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DESIGN FOR PUNCHING OF PRESTRESSED CONCRETE SLABS  

Thibault Clément, António Pinho Ramos, Miguel Fernández Ruiz and Aurelio Muttoni 

 

ABSTRACT  

Prestressing in flat slabs helps in controlling deformations and cracking under service loads 

and allows reducing the required slab thickness, leading thus to more slender structures and 

being therefore an economic solution for long spans. However, as a consequence of the 

limited thickness of these members, punching is typically governing at ultimate limit state. 

Investigations on the topic of punching shear strength have shown that the presence of 

prestress in flat slabs has a number of potential beneficial effects, namely the vertical 

component (force) carried by inclined tendons, the in-plane compression stresses and the 

bending moments developed near the supported region. The approach provided by codes of 

practice for punching design in presence of prestressing may however differ significantly. 

Some neglect the influence of the introduced bending moments due to prestressing and the 

sections at which deviation forces of the tendons are considered may be located at different 

distances from the edge of the supported region. In this paper, the influence of prestressing on 

the punching shear strength of members without shear reinforcement is investigated by using 

the fundamentals of the Critical Shear Crack Theory. On that basis, and accounting also for 

65 tests available in the scientific literature, the suitability and accuracy of a number of 

design codes, such as Model Code 2010, Eurocode 2 and ACI 318-11, is investigated and 

compared.  

 
© 2012 Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin 
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INTRODUCTION   

Prestressed flat slabs are extensively used in Europe for small and medium span bridges. 

They are also a common solution for foundations mats and long span flat slabs in buildings 

(for spans larger than 10-12 m) as shown in Figure 1. Although simple in appearance, a flat 

slab system presents a complex load bearing behaviour, especially at slab-column 

connections where punching resistance is frequently the governing design criterion. Punching 

failure results from the interaction of shear forces and bending moments near the supported 

areas, and is typically characterised by brittle failures (particularly associated to large depth 

and/or large flexural reinforcement ratios). Although punching failure is local (developing at 

a single slab-column connection), it overloads adjacent columns and can lead to progressive 

collapses [3]. In recent years, there had been some examples of progressive collapses of this 

type of structures that originated important material and human losses (see [6,12]). 

With respect to the influence of prestressing on the punching shear strength, it has been 

reported a number of potential beneficial effects on the literature [22,23]:  

- the vertical component resulting from inclined tendons near the column (direct 

transmission of the shear force to the support), 

- the presence of compression stresses in the concrete resulting from prestressing, 

which have been reported to lead to an increase on the punching shear,  

- the moments due to the prestressing eccentricity, that in general have opposite sign to 

those of from gravity loads and, in this case, have also been reported to increase the 

punching shear strength.  
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The present work investigates the influence of prestressing on the punching shear strength of 

flat slabs. To that aim, the Critical Shear Crack Theory is used. This theory provides a 

mechanical model suitable for investigating shear and punching shear problems and was 

selected as the state-of-the-art model to ground fib Model Code 2010 (MC2010 [4]) punching 

shear provisions. The results of this theory, following the MC2010 implementation, as well as 

other codes based on empirical formulations for punching shear design (such as Eurocode 2 

[2] or ACI318-11[1]) are compared to a set of 65 tests available in the scientific literature 

drawing a number of conclusions on the pertinence and accuracy of each approach. 

 

INFLUENCE OF PRESTRESSING ON THE PUNCHING SHEAR OF CONCRETE 

SLABS 

As previously stated, prestressing induces a number of phenomena influencing punching 

shear strength. In the following, these phenomena will be investigated on the basis of the 

Critical Shear Crack Theory (CSCT). A detailed description of the fundamentals of this 

theory and of its implementation on MC2010 has been presented elsewhere [14]. 

According to the CSCT, the punching shear strength (VR) depends on the opening (w) and 

roughness of a critical shear crack developing through the compression strut carrying shear, 

Figure 2a. Assuming the opening of the critical shear crack to be proportional to the product 

of the slab rotation times the effective depth of the slab ( dw ⋅∝ψ ), and that the roughness 

of the crack is correlated to the maximum size of the aggregates (dg), the following failure 

criterion was proposed by Muttoni for average values [11,14] (Figure 2b, refer to average 

failure criterion): 
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Where fc refers to the compressive strength on concrete measured on cylinder, d to the 

effective depth of the member, dv to the shear-resisting effective depth (accounting for 

supported area penetration [14]), b0 to a control perimeter located at dv/2 from the face of the 

supported area and dg0 is a reference aggregate size (equal to 16 mm). 

