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Samenvatting 

Dit proefschrift beschrijft onderzoek naar de ontwikkeling van een generieke methode voor 'de

sign for test & debug' in hardware/software systemen. Deze methode verschaft oplossingen voor 

de complexe problemen gerelateerd aan testen en debuggen op systeem niveau. 

Het doel van testen op systeem niveau is te verifieren of het gedrag van de hardware/software im

plementatie van een systeem overeenkomt met het gespecificeerde systeemgedrag. Debuggen is 

nodig om de exacte oorzaak te achterhalen van de fouten die door testen aan het Iicht zijn gebracht. 

Een groot probleem bij het testen en debuggen van hardware/software systemen is de beperkte 

zichtbaarheid van het interne systeemgedrag. Sommige aspecten van het interne systeemgedrag 

zijn bijwnder moeilijk te observeren en te controleren in de externe omgeving van het systeem, 

zoals de volgorde van. events in het systeem, de wisselende executie van processen, tijd afhanke

lijkheden en non-deterministisch gedrag. In onze 'design for test & debug' methode worden deze 

problemen opgelost door het verbeteren van de controleerbaarheid .en observeerbaarheid van het 

interne systeemgedrag. 

Wij geven diverse classificaties voor fouten in hardware/software systemen. We concentreren ons 

op foutieve communicatie en synchronisatie protocollen, foutieve wederzijdse exclusieve toegang 

tot gezarnenlijke gegevens of gezarnenlijke middelen, foutieve executie volgordes van processen, 

deadlocks, race condities en foutieve interrupt afhandeling. Deze fouten doen zich typisch voor 

als tijdelijke fouten gedurende de executie van een systeem en ze kunnen vaak niet gereproduceerd 

worden tijdens debuggen. 

In dit proefschrift definieren we een ontwerp proces bestaande uit zes stappen: opstellen van 

systeem eisen, systeem specificatie, architectuur onderzoek, architectuur verfijning, synthese en 

hardware/software integratie. Onze 'design for test & debug' methode is volledig gelntegreerd in 

dit ontwerp proces. 

Wij definieren een generiek architectuur-model voor hardware/software systemen, bestaande uit 

applicatie software, systeem software, hardware nucleus, applicatie-specifieke hardware en com

municatie interfaces. Onze 'design for test & debug' methode is gericht op het verbeteren van de 

zichtbaarheid van de communicatie interfaces in het architectuur-model. Tevens verschaft onze 

'design for test & debug' methode zichtbaarheid in de toestand van software processen en hard

ware componenten. 

Het belangrijkste element van onze methode is het invoegen van Punten van Controle en Obser

vatie (PCOs) in de systeem specificatie. PCOs verschaffen controle en observatie van communi

catie interfaces en de toestand informatie van processen. We nemen de PCOs vervolgens op in de 

systeem architectuur en tenslotte implementeren we de PCOs in hardware en/of software. Onze 

methode voorziet erin dat de essentiele informatie over het interne systeemgedrag kan worden 

gecontroleerd en geobserveerd. Onze methode impliceert tevens dat de effecten van PCOs op de 

systeem architectuur van tevoren kunnen worden voorspeld en dat gepaste maatregelen kunnen 
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worden genomen om onduldbare neveneffecten te vermijden. 
We beantwoorden twee belangrijke vragen aangaande het invoegen van PCOs in de systeem 
specificatie: waar moeten PCOs worden ingevoegd in de systeem specificatie en wat zijn de ef
fecten van het invoegen van PCOs op het systeemgedrag. We introduceren testbaarheids-analyse 
gebaseerd op scenario's om bet invoegen van PCOs in goede banen te leiden. Deze analyse me
thode identificeert allereerst de essentiele informatie in een systeem en vervolgens hoe goed deze 
essentiele informatie kan worden gecontroleerd en/of geobserveerd in de systeem omgeving. We 
geven een mathematische analyse van de interferentie van PCOs in bet systeemgedrag, gebruik 
makende van proces algebra. We definieren een aantal - mathematisch bewezen - transformatie 
functies voor het invoegen van PCOs. Deze transformatie functies garanderen dat het extern ob
serveerbare systeemgedrag behouden blijft gedurende het invoegen van PCOs. 
We Jichten de implementatie van PCOs toe in hardware en software. We Iaten zien dat PCOs 
efficient kunnen worden gelmplementeerd in hardware door hergebruik van DFf en DFD fa
ciJiteiten op IC niveau zoals 'scan paden'. De test bussen, test interfaces en test controllers op 
PCB niveau en systeem niveau kunnen een infrastructuur verschaffen om toegang tot PCOs te 
verkrijgen. Verdere verbetering van de controleerbaarheid en observeerbaarheid van het interne 
systeemgedrag kan worden verkregen door gebruik te maken van speciale software monitoren, 
hardware monitoren of by bride monitoren. 
We passen onze 'design for test & debug' methode toe op de specificatie en de implementatie van 
een liftbesturingssysteem. Diverse experimenten demonstreren het gebruik en het nut van PCOs 
voor testen en debuggen op systeem niveau. 



Summary 

This thesis describes our research efforts to develop a generic design for test & debug method for 

hardware/software systems. Our method provides solutions for the complex problems related to 

system-level testing and debugging. 

The goal of system-level testing is to verify whether the behavior of a system's hardware/software 

implementation conforms to the specified system behavior. Whenever testing reveals the presence 

of an error, debugging is required to determine the exact fault mechanism in the system that caused 

the error. 

A major problem when testing and debugging hardware/software systems, is the limited visibil

ity into the internal operation of a system. In particular, aspects of system behavior such as the 

ordering of events in the system, the interleaved execution of processes, timing dependencies and 

non-determinism are difficult to observe and control in the system environment. In our design for 

test & debug method, we deal with these problems by improving the controllability and observ

ability of the internal system behavior. 

We give various classifications for faults in hardware/software systems. We concentrate on faulty 

communication and synchronization protocols, faulty mutual exclusive access to shared data or 

shared resources, faulty process scheduling, deadlocks, race conditions and faulty interrupt han

dling. These faults typically appear as temporary faults at run-time and they often cannot be re

produced during debugging. 

In this thesis, we define a co-design flow consisting of six steps: system requirements cap

ture, system specification, architecture exploration, architecture refinement, synthesis and hard

ware/software integration. Our design for test & debug method is fully integrated into this co

design flow. 

We also define a generic architectural model for hardware/software systems, consisting of appli

cation software, system software, hardware nucleus, application-specific hardware and commu

nication interfaces. Our design for test & debug method aims at providing visibility into the com

munication interfaces in our architectural model. In addition, our design for test & debug method 

provides visibility into the state information of software processes and hardware components. 

The key element of our method is the insertion of Points of Control and Observation (PCOs) in 

the system specification. PCOs provide control and observation of communication interfaces and 

process state information. Subsequently, we incorporate the PCOs in the system architecture and 

finally we implement them in hardware and/or software. Our method provides that the essential 

information on the internal system behavior can be controlled and observed. Our method also 

implies that the effects of PCOs on the system architecture can be predicted in advance and ap

propriate measures can be taken to avoid intolerable side effects, such as performance degradation 

and the probe effect. 

We discuss two key questions related to the insertion of PCOs in the system specification: where 
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should PCOs be inserted in the system specification and what are the effects of PCO insertion 
on the system behavior. We propose scenario-based testability analysis to guide PCO insertion. 
This analysis method identifies the essential information in a system and analyzes how well this 
essential information can be controlled and/or observed in the system environment. We provide 
a formal analysis on the interference of PCOs in the system behavior using process algebra. We 
define a set of mathematically proven transformation functions for PCO insertion. These trans
formation functions guarantee that the externally observable system behavior is preserved during 
PCO insertion. 
We discuss the implementation of PCOs in hardware and/or software. We show that PCOs can 
be implemented efficiently in hardware by reusing IC-level OFf and DFD facilities such as scan 
paths. The PCB-level and system-level test buses, test interfaces and test controllers provide an 
infrastructure that can be used to access PCOs. Improved control and observation into the internal 
system operation can be obtained by using dedicated software monitors, hardware monitors or 
hybrid monitors. 
We apply our design for test & debug method on the specification and implementation of an eleva
tor control system. Several experiments demonstrate the use and the benefits ofPCOs for system
level testing and debugging. 
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Chapter 1 

Introduction 

4. Design For Test & Debug in Hardware/Software Systems 

5. Design For Test& Debug 
during Specification 

7. Experiments 

8. Conclusions 

6. Design For Test & Debug 
during Implementation 

This chapter provides an introduction to this thesis. We define the problems that are subject of 

this thesis, we outline our objectives and we give an overview of the contents of this thesis. 

1 



2 1. Introduction 

1.1 Introduction 

This thesis describes our research efforts for developing a method towards design-for-test and 

design-for-debug in hardware/software systems. The terms design-for-test and design-for-debug 

indicate that we consider testing and debugging of hardware/software systems already in the sys

tem design process. We will use the term design for test & debug to comprise both design-for-test 

and design-for-debug. This thesis deals with hardware/software systems, which are systems that 

contain both hardware components and embedded software. Such systems are typically found 

in application domains such as tele and data communication systems, consumer electronic prod

ucts, industrial control systems, automotive systems and aerospace systems. In general these sys

tems contain one or more processors to execute software and dedicated hardware components like 

ASICs (Application-Specific Integrated Circuits) and FPGAs (Field Programmable Gate Arrays). 

The objective of this thesis is to provide solutions for problems that are related to testing and de

bugging of hardware/software systems. Since the introduction of IC technology and software pro

grammable devices, we are facing an exponential increase in the complexity of hardware/software 

systems. Gordon Moore, co-founder of Intel, predicted in 1965 that the density of transistors on 

ICs such as memory chips and microprocessors would double roughly every 18 months. This pre

diction has been proven to be valid until today and it is likely to remain valid in the near future. 

Also the amount of embedded software in systems is increasing rapidly. For instance, an expo

nential increase in·the amount of embedded software has been reported for Philips' consumer 

products such as TV sets, VCRs and stereo equipment [RAvG96]. Handling ttiis increasing com

plexity in hardware/software systems demands improvement of all technologies, tools and meth

ods required for the design, implementation and verification of these systems. Unfortunately, the 

difficulty of design and verification increases even faster than the exponential ~owth in the num

ber of transistors on ICs or the amount of embedded software in systems. Consequently, there is 

a growing complexity gap between hardware and software technology and the designer's ability 

to design and verify complex hardware/software systems. The key issue nowadays is to design 

and verify systems while meeting time-to-market constraints [SIA94]. 

The task of verification is to check the correctness of a system. Various techniques for verif

ication are used in the successive steps of the design process, such as simulation or formal 

verification of system models and testing of the system implementation. The focus of this the

sis is on system~level testing and debugging. We define system-level testing as verifying the 

correctness of a system by applying test stimuli to the hardware/software implementation of the 

system and observing the responses. System-level testing implies that we verify the correctness 

of a system as a whole, constituted of all its hardware and software components. Hence, we do 

not address traditional hardware testing, which mainly aims at detecting physical defects in hard

ware components, nor do we address traditional software testing, which mainly aims at detecting 

coding errors in software components. Instead, we focus on verifying whether the behavior of 

the entire hardware/software implementation conforms to the specified system behavior. System

level testing should yield a verdict on the correctness of a system. Whenever testing reveals the 

presence of an error, debugging is required to determine the exact fault mechanism in the system 

that caused the error. 

At present, system-level testing and debugging are major bottlenecks when developing complex 
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hardware/software systems. In [MCC96] is stated that 30-40% of the total development costs 

and time for hardware/software systems are spent on hardware/software testing and debugging. 

Hence, an improved method for system-level testing and debugging will directly result in reduced 

development costs and a shorter time-to-market. 

The increasing difficulty of system-level testing and debugging is closely related to the increasing 

complexity of hardware/software systems. First of all, exhaustive testing of a hardware/software 

system is generally impossible to achieve because the required number of test cases is astronom

ical. Second, testing and debugging a system through its external interfaces does usually not pro

vide sufficient visibility into the internal operation of a system. Consequently, it may be very 

difficult to observe and control some specific parts of the system, such as the interaction between 

hardware and software components. Debugging a complex system often corresponds to finding 

a microscopic needle in a gigantic haystack. 

In this thesis we deal with the complexity of hardware/software systems by taking a system-level 

view and by adopting a multi-disciplinary approach. Taking a system-level view implies that we 

reason about a system at a high level of abstraction, concentrating on issues like concurrency, 

communication and distribution. Adopting a multi-disciplinary approach implies that we con

sider and combine various disciplines related to specification, architecture design and implemen

tation of both hardware and software. In our opinion, a system-level view and a multi-disciplinary 

approach are prerequisites for developing a method towards design for test & debug in hard

ware/software systems. However, taking a system-level view and a multi-disciplinary approach 

requires a profound knowledge of many disciplines, which is definitely not easy to obtain. 

1.2 Objectives 

The objective of this thesis is to develop a generic method towards design for test & debug that 

deals with the problems of system-level testing and debugging in hardware/software systems. We 

primarily concentrate on design for test & debug by improving visibility into the internal system 

operation. We pay less attention to problems related to test case generation. 

The key element of our method is to improve the design process for hardware/software systems 

in such a way that testing and debugging of the system implementation is facilitated. Hence, in

stead of being confronted with the hardware/software implementation of a system and trying to 

generate ad hoc solutions to testing and debugging, we provide a structured solution for testing 

and debugging in advance by modifying the system design. The basic principle of our method 

is improving accessibility to the internal operation of a hardware/software system. This should 

provide that an external tester/debugger in the system environment can observe and control the 

internal operation of the system for testing and debugging purposes. 

In our view, any research initiative on design for test & debug in hardware/software systems 

should be based on a thorough understanding of the design process and on a thorough under

standing of the faults that are typically encountered during system-level testing and debugging. 

We meet both requirements in this thesis by first analyzing the current design methods for hard

ware/software systems and pointing out their shortcomings with respect to testing, debugging and 
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design for test & debug. Next, we characterize faults in hardware/software systems while concen

trating on basic concepts such as hardware/software architecture, communication interfaces and 

parallelism; 

Any method to design for test & debug should make a clear distinction between activities re

lated to system specification and activities related to system implementation. During system 

specification, the focus is on defining the functional behavior of a system which is generally 

implementationMindependent. A method to design for test & debug should answer questions re

lated to why and how to perform design for test & debug during system specification. Further

more, a method should consider the impact of design for test & debug features on a system. DurM 

ing system implementation, the focus is on realizing a system with hardware and software com

ponents. A method to design for test & debug should now deal with the implementation of test & 

debug facilities in hardware and software. 

Finally, any theory should be proven by experimental results obtained from applying the theory 

into practice. We meet this requirement in this thesis by describing a case study of an elevator 

control system. 

In summary, this thesis describes a generic method towards design for test & debug in hard

ware/software systems which should fulfill the following objectives: 

• The method should provide a solution to handle the complexity of systetn-Jevel testing and 

debugging in hardware/software systems. 

• The method should be fully integrated into the hardware/software co-design process. 

• We should describe precisely the faults that are typically encountered during system-level 

testing and debugging. The method should support testing and debugging for these faults. 

• The method should provide means to design for test & debug during system specification, 

answering questions on why and how to perform design for test & debug. 

• The method should provide means to design for test & debug during implementation, ad

dressing test & debug facilities in hardware and software. Furthermore, the method should 

consider the transition from specification to implementation. 

• The method should take into account and quantify the effects of design for test & debug on 

a system. In particular, the insertion of test & debug facilities in the system specification 

and the system implementation should not lead to incorrect system behavior. 

• We should demonstrate the method in practice and provide experimental evidence that the 

method indeed improves system-level testing and debugging of hardware/software systems. 

This thesis contributes to advancing the state-of-the-art on design for test & debug in several 

ways. First of all, our method comprises some new techniques, where each technique covers some 

specific part in the area of system-level testing and debugging. The added value of this thesis how

ever is in the combination of concepts and theories from many different fields, including hard

ware/software co-design, formal specification, formal verification, and traditional approaches to 

design-for-test and design-for-debug in hardware and software. We integrate these concepts and 

theories into a coherent method towards system-level design for test & debug. 
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1.3 Thesis Organization 

This thesis is divided into eight chapters and one appendix. The organization of the thesis is out

lined in figure 1.1. 

