
 Open access Book Chapter DOI:10.1007/3-540-45654-6_2

Design for Reuse via Structuring Techniques for ASMs — Source link

Egon Börger

Institutions: University of Pisa

Published on: 19 Feb 2001 - Computer Aided Systems Theory

Topics: Abstract state machines and Java

Related papers:

 Making Abstract Machines Less Abstract

 The PL/EXUS language and virtual machine

 A Virtual Machine Design For Nest-Free Programming

 Virtual machine and programming language for event processing

 SNITCH: Dynamic Dependent Information Flow Analysis for Independent Java Bytecode

Share this paper:

View more about this paper here: https://typeset.io/papers/design-for-reuse-via-structuring-techniques-for-asms-
1190fls4c5

https://typeset.io/
https://www.doi.org/10.1007/3-540-45654-6_2
https://typeset.io/papers/design-for-reuse-via-structuring-techniques-for-asms-1190fls4c5
https://typeset.io/authors/egon-borger-1ar7i852qz
https://typeset.io/institutions/university-of-pisa-2icrbpa5
https://typeset.io/conferences/computer-aided-systems-theory-3nz9yx2z
https://typeset.io/topics/abstract-state-machines-164ml6js
https://typeset.io/topics/java-8x5eta4y
https://typeset.io/papers/making-abstract-machines-less-abstract-3p6jsgvsv9
https://typeset.io/papers/the-pl-exus-language-and-virtual-machine-3gx1h00jbg
https://typeset.io/papers/a-virtual-machine-design-for-nest-free-programming-162xnzm5py
https://typeset.io/papers/virtual-machine-and-programming-language-for-event-2cretqqxng
https://typeset.io/papers/snitch-dynamic-dependent-information-flow-analysis-for-15835wmbx7
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/design-for-reuse-via-structuring-techniques-for-asms-1190fls4c5
https://twitter.com/intent/tweet?text=Design%20for%20Reuse%20via%20Structuring%20Techniques%20for%20ASMs&url=https://typeset.io/papers/design-for-reuse-via-structuring-techniques-for-asms-1190fls4c5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/design-for-reuse-via-structuring-techniques-for-asms-1190fls4c5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/design-for-reuse-via-structuring-techniques-for-asms-1190fls4c5
https://typeset.io/papers/design-for-reuse-via-structuring-techniques-for-asms-1190fls4c5

Design for Reuse via Stru
turing Te
hniques for

ASMs

Egon B�orger

Universit�a di Pisa, Dipartimento di Informati
a, I-56125 Pisa, Italy

boerger�di.unipi.it

Abstra
t. Gurevi
h's [26℄ Abstra
t State Ma
hines (ASMs),
hara
ter-

ized by the parallel exe
ution of abstra
t atomi
 a
tions in a global state,

have been equipped in [13℄ with a re�nement by standard
omposition

on
epts for stru
turing large ma
hines that allows reusing ma
hine
om-

ponents. Among these
on
epts are parameterized (possibly re
ursive)

sub-ASMs. Here we illustrate their power for in
remental and modular

system design by unfolding, via appropriate ASM
omponents, the ar
hi-

te
ture of the Java Virtual Ma
hine (JVM), resulting from the language

layering in
ombination with the fun
tional de
omposition of the JVM

into loader, veri�er, and interpreter. We survey the ASM models for Java

and the JVM that appear in [34℄, together with the mathemati
al and

experimental analysis they support.

1 The Method: Stru
turing ASMs by Subma
hines

Although it was by a foundational
on
ern, namely of re
onsidering Turing's

thesis in the light of the problem of the semanti
s of
omputer programs, that

Gurevi
h was led to formulate the idea of Abstra
t State Ma
hines1, it did not

take a long time that the
on
ept was re
ognized to be of pra
ti
al importan
e.

ASMs were soon su

essfully applied for the modeling and a rigorous analysis of a

variety of
omplex real-life
omputing systems: programming languages and their

implementations, pro
essor ar
hite
tures, proto
ols, embedded software, et
., see

[5, 6℄ for a histori
al a

ount. The �rst industrial appli
ation showed up as early

as 1990 in the ASM model de�ning the semanti
s of PROLOG [2, 3, 10℄, whi
h

be
ame the oÆ
ial ISO standard [28℄ and has been run for experimentation at

Quintus2, see [4℄ for a survey of these early appli
ations of ASMs in the
ontext

of logi
 programming. By now a powerful method has been built around the

1 In embryo the notion appeared under the name of dynami
/evolving stru
-

tures/algebras in a Te
hni
al Report in 1984 [22℄; a year later in a note to the

Ameri
an Mathemati
al So
iety [23℄; I learnt it in the Spring of 1987 from the sim-

ple examples whi
h appeared later in [24℄ to illustrate the
on
ept, see [6℄ for a more

detailed histori
al a

ount. The �rst
omplete de�nition, whi
h essentially remained

stable sin
e then, appeared in [26℄ and in a preliminary form in [25℄.
2 Before, in the summer of 1990 in a diploma thesis at the University of Dortmund [30℄,

Angelika Kappel had developed the �rst tool to make su
h ASMs and in parti
ular

that abstra
t PROLOG ma
hine exe
utable.

on
ept of ASM, whi
h supports industrial system design by rigorous high-level

modeling that is seamlessly linked to exe
utable
ode, namely by mathemati
ally

veri�able, experimentally validatable, and obje
tively do
umentable re�nement

steps. Here are some highlights:

{ The reengineering of a
entral
omponent in a large software pa
kage for

onstru
ting and validating timetables for railway systems, work done at

Siemens from May 1998 to Mar
h 1999. A high-level ASM model for the

omponent was built,
ompiled to C++ and su

essfully integrated into the

existing software system whi
h sin
e then is in operation at Vienna subways

[14℄

{ The ASM de�nition of the International Tele
ommuni
ation Union standard

for SDL2000 [29℄

{ The investigation (veri�
ation and validation) of Java and its implementa-

tion by the Java Virtual Ma
hine in terms of ASM models and their Asm-

Gofer exe
utable re�nements for the language and the VM [34℄

{ The re
ent ASM model for the UPnP ar
hite
ture at Mi
rosoft [15℄

For the impressive up-to-date list of annotated referen
es to ASM publi
ations

and tools the reader may
onsult the ASM website [27℄.

