
∫ ∫

A
ek ×h∗

kdx dy .

3. Acoustic and optical modes in chalcogenide rib waveguides

Before solving Eq. (4-5) and Eq. (8) we must determine the nature of the acoustic and elec-

tromagnetic modes that exist within the guide. To achieve maximum conversion of the signal

from the fundamental mode at ω3 to a higher order mode at ω4 several requirements must be

satisfied. First, the optical modes must be of the same or similar polarization, to ensure that the

quantity e1 · e∗2 is non-zero. The symmetry of the acoustic mode must also be appropriate for

driving the inter-band transition, and there should be significant overlap with the optical field

intensity – acoustic modes of the wrong symmetry will result in the coupling integrals Qi j and

Q′′
i j being equal to zero. In addition, it is desirable that the quantity ∆β be as small as possi-

ble, so as to match momentum between the acoustic field and the transition between the signal

modes. These considerations mean that the waveguide must not only be multi-moded but also

that the modes must have a very similar group velocity extending over as large a bandwidth as

possible. This means that the modes should be sufficiently far from cut-off that the waveguide

dispersion is very small.

Fig. 3. Electromagnetic modes for the rib waveguide depicted in Fig. 2(b): the z-component

of the time-averaged Poynting vector is depicted.

With these factors in mind we consider a waveguide geometry that has previously been shown

to exhibit strong Brillouin response – the chalcogenide rib waveguide (see Fig. 2(b)). These
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waveguides are also multi-moded [22] provided that we choose a sufficiently wide rib; in the

following we choose a rib of width 4 µm with a height of 380 nm on a slab with thickness 470

nm, placed on a silica substrate and covered completely with a silica coating. These dimensions

have been chosen because they have previously been demonstrated as practical for on-chip SBS-

based experiments [16, 17, 23], with reasonable insertion loss (∼ 4dB per facet) and moderate

waveguide losses ∼ 0.2dB/cm [23]. Optimization of the waveguide parameters to increase the

device bandwidth is considered in Section 5. In principle it is possible to remove the Silica

coating and still achieve confinement of both optical and acoustic fields, however in practice

it is desirable to have some protective covering over the light-guiding rib to reduce losses. In

the vicinity of λ = 1550 nm the rib has a refractive index of nAs2S3
= 2.37, while the substrate

has a refractive index of nSiO2
= 1.44. In Fig. 3 we show the dispersion curves of the TE-like

modes, which possess a dominant electric field component oriented along the x-axis, for this

waveguide geometry. Several modes, displaying both odd and even symmetry, are available in

this frequency range; following the classification of Goell and others [24] we consider the Ex
11

(even), Ex
21 (odd) and Ex

31 (even) modes.

Fig. 4. Fundamental and first higher-order acoustic modes for the rib waveguide depicted

in Fig. 2(b). The normalized acoustic energy density is depicted.

This structure also supports several acoustic modes. These are computed by directly solving

Eq. (3) using the finite element package COMSOL, together with the appropriate boundary con-

ditions. The local velocities of sounds were chosen to be vAs2S3
= 2600 m s−1 and vSiO2 = 5971

ms−1, with material densities ρAs2S3
= 3198 kg m−3, ρSiO2

= 2200 kg m−3 [25]. The acoustic

modes are guided within the chalcogenide material because the acoustic wave, like an elec-

tromagnetic wave, will be confined within the region where the phase velocity is lowest. This

means that simultaneous confinement of optical and acoustic waves is possible without hav-

ing to use under-etched membranes [21] or multi-structured optical fibres [14]. The dispersion

curves for small values of wavenumber q are shown in Fig. 4. Following the nomenclature for

optical modes, we designate the acoustic modes A11, A21, A31, with the indices designating the

number of antinodes in the x and y directions respectively.

4. Isolation and power-dependence

There are two possibilities for mode conversion in this structure involving the fundamental Ex
11

mode: The Ex
11 mode could interact with an even acoustic mode (such as A11) to produce an

even optical mode (such as Ex
31). The second possibility is that Ex

11 could interact with an odd

acoustic mode (A21) to produce an odd optical mode (Ex
21). There is always a larger overlap

between field components for the even-odd interaction, and therefore this interaction will be
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stronger provided the A21 mode exists. We therefore consider only the even-odd transition in

the following computations. We note that the contrast in acoustic material properties for the

As2S3-SiO2 system is much larger than for the electromagnetic properties, and higher-order

acoustic modes will exist for any geometry that supports a higher-order EM mode.

The intensity of the acoustic field generated by the two pumps depends on the initial pump

powers P1(0) and P2(0). However, it has been observed [2] that the maximum conversion,

and so maximum isolation, of the signal does not occur when the pump powers are equal:

this is because equal-power pump beams will generate the largest number of phonons near the

front-facet of the waveguide, and the acoustic field will thereafter decay monotonically. Greater

conversion efficiency can be achieved by reducing the power of one of the pump beams so that

the acoustic field is maximized towards the middle of the waveguide. We therefore first consider

the case where the initial pump power P2(0) is fixed, and we vary the power P1(0) for a range

of waveguide lengths.