1. Introduction I 

'-•2··-H.ar•dw•a•re•/•S•o•ftw•a•re•C•o-•D•es•lg•n• .. l 13. Faults in Hardware/Software Systems I 
4. Design For Test & Debug in Hardware/Software Systems 

5. Design For Test & Debug 
during Specification 

7. Experiments 

B. Conclusions 

6. Design For Test & Debug 
during Implementation 

A. Formal Proof for PCO Insertion 

Figure 1.1 Outline of thesis 

i 
i 
i 

In chapter 2 we describe the state-of-the-art on hardware/software co-design. We define the suc

cessive steps in the co-design flow while paying special attention to validation and verification 

activities such as co-simulation and testing. The first objective of this chapter is to show the im

provements brought by hardware/software co-design methods over traditional design methods. 

The second objective Is to uncover the shortcomings of co-design methods with respect to design

for-test and design-for-debug. 

In chapter 3 we elaborate on faults in hardware/software systems. The objective of this chapter 

is to examine and classify the faults in hardware/software systems that are typically encountered 

during hardware/software integration testing and system testing. This chapter also concentrates 

on the architecture of hardware/software systems and communication interfaces. 

In chapter 4 we present our approach to design for test & debug in hardware/software systems. 

Our approach is founded on two fundamental ideas. First, we are convinced that design for test & 

debug should be integrated into hardware/software co-design, as described in chapter 2. Second, 

we feel that design for test & debug should aim at detecting interfacing faults and system-level 

faults, as described in chapter 3. In chapter 4 we discuss the basic principles of our design for 
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test & debug approach. Furthennore, we introduce the concept of Point of Control and Obser

vation (PCO), which forms the key element of our approach. We detail our approach in chapter 

5 and chapter 6, where we concentrate on design for test & debug in the specification and the 

implementation of hardware/software systems. 

In chapter 5 we elaborate on design for test & debug during system specification. The focus is 

on answering two key questions: where should PCOs be inserted in a system specification, and 

what are the effects of PCO insertion on the system behavior. 

In chapter 6 we discuss design for test & debug during system implementation. We outline the 

current design-for-test and design-for-debug techniques for both hardware and software. Next, we 

discuss how these techniques can be used to implement PCOs and to implement the infrastructure 

for accessing PCOs from the external environment. 

In chapter 7 we present experiments on an elevator control system. We elaborate on the require

ments, on the formal specification, on the implementation, and on applying our design for test & 

debug approach in the elevator control system. We discuss our experiences and we illustrate the 

strength of our design for test & debug approach. 

In chapter 8 we summarize the conclusions of this thesis and we recommend directions for future 

research. 

Finally, in appendix A we provide a formal proof for inserting PCOs while preserving the exter

nally observable system behavior. The formal theory in this appendix is discussed informally in 

chapter 5 and it is applied to the case study in chapter 7. 
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Hardware/Software Co-Design 

1. Introduction 

,3. Faults in Hardware/Software Systems ~ 

4. Design For Test & Debug in Hardware/Software Systems 

5. Design For Test & Debug 
during Specification 

7. Experiments 

8. Conclusions 

6. Design For Test & Debug 
during Implementation 

This chapter describes the state-of-the-art on hardware/software co-design. The various co

design methods for embedded. heterogeneous hardware/software systems are classified and the 

successive steps in the co-design flow are elaborated. Special attention is paid to verification and 

validation activities like co-simulation and testing. The goal of this chapter is to examine the im

provements brought by hardware/software co-design methods over traditional design methods, 

focusing on hardware/software verification issues. In addition, this chapter highlights the short

comings of co-design methods with respect to testing and debugging. 

7 
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2.1 Introduction 

Hardware/software systems are heterogeneous systems that contain both hardware and software 

components. The increasing complexity of designing hardware/software systems requires new 

design methods in which synergy between the hardware and software design flows is established. 

These new hardware/software co-design methods, in which hardware and software design pro

ceed concurrently, should reduce design time and costs. 

Hardware/software co-design mainly concentrates on the design of embedded systems. An em

bedded system is used to control a larger heterogeneous system. The functionality of an embedded 

system is usually fixed and is determined primarily by the interactions of the system with its en

vironment. An embedded system often has various modes of operation. Typically, an embedded 

system is a real-time reactive system, which implies that the system has to react on events in the 

environment considering timing constraints. To achieve this, embedded systems usually posses a 

great deal of concurrency, constituted by the parallel operation of hardware and software compo

nents. This parallelism is the primary cause of the vast complexity of hardware/software systems. 

Hardware/software co-design is not a new idea. Designers have been developing heterogeneous 

hardware/software systems ever since the introduction of software programmable integrated cir

cuits. In the past, traditional hardware/software design methods relied heavily upon experienced 

system designers. These experienced designers were able to handle complexity by abstracting 

from implementation details and obtaining a system-level view. Implementation choices and 

hardware/software trade-offs were made very early in the design process, based upon the de

signer's experience and knowledge. After this a priori, premature, hardware/software partition

ing, hardware design and software design were performed as two rather independent activities. 

The interaction between hardware and software components was not verified until the actual pro

totype hardware was avai !able. The integration of hardware and software components and the cor

responding testing and debugging activities often formed the major bottleneck in the design pro

cess. Correcting errors required long iteration cycles in the design process, as shown in figure 2.1. 

The problems of hardware/software integration are well-documented in literature. In [MCC96] 

is stated that 30-40% of the total development costs and time for embedded systems are spent on 

hardware/software integration, testing and debugging. In [Bou90, Sch93a] is stated that although 

90% of the ASIC (Application-Specific Integrated Circuit) prototypes work fine when tested in 

isolation, 50% fail when integrated in the system. These failures are due to errors in the inter

actions between the ASIC and other hardware and software components. In [TY95] is reported 

that 50--70% of the costs for developing distributed, real-time systems are spent on testing and 

debugging, mainly due to timing errors. The obvious conclusion is that hardware/software in

tegration and the subsequent re-design loops are the major bottlenecks in the traditional design 

methods. However, these traditional design methods were common practice and they generally 

sufficed until the late 1980's. 

In the late 1980's, the progress in VLSI technology enabled to build a system from catalogue ICs, 

custom hardware components and software components. Custom hardware components such as 

ASICs and FPGAs (Field Programmable Gate Arrays) allow to implement algorithms directly 

into hardware with high performance. Software components can be executed on general-purpose 
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microprocessors, microcontrollers, domain-specific processors like DSPs (Digital Signal Proces

sors), or AS IPs (Application-Specific Instruction Processors). As a result, the design space of po

tential hardware/software implementations has increased significantly. It is becoming more and 

more difficult for designers to make a balanced hardware/software partitioning that meets all per

formance constraints at minimal costs. The current technological trend is to implement system 

parts which require intensive computations and high performance in hardware, e.g. in an ASIC. 

Other system parts, such as user interfaces and less computation-intensive functions, are imple

mented in software to reduce costs and to provide flexibility. 

The advance in YLSI technology also permits to integrate more and more functionality on a sin

gle chip: yesterday's systems are today's chips. Consequently, more and more functionality and 

parallelism is integrated into products such as consumer electronics and telecommunication sys

tems. However, there is a growing complexity gap between the number of transistors on an IC and 

the designers' ability to design complex, parallel systems using these ICs. Due to this increasing 

complexity it is becoming very difficult for designers to prospect a system-level view and to make 

a balanced hardware/software partitioning. 

Re-use of hardware and software components is gradually becoming more and more important. 

Re-using components that have been developed earlier as part of other systems, can shorten design 

time and costs. Hardware re-use is mainly driven by the increasing number of hardware cores 
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that can be purchased from many providers. Cores can be fixed cores like floating-point units or 

MPEG decoders, or programmable cores like DSP or processor cores. 

Flexibility is another emerging criterion for modern hardware/software systems. Flexibility is 

mainly achieved by software, because adapting and upgrading software is much cheaper than re

placing hardware. Examples of software flexibility are incorporating changes in software late in 

the design cycle, for instance due to changes in the system specification. Software flexibility also 

ailows to develop various slightly different or personalized versions of a system, to satisfy the di

versity of consumer demands, to deal with regional differences on the current global markets, and 

to make several generations of products using the same hardware architecture. 

The result of these developments is that new design methods for heterogeneous hardware/software 

systems are required. The traditional, ad hoc design methods are no longer sufficient and hard

ware/software co-design has become an economic necessity for reducing design time and costs. 

As shown in figure 2.1, the basic problems of the past design methods are the lack of a well

defined design flow, the lack of well-defined system specifications at the behavioral and archi

tecturallevel, the separated hardware and software design flows, the troublesome verification of 

the integrated hardware/software system, and the long design iteration loops. Hence, new system 

design methodologies are required for co-designing and verifying hardware/software systems to 

overcome the problems of traditional design methods. As shown in figure 2 .1, hardware/software 

co-design methods offer a well-defined design flow, emphasizing system specification at the be

havioral and architectural level, and establishing synergy between the hardware and software de

sign flow. Hardware/software co-design eliminates the long re-design iteration loops of traditional 

design methods. (Obviously, there are short, local iteration loops between any two subsequent 

stages in the design flow, both in traditional design methods as well as in hardware/software co

design methods. For clarity, these short iteration loops are not shown in figure 2.1 .) 

Many hardware/software co-design projects are currently under development at universities and 

industrial research laboratories. The industry is putting these co-design methods into practice very 

rapidly, and EDA (Electronic Design Automation) companies are working on tools to support 

hardware/software co-design. 

2.2 Classifying Hardware/Software Co-Design 

At the moment, there is a large number of ongoing research projects on hardware/software co

design in universities and industry. Although all projects focus on designing hardware/software 

systems, they have different goals and use different approaches to reach these goals. We can 

roughly classify hardware/software co-design methods into co-design of Application-Specific In

struction Processors (ASIPs), co-design of software-oriented systems, and co-design of heteroge

neous hardware/software systems. 

2.2.1 Co-Design of ASIPs 

An Application-Specific Instruction Processor (ASIP) is a dedicated processor in which the hard

ware architecture and the instruction set are optimized for executing algorithms in a specific appli-
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cation domain [0+96). An ASIP combines the concepts of an ASIC and a programmable proces

sor. An ASIP is software programmable and hence more flexible than an ASIC, and at the same 

time an ASIP provides higher performance for executing software than a standard processor. 

The hardware architecture and the instruction set of an ASIP suit the requirements of a specific ap

plication domain, such as high-speed video and audio processing. Examples of AS IPs are Philips' 

programmable Video Signal Processors VSPl and VSP2, which are targeted towards high-speed 

video signal processing algorithms [V+95b ). 

ASIPs are closely related to Digital Signal Processors (DSPs). The hardware architecture and 

the instruction set of DSPs is targeted towards executing digital signal processing algorithms, 

in which multiplication of data samples with coefficients and the accumulation of products are 

basic operations. However, the hardware architectures and instruction sets in ASIPs are more 

application-specific than in DSPs. 

The definition of an ASIP's hardware architecture and instruction-set architecture (ISA) requires 

both hardware and software considerations. The ISA should support efficient software implemen

tations of algorithms in the specific application domain, as well as efficient usage of the features in 

the ASIP's hardware architecture. The hardware architecture of an ASIP typically contains anum

ber of parallel microcode-controlled datapaths, memory buffers, and communication switches. In 

parallel with developing the ASIP's hardware architecture, software tools have to be developed, 

like a processor simulator and a specific compiler targeted towards the ASIP's hardware archi

tecture. The compiler should exploit the features of the hardware architecture, like pipelining, 

caches, and efficient use of the parallel hardware modules. 

2.2.2 Co-Design of Software-Oriented Systems 

This flavor of co-design focuses on system design in which has been decided a priori that the sys

tem is to be implemented in software. Co-design now deals with selecting an appropriate hard

ware platform on which the software can be executed efficiently. Selecting the hardware platform 

implies choosing the processor on which the software is executed, the bus architecture, and the 

memory architecture. If performance constraints cannot be met, the system can be accelerated by 

porting some parts of the software into dedicated hardware. Section 2.6 elaborates on co-design 

of software-oriented systems. 

2.2.3 Co-Design of Heterogeneous Hardware/Software Systems 

Co-design of heterogeneous hardware/software systems deals with system design starting from 

an implementation-independent specification. The goal of co-design is to find an optimal hard

ware/software architecture that implements the system specification and meets the constraints on 

real-time behavior, performance, speed, area, memory, power consumption, flexibility, etcetera. 

In co-design, the implementation decisions for hardware, software and communication interfaces 

are closely related: changes in one will immediately affect the other two. The focus of co-design 

is on designing at higher levels of abstraction while increasing design automation at lower levels 

through synthesis tools. 
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Examples of co-design projects focusing on heterogeneous systems design are POLIS at Berke

ley University [C+94b), Ptolemy at Berkeley University [KL93, BHLM94), work performed at 

Carnegie Mellon University [TAS93, AT96], Chinook at the University of Washington [COB95a, 

BC096], CASTLE at GMD (Germany) [TSV94], work performed at the University of Illi

nois at Urbana-Champaign [Gup95, GM96], Tosca at the University of Milan (Italy) [BFS96a, 

BFS96b], COSMOS at INPG (France) [IAJ94, 1095], CoWare at IMEC (Belgium) [RVBM96, 

M+96, VRBM96], and work performed at the Eindhoven University of Technology [vdPVS95, 

VvdPS96, vdPV97] . 

The sections 2.3, 2.4 and 2.5 elaborate on co-design of heterogeneous hardware/software systems. 

The focus in this thesis is primarily on co-design of heterogeneous systems. In the remainder of 

this thesis, the term hardware/software co-design is used only to indicate co-design of heteroge

neous hardware/software systems. 

2.3 Hardware/Software Co-Design 

Hardware/software co-design methods define the subsequent design steps to proceed from a con

ceptual description of the desired system behavior to the actual hardware/software implemen

tation of the system [BSV95, CW96, Mic96, LSVH96, p+96a, GVNG94, GV95, Wol94] . The 

subsequent design steps in the hardware/software co-design process differ among the numerous 

co-design projects in universities and industry. These differences are mainly due to different ap

plication domains and different target hardware architectures. Control-oriented systems require 

different approaches than data-oriented systems. Examples of co-design application domains are 

control systems, communication and telecommunication systems, signal and image processing 

systems, multimedia systems, automotive systems, domestic systems, and aerospace systems. 

In most hardware/software co-design methods, typically three stages can be distinguished: specif

ication of the functional system behavior, defining the hardware/software system architecture, and 

synthesis of hardware and software. During the co-design process, system design proceeds from 

behavioral representations of the functional specification, to structural representations of the hard

ware/software architecture, and to physical representations of the hardware and software compo

nents. Usually, the co-design flows are fairly complex and they have many short iteration loops, 

but they avoid the long re-design iterations of the traditional design methods. 

A general method for hardware/software co-design consists of six steps that roughly define the 

co-design flow from system conceptualization to system implementation, as shown in fi gure 2.2. 

The design flow in fi gure 2.2 suggests a strict, phased sequence of successive design steps. In 

practice this is seldom the case: usually a spiral approach is practiced, implying concurrent work 

at several stages (particularly system requirements capture, system specification, and architecture 

exploration) and many local iteration loops [vdPV97]. 
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A concise description of the subsequent steps in the hardware/software co-design flow is pre

sented next. A more detailed description will be provided in the sections 2.3. 1 through 2.3.6. 

I. The first step is to gather the system requirements. Usually, the system requirements are 

described informally using natural language. The resulting requirements document states 

the requirements on the system behavior and the environment in which the system should 

operate. 

2. During system specification, the functional behavior of the system is captured into a con

ceptual, formal model. Usually, a hierarchical model of the system is created in which the 

system's functional behavior is decomposed into a number of parallel, communicating pro

cesses. The system specification is described using a formal specification language. The 

system specification is validated and verified using simulation and formal verification tech

niques. In most literature on co-design is stated that the system specification should not 

contain an implicit or explicit architectural model. The system specification should model 

the functional system behavior, independent of the implementation architecture. How

ever, the organization of the system specification often already implies an implicit architec

tural model, because the same organization is used in the system implementation. A priori 

knowledge on the physical system architecture, like distributed processing nodes using a 

specific communication architecture (e.g. a shared bus), or dictated hardware and software 
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components, should already be reflected in the organization (i.e. communication mecha

nisms and decomposition) of the system specification [vdPV97]. The transition from be

havior specification to hardware/software architecture is facilitated if the organization of 

the specification corresponds directly to the organization of the system architecture: this 

allows one-to-one mapping of objects in the specification to hardware or software compo

nents. 