On the basis of this criterion, and accounting for characteristic material properties and safety 

factors, the following design failure criterion (VRd) was proposed [11] and recently adopted 

by MC2010 [14] (Figure 2b, refer to characteristic failure criterion with γc = 1.0): 
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Where fck refers to the characteristic compressive strength of concrete measured on cylinder, 

γc is the partial safety factor for concrete (typically equal to 1.5) and kdg is a coefficient 

accounting for the maximum aggregate size whose value can be calculated as: 

 kdg = 32 [mm]/(16+dg) ≥ 0.75  (3) 

Calculation of a failure load can thus be performed by intersecting the actual behaviour of a 

slab (characterized by its load-rotation behaviour) with the failure criterion (Figure 2c).  

For design of prestressed slabs, the influence of the prestressing has to be accounted on the 

actions and actual behaviour of the slab. With respect to the shear transferred by concrete 

(Vc), it can be noted that it is reduced by the inclined component (force) of the tendons (refer 

to Figure 3a): 

PEP

A

c VVVdAqRV −=−⋅−= ∫   (4) 

Where R refers to the reaction on the supported area, q to the external loads acting on top of 

the punching cone, VE to the acting shear force (difference of the previous components) and 

VP to the inclined force carried by the tendons intercepted by the punching surface 

(alternatively, accounting the deviation forces of prestressing on term q and considering VP=0 
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yields the same results). It can be noted that punching failure occurs when the shear 

transferred by concrete (Vc = VE –VP, Eq. (4)) equals the available concrete strength (VR, Eqs. 

(1,2)). 

With respect to the influence of prestressing on the behaviour of the slab which is governed 

by the rotation of the slab (ψ), two different phenomena can be observed. The first one relates 

to the influence of compression normal stresses acting on the slab (Figure 3b) which delay 

concrete cracking and stiffen the cracked response of concrete. This leads to stiffer load-

rotation behaviours than for non-prestressed slabs for the same amount of flexural 

reinforcement and increases thus the punching shear strength, refer to point B on Figure 3b. It 

can be noted that for tensile normal stresses (which should not be the case of prestressing), 

this effect will lead to a softer response and thus to lower punching shear strength (point C on 

Figure 3b). The second phenomenon on the load-rotation response refers to the eccentricity of 

the tendons which originate bending moments on the failure region. These moments, when 

they oppose to those of the external actions, also delay cracking of the concrete and stiffen 

the overall response of the member (refer to point B’ on Figure 3c where, as sign convention, 

positive moments lead to tension on the top side of the slab). This is the case for typical 

arrangements of prestressing tendons. In case the moments are of same sign as those of the 

external actions, a reduction on the punching shear strength will however follow (softer load-

rotation behaviour, refer to point C’ in Figure 3c) 

These observations on the influence of in-plane forces and bending moments on the punching 

shear strength were already noted by the Fip Recommendations for the Design of Post-

Tensioned Slabs and Foundations [20] and other authors [8,22,23] who proposed to use the 

decompression moment as a suitable parameter to account for the combined influence of 

moments and normal forces. This is also the approach followed by the CSCT and that has 

been implemented on MC2010 as it will later be explained. 
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⎤
⎦

With respect to the influence of prestressing on the failure criterion, it can potentially 

influence the shear transfer capacity of concrete in a positive manner (increase of the 

compression zone carrying shear). For design purposes, however, this influence is usually 

neglected. This is for instance the approach followed by MC2010, which nevertheless (and as 

later shown in the paper) leads to sufficiently accurate and safe results when compared to test 

results.  

 

DESIGN FOR PUNCHING IN PRESTRESSED SLABS 

A number of design codes and recommendations are available for punching shear design of 

prestressed concrete flat slabs. They however present significant differences in their nature 

(empirical formulations or physical models) and on the treatment of the prestressing effects 

and their evaluation. In the following two empirical approaches (Eurocode 2 and ACI 318-

11), as well as MC2010 (based on the physical model of the CSCT) will be examined in 

detail and compared to test results. 