One of the reasons for the simpli
ity of Gurevi
h's notion of Abstra
t State

Ma
hine|its mathemati
al
ontent
an be explained in less than an hour, see

Chapter 2 of [34℄ for a textbook de�nition starting from s
rat
h|lies in the fa
t

that its de�nition uses only
onditional assignments, so-
alled rules of form

if Condition then f (t1; : : : ; tn) := t

expressing guarded atomi
 a
tions that yield updates in a well-de�ned (a global)

state. In this respe
t ASMs are similar to Abrial's Abstra
t Ma
hines [1℄ that are

expressed by non-exe
utable pseudo-
ode without sequen
ing or loop (Abstra
t

Ma
hine Notation, AMN). It is true that this leaves the freedom|so ne
essary

for high-level system design and analysis|to introdu
e during the modeling

pro
ess any
ontrol or data stru
ture whatsoever that may turn out to be suitable

for the appli
ation under study. However, the other side of the
oin is that this

for
es the designer to spe
ify standard
ontrol or data stru
tures and standard

omponent based design stru
tures over and over again, namely when it
omes

to implement the spe
i�
ations, thus making e�e
tive reuse diÆ
ult. For some

time it was felt as a
hallenge to
ombine, in a pra
ti
ally viable manner, the

simpli
ity of the parallel exe
ution model of atomi
 a
tions in a global state with

the stru
turing
apabilities of modules and
omponents as part of a large system

ar
hite
ture, whose exe
ution implies duration and s
heduling.

In [13℄ a solution has been developed that naturally extends the
hara
ter-

isti
 ASM notion of syn
hronous parallel exe
ution of multiple atomi
 a
tions

(read: rules) by allowing as rules also
alling and exe
ution of subma
hines,

te
hni
ally speaking named, parameterized, possibly re
ursive, ASMs. This def-

inition gently embeds the result of exe
uting an a priori unlimited number n of

mi
ro steps|namely steps of a subma
hine that has been
alled for exe
ution

in a given state|into the ma
ro step semanti
s of the
alling ASM, whi
h is

de�ned as the overall result of the simultaneous exe
ution of all its rules in the

given state. The same treatment
overs also the
lassi
al
ontrol
onstru
ts for

sequentialization and iteration
3 and opens the way to stru
turing large ASMs

by making use of instantiatable ma
hine
omponents. Whereas for the AMN of

the B method Abrial expli
itly ex
ludes e.g. sequen
ing and loop from the spe
-

i�
ation of abstra
t ma
hines [1, pg. 373℄, we took a more pragmati
 approa
h

and de�ned these
ontrol
onstru
ts, and more generally the notion of ASM sub-

ma
hine in su
h a way that they
an be used
oherently in two ways, depending

on what is needed, namely to provide bla
k-box des
riptions of the behavior of

omponents or glass-box views of their implementation (re�nement).

In the present survey we illustrate that this notion of subma
hines, whi
h has

been implemented in AsmGofer [33℄4, suÆ
es for a hierar
hi
al de
omposition

of the Java Virtual Ma
hine into
omponents for the loader, the veri�er, and

the interpreter, ea
h of them split into sub
omponents for the �ve prin
ipal lan-

guage layers (imperative
ore, stati

lasses, obje
t oriented features, ex
eption

handling and
on
urren
y). We
an do this in su
h a way that adding a
om-

ponent
orresponds to what in logi
 is
alled extending a theory
onservatively.

This in
remental design approa
h is the basis for a transparent yet far rea
hing

mathemati
al analysis of Java and its implementation on the JVM (
orre
tness

and
ompleteness proofs for the
ompilation, the byte
ode veri�
ation, and the

exe
ution, i.e. interpretation), whi
h appears in [34℄.

Graphi
al notation. Before we pro
eed in the next se
tion to explain the

problem of a mathemati
ally transparent model for Java and its implementation

on the JVM, and the solution o�ered in [34℄, we review here the basi
 graphi
al

(UML like) notation we will use for de�ning stru
tured ASMs. To des
ribe the

overall stru
ture of the JVM we only need spe
ial ASMs that resemble the

lassi
al Finite State Ma
hines (FSMs) in that their exe
ution is governed by a

set of internal or
ontrol states (often also
alled modes) whi
h split the ma
hine

into �nitely many subma
hines. Formally these ASMs, whi
h I have
alled
ontrol

state ASMs in [5℄, are de�ned and pi
torially depi
ted as shown in Fig. 1, with

transition rules of form

if Condition then f (t1; : : : ; tn) := t

whose exe
ution is to be understood as
hanging (or de�ning, if there was none)

the value of the fun
tion f at the given parameters. Note that in a given
ontrol

state i , these ma
hines do nothing when no
ondition
ondj is satis�ed.