3. In the architecture exploration phase, numerous alternative hardware/software architec

tures are explored to find a system architecture that satisfies constraints like performance 

and costs. Exploration of the design space is achieved by defining a number of system archi

tectures. A system architecture is a set of hardware and software components, each com

ponent implementing a part of the functional specification. The physical constraints like 

power consumption, silicon area, memory size, and performance of the hardware and soft

ware components are specified. The quality of the alternative system architectures is esti

mated by considering these constraints. The optimal system architecture is selected and this 

selected architecture is detailed in the subsequent design steps. Architecture exploration is 

one of the key issues in the current research on hardware/software co-design. 

4. During architecture refinement, the system architecture is refined by adding more details 

on the implementation of hardware components, software components, and communica

tion interfaces. The refined architecture describes the system's processors, memories, and 

buses. Co-simulation is used to verify whether the refined description is equivalent to the 

initial system specification. The result of architecture refinement is a system-level descrip

tion, providing high-level, behavioral descriptions of the hardware components, the soft

ware components, and their communication interfaces. 

5. Synthesis consists of three parallel activities: hardware synthesis, software synthesis, 

and communication synthesis. The task of synthesis is to convert an abstract, behavioral 

description into a description containing detailed implementation information. 

Hardware synthesis of custom components like ASICs consists of high-level synthesis and 

logic synthesis. High-level synthesis converts a behavioral-level hardware description into 

a structure of components at the register-transfer level (RTL) like ALUs and registers. 

Logic synthesis converts the RTL components into gate-level descriptions. Software syn

thesis determines the scheduling of software processes and inclusion of a real-time kernel or 

an operating system. In general, software synthesis converts a behavioral description into a 

traditional software program compilable by traditional compilers. Communication synthe

sis generates the communication interfaces between hardware and software components. 

Hardware components, software components and their communication interfaces can be 

co-simulated at various levels of abstraction. When synthesis and co-simulation is com

pleted, the physical hardware design is done. The gate-level descriptions of custom hard

ware components are converted into switch-level descriptions and layout data for FPGA or 

custom ASICs is generated using design tools for placement and routing. 

The automatic synthesis of hardware, software and communication interfaces is a key issue 

in the current research on hardware/software co-design. 

6. During system integration, all the hardware and software components are integrated and 

the final system implementation or a prototype implementation is obtained. Testing is 
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used to check whether the integrated system is a correct implementation of the system 

specification. 

The co-design flow is based upon the principle of stepwise refinement. Initially, a high-level be

havioral model of the system is created. In each subsequent design step, more implementation de

tails are added and a more refined description of the system is obtained. In each design phase, the 

designer focuses on a different abstraction level. During system specification, the designer con

centrates on the completeness and correctness of the functional system behavior. When defining 

the hardware/software architecture, the designer focuses on system performance and communica

tion protocols between hardware and software components. During synthesis, the designer pro

ceeds from behavioral-level descriptions (behavioral-level VHDL, C code) to lower level descrip

tions (register-transfer level and gate-level VHDL, assembly code and object code). During phys

ical hardware design, the designer concentrates on detailed timing and electrical characteristics. 

In the following sections, the six steps in hardware/software co-design are described in detail. 

2.3.1 System Requirements 

System requirements are requirements on the system's functional behavior, requirements on the 

environment in which the system has to operate, and non-functional system requirements. The 

system requirements are gathered and stated in the requirements document. 

Functional system requirements define the functional behavior of the system. Often the behavior 

is described as sequences of input stimuli and the subsequent responses of the system. Require

ments on the system environment define the objects in the system environment that interact with 

the system. Non-functional requirements are general requirements or implementation require

ments, like performance, reliability or a prescribed system architecture. 

The process of defining the system requirements is still a very amorphous and ad hoc process in 

most co-design methods. An exception is the SHE method [ vdPV97], which particularly empha

sizes requirements capture and system specification. 

2.3.2 System Specification 

During system specification, the functional behavior of the system is defined. A conceptual model 

is created to capture the system's functional behavior. The conceptual model is a hierarchical 

model, using functional decomposition to handle complexity. Besides hierarchy, the conceptual 

model concentrates on essential characteristics of embedded, real-time systems like concurrency, 

communication, synchronization, states and state transitions. 

The system specification forms the basis for the subsequent design phases. A correct, complete 

and consistent specification is therefore a necessity. Unfortunately, system specification does not 

receive as much attention as subsequent implementation stages in the design flow. Consequently, 

many functional, conceptual errors are not detected until late in the design process or even during 

integration. However, design errors are far more difficult and more expensive to correct in the late 

stages of system design. System specification therefore should be one of the basic ingredients of 
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hardware/software co-design. The goal of the system specification is to unambiguously define the 

system's functional behavior, resulting in a formal description of the system that can be validated 

and verified. 

System specification consists of three tasks: selecting an appropriate modeling technique and de

scription language, specifying the system using the modeling technique and description language, 

and finally validating and verifying the model. Usually the modeling and description, and the val

idation and verification tasks must be iterated several times before a complete, correct and con

sistent functional system specification is obtained. 

There are many modeling techniques to capture functional behavior. Most commonly used in 

current co-design projects are: 

• Finite-State Machine (FSM) model 

A system can be modeled as a hierarchical set of concurrent, communicating FSMs. In the 

basic model, the communication between FSMs is asynchronous communication, and the 

concurrent FSMs proceed synchronously in lock step. Various extensions to this basic FSM 

model have been proposed. The FSM model is very useful for modeling control-oriented 

systems that do not require complex data operations. 

• Communicating Sequential Processes (CSP) model 

A system can be modeled as a hierarchical set of concurrent, communicating sequential 

processes. The communication between processes can be synchronous or asynchronous 

communication, and usually the processes proceed asynchronously. The CSP model is very 

useful for describing the behavior of control-oriented systems that incorporate much con

currency and also perform complex operations on data. 

• Data-Flow Graph (DFG) model 

A data-flow graph is useful for describing systems with complex data operations, for in

stance digital signal processing systems. A data-flow graph decomposes the system's func

tionality into data transformation entities and data-flows between them. Data-flow graphs 

model the flow of data through a system, the variables in which data is stored, conditions, 

operations on data, and data dependencies. While FSM models and CSP models concen

trate on coarse-grain partitioning of the specification at the task or process level, the DFG 

model focuses on fine-grain partitioning at the operation level. Obviously, DFG models are 

less suited for modeling control-oriented systems. 

There is a variety of other models, such as Petri nets, control-data-flow graphs, object-oriented 

models, and queuing models. No modeling technique is ideal for all classes of systems. Selecting 

an appropriate model is most important to understand and define the system functionality during 

system specification. The best model is the one that most closely matches the characteristics of 

the system. CSP models are used in most co-design methods for heterogeneous system design, 

focusing on characteristics like hierarchy, concurrency, communication, synchronization, states 

and state transitions. 

System specifications are described in a language. The language should be able to express the 

required system model. For instance, a FSM-based language is more appropriate to describe a 
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control-oriented system than a data-flow language. Hence, there should be a one-to-one corre

spondence between the model characteristics and the expressive power of the language constructs. 

A close correspondence between the characteristics of model and language eases description and 

prevents errors. Examples of FSM-based languages are StateCharts [HPSS87, H+9Qa] and syn

chronous languages such as Esterel [BB91 , BS91 b]; examples of data-flow based languages are 

Silage [H+9Qb] and DFL [W+94]; examples of process-based languages are SDL and behavioral

level VHDL. 

Describing the system specification in a formal language should result in an executable system 

specification. Simulation of the executable specification allows the designer to validate and verify 

the system specification. Appropriate formal models and languages are very useful for capturing 

functional , behavioral system requirements. Non-functional requirements, such as constraints on 

performance, safety, reliability, and costs, are more difficult to express. These constraints provide 

essential information in the exploration phase when defining the hardware/software architecture. 

A general problem in hardware/software co-design is modeling the system at a level that is high 

enough to capture and analyze the system-level characteristics, and low enough to allow efficient 

synthesis of the system. Several approaches have been used in hardware/software co-design meth

ods: 

• Single-language approach 

In single-language approaches, the system specification is described in one specification 

language. System-level specification languages like SDL and StateCharts allow to model a 

system at a high level of abstraction, in terms of communicating processes or communicat

ing FSMs. Although the origin of these specification languages is in software engineering, 

they can be used to specify systems that will eventually be implemented as a heterogeneous 

system containing both hardware and software. 

However, high-level specification languages like SDL are not suited for detailed hardware 

and software design . After partitioning of the system, the software parts of the system

level specification have to be translated into software languages like C, while the hardware 

parts have to be translated into hardware languages like VHDL. Also the communication 

interfaces between hardware and software must be translated into a software or hardware 

language. An example of a co-design method using this approach is COSMOS [IAJ94, 

1195, 1095]. 

A related approach is to use a hardware description language such as VHDL or Verilog 

for system specification. VHDL and Verilog allow specification at various levels of ab

straction, ranging from the behavioral level using communicating processes, to detailed 

gate-level structural descriptions. The main advantage of this approach is that after hard

ware/software partitioning, the VHDL specification of hardware components can be used 

directly as input for hardware synthesis tools. The VHDL specification of software compo

nents however still requires translation into a programming language like C. Furthermore, 

the specification of complex software architectures in VHDL is cumbersome. 

• Mixed-language approach 

In mixed-language approaches, the system specification is captured using a number of di

verse languages. The underlying idea in this approach is that a heterogeneous system con-



18 2. Hardware/Software Co-Design 

sists of various parts, and each part can be described best in its own specification language. 

For instance, hardware is described best using a hardware description language like VHDL, 

software is described best using a software programming language like C, control-oriented 

algorithms are described best using a FSM-based language like StateCharts, and digital sig

nal processing algorithms are described best using a data-flow language like Silage. Most 

co-design projects use a mixed-language approach, using a variety of different languages. A 

disadvantage of mixed-language approaches is that there often is already an implicit hard

ware/software partitioning and repartitioning is difficult to achieve. A more severe prob

lem is that there is no common development environment because each language has its 

own development tools. The semantic difference between the languages and the interfac

ing between various design environments are basic problems. However, most co-design 

projects that use a mixed-language approach, like CoWare [RVBM96, VRBM96, M+96] 

and Ptolemy [KL93, BHLM94], offer effective solutions to deal with these problems. 

2.3.3 Architecture Exploration 

During exploration of the design space, numerous alternative hardware/software architectures are 

explored to find a system architecture that satisfies constraints on performance, silicon area, mem

ory size, power, costs, etcetera. During exploration, the system specification is partitioned into 

hardware parts, software parts, and communication interfaces. 

Exploration usually starts with performance analysis of the system specification, resolving a first 

outline for hardware/software partitioning. Performance analysis mainly deals with profiling the 

system specification, analyzing execution rates of processes and uncovering communication bot

tlenecks [Ben96]. During partitioning, the system specification is divided into parts that will be 

implemented in hardware or software. An important issue is the granularity of partitioning, in

dicating the smallest indivisible functional object used in partitioning such as processes, subrou

tines, or blocks of statements. Higher granularity implies fewer parts with less communication 

interfaces, faster simulation and faster performance estimation. However, higher granularity also 

implies fewer possible partitions. In most co-design projects, manual or interactive partitioning is 

proposed, where the designer manually partitions the system. An experienced system designer is 

still needed to guide hardware/software partitioning. The co-design environment provides tools 

to support interactive partitioning and to compute metrics for evaluating the quality of the par

titioning. An example is the PARTIF tool [IOJ94] for interactive partitioning in the COSMOS 

co-design environment. 

After hardware/software partitioning, allocation is performed, which means selecting a proper set 

of software and hardware components to implement the hardware and software parts. Partition

ing and allocation are usually iterated several times, because detailed metrics on performance and 

costs of the proposed partitioning can only be computed after allocation. The designer usually 

has hundreds of components to choose from. At one extreme, there are very fast but expensive 

custom hardware components like ASICs. At the other extreme, there are cheaper but slower 

general-purpose programmable microprocessors. Between these two extremes lie innumerable 

components that vary in costs, performance, power, size, flexibility, etcetera. During allocation, 

variables and data structures in the system specification are assigned to memory components, pro

cesses are assigned to hardware modules or software processes, and communication channels are 
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assigned to hardware or software communication interfaces. 

Partitioning and allocation assume that the objects in the system specification can be mapped one

to-one on hardware or software components. However, this one-to-one mapping is often impossi

ble. The organization of the system specification is primarily intended for readabili ty. Using the 

same organization structure in the hardware/software implementation may not lead to the optimal 

design. Therefore, transformations are required to reorganize the specification to achieve one-to

one mapping of objects to hardware or software components. Common examples of specification 

transformations are function in lining (i.e. replacing a function call with an instance of the func

tion's body), merging processes, flattening hierarchy, splitting processes, grouping statements 

into procedures, and merging variables into arrays. Transformations reorganize the specification 

structure, but they should not modify the behavior stated in the specification. Hence, transforma

tions should be behavior-preserving [VvdPS96]. 

In most co-design methods, usually some restrictions are imposed on the target architecture. In 

most cases, the target architecture consists of some application-specific hardware like an ASIC 

or FPGA, connected to the system bus of a general-purpose microprocessor. The microproces

sor executes a small operating system and the application software. Communication between the 

application-specific hardware and the application software takes place on the system bus using 

device drivers from the operating system. Many co-design methods support multi-processor ar

chitectures, resulting in a distributed system. Distributed systems often offer the best implemen

tation for embedded systems. For instance, time-critical tasks allocated to different processors 

may ensure that all hard deadlines are met, and often the usage of several small processors may 

be cheaper than using one complex processor. 

During exploration, estimation is required to evaluate design metrics such as costs, performance, 

communication rates, power consumption, silicon area, testability, reliability, program size, data 

size, and execution time for a large number of system architectures. Usually multiple estimated 

metrics are combined to obtain a single cost value that defines the quality of a partitioning. It is 

required to weigh each metric by its re lative importance to the overall design. The single cost 

value should give way to compare various partitionings and to select one that best satisfies the 

constraints. 

In the exploration stage, an abstract description of the hardware/software architecture is created. 

Many implementation details of the hardware, software and communication components still have 

to be determined in the subsequent design stages. The design metric values derived from this 

rough hardware/software architecture are therefore estimates. More accurate design metric val

ues can be derived from a more detailed hardware/software architecture, but this requires far too 

much time. Accuracy of the metrics and time required to compute the metrics are competing fac

tors. Improving accuracy requires a more complete implementation, while reducing computation 

time requires a less detailed implementation. Estimating accurate metrics for hardware size, soft

ware size, and performance is not easy, because the mapping from a behavioral description into 

hardware or software is not straightforward. The complexity is introduced by optimization at dif

ferent levels of abstraction, such as: 

• Compilers use various optimizing algorithms. It is very difficult to predict the results of 
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code reduction and performance enhancement. 

• Architectural features of microprocessors like caching, pipelining, and multiple instruction 

execution make it difficult to predict the performance of software execution. 

• Hardware synthesis uses optimization techniques like control logic optimization and state 

optimization. These optimizing algorithms make it difficult to predict the performance and 

size of hardware. 

In general, the rough estimates derived from an abstract hardware/software architectural descrip

tion, are sufficient to determine the quality of hardware/software partitioning and allocation in the 

exploration stage. 

It can be concluded that exploration in most co-design methods consists of partitioning, alloca

tion, transformation, and estimation. These four tasks are usually performed in various orders, 

passing through many iteration loops before a satisfied system-level hardware/software architec

ture is obtained. 

2.3.4 Architecture Refinement 

Design space exploration provides an abstract system architecture, modeled as a set of intercon

nected hardware and software components. During architecture refinement, the system architec

ture is refined by adding implementation details to the descriptions of the hardware components, 

the software components, and the communication interfaces. Examples are: 

• A bus can implement a single communication channel or a group of communication chan

nels in the system specification. During architecture refinement, details are added on the 

bus width and bus rate. 

• During, architecture refinement, the exact communication protocol for transferring data over 

the buses is defined, like a handshake protocol or a protocol using fixed time slots. Also 

addressing details and decomposing data for serial transmission must be determined. 

