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Universit�a di Pisa, Dipartimento di Informatia, I-56125 Pisa, Italy

boerger�di.unipi.it

Abstrat. Gurevih's [26℄ Abstrat State Mahines (ASMs), harater-

ized by the parallel exeution of abstrat atomi ations in a global state,

have been equipped in [13℄ with a re�nement by standard omposition

onepts for struturing large mahines that allows reusing mahine om-

ponents. Among these onepts are parameterized (possibly reursive)

sub-ASMs. Here we illustrate their power for inremental and modular

system design by unfolding, via appropriate ASM omponents, the arhi-

teture of the Java Virtual Mahine (JVM), resulting from the language

layering in ombination with the funtional deomposition of the JVM

into loader, veri�er, and interpreter. We survey the ASM models for Java

and the JVM that appear in [34℄, together with the mathematial and

experimental analysis they support.

1 The Method: Struturing ASMs by Submahines

Although it was by a foundational onern, namely of reonsidering Turing's

thesis in the light of the problem of the semantis of omputer programs, that

Gurevih was led to formulate the idea of Abstrat State Mahines1, it did not

take a long time that the onept was reognized to be of pratial importane.

ASMs were soon suessfully applied for the modeling and a rigorous analysis of a

variety of omplex real-life omputing systems: programming languages and their

implementations, proessor arhitetures, protools, embedded software, et., see

[5, 6℄ for a historial aount. The �rst industrial appliation showed up as early

as 1990 in the ASM model de�ning the semantis of PROLOG [2, 3, 10℄, whih

beame the oÆial ISO standard [28℄ and has been run for experimentation at

Quintus2, see [4℄ for a survey of these early appliations of ASMs in the ontext

of logi programming. By now a powerful method has been built around the

1 In embryo the notion appeared under the name of dynami/evolving stru-

tures/algebras in a Tehnial Report in 1984 [22℄; a year later in a note to the

Amerian Mathematial Soiety [23℄; I learnt it in the Spring of 1987 from the sim-

ple examples whih appeared later in [24℄ to illustrate the onept, see [6℄ for a more

detailed historial aount. The �rst omplete de�nition, whih essentially remained

stable sine then, appeared in [26℄ and in a preliminary form in [25℄.
2 Before, in the summer of 1990 in a diploma thesis at the University of Dortmund [30℄,

Angelika Kappel had developed the �rst tool to make suh ASMs and in partiular

that abstrat PROLOG mahine exeutable.



onept of ASM, whih supports industrial system design by rigorous high-level

modeling that is seamlessly linked to exeutable ode, namely by mathematially

veri�able, experimentally validatable, and objetively doumentable re�nement

steps. Here are some highlights:

{ The reengineering of a entral omponent in a large software pakage for

onstruting and validating timetables for railway systems, work done at

Siemens from May 1998 to Marh 1999. A high-level ASM model for the

omponent was built, ompiled to C++ and suessfully integrated into the

existing software system whih sine then is in operation at Vienna subways

[14℄

{ The ASM de�nition of the International Teleommuniation Union standard

for SDL2000 [29℄

{ The investigation (veri�ation and validation) of Java and its implementa-

tion by the Java Virtual Mahine in terms of ASM models and their Asm-

Gofer exeutable re�nements for the language and the VM [34℄

{ The reent ASM model for the UPnP arhiteture at Mirosoft [15℄

For the impressive up-to-date list of annotated referenes to ASM publiations

and tools the reader may onsult the ASM website [27℄.

