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Abstract 

This paper investigates the stopband of laminate acoustic metamaterials, which is composed 

of carbon-fiber-reinforced polymer (CFRP) and a periodic array of mass-spring-damper 

subsystems integrated with the laminates to act as vibration absorbers. Based on the 

mathematical model derived in this work, a wide stopband is observed by dispersion analysis. 

The frequency response analysis is performed to confirm its stopband behavior for a finite 

laminate acoustic metamaterial. Due to the superior strength to weight ratio of CFRP, the 

laminate acoustic metamaterials are able to have a much wider stopband than the conventional 

metamaterial plates proposed in recent years. In addition, the effects of the relevant parameters 

on the stopband of laminate acoustic metamaterial are discussed in this work. The excellent 

performance of laminate acoustic metamaterials has been applied to design the vehicle door, and 

the vibration of the vehicle door is suppressed significantly. 
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1. Introduction 

As early as over fifty years ago, the electromagnetic metamaterials were first proposed with 

its unusual properties that do not exist in nature 
[1-3]

, such as negative permittivity and 

permeability. The electromagnetic metamaterials are mainly designed by using the effects of 

negative refractive indices, cloaking and superlensing. Over the last few years 
[4-7]

, acoustic 

metamaterials (AMs) with negative effective density and stiffness have received increasing 

attention. The concept of AMs extends far beyond of negative refraction in EMs, rather giving 

vast choice of material parameters for different applications. Currently AMs are widely applied 

in many fields, including national defense fields for acoustic collimating 
[10] 

and sound insulation 

fields for elastic wave absorption 
[11,12,21,22]

. 

The concept of acoustic metamaterials was developed by phononic crystals (PCs). 

Analogous to the photonic crystals, the stopband or bandgaps within which the propagation of 

elastic or acoustic waves are inhibited exist in the PCs 
[22,32-34]

. The earlier studies have shown 

that there are two working mechanisms of stopband in PCs, which are known as Bragg scattering 

and local resonance. For Bragg scattering PCs, the low-frequency vibration suppression depends 

much on the size of PCs
 [11]

. To solve this problem, Liu et al 
[13]

 proposed the first acoustic 

metamaterials based on the local resonance. This type of AMs is also known as locally resonant 

sonic materials (LRSMs), and the stopband can be obtained two orders of magnitude lower than 

that of the Bragg gaps. The AMs have successfully achieved a small size structure to control the 

large wavelength (low frequency) sonic waves. In general, the AMs are composed of 

periodically arranged low-frequency resonators consisting of a solid core material with relatively 

high density coated by an elastically soft material. Wang 
[14]

 proposed one-dimensional phononic 
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crystals with locally resonant structures comprehensively. Yu 
[15]

 studied flexural vibration band 

gaps in a Timoshenko beam with locally resonant structures. Similar works by Phani 
[18]

 show 

that the stopband also exists in two-dimensional metamaterial structures with periodic local 

resonators. In 2007, the characteristics of wave propagation during pass bands in two-

dimensional thin plate phononic crystals were analyzed 
[16]

. Furthermore, metamaterials with 

simultaneously negative bulk modulus and mass density were investigated by Ding et al. 
[17,19]

. 

However, the negative effective mass and modulus only exist in a narrow frequency range 

for most of the acoustic metamaterials. Therefore, the design of structures with broadband 

negative parameters is an important issue in the field of acoustic metamaterials. Recently, Peng 

[20]
 proposed the metamaterial plate with multi-frequency vibration absorbers for broad-band 

elastic wave absorption, which is based on the idea of local resonance. The metamaterial plate 

composed of two-degree of freedom (DOF) subsystems generates two stopbands, and the 

stopband can be widened by reducing the mass of plate or increasing the mass of vibration 

absorbers. Nevertheless, a big mass of vibration absorbers may not be very effective in the 

practical application. 

Hence, the laminate metamaterials composed of composite materials such as carbon-fiber-

reinforced polymer (CFRP), which has the better strength to weight ratio compared with 

traditional homogeneous materials like Steel or Aluminum, may be a better choice. The material 

property of the composites can be engineered according to the application requirements 
[26-29,35-40]

. 