3 The atomi
ity of this ASM iteration
onstru
tor is the key for a rigorous de�nition

of the semanti
s of event triggered exiting from
ompound a
tions of UML a
tivity

and state ma
hine diagrams, where the intended instantaneous e�e
t of exiting has

to be
ombined with the request to exit nested diagrams sequentially following the

subdiagram order, see [7, 8℄.
4 In [13℄ we also in
orporate into standard ASMs a syntax oriented form of information

hiding, namely through the notion of lo
al ma
hine state, of ma
hines with return

values and of error handling ma
hines.

means

Assume disjoint cond i . Usually the "control states" are notationally suppressed.

cond1

condn

...

rule1

rulen

i

jn

j1

if cond & ctl_state = i1

 rulen

then ctl_state := jn

if cond & ctl_state = in

 rule1

then ctl_state := j
1

Fig. 1. Control state ASM diagrams

The notion of ASM states, di�erently from FSMs, is the
lassi
al notion of

mathemati
al stru
tures where data
ome as abstra
t obje
ts, i.e., as elements

of sets (domains, one for ea
h
ategory of data) that are equipped with basi

operations (partial fun
tions) and predi
ates (attributes or relations). The no-

tion of ASM run is the
lassi
al notion of
omputation of transition systems. An

ASM
omputation step in a given state
onsists in exe
uting simultaneously all

updates of all transition rules whose guard is true in the state, if these updates

are
onsistent.

The syn
hronous parallelism inherent in the simultaneous exe
ution of all

ASM rules is enhan
ed by the following
on
ise notation for the simultaneous

exe
ution of an ASM rule R for ea
h x satisfying a given
ondition �:

forall x with � do R

A frequently en
ountered kind of fun
tions whose detailed spe
i�
ation is

left open are
hoi
e fun
tions, used to abstra
t from details of stati
 or dynami

s
heduling strategies. ASMs support the following
on
ise notation for an ab-

stra
t spe
i�
ation of su
h strategies:

hoose x with � do R

meaning to exe
ute rule R with an arbitrary x
hosen among those satisfying

the sele
tion property �. If there exists no su
h x , nothing is done. For
hoose

and forall rules we also use graphi
al notations of the following form:

forall x withchoose x with

R R

ϕ ϕ

Usr.java Compiler Usr.class Internet

Verifier

InterpreterPreparator

Loader Sys.class

Input

Output

JVM Run−time machine

Fig. 2. Se
urity oriented de
omposition of the JVM

2 The Java/JVM Modeling and Analysis Problem

The s
ienti�
 problem to solve was to investigate in whi
h sense and to what

extent one
an provide a rigorous justi�
ation of the
laim that Java and the

JVM provide a safe and se
ure, platform independent programming environment

for the internet. This
laim goes beyond the traditional
orre
tness problem for

language
ompilation and the interpretation of the
ompiled
ode on a virtual

or real ma
hine, a
lassi
al problem whi
h has been studied extensively for other

sour
e
ode languages and
ompiler target ma
hines, in
luding some work where

ASMs are used as modeling devi
e (e.g. [12, 9, 18, 19℄. Not only is the problem

of trusted (i.e. fully
orre
t) realisti

ompilation not yet solved (see [16, 17℄ for

a thorough dis
ussion), the
ase of Java and its implementation on the JVM

adds further problems, partly due to the fa
t that the a

ess to resour
es by

the exe
uted
ode is
ontrolled not by the operating system, but by the JVM

that interprets this
ode, namely dynami
ally loaded and veri�ed byte
ode. As

a result one has at least three new
orre
tness and
ompleteness problems, as

illustrated in Fig. 2, namely
on
erning:

{ The loading me
hanism whi
h dynami
ally loads
lasses; the binary rep-

resentation of a
lass is retrieved and installed within the JVM|relying

upon some appropriate name spa
e de�nition to be used by the se
urity

manager|and then prepared for exe
ution by the JVM interpreter
{ The byte
ode veri�er, whi
h
he
ks
ertain
ode properties at link-time, e.g.

onditions on types and on sta
k bounds whi
h one wants to be satis�ed at

run-time
{ The a

ess right
he
ker, i.e., a se
urity manager whi
h
ontrols the a

ess

to the �le system, to network addresses, to
riti
al windowing operations,

et
.

The goal of the proje
t was to provide an abstra
t (read: platform indepen-

dent), rigorous but transparent, modular de�nition of Java and the JVM that

an be used as a basis for a mathemati
al and an experimental analysis of the

above
laim. First of all this modeling work should re
e
t SUN's design de
i-

sions, it should provide for the two manuals [20, 21, 31℄ what in [5, 11℄ has been

alled a ground model, i.e. a suÆ
iently rigorous and
omplete, provably
onsis-

tent, mathemati
al model that faithfully represents the given natural language

des
riptions. Se
ondly it should o�er a
orre
t high-level understanding of

{ the sour
e language, to be pra
ti
ally useful for Java programmers,

{ the virtual ma
hine, to o�er the implementors a rigorous, implementation

independent basis for the do
umentation, the analysis, and the
omparison

of implementations.

We tried to a
hieve the goal by
onstru
ting stepwise re�ned ASM models of

Java, the JVM (in
luding the loader and the byte
ode veri�er), and a Java-

to-JVM
ompiler, whi
h are abstra
t, but nevertheless
an in a natural way

be turned into exe
utable validatable models, and for whi
h we
an prove the

following theorem.

Main Theorem. Under
onditions that are expli
itly stated in [34℄,

any well-formed and well-typed Java program, when
ompiled satisfying

the properties listed for the
ompiler, passes the byte
ode veri�er and is

exe
uted on the JVM. During this exe
ution, none of the run-time
he
ks

of the properties that have been analyzed by the veri�er is violated,

and the generated byte
ode is interpreted
orre
tly with respe
t to the

expe
ted sour
e
ode behavior as de�ned by the Java ASM.