One of the reasons for the simpliity of Gurevih's notion of Abstrat State

Mahine|its mathematial ontent an be explained in less than an hour, see

Chapter 2 of [34℄ for a textbook de�nition starting from srath|lies in the fat

that its de�nition uses only onditional assignments, so-alled rules of form

if Condition then f (t1; : : : ; tn) := t

expressing guarded atomi ations that yield updates in a well-de�ned (a global)

state. In this respet ASMs are similar to Abrial's Abstrat Mahines [1℄ that are

expressed by non-exeutable pseudo-ode without sequening or loop (Abstrat

Mahine Notation, AMN). It is true that this leaves the freedom|so neessary

for high-level system design and analysis|to introdue during the modeling

proess any ontrol or data struture whatsoever that may turn out to be suitable

for the appliation under study. However, the other side of the oin is that this

fores the designer to speify standard ontrol or data strutures and standard

omponent based design strutures over and over again, namely when it omes

to implement the spei�ations, thus making e�etive reuse diÆult. For some

time it was felt as a hallenge to ombine, in a pratially viable manner, the

simpliity of the parallel exeution model of atomi ations in a global state with

the struturing apabilities of modules and omponents as part of a large system

arhiteture, whose exeution implies duration and sheduling.

In [13℄ a solution has been developed that naturally extends the harater-

isti ASM notion of synhronous parallel exeution of multiple atomi ations

(read: rules) by allowing as rules also alling and exeution of submahines,

tehnially speaking named, parameterized, possibly reursive, ASMs. This def-

inition gently embeds the result of exeuting an a priori unlimited number n of

miro steps|namely steps of a submahine that has been alled for exeution



in a given state|into the maro step semantis of the alling ASM, whih is

de�ned as the overall result of the simultaneous exeution of all its rules in the

given state. The same treatment overs also the lassial ontrol onstruts for

sequentialization and iteration
3 and opens the way to struturing large ASMs

by making use of instantiatable mahine omponents. Whereas for the AMN of

the B method Abrial expliitly exludes e.g. sequening and loop from the spe-

i�ation of abstrat mahines [1, pg. 373℄, we took a more pragmati approah

and de�ned these ontrol onstruts, and more generally the notion of ASM sub-

mahine in suh a way that they an be used oherently in two ways, depending

on what is needed, namely to provide blak-box desriptions of the behavior of

omponents or glass-box views of their implementation (re�nement).

In the present survey we illustrate that this notion of submahines, whih has

been implemented in AsmGofer [33℄4, suÆes for a hierarhial deomposition

of the Java Virtual Mahine into omponents for the loader, the veri�er, and

the interpreter, eah of them split into subomponents for the �ve prinipal lan-

guage layers (imperative ore, stati lasses, objet oriented features, exeption

handling and onurreny). We an do this in suh a way that adding a om-

ponent orresponds to what in logi is alled extending a theory onservatively.

This inremental design approah is the basis for a transparent yet far reahing

mathematial analysis of Java and its implementation on the JVM (orretness

and ompleteness proofs for the ompilation, the byteode veri�ation, and the

exeution, i.e. interpretation), whih appears in [34℄.

Graphial notation. Before we proeed in the next setion to explain the

problem of a mathematially transparent model for Java and its implementation

on the JVM, and the solution o�ered in [34℄, we review here the basi graphial

(UML like) notation we will use for de�ning strutured ASMs. To desribe the

overall struture of the JVM we only need speial ASMs that resemble the

lassial Finite State Mahines (FSMs) in that their exeution is governed by a

set of internal or ontrol states (often also alled modes) whih split the mahine

into �nitely many submahines. Formally these ASMs, whih I have alled ontrol

state ASMs in [5℄, are de�ned and pitorially depited as shown in Fig. 1, with

transition rules of form

if Condition then f (t1; : : : ; tn) := t

whose exeution is to be understood as hanging (or de�ning, if there was none)

the value of the funtion f at the given parameters. Note that in a given ontrol

state i , these mahines do nothing when no ondition ondj is satis�ed.