• Often two components with fixed protocols have to communicate, like communication be

tween a software process running on a microprocessor and an application-specific hard

ware component. Insertion of hardware and software is required to implement the hard

ware/software communication interface. 

• When concurrently executing processes access the same resource (e.g. a bus or memory), 

mutual exclusive access must be ensured. During architecture refinement, arbitration pro

cesses are inserted to provide that only one process at a time is granted to access the shared 

resource in case of simultaneous requests. Arbitration schemes can use fixed priorities, in 

which priorities are assigned to each process statically, or dynamic priorities, in which pri

orities are assigned dynamically at run-time based on the access pattern of the processes. 

The result of architecture refinement is a detailed system-level description of the system architec

ture that contains implementation details, but that is still largely functional. The system architec

ture is described as a set of behavioral models for hardware components, software components, 
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and interface components. These behavioral models can serve as inputs for hardware, software 

and communication synthesis tools. The system architecture can be verified by co-simulation of 

the behavioral models. 

2.3.5 Synthesis 

Synthesis is the task of transforming a high-level specification or description into a detailed imple

mentation description. Hardware synthesis and software synthesis can be performed on several 

abstraction levels. Hardware synthesis combines high-level synthesis and logic synthesis. High

level synthesis transforms a functional description into a structure of RTL components, such as 

registers, multiplexers, and ALUs. Logic synthesis transforms the RTL components into com

binational and sequential hardware. Software synthesis is the task of converting a complex de

scription into a traditional software program, compilable by traditional compilers. Scheduling 

of concurrent software processes is also a task of software synthesis. Any system compromising 

software and hardware components will need hardware/software interfaces to accommodate com

munication between the various components. Communication synthesis is the task of generating 

hardware and software to implement these communication interfaces. 

2.3.5.1 Hardware Synthesis 

Hardware components can be standard, off-the-shelf components or dedicated, custom compo

nents. Hardware synthesis is required for custom components like ASICs or FPGAs. Hardware 

synthesis combines high-level synthesis and logic synthesis [Mic94]. 

High-level synthesis or behavioral synthesis converts a hardware component's behavioral descrip

tion into a structure of RTL components like ALUs and registers. The RTL description usually 

consists of a controller and a datapath. The datapath executes arithmetical and logical operations 

on data. The controller implements a finite-state machine which controls register transfers and 

operation modes in the datapath and generates signals for communication with the external world. 

High-level synthesis consists of several tasks. Usually, the behavioral specification is compiled 

first into an intermediate representation, exposing control and data dependencies. Next, alloca

tion selects hardware modules such as memory modules, functional modules, and bus modules 

from an RTL component database. Allocation determines the proper number and type of hard

ware resources needed to satisfy constraints on costs, performance and power. Scheduling assigns 

the operations in the behavioral description to clock cycles, taking into account data dependen

cies and control steps. Finally, during binding, variables are assigned to registers and memories, 

operations are assigned to functional modules, and data transfers are assigned to buses. There are 

many tools and design environments available for high-level synthesis. 

After high-level synthesis, sequential and logic synthesis transform the RTL components into 

combinational and sequential hardware. A controller, implementing a FSM, is transformed into 

a hardware structure consisting of a state register and a combinational circuit that generates the 

next state and the outputs. This involves tasks like state minimization, state encoding, and logic 

minimization. A variety of sequential and logic synthesis techniques is available. 
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After hardware synthesis, the physical hardware design is performed to generate manufacturing 

data. The technology-independent gate· level netlists are converted into layout data for gate arrays, 

FPGAs, or custom ASICs. Tools are used for placement and routing, timing analysis and power 

analysis. 

2.3.5.2 Software Synthesis 

Architecture refinement offers a high-level description of concurrent, communicating software 

processes. When the concurrent processes are executed on a single processor, the processes must 

be scheduled for sequential execution. Scheduling should ensure that the processes are executed 

without deadlock and starvation and that timing constraints are satisfied. Furthermore, scheduling 

should minimize the amount of busy-waiting. Scheduling of software processes cannot be per

formed by compilers for traditional languages like C. The task of software synthesis is to convert 

the high-level description of concurrent software processes into a traditional software program, 

compilable by traditional compilers. Software synthesis determines the execution order of soft

ware processes, satisfying resource and performance constraints. The run-time scheduling is car· 

ried out by a real~time kernel or a small operating system, Hence, software synthesis also implies 

including a real-time kernel or an operating system. 

Many compilers use standard optimization techniques that are well-suited for all processors. Most 

compilers do not attempt to optimize code for a particular processor. Since developing a. new 

compiler for each processor or custom datapath would be very costly, much research is done on 

retargetable compilers that can generate optimized code for different instruction sets [G+96]. 

2.3.5.3 Communication Synthesis 

Communication synthesis is the task of converting high-level descriptions of communication in

terfaces between hardware and software components into detailed descriptions. Communication 

synthesis typically consists of generating glue logic to enable communication between hardware 

components, and generating device drivers to enable communication between software and hard

ware components. 

In the current co-design methods, two approaches towards communication synthesis can be iden

tified. Some co-design methods try to generalize communication mechanisms on a high level, 

without a clear bias towards target implementation. This approach avoids an early limitation of 

the design space. An example is communication synthesis in the COSMOS co-design method 

[OIJ93]. The second approach is that some co-design methods prefer a limited design space 

with a fixed hardware/software target architecture that matches a certain application domain. 

The communication protocols are limited to standard processor protocols or unbuffered point-to

point communication, which facilitates communication synthesis. Examples of co-design meth

ods that employ automated synthesis of hardware/software communication interfaces are Co Ware 

[LV94, LVM96], Chinook [COB92, COB95b], and work performed at the University of Califor

nia at Irvine [NG94b, NG94a, NG95]. 
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2.3.6 Integration 

When synthesis is completed, all hardware components (ASICs, FPGAs, processors, ... ) and 

software components (memories containing program code) are integrated. The goal of hardware/

software integration is to integrate all hardware and software components, such that the final sys

tem implementation or a prototype implementation is obtained. In the traditional design methods, 

hardware/software integration is very troublesome due to incorrect hardware/software interfaces. 

The required testing and debugging activities are extremely time and resource intensive. Correct

ing these errors usually results in long design iteration loops, as shown in figure 2.1. Co-design 

methods relax the problems of hardware/software integration, because the hardware/software in

teraction has already been verified earlier in the design process by co-simulation. However, also 

co-design methods still require testing and debugging of the integrated hardware/software system. 

2.4 Validation and Verification 

Validation and verification are very important issues in hardware/software co-design. Validation 

answers the question whether the right system is being built. Verification answers the question 

whether the system is being built right. Validation usually implies checking whether the system 

specification is a correct description of the desired system as stated in the system requirements. 

When validation is completed, the system specification should be a correct and complete descrip

tion of the required system behavior. 

In each design phase in the co-design process, the system description is transformed into a new, 

more refined system description. Verification is required to check the correctness of each design 

phase. Verification usually implies checking whether the refined system description corresponds 

to the initial system description in each design step. 

The verification techniques can be classified into formal verification, simulation, and testing. 

2.4.1 Formal Verification 

Formal verification techniques can be applied to formal system descriptions. Formal languages 

provide precise semantics that allow mathematical proving. Formal verification is the only 

verification technique that can guarantee the correctness of a model. Formal verification tech

niques can be classified into two categories: 

• Formal verification techniques can be used to prove certain properties of a model [Mel94]. 

The verified properties are usually safety properties and liveness properties. Safety prop

erties state that the system will never perform some erroneous behavior, like deadlocking 

or emitting undesired outputs. Liveness properties state that the system will perform some 

behavior eventually or infinitely often, such as eventually emitting an expected response to 

an input. 

Formal verification of properties is very powerful, because proofs provide 100% accuracy 

and coverage. However, only a limited number of properties can be proven, and state space 

explosion causes that formal verification can only be applied to system models of moderate 

complexity. 
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• Formal verification techniques can be used to prove the equivalence between two models 

[Mar95]. For instance, formal verification can be used to prove the equivalence of two sys

tem models that are both described using process algebra. However, state space explosion 

causes that only systems of moderate complexity and size can be verified. Equivalence 

proving is also powerful to prove the equivalence between RTL descriptions and gate-level 

descriptions of hardware components. In this case, formal verification allows to check the 

results of hardware synthesis tools. 

Examples of formal verification tools are theorem provers, model checkers and logic checkers. 

Theorem provers [BKM95, GM93, Mel94, Mar95] assist the designer in carrying out a formal 

proof of a property or of equivalence, either by checking the correctness of the proof or by au

t.omatically performing some steps in the proof. Model checkers [BCMD90] assist the designer 

by proving a safety or liveness property that is described as a formula in temporal logic. Logic 

checkers [p+96b] are used to check the equivalence between RTL models, gate-level models or 

switch-level models. 

It can be concluded that formal verification is very powerful, but practical use is limited due to 

state space explosion. Formal verification is not widely applied in industry yet, also because de

signers are usually not familiar with creating formal models of a system, with describing its prop

erties formally, and with applying formal verification techniques. 

2.4.2 Simulation 

Simulation means execution of a system model and comparing the simulation results with the 

expected results. Contrasting to formal verification, proving correctness with simulation is very 

difficult, because exhaustive simulation is usually unfeasible and simulation coverage is difficult 

to measure. Nevertheless, simulation is currently the most common verification technique. Sim

ulation can be applied to verify the system specification, but also to verify the more detailed de

scriptions in subsequent stages of co-design process. 

• The system specification is described in a language, resulting in an executable specification. 

The executable specification can be simulated to validate the specification and to verify the 

completeness and correctness of the specification. Simulation of the system specification 

also provides performance measures. 

• The system architecture is described in terms of interconnected hardware and software com

ponents. After architecture refinement, the system architecture is a behavioral-level de

scription of hardware components, software components, and communication components. 

Simulation allows verification of the behavioral-level descriptions. Simulation of the sys

tem architecture results in more detailed performance measures. 

• During synthesis, the behavioral-level descriptions of hardware, software, and communi

cation components are gradually refined into more detailed descriptions. Hardware de

scriptions typically proceed from behavioral-level descriptions to RTL descriptions, gate

level descriptions, and switch-level descriptions. Software descriptions typically proceed 

from concurrent processes inC to assembly code and object code. Co-simulation of hard

ware and software components at various levels of abstraction is one of the most powerful 

benefits of hardware/software co-design. 
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• The physical, switch-level description of hardware components can be simulated to verify 

detailed electrical and timing properties. 

Co-simulation of hardware and software components is one of the key benefits of the current hard

ware/software co-design methods. Each hardware and software component is verified separately 

by means of simulation or formal verification, to verify its functional correctness. However, the 

correctness of the complete system after integration of hardware and software components cannot 

be concluded, even if all individual components have been verified to work properly. Verification 

of the communication between the hardware and software components is required. Co-simulation 

of hardware and software components is very powerful, because it allows verification of the hard

ware/software interaction early in the design process. In the traditional design methods, system 

integration problems were not detected until integration of software components and the physi

cal hardware components. It has been reported that typically 30-40% of the design effort in tra

ditional design methods is spent on hardware/software integration, testing and debugging. Co

simulation allows very early integration of hardware and software, before the physical hardware 

components are manufactured. The goal of co-simulation is to move the point of integration and 

test closer to the design phase, where both hardware and software designers can see the others 

work and make changes before the real hardware is built. This has a major impact on the design 

cycle, eliminating long design iteration cycles. 

Hardware/software co-simulation has two competing goals: simulation speed and resolution of 

simulation results. Simulation speed is usually orders of magnitude slower than the real-time exe

cution of the system. At high levels of abstraction, typically the behavioral level, high simulation 

speed can be obtained, but the resolution of time and data is rather low. At lower levels of abstrac

tion, data and time resolution is higher, but simulation speed is much slower. Various approaches 

towards co-simulation have been developed [CKL96, Row94, ME95]: 

• Hardware simulator 
Co-simulation can be achieved by using a single simulation environment in which all com

ponents are simulated. Typically a hardware simulator is used, like a VHDL-simulator or 

a Verilog-simulator. These hardware simulators are EDA tools that use detailed software 

models to simulate the function and timing of electronic circuits. 

VHDL and Verilog simulators are typically discrete-event simulators, which means that ev

ery event occurs at some discrete point in time that is tagged with a time stamp. There is 

a totally ordered relationship between any two events: the two events occur either simulta

neously, or one event precedes the other one. During simulation, the simulator has to sort 

the events by evaluating their time stamps, so that events with the earliest time stamps are 

processed first. This sorting can be computationally expensive, which makes event-driven 

simulators rather slow. 

An alternative model for totally ordered, discrete events is the discrete-time model. In this 

model, events are related to a clock. Any two events occur either simultaneously at the 

same clock tick, or they occur at different clock ticks so one event precedes the other event. 

Simulators based on the discrete-time model are called cycle-based simulators. They are 

simpler than event-driven simulators, because sorting of events is Jess expensive. Process

ing all events at a given clock tick forms a cycle. Within a cycle, the order in which events 

are processed is determined by data precedences, which define microsteps. 
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Co-simulation is achieved by creating discrete-event or discrete-time models of both the 

custom hardware components and the processor(s). The software components are modeled 

as memories containing object code. This requires that the software has already been com

piled into a binary format and loaded into the simulated memories. Although co-simulation 

yields very accurate results, executing the software at this binary level requires the simulator 

to do many calculations during each processor cycle. Hence, this co-simulation approach is 

very slow, resulting in simulation times measured in days, weeks or months. Another dis

advantage is that detailed functional models of microprocessors are usually not available. 

Most processor vendors do not provide such detailed models, because they reveal a great 

deal about the internal processor architecture. 

Instead of modeling the detailed internal hardware architecture of a processor, a bus model 

of the processor can be created. A bus model is a discrete-event model that simulates only 

the bus interface of the processor. The software is executed using a high-level instruction 

interpreter that provides information about the number of clock cycles required for a se

quence of instructions between a pair of 110 operations on the bus. This approach is useful 

for verifying low-level interactions such as communication on the processor bus or memory 

access. However, it is not easy to create accurate bus models and it is difficult to accurately 

simulate the hardware/software interaction. 

• Instruction-set simulator 
Faster co-simulation can be achieved by using an instruction-set simulator linked to a hard

ware simulator. An instruction-set simulator fora particular processor is based on a model 

of the processor's instruction-set architecture that does not contain all the details of a full

function, discrete-event processor model. Instruction-set simulators allow faster simula

tion of software running on a microprocessor. The custom hardware components are still 

simulated using a hardware simulator. The hardware and software simulators are linked 

so that the instruction-set simulator runs in lock step with the hardware simulator. This co

simulation approach achieves only a modest gain in speed over co-simulation using a single 

hardware simulator. 

• Virtual prototyping 
New co-simulation environments provide solutions to link hardware and software develop

ment tools and enable fast execution of software application code on simulated hardware. 

These co-simulation environments allow virtual prototyping, solving.basic problems in co

simulation like speeding up software simulation and synchronizing hardware and software 

simulations. Examples of virtual prototyping tools are the Power PC Virtual System from 

IBM, the Eagle-i and Eagle-v tools from Eagle Design, and the Seamless CVE tool from 

Mentor Graphics [MCC96]. These virtual prototyping tools allow co-simulation of the pro

cessor, memory, and the application software at various levels of abstraction. Co-simulation 

may be distributed over a heterogeneous network of workstations and PCs. 

Despite the progress in hardware/software co-simulation environments, co-simulation speed is 

often not sufficient for large scale simulations and consequently it takes too long to run. Especially 

for data-oriented systems with hardware accelerators, the co-simulation times are unacceptable. 

Co-simulation can be speeded up by using emulation techniques [H096, MCC96]. 



2.4 Validation and Verification 27 

• Software is usually executed on a standard, off-the-shelf processor. Instead of simulating 

software execution, the software can be executed directly in real-time on the physical target 

processor .. This approach is called a hardware model. 

The custom hardware components are simulated using a hardware simulator. The hardware 

model should be running in lock step with the hardware simulator. Hence, this approach is 

still very slow. Furthermore, the software has to be loaded into memory to be executed by 

the target processor. This provides no support for software development and debugging. 

Software can also be executed on the target processor using an in-circuit emulator (ICE). 