0.1 1 10 100
−20
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Mode 1 initial power P
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Fig. 5. Computed isolation as a function of initial power in pump 1, as given by Eq. (9).

Computed by solving Eq. (5)-(8) with power in pump 2 of P2(0) = 400 mW.

In Fig. 5 we show the isolation IdB as computed from Eq. (9) for waveguide lengths ranging

from 2-10 cm. For these computations we have set the wavelength of the pump λ1 = 1.55 µm,

and λ2 has been chosen to exactly satisfy the Brillouin resonance condition so as to ensure a

maximum phonon generation rate; this results in an acoustic frequency of ν(= Ω/2π) = 1.658

GHz. The signal is chosen such that λ3 = λ1 +0.1 nm, which is sufficiently close to the pump so

as to allow phase-matching with the generated phonons but not so close as to make filtering of

the final signal difficult. Both pumps and signal are CW: the initial power in the signal is P3(0) =
1.0µ W, the initial power in pump 2 is fixed at P2(0) =400 mW and P1(0) has a maximum value

of 100 mW. This choice of powers ensures that the total CW power remains less than 500 mW,

which is a conservative estimate for the damage threshold in similar structures. We can see

that considerable isolation is achievable even for short waveguide lengths and for modest input

powers, with maximum isolation of 19.6 dB occurring for a 10 cm-long waveguide. This level

of isolation is of the same order of magnitude as the metres-long air-suspended silica fibre

structures studied by Huang and Fan [2].

We can obtain insight into the physics of the mode-conversion process by examining how the

#172916 - $15.00 USD Received 20 Jul 2012; revised 21 Aug 2012; accepted 21 Aug 2012; published 31 Aug 2012
(C) 2012 OSA 10 September 2012 / Vol. 20,  No. 19/ OPTICS EXPRESS  21242



powers Pk(z) change along the waveguide. In Fig. 6 we show the powers at (a) the maximum-

isolation predicted by Fig. 5, corresponding to P1(0) = 200 µW and (b) at a higher initial power

P1(0) = 100 mW. For high isolation the acoustic field achieves its maximum well within the

waveguide, however for more balanced powers the largest values of acoustic field occur at the

front of the waveguide and so the overall strength of the mode transition between the signals is

reduced.

Fig. 6. Power in optical and acoustic modes mode as a function of waveguide length, as

computed by solving Eq. (5)-(8) with initial power in pump 2 P2(0) = 400 mW; (a) The

maximum-isolation point predicted by Fig. 5, with P1(0) = 200 µ W; (b) Lower isolation

point, with P1(0) = 100 mW.

Given that efficient mode conversion is best attained using unbalanced pump powers, and

that the total optical power able to be carried in the waveguide will be limited it makes sense

to keep the total input power constant P0 = P1(0)+P2(0) and compute the maximum isolation

achievable. We show this in Fig. 7, in which we choose waveguide lengths of zmax = 5 cm and

zmax = 10 cm. We see from these results that isolation of > 30 dB can be achieved using a total

power of ∼ 1 W in a 5 cm guide or ∼ 0.5 W in a 10 cm guide.

Fig. 7. Maximum isolation, given by Eq. (9), as a function of total power and wavelength,

for waveguide lengths of (a) 5 cm and (b) 10 cm. Obtained by numerical solution of (5)-(8).
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5. Expanded bandwidth operation by tailoring waveguide dispersion

It can be seen from Fig. 7 that the bandwidth over which significant isolation is achieved is

quite small, of the order ∼ 0.1 nm. As has been previously noted in the context of long-period

gratings [26], the restricted bandwidth is a result of the differences in group velocity between

the two optical modes shown in Fig. 3: although appearing almost parallel over the range con-

sidered, the slopes of these curves in fact differ by a factor of about 1%, which is enough to

cause significant weakening of the acoustically-driven transition in Eq. (8) by increasing the

phase mismatch ∆β . A natural step is to correct the phase mismatch by tailoring the disper-

sion of the waveguide modes so that the group velocities of the fundamental and higher-order

modes become equal at the operating frequency [3, 26]. Tuning the dispersion is made easier

by the difference in fields between the fundamental and higher-order modes, shown in Fig. 3:

a localized change in refractive index will affect one mode more than the other. In Fig. 8 we

Fig. 8. (a) Cross-section of photo-induced perturbation across the chalcogenide rib; (b)

Group index of the optical modes as a function of perturbation height; (c) Mode fields for

the first two modes with ∆n = 0.04.

examine the effect of a Gaussian index modulation, such as can be photo-induced across the

chalcogenide rib [27, 28]. The region of perturbation must be such that the fundamental mode

is strongly affected but the higher-order mode is not; for the sake of simplicity we keep the

1/e−width of the modulation fixed at 1 µm and adjust the maximum index modulation ∆n.