3 The atomiity of this ASM iteration onstrutor is the key for a rigorous de�nition

of the semantis of event triggered exiting from ompound ations of UML ativity

and state mahine diagrams, where the intended instantaneous e�et of exiting has

to be ombined with the request to exit nested diagrams sequentially following the

subdiagram order, see [7, 8℄.
4 In [13℄ we also inorporate into standard ASMs a syntax oriented form of information

hiding, namely through the notion of loal mahine state, of mahines with return

values and of error handling mahines.



means

Assume disjoint cond i . Usually the "control states" are notationally suppressed.

cond1

condn

...

rule1

rulen

i

jn

j1

if cond & ctl_state = i1

     rulen

then ctl_state := jn

if cond & ctl_state = in

     rule1

then ctl_state := j
1

Fig. 1. Control state ASM diagrams

The notion of ASM states, di�erently from FSMs, is the lassial notion of

mathematial strutures where data ome as abstrat objets, i.e., as elements

of sets (domains, one for eah ategory of data) that are equipped with basi

operations (partial funtions) and prediates (attributes or relations). The no-

tion of ASM run is the lassial notion of omputation of transition systems. An

ASM omputation step in a given state onsists in exeuting simultaneously all

updates of all transition rules whose guard is true in the state, if these updates

are onsistent.

The synhronous parallelism inherent in the simultaneous exeution of all

ASM rules is enhaned by the following onise notation for the simultaneous

exeution of an ASM rule R for eah x satisfying a given ondition �:

forall x with � do R

A frequently enountered kind of funtions whose detailed spei�ation is

left open are hoie funtions, used to abstrat from details of stati or dynami

sheduling strategies. ASMs support the following onise notation for an ab-

strat spei�ation of suh strategies:

hoose x with � do R

meaning to exeute rule R with an arbitrary x hosen among those satisfying

the seletion property �. If there exists no suh x , nothing is done. For hoose

and forall rules we also use graphial notations of the following form:

forall x withchoose x with

R R

ϕ ϕ
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Fig. 2. Seurity oriented deomposition of the JVM

2 The Java/JVM Modeling and Analysis Problem

The sienti� problem to solve was to investigate in whih sense and to what

extent one an provide a rigorous justi�ation of the laim that Java and the

JVM provide a safe and seure, platform independent programming environment

for the internet. This laim goes beyond the traditional orretness problem for

language ompilation and the interpretation of the ompiled ode on a virtual

or real mahine, a lassial problem whih has been studied extensively for other

soure ode languages and ompiler target mahines, inluding some work where

ASMs are used as modeling devie (e.g. [12, 9, 18, 19℄. Not only is the problem

of trusted (i.e. fully orret) realisti ompilation not yet solved (see [16, 17℄ for

a thorough disussion), the ase of Java and its implementation on the JVM

adds further problems, partly due to the fat that the aess to resoures by

the exeuted ode is ontrolled not by the operating system, but by the JVM

that interprets this ode, namely dynamially loaded and veri�ed byteode. As

a result one has at least three new orretness and ompleteness problems, as

illustrated in Fig. 2, namely onerning:

{ The loading mehanism whih dynamially loads lasses; the binary rep-

resentation of a lass is retrieved and installed within the JVM|relying

upon some appropriate name spae de�nition to be used by the seurity

manager|and then prepared for exeution by the JVM interpreter
{ The byteode veri�er, whih heks ertain ode properties at link-time, e.g.

onditions on types and on stak bounds whih one wants to be satis�ed at

run-time
{ The aess right heker, i.e., a seurity manager whih ontrols the aess

to the �le system, to network addresses, to ritial windowing operations,

et.

The goal of the projet was to provide an abstrat (read: platform indepen-

dent), rigorous but transparent, modular de�nition of Java and the JVM that



an be used as a basis for a mathematial and an experimental analysis of the

above laim. First of all this modeling work should reet SUN's design dei-

sions, it should provide for the two manuals [20, 21, 31℄ what in [5, 11℄ has been

alled a ground model, i.e. a suÆiently rigorous and omplete, provably onsis-

tent, mathematial model that faithfully represents the given natural language

desriptions. Seondly it should o�er a orret high-level understanding of

{ the soure language, to be pratially useful for Java programmers,

{ the virtual mahine, to o�er the implementors a rigorous, implementation

independent basis for the doumentation, the analysis, and the omparison

of implementations.

We tried to ahieve the goal by onstruting stepwise re�ned ASM models of

Java, the JVM (inluding the loader and the byteode veri�er), and a Java-

to-JVM ompiler, whih are abstrat, but nevertheless an in a natural way

be turned into exeutable validatable models, and for whih we an prove the

following theorem.