In the
ourse of proving the theorem, we were led to
larify various ambi-

guities and in
onsisten
ies we dis
overed in the Java/JVM manuals and in the

implementations,
on
erning fundamental notions like legal Java program, legal

byte
ode, veri�able byte
ode, et
. Our analysis of the JVM byte
ode veri�er,

whi
h we relate to the stati
 analysis of the Java parser (rules of de�nite assign-

ment and rea
hability analysis), led us to de�ne a novel (subroutine
all sta
k

free) byte
ode veri�er whi
h goes beyond previous work in the literature.

In the next se
tion we explain the dependen
y graph whi
h surveys how we

split the proof of the main theorem in subproofs for the JVM
omponents.

3 De
omposition of Java/JVM into Components

To make su
h a
omplex modeling and analysis problem tra
table one has to split

it into a series of manageable subproblems. To this end we
onstru
t the ASM

for the JVM out of subma
hines for its se
urity relevant
omponents|the ones

whi
h appear in Fig. 2: loader, veri�er, preparator, interpreter|and de�ne ea
h

omponent in
rementally via a series of subma
hines, put together by parallel

omposition and forming a sequen
e of
onservative extensions, whi
h is guided

by the layering of Java and of the set of JVM instru
tions into in
reasingly ri
her

sublanguages.

PC

PC

PC

Part II

(T
h
eo

re
m

s
7
.3

.1
 a

n
d
 8

.4
.1

)

T
h

re
ad

 S
y
n
ch

ro
n
iz

at
io

n
 a

n
d
 T

y
p
e

S
af

et
y

Type Safety and Compiler Soundness
(Theorems 8.4.1 and 14.2.1)

semantical equivalence

compile

Part IIIP
ar

t
I

P
Java program

execJava
runs P

JVM program

(T
h
eo

re
m

 1
6
.5

)

C
o
m

p
le

te
n
es

s
C

o
m

p
il

er

typable
bytecode

(Theorem
 17.1)

B
yt

ec
od

e
V

er
ifi

er

C
om

pleteness/Soundness

assignment
bytecode type

defensiveVM
run−time checks

propagate type information
propagateVM

acceptsverifyVM

trustfulVM
runs in
diligentVM

n
o

 r
u

n
−

ti
m

e
ch

ec
k
 v

io
la

ti
o
n
s

(T
h

eo
re

m
 1

6
.4

.1
)

B
y

te
co

d
e

ty
p
e

as
si

g
n
m

en
t

S
o
u
n
d
n
es

s

(Chap. 15) (Chap. 16)

(Chap. 17)

Fig. 3. Dependen
y Graph

Components for Language Layers. Sin
e this language layering is
ommon

to all JVM
omponents, we explain it �rst. We fa
tor the sets of Java and of

JVM instru
tions into �ve sublanguages, by isolating language features whi
h

represent milestones in the evolution of modern programming languages and

of the te
hniques for their
ompilation, namely imperative (sequential
ontrol),

pro
edural (module), obje
t-oriented, ex
eption handling, and
on
urren
y fea-

tures. This de
omposition
an be made in su
h a way that in the resulting se-

quen
e of ma
hines, ea
h ASM is a purely in
remental|similar to what logi
ians

all a
onservative|extension of its prede
essor, be
ause ea
h of them provides

the semanti
s of the underlying language, instru
tion by instru
tion. The gen-

eral
ompilation s
heme
ompile
an then be de�ned between the
orresponding

subma
hines by a simple re
ursion. We illustrate this in Fig. 4.

A related stru
turing prin
iple, whi
h helped us to keep the size of the models

small,
onsists in grouping similar instru
tions into one abstra
t instru
tion ea
h,

oming with appropriate parameters. These parameters be
ome parameters of

JVMI

C

T

E

O

Java I

C

E

T

O

imperative

static class features

(procedures)

exception

handling

concurrent

threads

oo features

compile

compile

compile
O

compile

compile
C

I

E

T

Java

Java

Java

Java

JVM

JVM

JVM

JVM

Fig. 4. Language oriented de
omposition of Java/JVM

the
orresponding ASM rules des
ribing the semanti
al e�e
t of those instru
-

tions. This goes without leaving out any relevant language feature, given that

the spe
ializations
an be regained by mere parameter expansion, a re�nement

step whose
orre
tness is easily
ontrollable instru
tion-wise.

Exe
ution Component.We now turn to explain the verti
al
omponents of the

ASM model for the JVM. In one
omponent we des
ribe the trustful exe
ution of

byte
ode that is assumed to be su

essfully loaded and linked (i.e., prepared and

veri�ed to satisfy the required link-time
onstraints). The resulting sequen
e of

stepwise re�ned trustful VMs, namely trustfulVMI , trustfulVMC , trustfulVMO ,

trustfulVME , and trustfulVMT , yields a su

in
t de�nition of the fun
tional-

ity of JVM exe
ution in terms of language layered subma
hines exe
VM and

swit
hVM (Fig. 5).

The language layered ma
hine exe
VM des
ribes the e�e
t of ea
h single

JVM instru
tion on the
urrent frame, whereas swit
hVM is responsible for

frame sta
k manipulations upon method
all and return,
lass initialization

and ex
eption
apture. This pie
emeal des
ription of single JVM instru
tions

an be done similarly for the instru
tions provided in Java, yielding a su

in
t

de�nition of the semanti
s of Java in terms of language layered subma
hines

JavaI ; JavaC ; JavaO ; JavaE , and JavaT . Exploiting the
orresponden
e between

these
omponents for the Java/JVMma
hines yields a simple re
ursive de�nition

of a
ompilation s
heme for Java programs to JVM
ode, see Fig. 4, the detailed

de�nition is in Part II of [34℄. The
onservativity of the
omponent extensions

allowed us to in
rementally prove this
ompilation s
heme to be
orre
t, as is

expressed by the following theorem.