 

Eurocode 2 (2004) 

The punching shear strength for Eurocode 2 is expressed in Eq. (5). It can be noticed that the 

vertical component of tendons Vp,EC (see Figure 4) is calculated at 2d from the border of the 

column and is taken into account as an action. 

( )1/3

, , 0.18 100 0.1E p EC R EC c c ECV V V k f b dρ σ⎡− ≤ = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅⎣  (5)  

where: 

200
1 2    being in [mm]k d

d
= + ≤ (size effect factor, to be noted that no limit is considered 

by some authors [22,23]) A
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0.02lx lyρ ρ ρ= ⋅ ≤  

ECb is the control perimeter located at 2d from the border of the column (Figure 4). 

This expression accounts for the presence of normal stresses but not for the eccentricity of the 

tendons (moments). 

 

ACI 318 (2011) 

The punching strength prediction is expressed according to Eq. (6), which takes into account 

the vertical component of the tendons Vp,ACI, calculated at 0.5d from the border of the column 

as an additional strength, contrary to Eurocode 2. 

, 0.3E R ACI p c c ACI p ACIV V f b d Vβ σ⎡ ⎤≤ = ⋅ + ⋅ ⋅ +⎣ ⎦ ,       (6) 

where: 

40
min 3.5; 1.5p

ACI

d

b
β

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

ACIb  is the control perimeter located at 0.5d from the border of the column (Figure 4) 

As for Eurocode 2, this expression accounts for normal stresses but not for eccentricity of the 

tendons. Contrary to Eurocode 2, no size effect factor is accounted. 

 

Model Code 2010 

MC2010 [4] incorporates a number of significant changes with respect to previous versions 

of Model Code (1978, 1990), refer to [14]. This is particularly relevant for shear and 

punching shear design for members without transverse reinforcement, where instead of 

previous empirical formulations, design is based on consistent physical theories. For 

punching shear, the provisions are grounded on the physical model of the CSCT. Another 

significant innovation in Model Code 2010 with respect to other codes is that it proposes to 
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perform design based on the Levels-of-Approximation (LoA) approach, see [13,14]. Such an 

approach consists on improving the accuracy on the estimate of the strength and behaviour of 

a member by successive refinements on the value of the physical parameters accounted by the 

design model. This allows performing simple and low time-consuming estimates of the 

strength for preliminary design (LoA I) and more refined ones (LoA II and following) for 

tender or executive design as well as for assessment of existing critical structures. Hereby, it 

is explained the Model Code 2010 approach to take into account the influence of prestressing 

on punching shear strength at LoA II and III (typical LoA to be used for structures where 

punching shear strength is governing). To do so, Model Code 2010 approach for slabs 

without prestress will first be explained. On that basis, the modifications to be considered for 

prestressed slabs will be detailed.  

In a general manner MC2010 proposes to calculate the punching strength of members 

without transverse reinforcement as detailed in Equation (7): 

, ,E p MC R MC MCV V V k b d fψ− ≤ = ⋅ ⋅ ⋅ c    (7) 

Where VR,MC is evaluated according to the CSCT failure criterion (refer to Eq. (2)), whose 

terms are evaluated through the following parameters: 

6.0
9.05.1

1
≤

⋅⋅⋅+
=

dgkd
k

ψψ   (8) 

With kdg defined in Eq. (3). The vertical component of the tendons VP,MC is calculated at  0.5d 

from the border of the column as well as for the control perimeter bMC (see Figure 4). The 

rotation at failure (ψ, refer to Eq. (8)) can be evaluated by using the Levels-of-Approximation 

approach. 
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Non prestressed slabs 

Level of approximation II  

If the slab is subjected to vertical forces as shown in Figure 5a, the expression of the rotation 

can be given by Eq. (9): 

2/3

5.1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

R

s

s

ys

m

m

E

f

d

r
ψ   (9) 

where rs refers to the distance from the axis of the column to the line of contra-flexure of 

bending moments and is to be evaluated in the x and y directions. For LoA II and for regular 

slabs, it can be assumed that the zero moment line is located in the directions x and y at about 

rsx = 0.22 x and rsy  = 0.22 y respectively (where x and y refer to the span lengths at the x 

and y directions respectively, Figure 5a). By using the values of rsx and rsy it is possible to 

determine the width bs of the support strip (Figure 5b), on which the moments acting near the 

supported region (ms,x  and ms,y) have to be evaluated: 

sysxs rrb ⋅= 5.1   (10) 

For inner columns without unbalanced moments (case that will later be compared to test 

results) and at LoA II, ms can be estimated as equal to V/8. With respect to term mR, it refers 

to the unitary bending strength (bending strength per unit length), which can be calculated 

assuming reinforcement yielding at failure. 