The ICE replaces the physical target processor, and allows access to the internal registers 

of the target processor. This approach supports software development and debugging. 

• Prototypes of custom hardware components can be obtained using hardware emulation 
techniques. Hardware emulation implies the use of programmable components such as 

FPGAs to implement the custom hardware components. Hardware emulation systems con

sist of a fixed architecture of programmable-hardware devices, i.e. FPGAs and their inter

connection scheme, and a software compiler required to map the hardware description onto 

the emulation architecture. The advantage of FPGA emulators is speed. However, FPGA 

emulators typically run at about one-tenth of the real time and therefore cannot be used 

for debugging of real-time behavior. Furthermore, FPGA emulators are expensive and take 

some time to be programmed. Debugging the emulation system is usually performed us

ing a logic analyzer, probes and a stimulus generator board which is incorporated into the 

emulation system. 

Hardware and software emulation techniques can be combined, for instance using an FPGA em

ulator for custom hardware and an ICE for the target processor that executes the software. These 

emulation techniques allow rapid prototyping. Building a prototype is very common in embed

ded systems design. Emulation by FPGAs can improve performance up to four or five orders 

over logic simulation [H096]. Emulation is also commonly used for designing high performance 

microprocessors [p+96b ]. A logic emulation prototype of a microprocessor can execute pseudo

random verification vectors and software application programs (e.g. booting Unix) up to six or

ders of magnitude faster than conventional software logic simulators [KSFM95]. 

Table 2.1 shows an overview of the performance of various commercial tools for co-simulation 

and emulation. Performance is measured as the number of clock cycles that are simulated or em

ulated per second. 

1 1001 I Performance (clock cycles/second) I 
Event-driven simulator (Verilog) 5 

Cycle-based simulator (SpeedSim) 200 

Simulator Accelerator (Zycad) 2,000 

Virtual prototyping (Eagle) 5,000- 50,000 

Virtual prototyping (ffiM PVS) 100,000 

Hardware emulation (Quicktum) 200,000 

Real Hardware 1 ,000,000 - 100,000,000 

Table 2.1 Performance of co-simulation and emulation tools [MCC96] 
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It can be concluded that there are various options available for co-simulation and emulation. The 

options differ in: performance, which is the speed at which the simulated or emulated system 

runs; costs for tools (simulators) and equipment (hardware emulators, ICE); time required to set 

up the simulation or emulation environment; and debugging support, which deals mainly with the 

visibility into hardware and software components. The ideal solution offers high performance, 

requires low costs and short set-up time, and provides excellent debugging support. 

Traditional co-simulation methods using hardware simulators and instruction-set simulators suf

fer from low performance, but they require low costs and short set-up times. Virtual prototyping 

environments offer higher performance. The debugging support in design environments for co

simulation and virtual prototyping is excellent, offering high visibility into hardware and software 

components. 

Rapid prototyping using hardware emulation and ICE offers high performance, but requires high 

costs and long set-up times. The debugging support of ICE is excellent for software, but the de

bugging of the surrounding hardware is limited. The debugging support in hardware emulation 

is usually very limited. Another disadvantage of rapid prototyping is that the prototype does not 

use the same technology as the final system implementation. Hence, the final system implementa

tion may still contain design errors, like timing errors, that were not present in the prototype. The 

inherent problem of rapid prototyping however is that the designer winds up debugging the proto

type instead of the final system implementation. Debugging the prototype can be as troublesome 

as debugging the final system implementation, which has been shown to be a major bottleneck in 

the design process. 

2.4.3 Testing 

Verification of the prototype implementation or the final implementation of a hardware/software 

system is done by testing. Testing is performed by offering test stimuli to the system, and observ

ing and evaluating the responses of the system. An incremental approach to testing is required: 

each hardware and software component is tested first in isolation; when the component passes 

the tests, it can be integrated into the system. Testing the final system is still required to check 

the correctness of the interactions between all hardware and software components. When testing 

reveals the presence of an error in the hardware/software system, debugging is required to locate 

the error and to find out the exact cause that effected the error. 

Hardware/software integration, testing and debugging, and the subsequent re-design cycles to cor

rect the errors, form the main bottleneck in traditional hardware/software design methods. Typ

ically 30-40% of design time and costs in embedded system design [MCC96], and 50-70% of 

design time and costs in distributed, real-time systems design [TY95], are spent on these activi

ties. When an error is detected during testing of the hardware/software system, it is often not clear 

whether the error is caused by hardware or by software components. Usually the software design

ers blame the hardware, while the hardware designers blame the software. Because the integra

tion problems are discovered very late in the design process, it is usually too expensive to redo 

the hardware design. Integration problems are therefore generally fixed in software. However, in 

systems with very complex software architectures like communication switches, it is more cost 

effective to re-design the hardware than modifying the software once it is stable. Nevertheless, of-
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ten systems are shipped to the customer without the full functionality or meeting all performance 

requirements. 

Hardware/software co-design methods improve this situation, because they allow to verify hard

ware/software interaction much earlier in the design process using co-simulation. Design errors 

can be detected and repaired before the actual system or prototype system is built. Hence, fewer 

design errors will be detected during hardware/software integration. However, co-simulation and 

formal verification techniques cannot guarantee the complete absence of design errors. Conse

quently, some design errors will not be revealed until hardware/software integration. Testing and 

debugging therefore is a necessity during hardware/software integration. 

Testing and debugging of hardware/software systems is a very troublesome process. Testing a 

system though its external interfaces is often not sufficient to test the interactions between com

ponents inside the system: many aspects of the internal operation of the system are not externally 

visible. Furthermore, it is very difficult or even impossible to achieve visibility into an individ

ual hardware or software component. Visibility is achieved by using auxiliary instrumentation, 

such as oscilloscopes, logic analyzers and measurement equipment. These instruments provide 

some visibility into hardware and software components. In-circuit emulators and embedded soft

ware monitors improve software visibility, but this has a major impact on the hardware/software 

system. Unfortunately, the current hardware/software co-design methods provide no support to 

improve the testing and debugging of hardware/software systems. 

2.5 Co-Design Methods 

In this section two co-design methods for heterogeneous hardware/software systems are outlined: 

the COSMOS co-design environment developed at TIMA-INPG (Grenoble, France), and the Co

Ware co-design environment developed at IMEC (Leuven, Belgium). Both co-design methods 

emphasize communication synthesis. 

2.5.1 COSMOS 

COSMOS is a co-design environment for the specification and synthesis of hardware/software 

systems [IAJ94, 1195, VIJK94, Ism96, v+95a]. The COSMOS design flow consists of system 

specification, system partitioning, communication synthesis, and architecture generation. 

2.5.1.1 System Specification 

The system specification is described first in SDL. Simulation is used to validate the SDL 

specification. Next, the SDL specification is automatically translated into an equivalent specif

ication in SOLAR [J095]. SOLAR is an intermediate design representation for heterogeneous 

hardware/software systems, modeling system-level concepts such as hierarchy, inter-process 

communication, synchronization and concurrency. SOLAR provides an intermediate design rep

resentation that can be translated into VHDL and C. 

Most SDL concepts can be translated directly into SOLAR, because both languages are based on 
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the extended FSM model. However, SDL and SOLAR use different communication concepts. 

Each SDL process is translated into an equivalent process in SOLAR that consists of a Chan

nel Unit (CU) and a Design Unit (DU). The separation between CU and DU allows to describe 

the functional behavior (DU) separately from the communication behavior (CU) of a process. 

The DUs execute concurrently and asynchronously. The behavior of each DU is described us

ing Harel's StateCharts [HPSS87, H+90a]. 

Communication and synchronization between the DUs is performed over channels. A channel is 

regarded as a shared resource between DUs. A CU is an abstract representation of a channel. A 

CU contains a controller, a collection of methods, and a number of ports. Whenever a DU per

forms a communication operation, it accesses a method in the CU by means of a remote procedure 

call (RPC). The remote procedure in the CU unpacks parameters, calls the requested method in 

the CU, and sends a reply back to the DU. The actual communication protocol is described in 

the methods, which can be any kind of communication such as message passing, using shared 

data, or a complex layered protocol. Because the contents of the methods are invisible for the 

DUs, the communication protocol is completely transparent. The CU controller handles conflicts 

when multiple DUs access the channel simultaneously. 

SOLAR allows a strict separation between functional behavior (DUs) and communication behav

ior (CUs). In the subsequent design steps, the DUs and CUs can be refined separately. A disad

vantage of the SOLAR language is that it has no formal semantics. SOLAR's execution model 

is defined in an informal way similar to many programming languages: certain elements of the 

language are simply defined by the operations they perform. The absence of formal semantics 

prevents the use of formal verification techniques, like verification of properties or equivalence 

checking between two SOLAR descriptions. 

2.5.1.2 System Partitioning 

COSMOS uses an interactive approach to system partitioning, based on the PARTIF tool (PAR

Titioning of extended Finite-state machines) [10194]. PARTIF uses as inputs the SOLAR system 

specification, a library of communication protocols, and user-imposed constraints like the maxi

mum number of parts and the maximum number of states in any part. The output of PARTIF is a 

graph, where the edges represent channel accesses and the nodes represent hardware DUs, soft

ware DUs, or CUs. PARTIF allows interactive partitioning through a number of transformation 

primitives, like reordering the hierarchy, merging processes, and splitting processes. The designer 

controls what transformations are performed and in what order. PARTIF outputs information like 

interconnections between parts, shared variables between parts, silicon area for hardware mod

ules, operations, local variables, number of states, and execution time (number of clock cycles). 

The designer can use this information to evaluate the quality of a partitioning and to compare 

different partitioning alternatives. 

2.5.1.3 Communication Synthesis 

Communication synthesis in COSMOS transforms the CUs into hardware/software communica

tion mechanisms. The behavior of the CUs is distributed among the DU sand communication con

trollers. Communication synthesis consists of channel binding .and channel mapping, as shown 
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in figure 2.3. 

• Channel binding implies protocol synthesis, in which a particular communication protocol 

is selected for each CU. The communication protocols are selected from a library of com

munication protocols, considering the communication type (serial or parallel, synchronous 

or asynchronous), the required performance, and the implementation (hardware or soft

ware) of the DUs that communicate via the CU. 

• Channel mapping implies interface synthesis, in which the CU is distributed among the DUs 

and a communication controller. The communication controller is selected from a library, 

based on criteria like data transfer rates and memory buffering capacity. The communi

cation controller may be a software component described in C or a hardware component 

described in VHDL. 

Heterogeneous System 

Channel Binding 

Communicating HW/SW Component& 

Channel Mapping 

Interconnected HW/SW Components 

Figure 2.3 Communication synthesis in COSMOS 
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2.5.1A Architecture Generation 

Architecture generation consists of virtual prototyping and architecture mapping. 

• The virtual prototype is an abstract architecture represented in VHDL for the hardware el

ements, C for the software elements, and VHDL or C for the communication controllers. 

The virtual prototype is verified by co-simulation. 

• During architecture mapping, the abstract architecture is mapped onto a physical architec

ture containing hardware subsystems, software subsystems, and communication subsys

tems. This is achieved using standard compilers to transform C into assembler code and 

synthesis tools to translate VHDL into ASICs. 

2.5.2 Co Ware 

Co Ware is a co-design environment for the design of heterogeneous hardware/software systems 

[Bol96, RVBM96, VRBM96, M+96, LV94, LVM96]. CoWare concentrates on designing DSP 

systems, which typically consist of one or more data-flow paths with different data rates and ex

ecution rates for digital signal processing, slow control loops for mode selection and parameter 

setting in the data-flow paths, and a reactive control system for handling events from the environ

ment like a user interface. 

2.5.2.1 System Specification 

CoWare uses a mixed-language approach: the system specification is a heterogeneous descrip

tion of communicating processes. The DSP paths consist of data-flow components, performing 

operations on data streams, which can be specified best in an applicative data-flow language like 

DFL or SILAGE. Other DSP paths can be described best in VHDL as a datapath controlled by 

a FSM. The slow synchronization loops and control loops are specified best using a FSM-based 

language like StateCharts. These control loops are good candidates for software implementation 

and can therefore be described in C. 

The benefit of Co Ware's mixed-language approach is that various specification paradigms, specif

ication languages, design tools, and simulation environments can be coupled. However, the sys

tem specification already incorporates an implicit system architecture and a hardware/software 

partitioning. Furthermore, analysis of the specification and formal verification is more difficult 

in a mixed-language specification than in a single-language specification. 

A basic principle in Co Ware is the strict separation between functional behavior and communi

cation. System components are modeled by means of processes. Communication between pro

cesses takes place through a behavioral interface, which consists of ports. The ports of two com

municating processes are connected by a channel. The communication semantics are based on 

the concept of the remote procedure call (RPC): one process triggers the execution of a thread 

in another process. The channel carries both data and control information for/from the remote 

thread. 
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A process describes the behavior of a system component. A primitive process is described in C, 

DFL, or VHDL. It consists of a context and a number of threads. The context contains code that 

is common to all threads in the process, such as variable declarations and shared functions. A 

hierarchical process models a set of processes and is described in Co Ware's internal ~anguage. 

A thread is a single flow of control within a process. A process can contain multiple threads. 

A slave thread is associated to a slave port, and is executed when the slave port is activated. A 

time-loop thread is not associated to any port, and is executed in an infinite time-loop . 

. A port is an object through which processes communicate. A primitive port consists of a protocol 

and a datatype parameter. A hierarchical port is used to describe protocol conversions and data 

formatting. 

A protocol defines the communication semantics of a port. A primitive protocol indicates the way 

of data transport: it indicates the data direction and whether the protocol acts as master (activating 

a RPC) or slave (servicing a RPC). A hierarchical protocol defines a specific protocol implemen

tation. It uses a number of terminals and a timing diagram that indicates how the logic values on 

the terminals evolve over time during data transport. 

A channel connects a master port to a slave port for point-to-point communication. A primitive 

channel provides unbuffered communication. It has no behavior, and is just a medium for data 

transport. A hierarchical channel refines a primitive channel by specifying behavior. At the con

ceptuallevel, a hierarchical channel can be used to model a communication channel, e.g. a com

munication channel with bandwidth limitations or noise sources interacting with it. At the imple

mentation level, a hierarchical channel is used to specify communication buffers, such as FIFOs 

and stacks. 

The Co Ware environment supports three communication mechanisms: 

• Intra-process communication is inter-thread communication within a process via shared 

variables in the context of the process. 

• Inter-process communication with a primitive protocol is communication between a master 

thread and a slave thread based on RPC semantics. 

• Inter-process communication with a hierarchical protocol is communication between two 

processes defined by the terminals and timing diagram of the protocoL 

The use of primitive ports, primitive protocols, primitive channels and RPC as basic communica

tion mechanism provides that the designer can concentrate on the system's functional behavior. 

As the design process progresses, the primitive ports, protocols, and channels are refined by mak

ing them hierarchical and by replacing the RPC communication. 

Transforming ports, protocols, and channels from primitive to hierarchical descriptions, can be 

done without modifying the functional behavior descriptions of the processes. Traditionally, the 

description of a process contains both functional and communication behavior in an interleaved 

way. Re-using such process often implies that the communication part has to be changed. The 
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RPC communication mechanism in Co Ware avoids this, and libraries with communication behav

iors can be constructed.· In this sense, Co Ware supports design for re-use and re-use of designs. 

The system specification is validated by simulation on a Unix workstation. Unix communica

tion primitives are used to implement communication between various simulators (VHDL, multi

threaded C library). 

2.5.2.2 Partitioning and Refinement 

The system specification is modeled as a collection of processes described in C, VHDL or DFL. 

During partitioning, the processes are allocated to hardware or software components. A process is 

never split over several components, because the process is the finest grain of partitioning. How

ever, a number of processes that is mapped on the same component can be merged into a single 

process. Alternative merges may require that for some processes a description is available in more 

than one specification language. Hardware/software trade-offs are based on the required degree 

of flexibility and performance constraints. After partitioning and binding, a partition is obtained 

such that there is a one-to-one binding ofmerged processes to processors. The designer can refine 

the communication mechanisms between the processors by expanding primitive channels into hi

erarchical channels. 

2.5.2.3 Synthesis 

Each process is synthesized, which implies a compilation and an encapsulation step. During com

pilation, hardware. compilers and software compilers are used to generate hardware and software 

components. Encapsulation is required to encapsulate the generated components in such a way 

that their interfaces are consistent with the original specification. 