Applications like aerospace components 
[30]

, where the weight is a decisive factor, can benefit 

tremendously with the usage of composite materials. However, the undesirable behaviors such as 

extensional-shear coupling and bending-twist coupling 
[31]

, which greatly increase the 
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complexity of the design task, are encountered with composite materials. In order to avoid these 

undesirable behaviors in engineering, the symmetric laminate may be the best option. 

To the best of our knowledge, laminate acoustic metamaterials that consist of orthotropic 

laminates and mass-spring-damper subsystems have never been presented in the literature. This 

paper aims to design composite laminate acoustic metamaterials for broadband vibration 

absorption with the superior strength to weight ratio of CFRP. The paper is organized as follows. 

Firstly, in Section 2, the basic theory of laminate plate is presented in detail. The behavior of 

stopband of laminate acoustic metamaterial is analyzed using dispersion analysis in Section 3. 

Subsequently the validation of the stopband of laminate acoustic metamaterials is described by 

frequency response analysis. In addition, the working mechanism of the bandgaps is revealed on 

the basis of the concept of conventional vibration absorbers. The influences of the absorbers’ 

resonant frequencies, boundary conditions of the vibration absorbers on laminates and damping 

ratios of the vibration absorbers as well as the laminate’s mode shapes are investigated. In 

Section 4, we design the vehicle door composed of low-frequency symmetric laminate acoustic 

metamaterials with a wide stopband by selecting appropriate masses and springs for subsystems 

and properly locating them on the laminate acoustic metamaterials. Finally, the results as well as 

the conclusions of the paper are summarized. 

2. Basic theory of laminate plate 

According to the Kirchhoff Plate theory, the displacement of the plane at any point can be 

approximated by the following equation 

0 0
      

w w
u u z v v z w w

x y

 
    

 
 (1) 
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where 0
u  is the mid-plane displacement in the x-axis, and 0

v  is the mid-plane displacement in 

the y-axis. 

The relationship of strain-displacement for Kirchhoff Plate is derived based on the linear 

elastic 2D strain-displacement relationship. 

0 2 0 2 0 0 2

2 2
      2

x y xy

u w v w u v w
z z z

x x y y y x x y
  

      
      
       

 (2) 

Eq. (2) can be written in the matrix form: 

0

0

0

x x x

y y y

xy xy xy

k

z k

k

 
 
 

    
          

     
    

 (3) 

     0
zε = ε + k  (4) 

where  0ε  is the mid-plane strain vector,  k  is the mid-plane curvature variation vector. 

In terms of engineering constants, the orthotropic compliance matrix is defined as: 

3121

1 2 3

3212

1 11 2 3

2 213 23

3 31 2 3

12 12

1223 23

13 13

23

13

1
0 0 0

1
0 0 0

1
0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

E E E

E E E

E E E

G

G

G




 
  
 
 
 
 

 
 
 
 
                                         
 
 
 
  

 

(5) 
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The strain-stress relationship for 2D orthotropic plane stress problems is written as follows: 

3 13 23 0      (6) 

12

1 1

1 1 11 12 1

12
2 2 12 22 2

1 2

12 12 44 12

12

1
0

0
1

0 0

0 0
1

0 0

E E
S S

S S
E E

S

G



  


  
  

 
 
        
                 

               
 
 

 
(7) 

with 
2312

3 1 2

1 2
E E


  

 
   

 
 

On the other hand, Eq. (7) can be defined as: 

1 11 12 1

2 12 22 2

12 44 12

0

0

0 0

Q Q

Q Q

Q

 
 
 

     
        
         

 (8) 

where: 

22 1
11

11 22 12 12 12 21
1

S E
Q

S S S S  
 

 
 

12 12 2
12

11 22 12 12 12 21
1

S E
Q

S S S S


 


 

 
 

11 2
22

11 22 12 12 12 21
1

S E
Q

S S S S  
 

 
 44 12

44

1
Q G

S
 

 

The constitutive stress/strain relationships developed so far are all written in the principal 

material 1-, 2-, 3- coordinate system as given by Eq. (8). However, in order to determine the 

global behavior of a ply, we need to write this relationship in the global x-, y-, z- coordinate 

system. This is accomplished by using the 2D plane stress transformations, as shown below: 
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                   -1 -1 -1

1 1x x x

   σ = TS σ = TS Q ε = TS Q TS ε = Q ε  (9) 

where   Q  is stiffness matrix on global coordinate. 