Main Theorem. Under onditions that are expliitly stated in [34℄,

any well-formed and well-typed Java program, when ompiled satisfying

the properties listed for the ompiler, passes the byteode veri�er and is

exeuted on the JVM. During this exeution, none of the run-time heks

of the properties that have been analyzed by the veri�er is violated,

and the generated byteode is interpreted orretly with respet to the

expeted soure ode behavior as de�ned by the Java ASM.

In the ourse of proving the theorem, we were led to larify various ambi-

guities and inonsistenies we disovered in the Java/JVM manuals and in the

implementations, onerning fundamental notions like legal Java program, legal

byteode, veri�able byteode, et. Our analysis of the JVM byteode veri�er,

whih we relate to the stati analysis of the Java parser (rules of de�nite assign-

ment and reahability analysis), led us to de�ne a novel (subroutine all stak

free) byteode veri�er whih goes beyond previous work in the literature.

In the next setion we explain the dependeny graph whih surveys how we

split the proof of the main theorem in subproofs for the JVM omponents.

3 Deomposition of Java/JVM into Components

To make suh a omplex modeling and analysis problem tratable one has to split

it into a series of manageable subproblems. To this end we onstrut the ASM

for the JVM out of submahines for its seurity relevant omponents|the ones

whih appear in Fig. 2: loader, veri�er, preparator, interpreter|and de�ne eah

omponent inrementally via a series of submahines, put together by parallel

omposition and forming a sequene of onservative extensions, whih is guided

by the layering of Java and of the set of JVM instrutions into inreasingly riher

sublanguages.
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Fig. 3. Dependeny Graph

Components for Language Layers. Sine this language layering is ommon

to all JVM omponents, we explain it �rst. We fator the sets of Java and of

JVM instrutions into �ve sublanguages, by isolating language features whih

represent milestones in the evolution of modern programming languages and

of the tehniques for their ompilation, namely imperative (sequential ontrol),

proedural (module), objet-oriented, exeption handling, and onurreny fea-

tures. This deomposition an be made in suh a way that in the resulting se-

quene of mahines, eah ASM is a purely inremental|similar to what logiians

all a onservative|extension of its predeessor, beause eah of them provides

the semantis of the underlying language, instrution by instrution. The gen-

eral ompilation sheme ompile an then be de�ned between the orresponding

submahines by a simple reursion. We illustrate this in Fig. 4.

A related struturing priniple, whih helped us to keep the size of the models

small, onsists in grouping similar instrutions into one abstrat instrution eah,

oming with appropriate parameters. These parameters beome parameters of
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the orresponding ASM rules desribing the semantial e�et of those instru-

tions. This goes without leaving out any relevant language feature, given that

the speializations an be regained by mere parameter expansion, a re�nement

step whose orretness is easily ontrollable instrution-wise.

Exeution Component.We now turn to explain the vertial omponents of the

ASM model for the JVM. In one omponent we desribe the trustful exeution of

byteode that is assumed to be suessfully loaded and linked (i.e., prepared and

veri�ed to satisfy the required link-time onstraints). The resulting sequene of

stepwise re�ned trustful VMs, namely trustfulVMI , trustfulVMC , trustfulVMO ,

trustfulVME , and trustfulVMT , yields a suint de�nition of the funtional-

ity of JVM exeution in terms of language layered submahines exeVM and

swithVM (Fig. 5).

The language layered mahine exeVM desribes the e�et of eah single

JVM instrution on the urrent frame, whereas swithVM is responsible for

frame stak manipulations upon method all and return, lass initialization

and exeption apture. This pieemeal desription of single JVM instrutions

an be done similarly for the instrutions provided in Java, yielding a suint

de�nition of the semantis of Java in terms of language layered submahines

JavaI ; JavaC ; JavaO ; JavaE , and JavaT . Exploiting the orrespondene between

these omponents for the Java/JVMmahines yields a simple reursive de�nition

of a ompilation sheme for Java programs to JVM ode, see Fig. 4, the detailed

de�nition is in Part II of [34℄. The onservativity of the omponent extensions

allowed us to inrementally prove this ompilation sheme to be orret, as is

expressed by the following theorem.