Theorem 1 (Corre
tness of the
ompiler). The ASMs for Java and the

JVM, running through given Java
ode and its
ompilation to JVM
ode, pro-

switch=Noswitch
yes

no

= ⊂ ⊂ ⊂ ⊂ ⊂

switchVM

trustfulVM

switchVM

execVM execVM execVM execVM execVM execVM

extends switchVM extends CD E

I C O E N D

N

yes

no

execVM

switchVM

isNative(meth)

execVM

Fig. 5. De
omposing trustfulVMs into exe
VMs and swit
hVMs

du
e in
orresponding method
ode segments the same values for (lo
al, global,

heap) variables and the same results of intermediate
al
ulations, for the
urrent

method as well as for the method
alls still to be
ompleted.

The proof in
ludes a
orre
tness proof for the handling of Java ex
eptions in

the JVM, a feature whi
h
onsiderably
ompli
ates the byte
ode veri�
ation, in

the presen
e of embedded subroutines,
lass and obje
t initialization, and
on-

urrently working threads. Obviously, the statement of the theorem as phrased

here is vague. In fa
t, it is part of the modeling and analysis work to provide

a pre
ise meaning of this intuitive statement, expressing that runs of the Java

ma
hine on a Java program and the
orresponding runs of the JVM ma
hine on

the
ompiled program are equivalent. It took us 10 pages to make the underlying

notion of
orresponding runs and of their equivalen
e suÆ
iently pre
ise to be

able to
arry out a proof for the
orre
tness theorem, see Chapter 14 of [34℄. The

83
ase distin
tions of that 24 pages long proof are not a bizarre e�e
t of our

modeling, but dire
tly derive from|indeed are stru
tured into|the situations

whi
h do o

ur during a Java
omputation for expression evaluation and state-

ment exe
ution, treated separately for ea
h of the �ve language layers. This is

a strength of the method that by lo
alizing the proof obligations one has a key

to modularize the overall proof: ea
h new expression or statement feature will

bring with it a
learly identi�able group of new
ases to
onsider for de�nition

(modeling) and proof (veri�
ation).

It was
ru
ial for the
ompiler
orre
tness proof to go through to take into

a

ount also some stru
tural stati

onstraints about Java runs, in parti
ular

onditions under whi
h it
an be proved that well-formed and well-typed Java

programs are type safe, in
luding the so
alled de�nite assignment rules for

variables and the rea
hability analysis for statements. In fa
t we were led to

orre
t some in
onsisten
ies in those rules as de�ned in SUN's manuals (see

below).

ICOED Ncheck checkextendscheckextendscheckextendscheckextendscheckextends

no

report failureswitch=Noswitch
yes

trustfulVM
& check

valid code indexyes no

no

no

N

yes

yes

trustfulVM

isNative(meth)

checkN

Fig. 6. De
omposing defensiveVMs into trustfulVMs and
he
ks

Che
king Component. The se
ond group of language layered
omponent ma-

hines we de�ne are auxiliary ma
hines whose parallel
omposition
onstitutes

the defensiveVM. Their purpose is to de�ne the veri�er fun
tionality in run-time

terms of trustfulVM exe
ution from a language layered
omponent
he
k . Sin
e

it is diÆ
ult to obtain a well motivated and
lear de�nition of the byte
ode veri-

�
ation fun
tionality, we tried to a

omplish also that task lo
ally: guided by the

language stru
ture that allows to su

essively re�ne the
he
king
onditions|

from the imperative to the dynami
 subma
hine|we took advantage from know-

ing for ea
h type of instru
tion some run-time
onditions whi
h
an guarantee

its safe exe
utability. To be more pre
ise, as the ar
hite
tural de�nition in Fig. 6

shows, the defensiveVM
he
ks at run-time, before every exe
ution step, the

stru
tural
onstraints whi
h des
ribe the veri�er fun
tionality (restri
tions on

run-time data: argument types, valid return addresses, resour
e bounds) guar-

anteeing safe exe
ution. (Note that the stati

onstraints on the well-formedness

of the byte
ode in Java
lass �les are
he
ked at link-time.) The detailed def-

inition is given in Chapter 15 of [34℄. For this new ASM defensiveVM, by its

onstru
tion out of its
omponent trustfulVM, one has the following theorem.

Theorem 2 (Corre
tness of defensive
he
king). If the defensiveVM ex-

e
utes a program P su

essfully, then so does the trustfulVM, with the same

semanti
al e�e
t.

Sin
e we formulate the run-time
he
k ing
onditions referring to the types of

values in registers and on the operand sta
k, instead of the values themselves, we

an lift them to link-time
he
kable byte
ode type assignments, i.e. assignments of

ertain type frames to
ode indi
es of method bodies. When lifting the run-time

onstraints, we make sure that if a given byte
ode has a type assignment, then

the
ode runs on the defensive VM without violating any of the run-time
he
k

onditions. For example, at run-time the values of the operands and the values

stored in lo
al variables belong to the assigned types; if there is a verify type

assigned to a lo
al variable, then at run-time the lo
al variable
ontains a value

whi
h belongs to that verify type; if the type is a primitive type, then the value

is of exa
tly that type; if the type is a referen
e type, then the value is a pointer

to an obje
t or array whi
h is
ompatible with that type; the same is true for the

verify types assigned to the operand sta
k, et
. The main diÆ
ulty is due to the

subroutines, more pre
isely to the Jsr(s) and Ret(x) instru
tions whi
h are used

in the JVM to implement the �nally blo
k of Java try statements in the ex
eption

handling me
hanism of Java. The problem is to
orre
tly
apture what is the

type of return addresses from subroutines; as a matter of fa
t
on
erning this

point we have identi�ed in Chapter 16 of [34℄ a
ertain number of problems and

in
onsisten
ies in
urrent implementations of the byte
ode veri�er. The out
ome

of this analysis is the following theorem, whose proof do
uments for all the
ases

that
an o

ur for the single instru
tions in the given run why typable
ode
an

be safely exe
uted.