Software processes, described in C, are assigned to a programmable processor core. Generally, 

the interface of the processor core is fixed and does not correspond to the required interface of 

the C process that has to be executed on it. Therefore, a number of software I/0 device drivers is 

added. These I/0 device drivers link the original C process to the software interface of the proces

sor. Additionally, hardware interfaces are inserted to link the hardware interface of the processor 

to the hardware interface of external hardware components. The addition of software I/0 device 

drivers and hardware interfaces is performed automatically. Figure 2.4 depicts the automated in

sertion of I/0 device drivers and hardware interfaces. 

2.5.2.4 Verification 

CoWare uses co-simulation to verify the functional behavior of the. system at several levels of 

abstraction. Unfortunately, the time required for co-simulation becomes excessive at the lower 

abstraction levels. The simulation times are less excessive at higher abstraction levels, but these 

levels provide not enough detail to verify real-time behavior. 

CoWare's automated approach to communication synthesis offers many advantages. However, 

refinement of the communication interfaces during synthesis may alter the timing behavior of 

the system. This can introduce errors like deadlock and starvation of processes, which were not 
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Figure 2.4 Interface synthesis in Co Ware 

present in the system description prior to communication synthesis. Co-simulation is required to 

detect these errors. However, co-simulation the system after communication synthesis is time

consuming. 

2.6 Analysis & Design Methods 

In software engineering, analysis & design methods have been developed to structure the software 

development process. In the analysis phase, the system requirements and the system specification 

are captured; in the design phase, the software implementation is constructed. The first gen

eration of analysis & design methods appeared in the middle 1980's, by means of structured 

analysis and design (SAD) methods such as Ward & Mellor [WM86] and Hatley & Pirbhai 

[HP87]. These SAD methods are extensions to Yourdon's data-flow analysis [You89]. In the 

early 1990's, the second generation of analysis & design methods appeared by means of object

oriented analysis and design (OOAD) methods, such as Object Modeling Technique (OMT) 

[R+91], Object-Oriented Software Engineering (OOSE) [J+92], and Software/Hardware Engi

neering (SHE) [vdPV97]. 

Although the SAD and OOAD methods are intended for software development, they have also 

been proposed for developing hardware/software systems. SAD and OOAD methods provide 

suitable analysis techniques to capture the system requirements and system specification. How

ever, transforming the system specification into a hardware/software architecture is hardly sup

ported. Currently, SAD and OOAD methods focus more on selecting a hardware platform on 

which the software is executed (see also section 2.2.2) than on genuine co-design of heteroge

neous hardware/software systems. 

The SAD and OOAD methods have evolved in a top-down direction through the system design 

process. They emphasize requirements and specification capture, but they are still very weak at 

the subsequent design stages like architecture selection and synthesis. On the other hand, hard

ware/software co-design methods have evolved in the course of time in a bottom-up way. Initially, 
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co-design methods focused on integrating design environments and tools for co-simulation and 

automated synthesis of hardware and software. As time progressed, the focus shifted from the 

lower abstraction levels (synthesis) to higher abstraction levels (specification, architecture selec

tion). At the moment, co-design methods cover the entire system design process, from system 

specification to system implementation. 

2.6.1 Structured Analysis & Design 

Structured analysis & design (SAD) methods are very useful for specifying the functional be

havior of complex systems, focusing on data, control, and functions. There is a variety of SAD 

methods, which are all closely related and adopt the same philosophy, such as Ward & Mellor 

[WM86], Hatley & Pirbhai [HP87], Edwards [Edw93], Calvez [Cal93], and Gomaa [Gom93]. 

In SAD methods, the system specification is a hierarchical model, capturing the system's func

tional behavior and its interactions with the external environment. Each hierarchical level con

sists of a number of processes ('transformations') that communicate by exchanging events and 

data. A transformation can be decomposed at the lower levels. Data transformations specify func

tions and operations on data; control transformations model finite-state machines and are mainly 

used to coordinate the data transformations. The system specification is graphically depicted in 

figures ('bubbles and arrows') and state transition diagrams, complemented by tables and nat

ural language. Although SAD methods provide a natural and structured approach for system 

specification, they have some well-known shortcomings: 

• SAD methods are informal. The language constructs and the graphical symbols used to 

specify a system, have no well-defined semantics and sometimes even no well-defined syn

tax. The system specification is not executable. This implies that simulation and formal 

verification techniques cannot be applied. 

• Manual reviewing is the only way to validate and verify the system specification. Manual 

reviewing should be done using fundamental mode operation. This implies that for each 

process only one input at a time is allowed to change, and that no new inputs are allowed 

until all internal computations are completed and all outputs are generated. It is assumed 

that the internal computations are performed infinitely fast and take no time. Hence, all the 

parallel processes in the behavior model are executed synchronously. 

Fundamental mode implies that no inputs may occur simultaneously. This is not a severe 

restriction, because when the time scale is chosen small enough, two inputs will never occur 

at exact the same point of time. However, in digital systems all actions are related to a clock 

signal and inputs are evaluated on the clock edges. When two inputs occur in the interval 

between two clock edges, the inputs must be considered as simultaneous. In this case, the 

fundamental mode is no longer valid. 

• Due to the absence of verification techniques, it is very difficult to keep the system specif

ication consistent when making changes and applying transformations. There is no support 

the guarantee the equivalence of the models before and after transformation. 

• In the design stage, the system specification must be transformed into a hardware/software 

architecture. This step is hardly supported in SAD methods. 



2. 7 Discussion 37 

2.6.2 Object-Oriented Analysis & Design 

Object-oriented analysis & design (OOAD) methods combine the structured, systematic analysis 

approach from SAD with object-oriented analysis and specification techniques. There is a large 

variety of OOAD methods, of which Object Modeling Technique (OMT) [R+91] and Object

Oriented Software Engineering (OOSE) [J+92] are among the most popular. Most OOAD meth

ods are intended for object-oriented software development, and offer no support for hardware de

sign. Furthermore, OOAD methods have several shortcomings, like using inconsistent system 

views and using inappropriate modeling concepts and modeling primitives [vdPV97]. 

A recent development is the SHE (Software/Hardware Engineering) method, which aims at de

signing reactive hardware/software systems [vdPVS95, VvdPS96, vdPV97]. SHE combines con

cepts from SAD and OOAD methods. Like SAD and OOAD methods, SHE focuses on require

ments capture and system specification, although work on transforming a system specification 

into a hardware/software architecture is on its way. SHE defines a framework for design ac

tivities combined with a formal description language called POOSL (Parallel Object-Oriented 

Specification Language). Detailed information on the SHE method and the POOSL language is 

provided in chapter 7. 

2. 7 Discussion 

This chapter described the state-of-the-art on hardware/software co-design. We examined the im

provements brought by hardware/software co-design methods over the traditional design meth

ods, focusing on hardware/software verification issues. This section discusses our findings. 

Thaditional design methods versus co-design 

The basic problems of traditional design methods are the lack of a well-defined design flow, the 

lack of well-defined system specifications at the behavioral and architectural level, the separated 

hardware and software design flows, the troublesome verification of the integrated hardware/soft

ware system, and the long design iteration loops. Hardware/software co-design methods offer 

improvements to deal with all of these problems. 

The importance of experienced system designers 

Traditional hardware/software design methods rely heavily upon experienced system designers 

for defining the hardware/software architecture of the system. Designers make implementation 

choices based upon their experience and knowledge. 

Hardware/software co-design methods support the designer when defining the hardware/software 

architecture. The increasing system complexity and the expanding design space cause that design

ing hardware/software systems is becoming extremely difficult even for experienced and talented 

system designers. Tools for performance analysis and design space exploration assist the designer 

to select a suitable hardware/software architecture that satisfies all constraints. Performance anal

ysis tools offer information to the designer like execution rates of processes and average usage 

of channels. Design space exploration tools generate values for metrics such as silicon area and 

software program size. However, an experienced designer is still required to evaluate the figures 
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offered by performance analysis and design space exploration tools. The hardware/software par

titioning in co-design of complex systems is performed by an experienced designer either manu

ally or using an interactive approach. Hence, experienced system designers are required even in 

modern hardware/software co-design methods. 

Hardware/software co-design flow 

The design flows in hardware/software co-design methods differ due to different application do

mains and different target architectures. Usually, the co-design flows are fairly complex and in

corporate many short iteration loops, but avoiding the long re-design iterations of the traditional 

design methods. Hardware/software co-design flows generally consist of six steps: system re

quirements capture, system specification, architecture exploration, architecture refinement, syn

thesis, and hardware/software integration. The focus is on designing at higher levels of abstraction 

while increasing design automation at lower levels through synthesis tools. 

Hardware/software integration 
Hardware/software integration, the corresponding testing and debugging activities, and the sub

sequent re-design iteration loops form the major bottleneck in traditional design methods. These 

problems account for 30-40% of the design time and costs in embedded systems [MCC96], and 

even 50-70% in distributed, real-time systems [TY95]. 'TYpically 50% of ASIC prototypes cannot 

be integrated correctly due to errors in communication interfaces with other hardware and soft

ware components [Bou90, Sch93a]. Because the integration problems are discovered very late 

in the design process, it is usually too expensive to re-design the hardware. Integration problems 

are therefore generally solved in software. However, in systems with very complex software ar

chitectures like communication switches, it is more cost effective to re-design the hardware than 

modifying the software once it is stable. Nevertheless, often systems are shipped to the customer 

without the full functionality or meeting all performance requirements. 

Hardware/software co-design methods allow to verify hardware/software interaction much earlier 

in the design process using co-simulation. Design errors can be detected and repaired before the 

actual system or prototype system is built. Hence, hardware/software integration in co-design is 

less troublesome. Another improvement brought by co-design is communication synthesis for au

tomated generation of hardware/software communication interfaces. In particular the COSMOS 

and Co Ware co-design methods emphasize communication synthesis, offering libraries and tools 

to achieve that the functional behavior of communication interfaces is correct-by-construction. 

However, communication synthesis affects the timing behavior of the system, which can intro

duce timing errors. Hence, verification of the timing behavior after communication synthesis is 

required. 

Verification 
Hardware/software co-design methods emphasize verification for checking correctness in every 

step of the co-design flow. The verification techniques can be classified into formal verification, 

(co-)simulation, emulation and testing. 

Fonnal verification 
Formal verification techniques for property proving and equivalence checking, allow I 00% ac

curacy and coverage. However, formal verification techniques are restricted to models of mod-
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erate complexity, mainly due to state space explosion. Formal verification is not widely applied 

in industry yet, also because designers are usually not familiar with creating formal models of 

a system, with describing the system properties formally, and with applying formal verification 

techniques. 

Co-simulation 

All hardware/software co-design methods use simulation for verification in each phase of the 

co-design flow. Co-simulation is one of the key benefits of hardware/software co-design. Co

simulation allows verification of the hardware/software interaction early in the design process. 

Hence, integration problems can be detected and solved before the hardware is manufactured. 

This eliminates the long re-design iteration cycles in traditional design methods. 

Co-simulation is achieved using hardware simulators, instruction-set simulators and virtual pro

totyping tools. The debugging support in co-simulation environments is excellent, offering high 

visibility into hardware and software components. 

A major limitation of co-simulation is simulation speed, which is usually orders of magnitude 

slower than the real-time execution of the system. At high levels of abstraction, typically the be

havioral level, high simulation speed can be obtained, but time and data resolution is rather low. 

At lower levels of abstraction, data and time resolution is higher, but simulation speed is much 

slower. Especially for data-oriented systems with hardware accelerators, the co-simulation times 

are unacceptable. 

Emulation 

Co-simulation can be speeded up by building a prototype implementation of the system, using 

emulation techniques like hardware models, in-circuit emulation, and hardware emulation. Test

ing a prototype offers higher performance than co-simulation, but requires higher costs and long 

set-up times. Furthermore, the debugging support is limited. In-circuit emulators provide excel

lent debugging support for software, but the debugging of the surrounding hardware is limited. 

The debugging support in hardware emulation is usually very limited. 

Another disadvantage of emulation is that the prototype is built using a different technology (e.g. 

FPGAs) than the final system implementation. Hence, the final system implementation may still 

contain design errors, like timing errors, that are not present in the prototype. The inherent prob

lem of prototyping is that the designer winds up testing and debugging the prototype instead of 

the final system implementation. 

Testing and debugging 

The prototype implementation or the final implementation of a hardware/software system is 

verified by means of testing. System testing is required to check the correctness of the interactions 

between the hardware and software components. When testing reveals the presence of errors in 

the hardware/software system, debugging is required to locate the errors and to find out the exact 

causes that effected the errors. Although formal verification and co-simulation will reveal many 

interaction problems early in the design flow, they cannot guarantee the complete absence of de

sign errors during hardware/software integration. Consequently, testing is required in co-design 

to verify the hardware/software implementation. 
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Testing and debugging an integrated hardware/software system is a very troublesome process. 

When an error is detected, it is often not clear whether the error is caused by hardware or by soft

ware. Usually the software designers blame the hardware, while the hardware designers blame 

the software. Testing the system through its external interfaces is often not sufficient to test the 

interactions between components inside the system: many aspects of the internal operation of the 

system are not externally visible. Furthermore, it is very difficult or even impossible to achieve 

visibility into an individual hardware or software component Visibility is achieved by using aux

iliary instrumentation, like oscilloscopes, logic analyzers and measurement equipment These in

struments provide some visibility into hardware and software components. In-circuit emulators 

and embedded software monitors improve software visibility, but this has a major impact on the 

hardware/software system. Unfortunately, the current hardware/software co-design methods pro

vide no support to improve the testing and debugging of hardware/software systems. Design-for

test and design-for-debug techniques for system-level testing and debugging of hardware/software 

systems are not considered in the current hardware/software co-design methods. The goal of this 

thesis is to fill this gap by introducing design-for-test and design-for-debug techniques in hard

ware/software co-design. 

2.8 Summary 

In this chapter we described the state-of-the-art on hardware/software co-design. We defined a 

co-design flow consisting of six steps: system requirements capture, system specification, archi

tecture exploration, architecture refinement, synthesis, and hardware/software, integration. Co

design methods strongly emphasize verification, using formal verification, (co-)simulation, and 

emulation. These verification techniques are used to check correctness in every design step, pro

viding that design errors are uncovered early. However, we showed that testing the prototype im

plementation or the final hardware/software implementation of a system is still necessary to reveal 

design errors. 

We argued that testing and debugging of hardware/software systems is very troublesome, which 

is mainly due to the limited visibility into the internal operation of a system. At present, auxiliary 

instruments such as oscilloscopes, logic analyzers and measurement equipment are used, but they 

do not provide adequate solutions. Unfortunately, the current co-design methods provide no sup

port to improve the testing and debugging of hardware/software systems and they do not address 

design-for-test and design-for-debug. The main objective of this thesis therefore is to fill this gap 

by introducing design for test & debug in hardware/software co-design. 
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This chapter elaborates on faults in hardware/software systems. The goal of this chapter is to 

examine and classify faults in hardware/software systems that are typically encountered during 

hardware/software integration testing and system testing. System-level testing and debugging ap

proaches should be capable to detect and diagnose these faults. This chapter also characterizes 

the dependability and the architecture of hardware/software systems, where the focus is on hard

ware/software interfaces. 

41 
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3.1 Introduction 

During hardware/software integration, integration testing is required to verify the correct coop

eration of the hardware and software components that build up the system. We recommend an 

incremental, building-block approach to integration and integration testing, in which first the in

dividual components are tested separately. When a component passes its test, it can be integrated 

into a larger aggregate of components. This aggregate is tested next, and subsequently integrated 

into an even larger aggregate. This procedure is repeated until all components and all aggregates 

have been tested and integrated. Finally, the complete hardware/software system is obtained. 

Integration testing primarily focuses on testing the interfaces between the various hardware and 

software components in the system. The goal of integration testing is to verify whether a compo

nent or an aggregate of components correctly interacts with the other components or aggregates 

in the system. 

When integration and integration testing is completed, the entire hardware/software system is 

available. Finally, system testing is required to verify the correctness of the system as .a whole. 