As shown in Fig. 1, the transformation matrix 2D tensors can be written: 

 
2 2

-1 2 2

2 2

cos sin -2cos sin

sin cos 2cos sin

cos sin -cos sin cos - sin

   
   

     

 
 
 
  

TS =  (10) 

 
2 2

2 2

2 2

cos sin cos sin

sin cos cos sin

2cos sin 2cos sin cos sin

   
   

     



 
   
   

TS  (11) 

Substitute Eqs. (10) and (11) into Eq. (9). 

 
 

   
   

 

4 4 2 2

11 22 12 4411

4 4 2 2

11 22 12 4422

2 2 2 2

11 22 12 4444

4 4 2 2

12 11 22 4412 21

2 2

11 12 4414 41

cos sin 2cos sin 2

sin cos 2cos sin 2

2 cos sin cos sin

cos sin 4 cos sin

cos 2 sin

Q Q Q Q Q

Q Q Q Q Q

Q Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q Q Q

   

   

   

   

 

   

   

    

     

      
   

12 22 44

2 2

12 22 44 11 12 4424 42

2 cos sin

cos 2 sin 2 cos sin

Q Q

Q Q Q Q Q Q Q Q

 

   

   
        

 
(12) 

The positive sign convention for homogeneous or laminated plate mid-plane forces is given 

in Fig. 2(a). For a homogenous single ply plate of constant thickness, the mid-plane forces can be 

written in terms of stress variation through the thickness of the plate (t): 

2

2

x x
t

y y
t

xy xy

N

N dz

N







   
      
   
   

  (13) 
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For a laminated plate made up of ‘n’ constant thickness plies, the mid-plane forces can be 

written in terms of the sum of the stress variation through the thickness of each ply: 

11

k

k

x xn
z

y y
z

k

xy xy

N

N dz

N







   
      
   
   

  (14) 

The positive sign convention of mid-plane moments is given in Fig. 2(b) for homogeneous 

or laminated plate. Similarly, the mid-plane moments can be expressed in terms of stress 

variation through the thickness of the plate: 

2

2

x x
t

y y
t

xy xy

M

M z dz

M







   
      
   
   

  (15) 

For a laminated plate made up of ‘n’ constant thickness piles, the mid-plane moments can 

be expressed in the following form: 

11

k

k

x xn
z

y y
z

k

xy xy

M

M z dz

M







   
      
   
   

  (16) 

Using the Eq. (9), we can apply the equation on the laminated coordinates by adding the 

subscript ‘k’ for each ply: 

   x xk kk

  σ = Q ε  (17) 

Substitute Eqs. (4) and (17) into Eq. (14), the mid-plane forces are written as follows: 

       
1

0

1

k

k

n
z

x x k kkz k
k

z dz


   N Q ε k  (18) 

Eq. (18) can be also expressed in the following form: 
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       0

x x x
N = A ε + B k  (19) 

where: 

    
    

1

1

2 2

1

1

1

2

n

k k
k

k

n

k k
k

k

z z

z z







   

   





A Q

B Q
 (20) 

Similarly, the mid-plane moments can be derived as follows: 

       
1

0

1

k

k

n
z

x x k kkz k
k

z zdz


   M Q ε k  (21) 

Eq. (21) can be also written in the following form: 

       0

x x x
 M B ε D k  (22) 

where: 

    
    

2 2

1

1

3 3

1

1

1

2

1

3

n

k k
k

k

n

k k
k

k

z z

z z







   

   





B Q

D Q

 (23) 

Based on Eqs. (18-23), the relationship between the mid-plane generalized forces and strain 

is defined as: 

0    
    

     

N A B ε
M B D k

 (24) 

In Eq. (24), the matrix A  which defines the extensional behavior of the laminate, relates the 

mid-plane forces to the mid-plane strains. It is noted that the matrix A  is independent of 

stacking sequence. The matrix B  associates the mid-plane forces with the plate curvatures as 

well as mid-plane moments with mid-plane strains, and the matrix B  is zero for symmetric 
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laminates. On the other hand, the matrix D  relates the mid-plane moments to the plate 

curvatures, which defines the bending behavior of the laminate. It is noted that the matrix D  is 

dependent of stacking sequence, and it is most affected by the location of zero degree plies in the 

stacking sequence. 