Level of approximation III  

The expression of the rotation given by Eq. (9) can be used by replacing factor 1.5 by 1.2 if 

the value of rsx and rsy are obtained from an elastic (uncracked) finite element analysis and the 

strip moments (ms,x  and ms,y) are calculated as a function of the distribution of the acting 

moments on the support strip (bs). This can be performed by integration along the width of A
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the support strip and at the border of the supported area (Figure 5c) of the acting moments 

due to external loads (mV): 

∫
+

−

=
2/

2/

,

1 s

s

b

b

xV

s

sx dym
b

m  and ∫
+

−

=
2/

2/

,

1 s

s

b

b

yV

s

sy dxm
b

m  (11) 

 

Prestressed slabs 

Level of approximation II  

In presence of prestressing (Figure 6a), the rotation can be calculated according to Eq. (12): 

2/3

5.1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
PR

Ps

s

ys

mm

mm

E

f

d

r
ψ   (12) 

This equation incorporates the influence of the decompression moment (mp), which can be 

calculated as (refer to Figure 7): 

2

12( / 2) 2 3
P

h h
m n e n e

d h

⎛ ⎞ ⎛ ⎞= ⋅ + ≈ ⋅ − +⎜ ⎟ ⎜− ⎝ ⎠⎝ ⎠

d
⎟        (13) 

where n is the normal force per unit length, h the height of the slab, d the effective depth and 

e the eccentricity of the normal force from the centre of gravity of the section. It can be noted 

that this term effectively accounts for the influence of the in-plane forces (n) and of its 

resulting bending moments (accounted by means of the prestressing eccentricity, e). As sign 

convention, the decompression moment is considered positive when it leads to compressive 

stresses on the top side of the slab (usual cases). 

At LoA II, the rest of the parameters of Eq. (12) can be calculated in the same manner as for 

the case without prestressing. With respect to term mR, it can be calculated assuming that both 

ordinary and prestressed reinforcement yield at failure. A
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Level of approximation III 

The rotation can be estimated (in an analogous manner as for non prestressed slabs) by 

replacing coefficient 1.5 of Eq. (12) by 1.2 if: 

- Distances rsx and rsy are calculated according to an elastic (uncracked) analysis of the 

slab performed accounting for all actions including prestressing (refer to mV+P in 

Figure 6b). It can be noted that for calculation of these parameters, the influence of 

prestressing is relatively limited and can in many cases be neglected. 

- The strip moments (msx and msy) are calculated by integration of the moments acting 

at the support strip. This integrations has to account for all actions except prestressing 

(refer to mV Figure 6c) as prestressing effects are already considered on term mP. 

 

COMPARISON OF TEST RESULTS WITH DESIGN CODES 

A large number of tests are available in the scientific literature dealing with slabs subjected to 

in-plane forces or prestressed [5, 7-10, 15-19,21,22]. In this section, 65 tests are compared to 

code predictions from Eurocode 2, ACI 318-11 and MC2010 in order to investigate on the 

suitability of each code. In the following, the strength predicted by the codes (Vcode) will be 

compared to the maximum load of the tests (VR) accounting for the inclined component of 

prestressing as previously explained: 

ER VV =  for ACI 318-11 (since VP,ACI is accounted for in the term of the punching shear 

strength, refer to Eq. (6)) 

  for Eurocode 2 ECPER VVV ,−=

MCPER VVV ,−=  for MC2010 

The detailed results are shown in Table 1 and Figure 8. With respect to the influence of the 

different phenomena induced by prestressing, the following observation can be done: 
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Influence of the vertical component of the tendons 

Figure 8a shows the ratio between the maximum load of the test and the strength predicted by 

the codes as a function of the normalized vertical component of the tendons (Vp /VR) 

calculated according to Figure 4a. ACI 318-11 and MC2010 provide a calculation of the 

vertical component along the control perimeter located at 0.5d from the border of the column, 

whereas Eurocode 2 provides this value at 2d from the border of the column. At this latter 

distance, more tendons are considered in the calculations and the inclination of the tendons 

can be significantly larger than at 0.5d. According to test results, Eurocode 2 control 

perimeter seems to overestimate the vertical component of the tendons particularly for larger 

values of Vp /VR (leading thus to unsafe results). The control perimeter located at 0.5d seems 

to give better (trend-free) predictions, particularly for MC2010. 