The goal of system testing is to verify whether the system implementation conforms to the sys

tem specification. Integration testing concentrates on testing local communication interfaces in 

the system, while system testing concentrates on testing the overall system behavior constituted 

of all hardware and software components. When integration testing or system testing reveals the 

presence of an error in the system, debugging is required next to locate the error and to diagnose 

the exact cause that effected the error. 

In order to thoroughly understand integration testing and system testing, a conscientious notion 

of system architecture, communication interfaces, and faults in hardware/software systems is re

quired. Therefore, this chapter first elaborates on the architecture of hardware/software systems, 

focusing on communication interfaces. Next, dependability of hardware/software systems is ex

amined. Finally, faults in hardware/software systems are explored in depth. 

3.2 Hardware/Software System Architecture 

The system architecture of a hardware/software system reflects the organizational structure of the 

system in terms of interconnected hardware and software components. During the system design 

process, the behavioral specification is transformed into a hardware/software system architecture. 

The processes and communication channels in the specification are mapped onto hardware and 

software components and communication mechanisms. 

The system architecture of embedded systems typically consists of application software and 

application-specific hardware components. Execution of the application software requires a hard

ware nucleus and system software. Figure 3.1 shows a generic view on the system architecture 

of embedded hardware/software systems. 
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Application Software 

System Software 

Hardware Nucleus 

Application-Specific Hardware 

Figure 3.1 HW/SW system architecture 

The hardware nucleus, shown in figure 3.2, consists of a processor (microprocessor, microcon

troller, DSP, or ASIP) that executes the software, and memory that contains the binary software 

code. The processor fetches program code from memory, decodes the program instructions, and 

executes the instructions. The system software typically consists of an operating system, that con

stitutes the interface between the application software, the hardware nucleus, and the application

specific hardware components like ASICs and FPGAs. 

address 

Processor 
interrupt 

Figure 3.2 Hardware nucleus 

Figure 3.2 shows a simple hardware nucleus consisting of a single processor and a single memory. 

In more complex hardware nuclei, there can be multiple processors and multiple memories for 

execution and storage of system software and application software. 

3.2.1 Application Software 

The software architecture defines how the software is decomposed into components, how these 

components are interconnected and how they communicate and interact with each other. Software 

architecture can be described from different viewpoints, like conceptual architecture, module in

terconnection architecture, execution architecture, and code architecture [SNH95]. 

The application software in embedded systems typically consists of a collection of cooperating 

· software processes. The system software provides a scheduler to schedule the application soft

ware processes for execution on the processor at run-time. Process scheduling can be dynamic or 

static. In dynamic scheduling, there is no fixed execution order of processes: the scheduler deter

mines which process is executed next by evaluating the states and priorities of processes. Static 

scheduling implies a fixed execution order of processes. 
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An alternative for cooperating processes is to code the application software into a single sequen

tial program. A sequential program implies an a priori, fixed execution order of the processes: 

it has a single thread of control and requires no run-time scheduling. However, state space ex

plosion due to parallel composition of processes, lack of modularity, and difficulties in meeting 

requirements on response time and performance, often make a sequential software implementa

tion inadequate. The reactive, real-time behavior of embedded systems requires that the software 

reacts on events in the system environment within a certain amount of time. It is very difficult 

to capture this reactive, real-time behavior in a sequential program. Hence, the application soft

ware typically consists of cooperating software processes, scheduled at run-time by the system 

software. 

3.2.2 System Software 

The system software provides two primary functions to the application software: it constitutes a 

high-level interface to the hardware and handles parallelism in the application software. 

The interface between the application software and the system software is often referred to as the 

Application Program Interface (API). The API defines the calling conventions for communica

tion between the application software and the system software, and the services that the system 

software provides to the application software. 

The system software incorporates I/0 device drivers that provide an abstraction from the low

level I/0 operations required for accessing I/0 devices. The application software interacts with 

the hardware by calling these device drivers. The device drivers take care of the sequence of low

level reads, writes, and interrupts by using special I/0 instructions or memory-mapped I/0. The 

interfaces between the processor and hardware devices can range from simple bus interfaces for 

protocol conversion to complex DMA controllers performing block transfers [SB92]. A device 

driver typically establishes a physical path to transfer basic information such as data and addresses 

between the processor and the hardware device, and controls the sequence of information trans

fers. I/0 can be performed using polling or interrupt-driven techniques. Polling implies that the 

processor periodically checks whether the next I/0 operation can be performed. The overhead of 

polling (busy-waiting) is avoided by interrupt-driven I/0. 

Parallelism in application software consists of concurrent software processes that are executed 

on multiple processors (physical concurrency), or on a single processor (logical concurrency). 

Physical concurrency implies a multi-processor implementation, where each software process is 

executed on a separate processor. Logical concurrency is provided by the system software, which 

schedules the application software processes for sequential, interleaved execution on a single pro

cessor. The system software provides mechanisms for process scheduling, using preemptive or 

non-preemptive scheduling based on static or dynamic priorities, and mechanisms for communi

cation and synchronization between processes. 

The architectures of large operating systems, typically multi-user operating systems like Unix, 

incorporate concepts of hierarchical layers and abstraction [SS94b, Sta92, Tan95]. An operat

ing system should separate policies from mechani!>ms. Mechanisms provide the basic primitives 

to perform a certain task, such as process scheduling. Policies refer to how the mechanisms are 
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used. For instance, process scheduling policies like first-come first-served (FCFS) or priority

based scheduling, are implemented by using the scheduling mechanisms. 

The current trend in operating systems is to evolve from monolithic kernel (macro-kernel) archi

tectures to micro-kernel (or nano-kernel, pico-kernel, ... ) operating systems, in which the kernel 

only provides the basic mechanisms. Policies are implemented in the layers that are built around 

the kernel. This architecture contributes to more flexible, modular, and efficient operating sys

tems. It is interesting to notice that the same trend can be identified in microprocessor archi

tectures, moving from CISC to RISC architectures. The instruction sets of RISC architectures 

provide basic, simple instructions only. Complex operations, as found in CISC architectures, are 

realized by a sequence of RISC instructions. 

In traditional operating systems, each process has a private address space and a single thread of 

control. In multi-user operating systems, like Unix, the amount of process state information is 

large, which makes creating, maintaining, and context switching between processes expensive. 

'Lightweight processes' or 'threads' have been proposed to improve performance in situations 

where creating, maintaining, and switching between processes occurs frequently [Tan95]. Each 

lightweight process has its own program counter, register file and stack, while all lightweight pro

cesses share the same address space and other state information. In multi-user operating systems, 

lightweight processes give a significant efficiency improvement. Some multi-user operating sys

tems provide kernel support for both processes and threads (e.g. Mach [T+87]), while other multi

user operating systems offer kernel support for processes only and use libraries to implement mul

tiple threads per process (e.g. Unix). 

In real-time operating systems, the amount of process state information is usually much smaller 

[BS91a, LHC93, CR95]: processes share the same address space and are not enclosed in separate, 

protected, virtual address spaces. Hence, real-time operating systems are already lightweight. 

Constraints on memory size, speed, and costs in embedded systems often make the overhead for 

a large operating system unacceptable. Often, ad hoc system software is written to handle IJO 

and resource scheduling in embedded systems. Real-time operating systems are typically small

kernel operating systems, providing only the basic services of process management, interprocess 

communication, and IJO drivers. In embedded systems, synchronization between processes is of

ten provided implicitly by the scheduler in case of non-preemptive scheduling, and interprocess 

communication is efficiently supported by shared data. 

Distributed, real-time systems comprise a multi-processor architecture in which each processing 

node is often specialized to perform a certain function. Instead of a single, multi-processor op

erating system, usually a set of heterogeneous, mono-processor operating systems is used so that 

each processing node has its own local operating system. 

3.2.3 Hardware Nucleus 

The hardware nucleus, as shown in figure 3.2, provides the processor on which the software is 

executed. The hardware nucleus is also referred to as the software interpreter [LA90, Eck93] or 

the hardware platform. The hardware nucleus provides the physical interface between hardware 

and software: the software is stored as binary code in the nucleus' memory, and executed by the 
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nucleus' processor. 

The hardware/software interface between the processor's hardware architecture and the software 

instructions executed on the processor is often referred to as the instruction-set architecture (IS A) 

[PH94]. The ISA is an abstract description ofthe processor architecture and defines the software 

model of the processor, including the processor's instruction set, addressing modes, data formats, 

the main functional components in the processor architecture (e.g. data ALUs, address ALUs, 

registers, stacks, caches, timers, interrupt control, and DMA control), the memory map, and JJO 

ports. The ISA provides a functional view on the external processor architecture at the instruc

tion level. The internal processor architecture describes the physical, structural architecture of the 

processor. The internal processor architecture can be described at various levels of abstraction, 

such as the machine-cycle level, the clock-cycle level, and the discrete-event level [Anc86]. 

The external processor buses can be monitored for testing and debugging purposes. However, 

it is difficult to resolve the processor's internal state by monitoring the external buses. Archi

tectural features such as pipelining (parallel fetch, decode, and execution of instructions), super

scalar architectures (parallel execution of instructions, using techniques like out-of-order execu

tion, branch prediction and speculative execution), caches (both for program instructions and data 

storage), and DMA make it very difficult to determine the processor's internal state. 

3.2.4 Hardware Component Architecture 

The hardware nucleus components and the application-specific hardware components can be de

scribed at various levels of abstraction. (The same abstraction levels are used in hardware syn

thesis, as described in section 2.3.5.1.) 

• At the register-transfer level (RTL), the hardware components are described in terms of reg

isters, combinational circuitry, low-level buses, and control circuits that implement finite 

state machines. The RTL models describe the internal architecture and control logic within 

a hardware component, independent of hardware implementation technology. 

• At the logic level, the hardware components are described in terms of Boolean logic func

tions and simple memory elements such as flipflops. The logic-level model describes the 

functional behavior, and does not describe the exact implementation in logic gates or the 

hardware implementation technology. 

• At the gate level, the function, timing, and structure of the hardware components are de

scribed in terms of the structural interconnection of Boolean logic blocks like NAND, NOR, 

NOf, AND, OR, and XOR gates. The gate-level model describes the actual implementation 

structure in terms of interconnected elements from a specific logic family library. 

• At the switch level, the hardware components are described as networks of interconnected 

transistors. The transistors are modeled as simple voltage-controlled on-off switches. 

• At the circuit level, the operation of the hardware components is described in terms of 

the voltage-current behaviors of resistors, capacitors, inductors, semi-conductor circuit el

ements and their interconnections. 
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3.2.5 Communication Interfaces 

The communication between the application software, the system software, the hardware nucleus, 

and the application-specific hardware takes place at various communication interfaces. We iden

tify nine classes of communication interfaces in the hardware/software system architecture, as 

shown in figure 3.3 . 

• 
• External 

Environment 

Figure 3.3 HW/SW communication inteifaces 

I. Application software communication interface 

The application software typically consists of a collection of cooperating processes. The ap

plication software communication interface represents intraprocess communication within 

an application software process. A process in the application software is a sequential pro

cess that consists of a number of methods or functions. Examples of intraprocess commu

nication are accessing local process data or function calls within a process. 

2. Application Software - System Software communication interface 

Interprocess communication between the application software processes is performed using 

communication mechanisms provided by the system software. Examples of interprocess 

communication are remote procedure calls, communication by shared data buffers, soft

ware interrupts, or message passing between processes. 

The application software processes are executed sequentially on a processor. The system 

software controls the process scheduling, using preemptive or non-preemptive scheduling 

policies, and static or dynamic scheduling schemes. 

Furthermore, the system software provides an abstract interface to the underlying hardware 

nucleus and the application-specific hardware. The system software provides I/0 device 

drivers for accessing hardware features like timers and D/A converters, and for communi

cation with application-specific hardware components. 

The application software - system software communication interface is usually called the 

Application Program Interface (API). 
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3. System Software communication interface 

The architecture of the system software consists of processes or modules, providing vari

ous functions like scheduling of application software processes and 110 device drivers. The 

system software communication interface represents the internal communication between 

the software components that build up the system software. 

4. System Software - Hardware Nucleus communication interface 

The hardware nucleus operates as software interpreter: it provides one or more processors 

that execute both system software and application software, and memory in which the soft

ware code is stored. 

The system software - hardware nucleus communication interface also provides access to 

data structures in memory, handling of hardware interrupts, and access to the processor's 

external communication buses like the processor-memory bus and 110 buses. 

5. Hardware Nucleus communication interface 

Internal communication in the hardware nucleus includes low-level hardware communi

cation between the processor and peripherals like memories and controllers. The external 

processor buses (address, data, and control) are involved in this communication, such as 

reading/writing memories and receiving interrupt signals. Often the processor core, mem

ories and peripherals such as timers, AID-D/A converters and serial 110 ports are integrated 

on a single chip. 

6. Hardware Nucleus - Application-Specific Hardware communication interface 

Buses and wires form the communication infrastructure for the communication between 

the hardware components in the hardware nucleus and the application-specific hardware 

components. Communication protocols like handshaking or fixed-time access are used to 

communicate over these buses and wires. 

7. Application-specific Hardware communication interface 

Likewise, the application-specific hardware components are interconnected by buses and 

wires over which communication takes place. 

8. Hardware Nucleus - External Environment communication interface 

Objects in the external environment of the system communicate with the system by means 

of sensors and actuators. The hardware nucleus- external environment interface is typically 

concerned with communication between objects in the environment and processes in the 

application software. 

9. Application-Specific Hardware- External Environment communication interface 

Additionally, objects in the external environment of the system communicate with the 

application-specific hardware components. 

The communication interfaces 5, 6 and 7 deal with communication between hardware compo

nents. Buses and wires constitute the infrastructure between the hardware components. The elec

trical signals that are transported over these buses and wires constitute the lowest level of commu

nication protocols. Low-level hardware communication is based on basic read/write operations 
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on buses, such as accessing memory and I/0 ports. Processor-memory buses are high-speed, syn

chronous buses, maximizing processor-memory bandwidth, using a fixed communication proto

col relat"ive to the clock. I/0 buses connect the processor to various I/0 devices. Backplane buses 

allow processors, memories, and I/0 devices to coexist on a single bus, balancing the demands of 

processor-memory communication with I/0 device-memory communication. Bus access is con

trolled using a master-slave configuration or using an arbitration scheme such as daisy-chain arbi

tration, centralized arbitration, distributed arbitration by self-selection, or distributed arbitration 

by collision detection [PH94]. 

The hardware/software system architecture in figure 3.3 shows a layered software architecture of 

application software and system software. This layered software architecture provides a logical, 

conceptual view on the software. However, in the physical view on software, the software is em

bedded in the hardware nucleus as binary code stored in memories. In this physical view, there 

is no notion of a logical software architecture. A similar notion holds for the application-specific 

hardware. In the physical view, the hardware architecture consists of interconnected hardware 

modules. The hardware modules themselves are conceptually equivalent to the application soft

ware processes: each hardware module performs a certain application function. Control logic and 

glue logic support parallel execution, synchronization and communication between the hardware 

modules. The control logic and glue logic between the hardware modules is conceptually equiv

alent to the system software. However, there are some differences in the concepts of concurrency 

and communication between software and hardware. 

• Concurrency in hardware is physical concurrency, which means that concurrent events in 

hardware occur simultaneously and that concurrent hardware modules operate truly par

allel in time. Concurrency in software can be either physical concurrency or logical con

currency. Physical software concurrency implies that software processes are executed on 

separate processors. Hence, physical software concurrency is achieved by physical con

currency in hardware. Logical software concurrency implies that the software processes 

are scheduled for sequential, interleaved execution on a single processor. 

• Communication between hardware modules is performed over fixed, static interconnec

tions like buses and wires. Although hardware communication switches provide more flex

ible connections between hardware modules, the connections are basically static. Software 

provides more dynamic communication mechanisms. Furthermore, software processes can 

be started, suspended, resumed and stopped, and even created and killed at run-time. 

The communication mechanisms in hardware and software can be categorized into communica

tion via message passing or shared data, synchronous or asynchronous communication, unidirec

tional or bidirectional communication, and point-to-point or broadcast communication. 