Eq. (24) can be expanded in the following form: 

0

11 12 14 11 12 14

0

12 22 24 12 22 24

0

14 24 44 14 24 44

11 12 14 11 12 14

12 22 24 12 22 24

14 24 44 14 24 44

x x

y y

xy xy

x x

y y

xy xy

N A A A B B B

N A A A B B B

N A A A B B B

M kB B B D D D

M kB B B D D D

M kB B B D D D





    
    
    
            

   
   
   
       






 
(25) 

The 
14A  and 

24A  terms denote the extensional-shear coupling between the mid-plane forces 

and mid-plane shear strain, and both above relations of the matrix B  represent the extensional-

bending and shear-twist coupling. The 
14D  and 

24D  terms stand for the bending-twist coupling 

between the mid-plane moments and plate curvatures.  

3. Analysis of laminate acoustic metamaterials for elastic wave absorption 

3.1 Dispersion analysis of laminate acoustic metamaterials with symmetric laminate 

In this section, the laminate acoustic metamaterials are proposed, which consist of two 

parallel orthotropic laminates and a periodic array of mass-spring-damper subsystems integrated 

between the two laminates, as shown in Fig. 3. In the calculation of dispersion relations, the 

considered structure refers to an infinite system. According to periodicity, only one unit cell (see 

Fig. 4) needs to be considered to investigate elastic wave absorption in laminate acoustic 

metamaterials regardless of boundary conditions and size effects. Its edge lengths along x, y and 

z direction are 2a=0.3m, 2b=0.06m and h=0.004m respectively. Two springs are set to the same 
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spring constant k, the absorber mass is 2m=80g, 
1 2

400Hz
2 2

k

m
 , and both laminates move in 

phase and have the same magnitude of displacement. T300/5208 is selected as the material of the 

laminate: E1=181GPa, E2=10.3GPa, E3=10.3GPa, μ12=0.28, ρ=1600kg/m
3
, G12=7.17GPa, 

G13=7.17GPa, G23=3.87Gpa, Xt=1500MPa, Xc=1500MPa, Yt=40MPa, Yc=246MPa, S=68MPa. 

As shown in Fig. 5, the equilibrium equation of one ply can be derived as: 

0
xyx xz

x y z

  
  

  
 (26) 

In the y direction 

0
yx y yz

x y z

    
  

  
 (27) 

In the z direction 

0
zyzx z

x y z

  
  

  
 (28) 

Integration of Eq. (26) can be obtained with the condition of 
2

0
xz h

z



  and 

2

0
xz h

z
 


 : 

0
xyx

NN

x y


 

 
 (29) 

Conducting the same procedure for Eq. (27), it can be expressed as: 

0
xy y

N N

x y

 
 

 
 (30) 

In the same way, the integration of Eq. (26) and Eq. (27) multiplied by z give: 



 

 

12 

 

0
xyx

x

MM
Q

x y


  

 
 (31) 

0
xy y

y

M M
Q

x y

 
  

   

(32) 

where 2

2

t

t xz x
dz Q  , 2

2

t

t yz y
dz Q  . 

Firstly, we can assume that 
2 2

2
 

xx xy

u u
u u

x x y

 
 
  

. Based on Eq. (22) and Eqs. (31-32), we 

use 
1M , 

2M , 
6M , 

1Q  and 
2Q  to redefine the moment resultants 

x
M , 

y
M , 

xy
M , 

x
Q  and 

y
Q  as: 

   
   
   

0 0 0 0

1 11 12 16 11 12 16

0 0 0 0

2 12 22 26 12 22 26

0 0 0 0

6 16 26 66 16 26 66

1 1 6

2 6 2

2

2

2

x y y x xx yy xy

x y y x xx yy xy

x y y x xx yy xy

x y

x y

M B u B v B u v D w D w D w

M B u B v B u v D w D w D w

M B u B v B u v D w D w D w

Q M M

Q M M

        
        
        

 

 

 

(33) 

where w  is the displacement of the laminate in the z-axis. 