Theorem 3 (Soundness of Byte
ode Type Assignments). Typable byte-

ode satis�es at run-time a set of invariants guaranteeing that when the
ode

is run on the defensiveVM, it does not violate any of the dynami

onstraints

de�ned in the
he
k
omponent.

The notion of byte
ode type assignment also allows us to prove the
omplete-

ness of the
ompilation s
heme mentioned above. Completeness here means that

byte
ode whi
h is
ompiled from a well-formed and well-typed Java program in

a way that respe
ts our
ompilation s
heme,
an be typed su

essfully, in the

sense that it does have type assignments. More pre
isely we prove the general

statement below, whi
h implies the
orre
tness of our Java-to-JVM
ompiler.

We re�ne our
ompiler to a
ertifying
ode generator, whi
h issues instru
tions

together with the type information needed for the byte
ode veri�
ation. Hen
e,

the result of the extended
ompilation is not only a sequen
e of byte
ode in-

stru
tions but a sequen
e of triples (instr ; regT ; opdT), where (regT ; opdT) is

what we
all a type frame for the instru
tion instr . We then prove that the

so generated type frames satisfy the
onditions for byte
ode type assignments.

This is yet another example of stru
turing de�nition and proof by
onservative

(purely in
remental) extension.

When working on this proof, we dete
ted a not so obvious in
onsisten
y in

the design of the Java programming language, namely an in
ompatibility of the

rea
hability notions for the language and the JVM, related to the treatment of

boolean expressions and the rules for the de�nite assignement of variables. The

program in Fig. 7

shows that byte
ode veri�
ation is not possible the way SUN's manuals suggest:

although valid, the program is reje
ted by any byte
ode veri�er we have tried

in
luding JDK 1.2, JDK 1.3, Nets
ape 4.73-4.76, Mi
rosoft VM for Java 5.0 and

5.5 and the Kimera Veri�er (http://kimera.
s.washington.edu/). The problem is

that in the eyes of the veri�er the variable i is unusable at the end of the method

at the return i instru
tion, whereas a

ording to 16.2.14 in [21℄ the variable i

is de�nitely assigned after the try statement. Our rules of de�nite assignment

for the try statement are stronger and therefore the program is already reje
ted

by our
ompiler. In [34℄ we exhibit another program that illustrates a similar

lass Test {

stati
 int m(boolean b) {

int i;

try {

if (b) return 1;

i = 2;

} finally { if (b) i = 3; }

return i;

}

}

Fig. 7. A valid Java program reje
ted by all known veri�ers

problem for labeled statements. In
on
lusion, one
an avoid this in
onsisten
y

by slightly restri
ting the
lass of valid programs by sharpening the rules for

de�nite assignment for �nally and for labeled statements. As a result we
ould

establish the following desirable property for the
lass of
ertifying
ompilers.

Theorem 4 (Compiler Completeness Theorem). The family of type frames

generated by the
ertifying
ompiler for the body of a method � is a byte
ode type

assignment for �.

As a
orollary, the Java-to-JVM
ompiler we de�ne is
orre
t sin
e it is

extended
onservatively by a
ertifying
ompiler.

Byte
ode Veri�er Component. Having distilled the byte
ode veri�er fun
-

tionality in the notion of byte
ode type assignment, we are ready to extend the

trustfulVM by a new
omponent, a link-time byte
ode veri�er. Before trust-

fulVM
an run a method in a
lass that has been loaded, for ea
h method in

that
lass the veri�er attempts to
ompute a|in fa
t a most spe
i�
|byte
ode

type assignment for the method. The (ar
hite
ture of the) resulting ma
hine

diligentVM is de�ned in Fig. 8.

One has to show that the verifyVM
omponent is sound and
omplete, whi
h

is expressed by the following two theorems that we
an prove for our novel

(subroutine
all sta
k free) byte
ode veri�er.

Theorem 5 (Byte
ode Veri�er Soundness). During the
omputation of the

veri�er for any given method body, the byte
ode type frames
omputed so far

satisfy the
onditions for byte
ode type assignments. verifyVM terminates, either

reje
ting the
ode with a type failure dete
tion (in
ase the method body is not

typable) or a

epting it and issuing a byte
ode type assignment for it.

Theorem 6 (Byte
ode Veri�er Completeness). If a method body has a

byte
ode type assignment, then verifyVM a

epts the
ode and during the veri-

�
ation pro
ess the type frames
omputed so far by verifyVM are more spe
i�

than that byte
ode type assignment.

trustfulVM

some meth still

to be verified
curr meth still
to be verified

verifyVM

verifyVM built from submachines propagate, succ, check

report
failure

no

no

yes yes

set next meth up for verification

Fig. 8. De
omposing diligent JVMs into trustfulVMs and verifyVMs

succ succ succ succI C O E⊂ ⊂ ⊂ and propagate propagateI E⊂

report failure

no

yes

record pc as verified

choose pc for verification check(pc)

propagateVM(succ,pc)

Fig. 9. De
omposing verifyVMs into propagateVMs,
he
ks, su

s

Components of the Byte
ode Veri�er. To
ompute a byte
ode type assign-

ment for a given method, verifyVM at ea
h step
hooses a still to be veri�ed

ode index p
, starting at
ode index 0, to
he
k the type
onditions there. Upon

su

essful
he
k, as de�ned for the defensiveVM, the veri�er marks for further

veri�
ation steps the indi
es of all su

essors of p
 that
an be rea
hed by the

omputation, trying to propagate the type frame
omputed at p
 to ea
h pos-

sible immediate su

essor of p
. This provides the ar
hite
ture of the ma
hine

verifyVM, built out of three
omponents
he
k, propagate, su

 as de�ned in

Fig. 9.