Theorem 1 (Corretness of the ompiler). The ASMs for Java and the

JVM, running through given Java ode and its ompilation to JVM ode, pro-
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Fig. 5. Deomposing trustfulVMs into exeVMs and swithVMs

due in orresponding method ode segments the same values for (loal, global,

heap) variables and the same results of intermediate alulations, for the urrent

method as well as for the method alls still to be ompleted.

The proof inludes a orretness proof for the handling of Java exeptions in

the JVM, a feature whih onsiderably ompliates the byteode veri�ation, in

the presene of embedded subroutines, lass and objet initialization, and on-

urrently working threads. Obviously, the statement of the theorem as phrased

here is vague. In fat, it is part of the modeling and analysis work to provide

a preise meaning of this intuitive statement, expressing that runs of the Java

mahine on a Java program and the orresponding runs of the JVM mahine on

the ompiled program are equivalent. It took us 10 pages to make the underlying

notion of orresponding runs and of their equivalene suÆiently preise to be

able to arry out a proof for the orretness theorem, see Chapter 14 of [34℄. The

83 ase distintions of that 24 pages long proof are not a bizarre e�et of our

modeling, but diretly derive from|indeed are strutured into|the situations

whih do our during a Java omputation for expression evaluation and state-

ment exeution, treated separately for eah of the �ve language layers. This is

a strength of the method that by loalizing the proof obligations one has a key

to modularize the overall proof: eah new expression or statement feature will

bring with it a learly identi�able group of new ases to onsider for de�nition

(modeling) and proof (veri�ation).

It was ruial for the ompiler orretness proof to go through to take into

aount also some strutural stati onstraints about Java runs, in partiular

onditions under whih it an be proved that well-formed and well-typed Java

programs are type safe, inluding the so alled de�nite assignment rules for

variables and the reahability analysis for statements. In fat we were led to

orret some inonsistenies in those rules as de�ned in SUN's manuals (see

below).
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Cheking Component. The seond group of language layered omponent ma-

hines we de�ne are auxiliary mahines whose parallel omposition onstitutes

the defensiveVM. Their purpose is to de�ne the veri�er funtionality in run-time

terms of trustfulVM exeution from a language layered omponent hek . Sine

it is diÆult to obtain a well motivated and lear de�nition of the byteode veri-

�ation funtionality, we tried to aomplish also that task loally: guided by the

language struture that allows to suessively re�ne the heking onditions|

from the imperative to the dynami submahine|we took advantage from know-

ing for eah type of instrution some run-time onditions whih an guarantee

its safe exeutability. To be more preise, as the arhitetural de�nition in Fig. 6

shows, the defensiveVM heks at run-time, before every exeution step, the

strutural onstraints whih desribe the veri�er funtionality (restritions on

run-time data: argument types, valid return addresses, resoure bounds) guar-

anteeing safe exeution. (Note that the stati onstraints on the well-formedness

of the byteode in Java lass �les are heked at link-time.) The detailed def-

inition is given in Chapter 15 of [34℄. For this new ASM defensiveVM, by its

onstrution out of its omponent trustfulVM, one has the following theorem.

Theorem 2 (Corretness of defensive heking). If the defensiveVM ex-

eutes a program P suessfully, then so does the trustfulVM, with the same

semantial e�et.