In order to avoid the undesirable behaviors such as extensional-bending and shear-twist 

coupling in engineering, the symmetrical laminate may be the best option. As the symmetric 

laminate is composed of piles, both geometric (theta and thickness) and material properties are 

symmetrical about the middle surface of the laminate as  0 / 45 / 90 / 45
s

 . Therefore, 0
ij

B  . Eq. 

(33) can be simplified as follows: 
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 
 
 

1 11 12 16

2 12 22 26

6 16 26 66

1 1 6

2 6 2

2

2

2

xx yy xy

xx yy xy

xx yy xy

x y

x y

M D w D w D w

M D w D w D w

M D w D w D w

Q M M

Q M M

   

   

   

 

 

 
(34) 

Then the kinetic energy T , elastic strain energy U  and non-conservative work 
nc

W  of 

the laminate can be represented as: 

 =
a b

a b
T tw w dxdy  

    (35) 

 

 

    
 

2

2

2

1 2 6
2

0

1 1 6 6 1 1 6 6 0

2 2 6 6

=

    

     

      +

a b t

x x y y xy xy
a b t

a b t

xx yy xy
a b t

b
x x a

x x y y x a x x y y xb

y y x x y

U dzdxdy

M w M w M w dxdy

M w M M w M w M w M M w M w dy

M w M M w M w

      

  

     

  





  

  

 
 

 

   

               

     

  

  


  0

2 2 6 6 0

a
y x b

b y y x x xa
M w M M w M w dx  




 
 

      

 
(36) 

 

1 1 6

2 2 6 0 0        +

b
x a

nc x y x a
b

a
y b

y x y b
a

W M w Q w M w dy

M w Q w M w dx k u w w

   

   







     

      




 (37) 

According to Hamilton principle, we can obtain the following formula: 

 
0

0
t

nc
T U W dt      (38) 

Substituting Eqs. (35-37) into Eq. (38) 

     
   

1 2 6 0
0

2 22 2

1 1 2 1

2 , 0

= ,  , 0y yx x

t a b

xx yy xy
a b

y yx x

y x x y

hw M M M Q k u w x y wdxdy dt

Q Q Q Q Q
  

  

   

 

  

         

   

  
 (39) 
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where  ,x y  is a 2D Dirac delta function, and Q  represents the discontinuity of the internal 

transverse shear force at the absorber location. 

We can obtain the governing equation of the laminate by setting the coefficient of w  to 

zero 

   1 2 6 02 , =0
xx yy xy

hw M M M Q k u w x y           (40) 

We assume the upper laminate as a rigid body which moves with the average acceleration 

on the area 2 2a b . In addition, the upper laminate is subjected to lateral shear force on the four 

edges and the concentrated force from the absorber. Thus, the Q  can be ignored. Then integrate 

Eq. (39) on the upper laminate: 

    
 

   

1 2 6 0

2 6

1 6 0

2 ,

( )

   

a b

xx yy xy
a b

a b a
y b

y x y b
a b a

b
x a

x y x a
b

hw M M M Q k u w x y dxdy

hw dydx M M dx

M M dy k u w

 



 


  




        

   

   

 
  


 
(41) 

The governing equation of the vibration absorber can be easily obtained from Newton’s 

Second Law as: 

 0
mu k w u    (42) 

If a 2D elastic wave at specific frequency propagates within infinite laminate acoustic 

metamaterials made of a periodic unit cell (see Fig. 4(b)), the laminate’s displacement w  and the 

absorber’s displacement u  can be assumed to have the following forms: 

 
,

j x y t j t
w pe u qe

        (43) 
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where  1
2    and  2

2    are the wave numbers along the x and y directions with 1  

and 2  being the corresponding wave lengths,   is the wave frequency, and p  and q  are the 

displacement amplitudes.  

Substitute Eq. (43) into Eqs. (41) and (42), and rewrite the results in a matrix form: 

      2 4 2 2 4 3 3

11 12 66 22 26 16

2

4sin sin
+2 +2 + +4 +4

0

a b
phw D D D D D D k k

q
k m k

 
       




 
             

 
(44) 

To have non-zero solutions in the eigenvalue problem shown in Eq. (44), the determinant of 

the matrix needs to be zero and the dispersion equation that relates   to   and   is obtained as: 

        2 2 4 2 2 4 3 3 2

11 12 66 22 26 16

4sin sin
+2 +2 + +4 +4 0

a b
m k hw D D D D D D k k

 
        


 

       
 

 (45) 

The upper bound of the stopband is obtained from the upper dispersion surface with   and 

0  , and the lower bound can be determined from the lower dispersion surface with   and 

  , as shown in Fig. 6(a). 