The resulting change in the group index of each mode is shown in Fig. 8(b), in which we see

that the group velocities of the Ex
11 and Ex

21 modes are changed at different rates, and become

equal when ∆n = 0.04. We note that this is only one of many ways in which the waveguide

parameters can be adjusted: others include the inclusion of a high-index material within a slot

in the centre of the rib, or the creation of a central ‘hat’ on the upper rib surface.

With the group velocities matched, we now examine the effect on the bandwidth of the de-

vice. As shown in Fig. 9, the bandwidth is dramatically increased: 20 dB isolation can be

achieved for a 10 cm device with 0.5 W of total power over a bandwidth of ∆λ = 25 nm. The

isolation can be increased to 30 dB of isolation with higher powers. It can also be seen that the

perturbation creates a second region of group-velocity matching between the two modes at a

wavelength of approximately 20 nm higher than the pump. This increase in bandwidth comes

at a small cost to the absolute isolation achievable: as can be seen in Fig. 9(a), the maximum

isolation for 1 W of power in a 5cm waveguide is now ∼ 23 dB, as opposed to more than 30 dB

for the non-dispersion-tuned case (Fig. 7). The reason for this is that the perturbation concen-

trates the mode fields more in the centre of the waveguide (see Fig. 8(c)), thereby reducing the
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Fig. 9. Maximum isolation IdB for waveguide with vg-matched modes with lengths of (a)

5 cm and (b) 10 cm, showing broadband operation. Note that the wavelength scale is ∼ 60

times larger than for the non-dispersion-tuned waveguide (Fig. 7).

overlap with the acoustic field.

6. Discussion

Any isolation scheme is based on a breaking of reciprocity, or time-reversal symmetry. This can

be induced through one of three mechanisms: an intrinsic magnetic response in the material,

a nonlinear response, or direct temporal modulation of the refractive index of the material, the

latter of which is in essence the approach discussed here. While the use of two auxiliary pump

fields may seem overly complicated for an integrated device, there are a number of advantages

to the scheme presented here. First, our material system has been demonstrated in a large num-

ber of photonic applications and avoids any magnetic elements which are not easily compatible

with standard platforms. Further, although the isolation depends on the power in the two pump

modes, it is independent of the power of the signal. This is essential for a versatile generic de-

vice, and is a significant advantage over nonlinear isolation schemes. We note that, because the

signal can be very weak, it will remain unaffected by other χ (3) nonlinearities in the system:

because of the narrow linewidth of the pump modes (less than the Brillouin linewidth), the only

effect of these nonlinearities will be to induce a small change in effective index of the pump

modes, and this will have a negligible effect on the isolation of the device. Finally, the strong

isolation is a direct result of the ability to induce SBS on length scales compatible with on-chip

integration, and we can leverage the rapidly growing research effort in SBS-based technologies

of all kinds. While we have performed our analysis for chalcogenide glass, recent predictions

of photo-elastic effects in silicon [21] suggest that our approach might be suitable for CMOS

platforms which would further enhance its appeal and ease of realisation.

It is worth commenting briefly on the effect of imperfections and loss in the device, such as

insertion loss, propagation loss, imperfect couplers for the pump modes, and imperfect filtering

of the higher-order mode. We note that the first three of these effects are reciprocal, in the sense

that they will affect signals propagating in both directions equally. So, while the insertion loss

will change the output signal power, as well as the pump powers required to achieve a given

isolation, it will not affect the difference IdB between the isolated and non-isolated signals. The

effect of waveguide propagation loss α , which may arise due to roughness or material imper-

fections, will also affect signals propagating in both directions approximately equally; the main

effect of propagation loss will be to reduce the power in the pump modes, resulting in a reduc-
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tion of the physical length L of the waveguide to an effective length zmax = (1−exp(−α L))/α .

Similarly, an imperfect coupler for the pump mode at ω2 will lead to siphoning of both forward

and backward-propagating signals into the pump waveguide at equal rates, because at this sec-

tion of the waveguide both signals are in the fundamental mode. This will lead to a reduction

in the absolute power in the signal but will leave the isolation unchanged. However, a mode-

filter will act differently on the signals in the forward and backward propagating directions: an

imperfect mode-filter will allow some of the converted signal into the single-mode waveguide

at the right-hand-side of Fig. 1, resulting in a reduction in isolation attainable by the device.

Structural engineering of mode-filters and couplers [18] will allow the design of devices with

isolation to within a given tolerance of the theoretical maximum.

7. Conclusion

We have shown that significant isolation (> 20 dB) can be achieved using SBS in chalcogenide

rib waveguides of moderate length. These waveguides can be tuned post-fabrication so as to

increase the bandwidth of these devices to several tens of nanometres. These devices can also

be used to achieve on-chip conversion to high-order waveguide modes.
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