At this point it should not any more
ome as a surprise to the reader that

the two new
omponents of verifyVM, namely the ASM propagateVM and the

fun
tion su

, are language layered similarly to the predi
ate
he
k de�ned al-

ready above as part of defensiveVM. A further reuse of previously de�ned ma-

hines stems from the fa
t that the subma
hine propagateVM , together with the

Compiler−ASM Sun−Compiler

Jasmin

.j .class

.java

Sun−JVM

Java−ASM

JVM−ASM

BCEL

Fig. 10. Relationship between di�erent ma
hines

fun
tion su

, de�nes a link-time simulation (type version) of the trustfulVM

illustrated above.

In a similar way the loading me
hanism
an be introdu
ed by re�ning the

omponents exe
VM and swit
hVM, see Chapter 18 in [34℄.

The modular
omponent-based stru
ture of both de�nitions and proofs ex-

plained above for Java and the JVM is reassumed in Fig. 3, showing how the

omponents and the proofs of their basi
 properties �t together to establish

the desired property for the
ompilation and safe exe
ution of arbitrary Java

programs on the dynami
VM, as expressed above in the Main Theorem.

AsmGofer exe
utable re�nements.The experimentation with the AsmGofer

exe
utable re�nements of the models outlined above was
ru
ial to get the mod-

els and the proofs of our theorems right. AsmGofer is an ASM programming

system developed by Joa
him S
hmid and available at www.tydo.de/AsmGofer.

It extends TkGofer to exe
ute ASMs whi
h
ome with Haskell de�nable external

fun
tions. It provides step-by-step exe
ution and
omes with GUIs to support

debugging of Java/JVM programs. First of all it allows to exe
ute the Java

sour
e
ode in our Java ASM and to observe that exe
ution|there is no
oun-

terpart for this in SUN's development environment, but similar work has been

done independently, using the Centaur system, by Marjorie Russo in her re
ent

PhD thesis [32℄. Furthermore one
an
ompile Java programs to byte
ode whi
h

an be exe
uted either on our ASM for JVM or (using Jasmin for the
onver-

sion to binary
lass format) on SUN's implementation. More generally, for the

exe
utable versions of our ma
hines, the formats for inputting and
ompiling

Java programs are
hosen in su
h a way that the ASMs for the JVM and the

ompiler
an be
ombined in various ways with
urrent implementations of Java

ompilers and of the JVM, as illustrated in Fig. 10.

Referen
es

1. J. R. Abrial. The B-Book. Assigning Programs to Meanings. Cambridge University

Press, 1996.

2. E. B�orger. A logi
al operational semanti
s for full Prolog. Part I: Sele
tion
ore

and
ontrol. In E. B�orger, H. Kleine-B�uning, and M. Ri
hter, editors, CSL 89,

number 440 in Le
ture Notes in Computer S
ien
e, pages 36{64. Springer-Verlag,

1989.

3. E. B�orger. A logi
al operational semanti
s for full Prolog. Part II: Built-in pred-

i
ates for database manipulations. In B. Rovan, editor, MFCS'90. Mathemati
al

Foundations of Computer S
ien
e, number 452 in Le
ture Notes in Computer S
i-

en
e, pages 1{14. Springer-Verlag, 1990.

4. E. B�orger. Logi
 programming: The evolving algebra approa
h. In B. Pehrson and

I. Simon, editors, IFIP 13th World Computer Congress 1994. Volume I: Te
hnology

and Foundations, pages 391{395. Elsevier, Amsterdam, 1994.

5. E. B�orger. High level system design and analysis using Abstra
t State Ma
hines.

In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, Current Trends

in Applied Formal Methods (FM-Trends 98), number 1641 in Le
ture Notes in

Computer S
ien
e, pages 1{43. Springer-Verlag, 1999.

6. E. B�orger. Abstra
t State Ma
hines at the
usp of the millenium. In Y. Gurevi
h,

P. Kutter, M. Odersky, and L. Thiele, editors, Abstra
t State Ma
hines. Theory

and Appli
ations, number 1912 in Le
ture Notes in Computer S
ien
e, pages 1{8.

Springer-Verlag, 2000.

7. E. B�orger, A. Cavarra, and E. Ri

obene. An ASM semanti
s for UML A
tivity

Diagrams. In T. Rust, editor, Pro
. AMAST 2000, number 1912 in Le
ture Notes

in Computer S
ien
e, pages 361{366. Springer-Verlag, 2000.

8. E. B�orger, A. Cavarra, and E. Ri

obene. Modeling the Dynami
s of UML State

Ma
hines. In Y. Gurevi
h, P. Kutter, M. Odersky, and L. Thiele, editors, Ab-

stra
t State Ma
hines. Theory and Appli
ations, number 1912 in Le
ture Notes in

Computer S
ien
e, pages 223{241. Springer-Verlag, 2000.

9. E. B�orger and K. D�assler. Prolog: DIN papers for dis
ussion. In ISO/IEC JTCI

SC22 WG17 Prolog standardization do
ument, number 58 in ISO/IEC Do
uments,

pages 92{114. NPL Middlesex, 1990.

10. E. B�orger and I. Durdanovi
. Corre
tness of Compiling O

am to Transputer

Code. Computer Journal, 39(1):52{92, 1996.