 1 1
, 4

2 2
Stopband k m k m k abt

 
   
 

 (46) 

where 4abt  is the mass of the laminate’s unit cell.  

Fig. 6(b) shows a perspective view of the dispersion surface. There is a stopband between 

400Hz and 464.5Hz. Eq. (45) shows that the width of stopband can be increased by reducing the 

ratio 4abt m . Although the stopband derivation results of symmetric laminate acoustic 

metamaterials are the same as the metamaterial plates in Ref 
[21]

, the laminate acoustic 

metamaterials are able to have much wider stopband than conventional metamaterial plates on 

account of the high strength to weight ratio of CFRP. The stopband derived above is based on 

infinite laminate acoustic metamaterials. Thus, finite element modeling as well as frequency 
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response analysis is needed to validate the performance of finite laminate acoustic metamaterials, 

which is studied in the next section. 

3.2 Frequency response analysis of laminate acoustic metamaterials 

In this section, numerical examples of the laminate acoustic metamaterials are studied, and 

the material of the laminates is T300/520: E1=181GPa, E2=10.3GPa, E3=10.3GPa, μ12=0.28, 

ρ=1600kg/m
3
, G12=7.17GPa, G13=7.17GPa, G23=3.87Gpa, Xt=1500MPa, Xc=1500MPa, 

Yt=40MPa, Yc=246MPa, S=68MPa. In order to consider the effects of boundary conditions and 

damping ratios of the vibration absorbers on laminates, the laminate acoustic metamaterials 

shown in Fig. 7(a) is considered, which has vertical length 6m
a

L   and horizontal length 

3.6m
b

L  . For the laminate, we choose the symmetric laminate which is composed of piles such 

that both geometric (theta and thickness) and material properties are symmetrical about the 

middle surface of the laminate as  0 / 45 / 90 / 45
s

 . The thickness of each ply is set to be 

h=0.5mm. The resonant frequency of the absorber is set to be f=400Hz. The mass of the absorber 

is set to be 2m=80g. The total mass of the subsystems is 24% of the total mass of the laminate 

acoustic metamaterials.  The distance between the top and bottom laminates is 200mm. 

The two vertical edges at x=0 and 6m are hinged, and a white noise excitation with unit load 

in the z direction is applied at the nodes with the coordinate of (60, 1800, 0) and (60, 1800, 200) 

(i.e., the green dot in Fig. 7(b)). Each laminate is modeled by 100 12  four-node rectangular 

plate elements. The blue dots at the element nodes represent the single-frequency absorbers. 

There are no absorbers on the hinged edges at x=0 and 6m and the free edges at y=-1.8 and 1.8m. 

The unit cell here has the same parameters as those used in the dispersion analysis presented in 

Fig. 4.  
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We assume that the same external excitation is loaded on the same position of the two 

laminates. Hence, both laminates move in phase and have the same magnitude of displacement. 

The frequency response analysis (FRA) based on modal superposition method is conducted 

through commercial software Hyperworks, and two representative frequency response functions 

(FRFs) under different damping ratio of the laminate acoustic metamaterials are studied and 

plotted in Fig. 8(a) and Fig. 8(b). The black lines represent the laminate acoustic metamaterials 

without vibration absorbers for reference. The blue lines show FRFs of laminate acoustic 

laminates with the damping ratio increasing from 0.001 to 0.1. The red lines show a stopband to 

the right side of 400Hz with a low damping ratio 0.001   for each vibration absorber, which 

agrees well with the results of dispersion analysis. The stopband between 400 Hz and 464.5Hz 

exists, which is nearly twice as wide as the stopband in the conventional metamaterials plate. 

The ability to obtain such a wide band gap is due to the fact that, the laminate acoustic 

metamaterial with superior strength to weight ratio can achieve the high ratio of vibration-

absorber-mass/unit-laminate-cell-mass without increasing the overall mass of the structure 

significantly.  