Influence of in-plane stresses 

Figure 8b shows the ratio between the maximum load of the test and the strength provided by 

the code predictions as a function of a normalized in-plane stress (σp/fc). All the investigated 

codes take into account the influence of the in-plane stress due to prestress on the punching 

shear strength. The code providing best predictions is MC2010, particularly at LoA III, where 

no visible trends are observed. In fact, a test performed by Regan [19] is subjected to a tensile 

stress (σp/fc = -0.12, left hand-side of the diagrams). While ACI 318-11 and Eurocode 2 do 

not estimate properly the strength for this test, the prediction of MC2010 at LoA III gives an 

accurate result, showing that using the decompression moment method provides consistent 

estimates of the punching strength. 

Influence of bending moments 

Figure 8c shows the influence of the bending moments (due to prestressing eccentricity). It 

can be noted that both ACI 318-11 and Eurocode 2 significantly increase their scatter on the 
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strength predictions for increasing values of the normalized eccentricity (e/d). On the 

contrary, MC2010 shows a trend-free behaviour, with limited scatter over the whole 

investigated range. 

 

CONCLUSIONS  

The present paper investigates the punching shear strength of prestressed slabs and compares 

several design codes predictions. The main conclusions of the paper are summarized below: 

1. Punching shear strength is in general positively influenced by the presence of 

prestressing. The inclined component (force) of the tendons intersected by the 

punching failure surface reduces the shear force carried by concrete. Prestressing also 

induces both in-plane normal forces (compression) and bending moments (opposite to 

those of external actions) that increase the stiffness of the members, thus reducing 

crack widths and increasing punching shear strength.  

2. Tendon inclination near the supported area is an effective manner to increase 

punching shear strength. However, only tendons close to the supported area (at a 

distance lower or equal than 0.5d from the border of the column) are to be considered.  

3. Using the decompression moment as a parameter to account for the influence of 

prestressing in flat slabs is an efficient manner to account both for the in-plane forces 

and bending moments originated by prestressing.  

4. Most empirical design models, however, neglect the influence of bending moments 

due to prestressing. This leads to inaccurate results when compared to test results. 

5. ACI 318-11 code provides, on average, safe results with a quite large scatter. 

Eurocode 2 provides better results on average than ACI, but with still large scatter of 

results and may lead potentially to fairly unsafe predictions of the punching shear A
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strength. This is partly motivated by the choice of the perimeter at 2d, which seems to 

overestimate the contribution of inclined tendons. 

6. The best predictions are obtained with Model Code 2010. Unlike the other 

investigated codes, Model Code 2010 is the only one that seems to take into account 

all effects of prestressing (normal in-plane force, tendons eccentricity and tendons 

inclination). Consequently the results are more accurate and less scattered. 

Furthermore, this approach seems not to lead to any tendencies as a function of the 

main physical parameters. Both Level-of-Approximations II and III proposed by the 

code lead to good estimates, although Level-of-Approximation III provides better 

results on average and a lower scatter. This latter level requires performing a linear 

analysis of the moment field of the slab, which is particularly suitable for highly 

unsymmetrical geometries as prestressed slab bridges. 