Sine we formulate the run-time hek ing onditions referring to the types of

values in registers and on the operand stak, instead of the values themselves, we

an lift them to link-time hekable byteode type assignments, i.e. assignments of

ertain type frames to ode indies of method bodies. When lifting the run-time

onstraints, we make sure that if a given byteode has a type assignment, then

the ode runs on the defensive VM without violating any of the run-time hek

onditions. For example, at run-time the values of the operands and the values

stored in loal variables belong to the assigned types; if there is a verify type

assigned to a loal variable, then at run-time the loal variable ontains a value

whih belongs to that verify type; if the type is a primitive type, then the value



is of exatly that type; if the type is a referene type, then the value is a pointer

to an objet or array whih is ompatible with that type; the same is true for the

verify types assigned to the operand stak, et. The main diÆulty is due to the

subroutines, more preisely to the Jsr(s) and Ret(x) instrutions whih are used

in the JVM to implement the �nally blok of Java try statements in the exeption

handling mehanism of Java. The problem is to orretly apture what is the

type of return addresses from subroutines; as a matter of fat onerning this

point we have identi�ed in Chapter 16 of [34℄ a ertain number of problems and

inonsistenies in urrent implementations of the byteode veri�er. The outome

of this analysis is the following theorem, whose proof douments for all the ases

that an our for the single instrutions in the given run why typable ode an

be safely exeuted.

Theorem 3 (Soundness of Byteode Type Assignments). Typable byte-

ode satis�es at run-time a set of invariants guaranteeing that when the ode

is run on the defensiveVM, it does not violate any of the dynami onstraints

de�ned in the hek omponent.

The notion of byteode type assignment also allows us to prove the omplete-

ness of the ompilation sheme mentioned above. Completeness here means that

byteode whih is ompiled from a well-formed and well-typed Java program in

a way that respets our ompilation sheme, an be typed suessfully, in the

sense that it does have type assignments. More preisely we prove the general

statement below, whih implies the orretness of our Java-to-JVM ompiler.

We re�ne our ompiler to a ertifying ode generator, whih issues instrutions

together with the type information needed for the byteode veri�ation. Hene,

the result of the extended ompilation is not only a sequene of byteode in-

strutions but a sequene of triples (instr ; regT ; opdT ), where (regT ; opdT ) is

what we all a type frame for the instrution instr . We then prove that the

so generated type frames satisfy the onditions for byteode type assignments.

This is yet another example of struturing de�nition and proof by onservative

(purely inremental) extension.

When working on this proof, we deteted a not so obvious inonsisteny in

the design of the Java programming language, namely an inompatibility of the

reahability notions for the language and the JVM, related to the treatment of

boolean expressions and the rules for the de�nite assignement of variables. The

program in Fig. 7

shows that byteode veri�ation is not possible the way SUN's manuals suggest:

although valid, the program is rejeted by any byteode veri�er we have tried

inluding JDK 1.2, JDK 1.3, Netsape 4.73-4.76, Mirosoft VM for Java 5.0 and

5.5 and the Kimera Veri�er (http://kimera.s.washington.edu/). The problem is

that in the eyes of the veri�er the variable i is unusable at the end of the method

at the return i instrution, whereas aording to 16.2.14 in [21℄ the variable i

is de�nitely assigned after the try statement. Our rules of de�nite assignment

for the try statement are stronger and therefore the program is already rejeted

by our ompiler. In [34℄ we exhibit another program that illustrates a similar



lass Test {

stati int m(boolean b) {

int i;

try {

if (b) return 1;

i = 2;

} finally { if (b) i = 3; }

return i;

}

}

Fig. 7. A valid Java program rejeted by all known veri�ers

problem for labeled statements. In onlusion, one an avoid this inonsisteny

by slightly restriting the lass of valid programs by sharpening the rules for

de�nite assignment for �nally and for labeled statements. As a result we ould

establish the following desirable property for the lass of ertifying ompilers.

Theorem 4 (Compiler Completeness Theorem). The family of type frames

generated by the ertifying ompiler for the body of a method � is a byteode type

assignment for �.

As a orollary, the Java-to-JVM ompiler we de�ne is orret sine it is

extended onservatively by a ertifying ompiler.

Byteode Veri�er Component. Having distilled the byteode veri�er fun-

tionality in the notion of byteode type assignment, we are ready to extend the

trustfulVM by a new omponent, a link-time byteode veri�er. Before trust-

fulVM an run a method in a lass that has been loaded, for eah method in

that lass the veri�er attempts to ompute a|in fat a most spei�|byteode

type assignment for the method. The (arhiteture of the) resulting mahine

diligentVM is de�ned in Fig. 8.