The key working mechanism of the bandgaps is that when the excitation frequency is close 

to the frequency range of stopband, the vibration absorbers approach the resonance at the same 

time, and there are many frequency response peaks around the stopband as shown in Fig. 8. The 

incoming elastic wave is affected strongly by resonance scattering of the vibration absorbers. 

Therefore, the energy of incoming elastic wave is attenuated efficiently along the direction of 

propagation. Furthermore, with an appropriate damping ratio of the vibration absorbers, the 

vibration of laminate acoustic metamaterials can be suppressed effectively within the stopband. 
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Moreover, the stopband can be widened through increasing the damping ratio of vibration 

absorbers, as shown in Fig.8. (the blue lines) 

4. Design for the vehicle door composed of laminate acoustic metamaterials 

In this section, we design the vehicle door composed of low-frequency laminate acoustic 

metamaterials with a wide stopband. The vibration of the structure can be suppressed by 

selecting a suitable mass-spring-damper system and then arranging them on laminate acoustic 

metamaterials properly. We can change the natural frequency of vibration absorber by adjusting 

the spring constant while maintaining the mass of vibration absorber. There are many factors that 

affect the wave propagation in laminate acoustic metamaterials, so we should take the laminate’s 

boundary conditions, low-order natural frequencies, vibration modes of the structures, the 

absorber’s resonant frequencies and locations into consideration. 

A simple model of the vehicle door composed of laminate acoustic metamaterials and the 

mesh are shown in Figs. 9(a) and 9(b), respectively. The laminate acoustic metamaterials consist 

of two parallel orthotropic laminates and a periodic array of mass-spring vibration absorbers 

integrated between the two laminates (see Fig. 4). The dimensions of each laminate are 0.95m in 

the x-direction, 11.5m in the y-direction, 8mm in the z-direction respectively. The material of the 

laminates T300/5208 is selected: E1=181GPa, E2=10.3GPa, μ12=0.33, ρ=1600kg/m
3
, 

G12=7.17GPa, G13=7.17GPa, G23=3.87Gpa, Xt=1500MPa, Xc=1500MPa, Yt=40MPa, 

Yc=246MPa, S=68MPa. The laminates are symmetric as  0 / 45 / 90 / 45
s

  and the mass of each 

vibration absorber is designed to be 2g. The distance between the top and bottom laminates is 

12mm. 

The two hinges and bolt of the door are hinged here (i.e., red dots in Fig. 9(b)), and a white 

noise excitation with amplitude of 1 kN is applied in the area of the door’s hinge (i.e., green dots 
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in Fig. 9(b)) on both laminates. As shown in Fig. 9(b), each laminate is modeled by four-node 

rectangular plate elements with the mesh size of 10 10 . As is known, the high frequency noise 

in the vehicle can be reduced effectively by the sound-absorbing material, but the low frequency 

noise is difficult to control due to the longer wavelength. On the other hand, the frequency range 

of the low frequency noise is mainly controlled by the car engine. In general, the main excitation 

frequency of the car engine is under 200Hz. Thus, FRA is conducted first to find the peak 

response of laminate acoustic metamaterials without vibration absorbers. The black lines in Fig. 

10 represent the FRFs of the center and corner nodes of the laminate acoustic metamaterials 

without vibration absorbers. The first natural frequency is 27Hz and second natural frequency is 

around 60Hz, the third natural frequency is around 144Hz. Figs. 11(a)-(f) show the FRA of the 

low-frequency laminate acoustic metamaterials without vibration absorbers. The peak response 

of low-frequency bands can be lowered by locating vibration absorbers with specific frequency 

appropriately on the basis of natural frequencies and mode shapes of the laminate acoustic 

metamaterials. 

The FRA at 25Hz and 30Hz in Figs. 11(a) and 11(b) indicates that the large vibration 

amplitudes appear around the bottom right corner of the vehicle door. Hence the first group of 

vibration absorbers with a resonant frequency of 28Hz (i.e., green dots in Fig. 12) is placed 

around the right corner. The FRA at 55Hz and 60Hz in Figs. 11(c) and 11(d) shows that the large 

vibration amplitudes appear around the window of the vehicle door and the second group of 

vibration absorbers with a resonant frequency of 58Hz (i.e., blue dots in Fig. 12) is placed around 

the window. The FRA at 145Hz and 150Hz in Figs. 11(e) and 11(f) illustrates that the large 

vibration amplitudes appear around the door frames and the bottom left corner of the vehicle 

door, so the third group of vibration absorbers with a resonant frequency of 148Hz (i.e., purple 
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dots in Fig. 12) is placed around the door frames and left corner. After adding the three groups of 

absorbers, the total mass of the vibration absorbers is 33% of the laminate acoustic metamaterials.  