 

A
cc

ep
te

d
 A

rt
ic

le
 



www.ernst‐und‐sohn.de  Page 15  Structural Concrete 

 
NOTATIONS 

The following symbols are used in this paper: 

b0 control perimeter 

bs length of moment integration 

c column size (if squared) 

d effective depth 

dv effective depth 

dg maximum aggregate diameter size 

e eccentricity of the normal force from the center of gravity of the section 

fc average concrete compressive cylinder strength  

h depth of the slab 

kdg coefficient depending on the aggregate size 

kψ coefficient depending on the rotation 

mP average decompression moment over the width bs per unit length 

mR resisting moment per unit length 

ms average moment over the width bs per unit length 

mV moment due to actions other than prestressing 

mV+P moment due to all actions (including prestressing) 

n normal force per unit length 

rc column radius 

rs  radius from the center of the column the the zero moment line 

x x direction 

y y direction 

 span of the slab 

V shear force 
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VR punching shear strength 

Vcode punching shear strength provided by a code 

Vp vertical component of the tendons force on a specified section 

VE acting shear force  

βp coefficient depending on the type of column for ACI approach 

φ column diameter (if circular) 

σP normal compressive stress 

ψ rotation of the slab outside the column region 

ψR rotation of the slab at failure 

ACI related to ACI 318 (2011) 

EC related to Eurocode 2 (2004) 

MC related to Model Code 2010 
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Figures: 

 

Figure 1: Examples of prestressed structures: (a) slab bridge; (b) footings; and (c) flat slab 
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Figure 2: The Critical Shear Crack Theory: (a) critical shear crack developing through the 

compression strut carrying shear; (b) failure criteria and comparison to 99 test results 

(data according to [11]); and (c) calculation of the strength and deformation capacity 

A
cc

ep
te

d
 A

rt
ic

le
 



www.ernst‐und‐sohn.de  Page 22  Structural Concrete 

 
 

(a) 

 

(b) 

(c) 

 

 

Figure 3: Phenomena influencing punching shear strength of prestressed slabs: (a) reduction of 

shear force due to the inclined component (force) of tendons; (b) influence of an in-

plane force; and (c) influence of a bending moment 

 1 

 

Figure 4: Parameters of design codes: (a) vertical component of the tendons according to ACI 

318, Eurocode 2 and Model; (b) square columns; and (c) circular columns 
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Figure 5: Non-prestressed flat slab: (a) geometry; (b) moment distribution (mV,x , mV,y) in each 

direction over the support; and (c) moment distribution (mV,x , mV,y) at edge of supported 

area over a length bs 

 

 

 

Figure 6: Prestressed flat slab: (a) geometry; (b) total moment distribution (mV+P,x , mV+P,y) in 

each direction over the support; and (c) moment distribution due to actions excluding 

prestressing (mV,x , mV,y) at edge of supported area over a length bs 
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Figure 7: Decompression moment: (a) Section subjected to in normal force, (b) state of 

associated stress, (c) state of stress due to decompression moment and (d) resulting 

state of strain 
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Figure 8: Prediction of the punching strength for tests taken from the literature as a function of: 

(a) the ratio between the vertical component of the tendons and the strength of the test; 

(b) the introduced in-plane compression stress; and (c) the applied moments due to 

tendon or i-plane force eccentricity  
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Table 1: Comparison of test results and investigated codes 

Slab VE Vp,0.5d Vp,2d d fc σp c or φ∗∗ VR/VR,EC VR/VR,ACI VR/VR,MC,II VR/VR,MC,III 
Author 

 [kN] [kN] [kN [mm] [MPa] [MPa] [mm] [-] [-] [-] [-] 

             

Kinnunen and al. Pl1 709 70.3 141 205 35.1 3.93 240 (φ) 0.69 0.82 0.63 1.10 

Kinnunen and al. Pl2 796 70.4 211 204 28.8 5.25 240 (φ) 0.65 0.98 (*) 1.11 

Kinnunen and al. Pl3 920 70.4 211 204 31.9 5.25 240 (φ) 0.79 1.10 (*) 1.27 

Kinnunen and al. Pl4 701 70.4 211 204 28.7 5.25 240 (φ) 0.56 0.86 (*) 0.96 

Kinnunen and al. Pl6 659 70.3 141 205 25.5 3.93 240 (φ) 0.70 0.83 (*) 0.98 

             

Pralong and al. P5 568 0 0 154 27.1 2.65 300 (φ) 1.08 1.71 1.18 1.02 

Pralong and al. P7 767 106 160 160 31.2 2.60 300 (φ) 1.18 1.23 1.07 1.01 

Pralong and al. P8 683 106 160 158 29.6 3.00 300 (φ) 1.34 1.13 1.09 1.03 

Pralong and al. P9 820 106 160 158 35 2.90 300 (φ) 1.62 1.29 1.33 1.24 

             