11. E. B�orger, E. Ri

obene, and J. S
hmid. Capturing Requirements by Abstra
t

State Ma
hines: The Light Control Case Study. J. Universal Computer S
ien
e,

6.7:597{620, 2000. Spe
ial Requirement Engineering Issue.

12. E. B�orger and D. Rosenzweig. The WAM{De�nition and Compiler Corre
tness.

In C. Beierle and L. Pl�umer, editors, Logi
 Programming: Formal Methods and

Pra
ti
al Appli
ations, pages 20{90. Elsevier S
ien
e B.V./North{Holland, 1995.

13. E. B�orger and J. S
hmid. Composition and subma
hine
on
epts. In P. G. Clote

and H. S
hwi
htenberg, editors, Computer S
ien
e Logi
 (CSL 2000), number 1862

in Le
ture Notes in Computer S
ien
e, pages 41{60. Springer-Verlag, 2000.

14. E. B�orger, J. S
hmid, and P. P�appinghaus. Report on a Pra
ti
al Appli
ation of

ASMs in Software Design. In Y. Gurevi
h, P. Kutter, M. Odersky, and L. Thiele,

editors, Abstra
t State Ma
hines. Theory and Appli
ations, number 1912 in Le
ture

Notes in Computer S
ien
e, pages 361{366. Springer-Verlag, 2000.

15. U. Gl�asser, Y. Gurevi
h, and M. Veanes. Universal Plug and Play Ma
hine Models.

Te
hni
al Report MSR-TR-2001-59, Mi
rosoft Resear
h, 2001.

16. W. Goerigk and H. Langmaa
k. Compiler Implementation Veri�
ation and Trojan

Horses. In D. Bainov, editor, Pro
. 9th International Colloquium on Numeri
al

Analysis and Computer S
ien
e with Appli
ations, Plovdiv, Bulgaria, 2001. Ex-

tended Draft Version available at http://www.informatik.uni-kiel.de/�wg/-

Beri
h te/Plovdiv.ps.gz.
17. W. Goerigk and H. Langmaa
k. Will Informati
s be able to Justify the Constru
-

tion of Large Computer Based Systems? Te
hni
al Report 2015, CS Department

University of Kiel, 2001.

18. G. Goos andW. Zimmermann. Veri�
ation of
ompilers. In Corre
t System Design,

number 1710 in Le
ture Notes in Computer S
ien
e, pages 201{230. Springer-

Verlag, 1999.
19. G. Goos and W. Zimmermann. Verifying
ompilers and ASMs. In Y. Gurevi
h,

P. Kutter, M. Odersky, and L. Thiele, editors, Corre
t System Design, number

1912 in Le
ture Notes in Computer S
ien
e, pages 177{202. Springer-Verlag, 2000.
20. J. Gosling, B. Joy, and G. Steele. The Java(tm) Language Spe
i�
ation. Addison

Wesley, 1996.

21. J. Gosling, B. Joy, G. Steele, and G. Bra
ha. The Java(tm) Language Spe
i�
ation.

Addison Wesley, se
ond edition, 2000.
22. Y. Gurevi
h. Re
onsidering Turing's Thesis: Toward More Realisti
 Semanti
s of

Programs. Te
hni
al Report CRL-TR-36-84, University of Mi
higan, Computing

Resear
h Lab, 1984.
23. Y. Gurevi
h. A New Thesis. Noti
es of the Ameri
an Mathemati
al So
iety, page

317, 1985. abstra
t 85T-68-203, re
eived May 13.
24. Y. Gurevi
h. Logi
 and the Challenge of Computer S
ien
e. In E. B�orger, editor,

Current Trends in Theoreti
al Computer S
ien
e, pages 1{57. Computer S
ien
e

Press, 1988.
25. Y. Gurevi
h. Evolving algebras: An attempt to dis
over semanti
s. Bulletin of the

EATCS, 43:264{284, 1991.
26. Y. Gurevi
h. Evolving Algebras 1993: Lipari Guide. In E. B�orger, editor, Spe
i�-

ation and Validation Methods, pages 9{36. Oxford University Press, 1995.
27. J. Huggins. Abstra
t State Ma
hines. ASM Web pages, maintained at

http://www.ee
s.umi
h.edu/gasm/.
28. ISO. ISO/IEC 13211-1 Information Te
hnology-Programming Languages-Prolog-

Part 1: General Core. ISO, 1995.
29. ITU. ITU-T Re
ommendation Z-100: Languages for Tele
ommuni
ations Appli-

ations { Spe
i�
ation and Des
ription Language SDL. Annex F: SDL formal se-

manti
s de�nition, 2000.
30. A. Kappel. Implementation of Dynami
 Algebras with an Appli
ation to Prolog.

Master's thesis, CS Dept., University of Dortmund, Germany, November 1990.

An extended abstra
t "Exe
utable Spe
i�
ations based on Dynami
 Algebras"

appeared in A. Voronkov (ed.): Logi
 Programming and Automated Reasoning,

volume 698 of LNAI, Springer, 1993, pages 229-240.
31. T. Lindholm and F. Yellin. The Java(tm) Virtual Ma
hine Spe
i�
ation. Addison

Wesley, se
ond edition, 1999.

32. M. Russo. Java et ses aspe
t
on
urrents: semantiques formelle, visualisation et

proprietes, 2001. PhD thesis University of Ni
e-Sophia-Antipolis.
33. J. S
hmid. Exe
uting ASM spe
i�
ations with AsmGofer, 1999. Web pages at

http://www.tydo.de/AsmGofer.
34. R. St�ark, J. S
hmid, and E. B�orger. Java and the Java Virtual Ma
hine. De�nition,

Veri�
ation, Validation. Springer-Verlag, 2001.