FRA is conducted again in the vehicle door after the proper design of laminate acoustic 

metamaterials. Figs. 13(a)-(d) indicate the FRA of the vehicle door at 25Hz, 55Hz and 145Hz, 

150Hz with vibration absorbers. In contrast to the FRA without absorber as shown in Figs. 11(a), 

11(c) and 11(e)-(f), the vibration amplitude contours have clearly illustrated that the big vibration 

around the vehicle door has been suppressed effectively, which has strongly demonstrated the 

excellent performance of laminate acoustic metamaterials. Although the above results from FRA 

are obtained in the main engine operating frequency range, it is straightforward to design 

laminate acoustic metamaterials to suppress the high frequency vibration based on the same 

principle.  

5. Conclusions  

This paper presents a new laminate acoustic metamaterial designed by integrating two 

parallel orthotropic laminates, which is composed of carbon-fiber-reinforced polymer (CFRP), 

with a periodic array of mass-spring-damper subsystems. Based on the concept of conventional 

vibration, the band gap of laminate acoustic metamaterials has been derived by dispersion 

analysis in this work. For the first time, it is found that the laminate acoustic metamaterials are 

able to have wider stopband than conventional metamaterial plates. Numerical results reveal that 

the stopband’s location depends on the local resonant frequency of vibration absorbers, and the 

stopband’s width is determined by the vibration-absorber-mass/unit-laminate-cell-mass ratio. On 

the other hand, finite-element modeling and frequency response analysis are performed to 

validate the theoretical analysis. In the design of the vehicle door composed of low-frequency 

laminate acoustic metamaterials for vibration suppression, the resonant frequencies, the 
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distributions and locations of vibration absorbers are determined based on low-order natural 

frequencies and mode shapes of the laminate acoustic metamaterials. The simulation has verified 

that the laminate acoustic metamaterials with the superior strength to weight ratio of CFRP are 

very effective to suppress the vibration of vehicle door. 
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Fig. 1. Illustration of strain of a ply in the principal material 1-, 2- coordinate system and global x-, y- 

coordinate system 
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(c) 
Fig. 2. The positive sign convention for laminate plate: (a) Illustration of positive Mid-Plane Forces 

and (b) Illustration of positive Mid-Plane Moments, (c) Coordinate locations of piles in a laminate 
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Fig. 3. A laminate metamaterial with spring-mass subsystems 
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Fig. 4. A unit cell of the laminate metamaterial: (a) front view, and (b) perspective view 
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Fig. 5. Illustration of positive Mid-Plane forces and Moments of the laminate element. 
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Fig. 6. Dispersion surfaces and stopband: (a) dispersion surfaces, and (b) stopband (gray rectangle). 
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(b) 
Fig. 7. A metamaterial laminate with two edge hinged: (a) a 3D model, and (b) a finite-element model. 
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(b) 
Fig. 8. Frequency response functions of the laminate acoustic metamaterial in symmetry: (a) response at 

x=0.5La and y=0.5Lb, and (b) response at x=0.7La and y=0.5Lb  
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Fig. 9. A model of vehicle door (a) a 2D model, and (b) a finite model. 
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(a) 

(b) 
Fig. 10. FRFs of the vehicle door composed of low-frequency laminate acoustic metamaterials without 

vibration absorbers: (a) the center node at x=0.47m and y=0.29m and (b) the corner node at x=0.95m and 

y=0m. 
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(e) (f) 
Fig. 11. FRA of the vehicle door composed of low-frequency laminate metamaterial without vibration 

absorbers 
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Fig. 12. Distribution of vibration absorbers of different resonant frequencies of the vehicle door 

composed of low-frequency laminate metamaterial 
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(a) 
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(c) (d) 

Fig. 13. FRA of the vehicle door composed of low-frequency laminate metamaterial with absorbers 

using 0.001   
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