Shehata SP1 988 177 177 130 36.5 5.14 150 (c) 1.68 1.93 (*) 1.59 

Shehata SP2 624 88 88 129 46.4 5.14 150 (c) 0.97 1.61 (*) 1.01 

Shehata SP3 416 0 0 151 41.0 0 150 (c) 0.83 1.92 1.18 1.09 

Shehata SP4 884 177 296 129 41.7 7.20 150 (c) 1.00 1.73 (*) 1.27 

Shehata SP5 780 133 222 129 40.9 3.60 150 (c) 1.16 1.67 1.25 1.33 

             

Regan DT1 780 0 0 197 43.6 0 150 (c) 1.02 1.73 1.28 1.35 

Regan DT2 832 40.2 161 177 40.1 8.90 150 (c) 0.69 1.15 (*) 1.12 

Regan DT3 962 80.4 322 177 43.2 8.90 300 (c) 0.54 0.90 (*) 0.92 

Regan DT4 715 12.6 50.0 177 47.2 2.80 150 (c) 0.99 1.11 0.88 1.12 

Regan DT6 832 40.2 161 177 42.9 8.90 150 (c) 0.67 1.15 (*) 0.98 

Regan DT8 676 9.90 39.6 184 45.6 2.20 150 (c) 0.93 1.26 0.93 1.17 

Regan DT9 806 40.2 161 177 45.0 8.90 150 (c) 0.65 1.11 (*) 0.94 

Regan DT10 832 40.2 161 177 43.7 8.90 150 (c) 0.65 1.15 (*) 0.98 

             

Regan BD1 293 0 0 101 42.2 7.65 100 (c) 0.84 1.30 1.02 1.14 

Regan BD2 268 0 0 101 39.2 0 100 (c) 1.76 1.92 1.48 1.30 

Regan BD5 208 0 0 101 33.1 -3.95 100 (c) 2.70 1.53 1.96 1.25 

             

Kordina and al. V1 450 74.1 74.1 126 33.6 1.70 200 (φ) 1.17 1.26 1.05 0.92 

Kordina and al. V2 525 71.9 71.9 126 36.0 1.66 200 (φ) 1.26 1.48 1.09 0.98 

Kordina and al. V3 570 134 134 124 36.0 3.09 200 (φ) 1.22 1.22 1.10 1.05 

Kordina and al. V6 375 0 0 118 30.4 1.77 200 (φ) 1.33 1.49 1.23 0.99 

Kordina and al. V7 475 77.1 77.1 126 31.2 1.77 200 (φ) 1.25 1.34 1.13 0.99 

Kordina and al. V8 518 77.1 77.1 126 35.2 1.77 200 (φ) 1.38 1.43 1.22 1.07 

             

Hassanzadeh A1 668 75 184 151 31.0 2.79 250 (φ) 1.30 1.23 1.05 1.07 

Hassanzadeh A2 564 0 59.0 146 28.7 2.74 250 (φ) 1.49 1.32 1.06 1.05 

Hassanzadeh B1 439 0 0 190 40.9 0 250 (φ) 0.89 0.97 1.21 1.07 

Hassanzadeh B2 827 0 0 190 39.0 2.12 250 (φ) 2.09 1.92 1.43 1.49 

Hassanzadeh B3 1113 74 178 190 38.6 2.21 250 (φ) 1.51 1.59 1.38 1.40 

Hassanzadeh B4 952 0 52.6 190 40.5 1.99 250 (φ) 1.48 1.58 1.29 1.25 
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VR Vp,0.5d Vp,2d d fc σp c or φ∗∗ VR/VEC VR/VACI VR/VMC,II VR/VMC,III 
Author Slab 

[kN] [kN] [kN] [mm] [MPa] [MPa] [mm] [-] [-] [-] [-] 

             

Melges M1 441 0 0 127 26.6 0 180 (c) 1.20 1.89 1.32 1.13 

Melges M4 772 66 99 132 51.9 2.58 180 (c) 1.49 1.76 1.30 1.24 

             

Moreillon B1-01 262 0 0 90 90 0 120 (φ) 1.25 2.57 1.47 0.96 

Moreillon B1-02 294 0 0 81 90 2.88 120 (φ) 1.42 2.23 1.25 0.95 

Moreillon B1-03 330 0 0 76 90 4.33 120 (φ) 1.65 2.55 1.23 0.99 

Moreillon B1-04 376 0 0 76 90 5.77 120 (φ) 1.75 2.90 1.32 1.10 

             