One has to show that the verifyVM omponent is sound and omplete, whih

is expressed by the following two theorems that we an prove for our novel

(subroutine all stak free) byteode veri�er.

Theorem 5 (Byteode Veri�er Soundness). During the omputation of the

veri�er for any given method body, the byteode type frames omputed so far

satisfy the onditions for byteode type assignments. verifyVM terminates, either

rejeting the ode with a type failure detetion (in ase the method body is not

typable) or aepting it and issuing a byteode type assignment for it.

Theorem 6 (Byteode Veri�er Completeness). If a method body has a

byteode type assignment, then verifyVM aepts the ode and during the veri-

�ation proess the type frames omputed so far by verifyVM are more spei�

than that byteode type assignment.



trustfulVM

some meth still

to be verified
curr meth still
to be verified

verifyVM

verifyVM built from submachines propagate, succ, check

report
failure

no

no

yes yes

set next meth up for verification

Fig. 8. Deomposing diligent JVMs into trustfulVMs and verifyVMs

succ succ succ succI C O E⊂ ⊂ ⊂ and propagate propagateI E⊂

report failure

no

yes

record pc as verified

choose pc for verification check(pc)

propagateVM(succ,pc)

Fig. 9. Deomposing verifyVMs into propagateVMs, heks, sus

Components of the Byteode Veri�er. To ompute a byteode type assign-

ment for a given method, verifyVM at eah step hooses a still to be veri�ed

ode index p, starting at ode index 0, to hek the type onditions there. Upon

suessful hek, as de�ned for the defensiveVM, the veri�er marks for further

veri�ation steps the indies of all suessors of p that an be reahed by the

omputation, trying to propagate the type frame omputed at p to eah pos-

sible immediate suessor of p. This provides the arhiteture of the mahine

verifyVM, built out of three omponents hek, propagate, su as de�ned in

Fig. 9.

At this point it should not any more ome as a surprise to the reader that

the two new omponents of verifyVM, namely the ASM propagateVM and the

funtion su, are language layered similarly to the prediate hek de�ned al-

ready above as part of defensiveVM. A further reuse of previously de�ned ma-

hines stems from the fat that the submahine propagateVM , together with the
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Fig. 10. Relationship between di�erent mahines

funtion su, de�nes a link-time simulation (type version) of the trustfulVM

illustrated above.

In a similar way the loading mehanism an be introdued by re�ning the

omponents exeVM and swithVM, see Chapter 18 in [34℄.

The modular omponent-based struture of both de�nitions and proofs ex-

plained above for Java and the JVM is reassumed in Fig. 3, showing how the

omponents and the proofs of their basi properties �t together to establish

the desired property for the ompilation and safe exeution of arbitrary Java

programs on the dynamiVM, as expressed above in the Main Theorem.

AsmGofer exeutable re�nements.The experimentation with the AsmGofer

exeutable re�nements of the models outlined above was ruial to get the mod-

els and the proofs of our theorems right. AsmGofer is an ASM programming

system developed by Joahim Shmid and available at www.tydo.de/AsmGofer.

It extends TkGofer to exeute ASMs whih ome with Haskell de�nable external

funtions. It provides step-by-step exeution and omes with GUIs to support

debugging of Java/JVM programs. First of all it allows to exeute the Java

soure ode in our Java ASM and to observe that exeution|there is no oun-

terpart for this in SUN's development environment, but similar work has been

done independently, using the Centaur system, by Marjorie Russo in her reent

PhD thesis [32℄. Furthermore one an ompile Java programs to byteode whih

an be exeuted either on our ASM for JVM or (using Jasmin for the onver-

sion to binary lass format) on SUN's implementation. More generally, for the

exeutable versions of our mahines, the formats for inputting and ompiling

Java programs are hosen in suh a way that the ASMs for the JVM and the

ompiler an be ombined in various ways with urrent implementations of Java

ompilers and of the JVM, as illustrated in Fig. 10.
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