Ramos AR2 258 0 0 80 39.1 0 200 (c) 1.24 1.68 1.22 0.99 

Ramos AR3 270 0 0 80 37.5 1.00 200 (c) 1.23 1.49 1.19 1.02 

Ramos AR4 252 0 0 80 43.1 1.55 200 (c) 1.06 1.29 1.05 0.91 

Ramos AR5 251 0 0 80 35.7 2.00 200 (c) 1.09 1.21 1.07 0.95 

Ramos AR6 250 0 0 80 37.0 1.95 200 (c) 1.08 1.21 1.03 0.92 

Ramos AR7 288 0 0 80 43.9 2.75 200 (c) 1.13 1.26 1.10 1.01 

Ramos AR8 380 72.2 72.2 78 41.6 1.95 200 (c) 1.34 1.90 1.25 1.07 

Ramos AR10 371 56.4 56.4 78 41.4 1.51 200 (c) 1.40 1.97 1.31 1.10 

Ramos AR11 342 40.1 40.1 78 38.0 1.04 200 (c) 1.43 1.94 1.34 1.09 

Ramos AR12 280 32.8 32.8 75 31.3 1.95 200 (c) 1.25 1.56 1.10 0.96 

Ramos AR13 261 0 68.2 76 32.5 1.94 200 (c) 0.91 1.37 1.13 0.98 

Ramos AR14 208 0 60.5 76 28.2 1.87 200 (c) 0.76 1.20 0.95 0.82 

Ramos AR15 262 0 32.7 76 31.7 1.93 200 (c) 1.12 1.41 1.15 1.00 

Ramos AR16 351 73.4 73.4 77 30.6 1.92 200 (c) 1.34 1.88 1.23 1.05 

             

Silva A1 380 8.20 50.8 109 37.8 3.31 100 (c) 1.25 1.54 1.37 1.29 

Silva A2 315 9.00 48.9 113 37.8 2.14 100 (c) 1.12 1.39 1.25 1.09 

Silva A3 353 0 17.4 109 37.8 3.16 100 (c) 1.29 1.45 1.34 1.23 

Silva A4 321 0 16.4 104 37.8 1.98 100 (c) 1.48 1.64 1.47 1.25 

Silva B1 582 30.5 92.5 114 40.1 3.39 200 (c) 1.40 1.49 1.47 1.30 

Silva B2 488 27.3 61.8 110 40.1 2.23 200 (c) 1.49 1.50 1.52 1.25 

Silva B3 520 11.5 48.7 108 40.1 3.12 200 (c) 1.48 1.47 1.47 1.32 

Silva B4 459 11.5 47.1 106 40.1 2.16 200 (c) 1.53 1.49 1.55 1.30 

Silva C1 720 33.9 104 111 41.6 3.33 300 (c) 1.54 1.45 1.63 1.36 

Silva C2 557 33.6 63.0 105 41.6 2.26 300 (c) 1.54 1.37 1.57 1.23 

Silva C3 637 16.8 61.6 106 41.6 3.48 300 (c) 1.51 1.34 1.54 1.29 

Silva C4 497 14.6 50.9 102 41.6 2.31 300 (c) 1.43 1.26 1.50 1.16 

Silva D1 497 9.7 46.9 111 44.1 3.34 200 (c) 1.51 1.52 1.49 1.30 

Silva D2 385 12.6 40.8 105 44.1 2.23 200 (c) 1.24 1.24 1.27 1.08 

Silva D3 395 0 31.3 106 44.1 2.27 200 (c) 1.36 1.32 1.30 1.08 

Silva D4 531 35.9 72.3 102 44.1 2.22 300 (c) 1.31 1.22 1.38 1.13 

             

         EC ACI MC,II MC,III 

Mean         1.23 1.48 1.26 1.16 

COV         0.30 0.26 0.17 0.14 

5% fractile         0.65 0.90 0.93 0.92 
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(*) decompression moment mP is larger than ms. Calculation of the strength is thus not 

performed at this Level-of-Approximation 

(**) c refers to square columns, where c is the side of the column and φ refers to circular 

columns, where φ is the column diameter 
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