Message passing/shared data 

Communication between two processes implies a sending process, which outputs messages on a 

communication channel, and a receiving process, which inputs messages from the communication 

channel. Message passing indicates that a message can be received at most once by the receiving 

process. Message passing can be buffered or unbuffered. 
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• Buffered message passing implies that there is a buffer in the communication channel to 

store messages. The sending process writes messages into the buffer and the receiving pro

cess reads messages from the buffer. Although the buffer size may be theoretically un

bounded, in practice a buffer has a finite size. The sending process may be blocked if the 

buffer is full, while the receiving process may be blocked if the buffer is empty. In the case 

of non-blocking communication, the messages from the sending process are lost when the 

buffer is full. A buffer is usually a FIFO (First-In First-Out) buffer, but there are various 

other strategies for reading and writing a buffer, for instance using priorities or LIFO (Last

-In First-Out). 

• Unbuffered message passing implies that there is no buffer in the communication channel. 

The sending process outputs a message on the channel, which is input by the receiving pro

cess. In rendezvous communication, the sending process is blocked if the receiver is not 

ready to accept data, and the receiving process is blocked if it is waiting for the sender 

to send data. Non-blocking, unbuffered message passing implies asynchronous commu

nication, where the sending process outputs a message regardless if the receiving process 

is ready or not. 

Communication by shared data implies communication using a shared memory, which is written 

by the sending process and read by the receiving process. The receiving process can read the same 

data multiple times from a shared memory (non-destructive read), while message passing implies 

that data can be read at most once (destructive read). 

Synchronous/asynchronous 
Synchronous communication implies that the sending and the receiving process are synchronized 

during communication, hence the send and receive operations occur at the same time. In asyn

chronous communication, the sending and receiving process are not synchronized. Note that 

the concept of synchronous/asynchronous communication is orthogonal to the concept of syn

chronous/asynchronous execution of concurrent processes. 

Synchronous communication implies rendezvous communication. The sending and receiving 

processes have to wait until both processes are ready to interact. During the communication inter

action, the processes are locked together. Rendezvous communication generally implies message 

passing between asynchronous processes at synchronization points. 

Communication using buffers always implies asynchronous communication. Unbuffered com

munication is either synchronous communication, i.e. communication using rendezvous where 

both the sending and receiving process can be blocked, or asynchronous communication, i.e. com

munication where the sending process is never blocked and messages are lost if the receiving pro

cess is not ready. 

In hardware, synchronous communication is implemented by handshaking protocols, where re

quest, ready, and acknowledge signals are exchanged between the sending and the receiving pro

cess. Hardware communication on buses and wires using fixed time slots is asynchronous com

munication. In software, synchronous communication requires explicit synchronization to im

plement the rendezvous. Communication via buffers or shared memory in hardware or software 

implies asynchronous communication. 



3.2 Hardware/Software Architecture 51 

UnidirectionaVbidirectional 
Unidirectional communication implies that data is transferred in one way, from the sending pro

cess to the receiving process. Bidirectional communication implies that processes perform both 

send and receive operations. 

Point-to-point/broadcast 
Point-to-point communication implies communication between one sending process and one re

ceiving process, which is one-to-one communication. Broadcast communjcation implies one 

sending process and multiple receiving processes, which is one-to-many communication. In ad

dition, many-to-many communication or many-to-one communication is possible. 

3.2.6 Taxonomies 

The system architecture of a hardware/software system can be represented in a structural model 

that reflects the physical organization of the system implementation. Besides the structural view 

on a hardware/software system, also other views on the system are relevant. Various taxonomies 

have been proposed to define the various aspects of hardware/software systems, such as Ecker's 

design cube [EH92], Gajski's Y-chart [GK83], and Madisetti's taxonomy [Mad95]. However, 

these taxonomies do not thoroughly address hardware/software co-design aspects. 

The RASSP program (Rapid-prototyping of Application Specific Signal Processors) [RASh], ini

tiated by the U.S. Department of Defense, aims at developing new design and prototyping meth

ods to deal with the increasing complexity, time-to-market pressures, and life-cycle costs of digital 

signal processing systems. Within RASSP, a multi-axis taxonomy has been developed to define 

terminology and model characteristics for hardware/software systems [RASa]. The RASSP tax

onomy, shown in figure 3.4, identifies four orthogonal axes: the temporal, data, functional, and 

structural axis. A fifth axis has been added to describe the relation between hardware and soft

ware: this axis represents the level of software programmability, indicating the granularity of soft

ware instructions. 
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In the RASSP taxonomy, each axis addresses a system aspect at various levels of abstraction. Ab

straction depends on the resolution of details: low resolution of details corresponds with a high 

level of abstraction, and high resolution of details corresponds with a low level of abstraction. 

Resolution is analogous to precision, as distinguished from accuracy. 

3.3 Dependability 

Dependability is defined as the trustworthiness of a hardware/software system such that reliance 

can justifiably be placed on the service that the system delivers [AL86, LA90, Lap92b, Lap92a]. 

The service delivered by the system is defined as the system behavior perceived by the user(s), 

where a user is another system (human or physical) which interacts with the system. Table 3.1 

shows a taxonomy for dependability characteristics, introducing the concepts of dependability 

attributes, impairments and means. 

reliability 

attributes 
availability 

impainnents 

means 

Table 3.1 Dependability characteristics (based on [Lap92b]) 

3.3.1 Dependability Attributes 

Dependability is a generic term that implies reliability, availability, safety and security. Reliabil

ity refers to the continuity of service: reliability of a system is the probability that the system will 

behave conform to its specification throughout a period of time. Reliability can be expressed in 

terms of the Mean Time Between Failures (MTBF) and the Mean Time To Repair (MTTR). Avail

ability refers to the readiness for usage. Availability can be expressed as MTBF/(MTBF+MTTR). 

Safety refers to the non-occurrence of catastrophic failures. Security refers to the prevention of 

unauthorized access to the system and/or unauthorized handling of information. 

3.3.2 Dependability Impairments 

An impairment is an anomaly in a hardware or software component that causes a component to 

deviate from its intended function. An impairment can be the cause or the effect of the system 

becoming undependable. Impairments can arise during all stages of the system life cycle, such as 

specification, design, development, manufacturing, assembly, installation, operational use, and 

maintenance. 
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As shown in table 3.1, impairments can be classified into failures, errors, and faults. The notions 

of fault, error and failure are used to indicate cause-effect relations and the evolution of an impair

ment in time. A fault is the root cause of the impairment, like a physical defect in hardware. A 

fault causes an error, affecting the service delivered by the system. A failure occurs when the user 

notices that the service delivered by the system no longer complies with the system specification. 

The delivered service may be functionally incorrect, or the timing of the service delivery may be 

incorrect. Hence, an error is the manifestation of a fault in the system, while a failure is the effect 

of an error on the delivered service. 

A fault may be dormant or active. A dormant fault is not causing an error. For instance, a fault in 

a redundant or inactive hardware circuit, or a fault in a software module that is not being executed, 

will not cause an error. A dormant fault becomes an active fault when the component that contains 

the dormant fault, is executed. If the active fault causes a deviation of the delivered service, then 

an error occurs. For instance, a physical fault in a hardware circuit may cause that the function or 

timing of the circuit is incorrect, and hence the fault induces an error. 

An actual example of a dormant software fault is the 'year 2000 problem'. In many software 

programs, dates are stored using only two decimal digits to represent the year. For instance, the 

year 1987 is stored as 87, and consequently the year 2000 is stored as 00. Software that uses this 

format will produce correct results for the years 1900 to 1999, but incorrect results after 1999. 

The software cannot differentiate 2000 from 1900, which causes that sorting and computations 

produce incorrect results. For instance, a person born on June 6, 1969 will be 30 years old on 

January 1, 2000, but the software will conclude that his age is -70. 

An error may be latent or detected. A latent error is an error that has not been recognized (yet). 

A latent error may disappear before it is detected. An error often propagates, creating new errors. 

Hence, an error in a component may originate from an active fault in the same component, or the 

error may be due to propagation of an error from another component. Furthermore, errors can be 

independent errors or related errors. Independent errors are due to different faults, while related 

errors are due to a common fault. For instance, a fault in the power supply or the clock signal may 

cause multiple, related errors. Related errors usually cause common-mode failures. 

The time between the fault occurrence and the first appearance of an error is called the fault la

tency. Multiple errors can originate from the same fault, and all errors may propagate through the 

system. The error latency is defined as the time between the first appearance of the error and the 

moment that the error is detected (i.e. causes a failure). 

Examples of faults, errors and failures are: 

• A software programmer can make a mistake when writing software code. This results in a 

(dormant) fault in the software, such as a faulty instruction or faulty data. When the soft

ware code is executed, the fault becomes active and produces an error. If the user notices 

that the software behaves erroneously, a failure occurs. 

• An electromagnetic field may cause a hardware fault when electromagnetic interference 

affects the electrical charges on wires. The fault causes an error when the hardware circuit 
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produces incorrect results. Subsequently, a failure may occur when these erroneous results 

are used by other hardware circuits. 

The electromagnetic field may affect the values on a memory input during a write operation. 

Subsequently, faulty information is stored in the memory which results in a latent error. The 

latent error is not detected until the erroneous memory locations are read. 

• An operator that enters an inappropriate command on a computer keyboard, induces a fault. 

The faulty command will cause the computer to perform an undesired operation, resulting 

in an error. A failure occurs if the operator notices that the computer has performed an 

undesired operation. 

Basically, any fault can be viewed as a permanent design fault. Electromagnetic interference can 

be considered as a design fault, because the designer did not provide adequate shielding. A fault 

caused by an operator typing an inappropriate command can also be considered as a design fault, 

because the designer should have provided fault tolerance against inappropriate user inputs. How

ever, a designer is not capable to foresee all situations in the system's operational life that can 

cause faults. 

The definitions of faults, errors, and failure are based on precise cause-effect relations. However, 

in practice the cause-effect relations can be very complex, which makes it difficult to determine 

whether an impairment is a fault, an error, or a failure. 

Various viewpoints can be used to classify faults, such as fault origin and fault persistence. 

3.3.2.1 Fault Origin 

Fault origin indicates the root cause of the fault. The fault origin can reside either inside or outside 

the system boundary. Furthermore, the fault origin can be described by the phenomenological 

cause of the fault. 

• Faults can be caused either within the system (internal faults) or outside the system bound

ary (external faults). External faults result from interference or from interaction of the sys

tem with its physical environment. Examples of external hardware faults are electromag

netic perturbations, radiation, extreme temperatures, or vibration. External software faults 

are mistakes made by the operator, which enters inappropriate commands or faulty data 

Internal hardware faults result from physicochemical disorders such as threshold changes, 

short circuits and open circuits. Internal software faults are design faults. 

• The phenomenological cause can be either a physical fault or a human-made fault. A phys

ical fault is due to physical phenomena, and can be either an internal or an external fault. 

Human-made faults are due to human imperfections, like design faults or faults during op

eration and maintenance activities. 

3.3.2.2 Fault Persistence 

Faults can be either permanent faults or temporary faults, where a temporary fault is either a tran

sient fault or an intermittent fault. 
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• Pennanent faults are irreversible. Permanent hardware faults can occur due to improper 

manufacturing, damage, or wear out. A hardware component containing a pennanent fault 

can be restored only by replacement or repair. 

Obviously, software cannot wear out or be physically damaged. Pennanent software faults 

are design faults. Also design faults in hardware are pennanent faults. Design faults can be 

removed only by redesign. 

• A transient fault is a temporary, external fault originating from disturbances in the physical 

environment. Transient hardware faults are caused by disturbances such as power supply 

fluctuations, particle radiation, and interference by electromagnetic noise. These distur

bances typically have a short duration. Afterwards, the affected hardware circuit usually 

returns to a nonnal operating state. Although a transient hardware fault usually causes no 

pennanent damage, it may bring the system into an erroneous state. 

• An intennittent fault is a temporary, internal fault resulting from the presence of rarely oc

curring combinations of conditions. An intermittent fault usually occurs periodically. Inter

mittent hardware faults are often due to marginal or unstable hardware. Examples are pat

tern sensitive faidts in semiconductor memories and parametric faults that are sensitive to 

voltage or temperature fluctuations. Parametric faults can cause races, hazards, and changes 

in delay properties. Intermittent hardware faults are in fact pennanent design faults, that are 

activated rarely, like circuits with minimal timing margins. 

Although software faults are design faults and therefore pennanent faults, they can appear as tem

porary faults. Temporary software faults typically occur during exceptional conditions and are 

often caused by non-determinism in the software. An example is preemptive scheduling of soft

ware processes. The number of different interleaved executions of software processes is usually 

too large for exhaustive verification or testing. During an exceptional condition, the processes 

typically will be interleaved in a completely different order than during nonnal system operation. 

Now software faults can be revealed that were dormant during nonnal system operation. Usually, 

temporary faults in hardware or in software cannot be reproduced in subsequent system runs, be

cause the exact circumstances under which the fault occurred, cannot be reproduced. Therefore, 

the debugging of temporary faults is extremely difficult. 

The tenn 'bug' is commonly used to indicate a software fault. In [Gra86], an original description 

of pennanent and temporary software faults is presented on the analogy of quantum mechanics. 

Pennanent software bugs are called 'Bohrbugs' and temporary software bugs are called 'Heisen

bugs'. Gray writes: "Bohrbugs, like the Bohr atom, are solid, easily detected by standard tech

niques, and hence boring. But Heisenbugs may elude a bugcatcher for years ofexecution. Indeed, 

the bugcatcher may perturb the situation just enough to make the Heisenbug disappear. This is 

analogous to the Heisenberg uncertainty principle in physics." 

3.3.3 Dependability Means 

Dependability means are methods and techniques that provide dependability. Dependability 

means are concerned with providing the ability for the system to deliver its service confonn the 

specification. Dependability means can be categorized by fault avoidance, fault removal, and fault 
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tolerance. Fault avoidance is concerned with preventing the occurrence or introduction of faults; 

fault removal is concerned with reducing the number of faults present in the system; fault toler

ance is concerned with providing correct operation of the system in spite of faults. 

3.3.4 Fault Avoidance 

Fault avoidance is concerned with selecting appropriate design methodologies and implementa

tion technologies that reduce the probability of faults being introduced in the system. For in

stance, hardware/software co-design methods improve the design process for complex heteroge

neous hardware/software systems. Systems designed using co-design methods will contain less 

design faults than systems designed using traditional design methods. The use of reliable imple

mentation technologies, such as reliable hardware technology and re-use of hardware and soft

ware components, will reduce the probability of implementation faults. 

The ultimate form of fault avoidance is correcmess-by-construction during the design and imple

mentation of hardware/software systems. Unfortunately, correctness-by-construction is still an 

utopia. Fault avoidance alone is therefore insufficient for designing and implementing faultless 

hardware/software systems. 

3.3.5 Fault Removal 

Fault removal is composed of verification, diagnosis and correction. Verification implies check

ing the correctness of the system, and is aimed at revealing faults. As indicated in section 2:4, 

verification techniques can be categorized into formal verification, (co-)simulation, and testing. 

When verification reveals the presence of an error, diagnosis (debugging) is required to find the 

exact cause ('the fault') that effected the error. Subsequently, correction is required to correct the 

fault. 

3.3.6 Fault Tolerance 

Fault-tolerant systems are capable of performing self-recovery. Fault tolerance aims at preventing 

that faults lead to system failures, which is achieved by incorporating redundancy in the system. 

When an error is detected in a system component, a redundant component will take over the func

tions of the faulty component. Fault-tolerant systems are typically applied for fail-safe, critical 

applications, such as spacecrafts and telephone exchanges. 

Fault tolerance is constituted of four phases [Joh89]: detecting the occurrence of an error, de

termining how the error affected the system, recovering the system, and repairing the fault that 

caused the error. 

The definition of a fault implies that a fault cannot be detected directly. A fault is manifested as 

an error in the system. Hence, the usual starting point for fault tolerance is the detection of an 

erroneous state. There are various techniques for error detection [Ben94a]: 

• replication checks, using hardware redundancy or time redundancy; 
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• timing checks, using watchdog timers that expire if an expected response does not occur 

within a certain period of time; 

• reversal checks, that compute the expected input from the actual output and compare the 

expected input with the actual input; 

• coding checks, using error detecting/correcting codes such as parity bits, Hamming codes, 

cyclic redundancy checks (CRC), and checksums; 

• reasonableness checks, using run-time checks such as software assertions; 

• structural checks, performing checks on data structures such as double-linked lists; 

• diagnostic checks, performing diagnostic tests by applying test stimuli and evaluating the 

responses. 

Fault-tolerant systems incorporate static redundancy or dynamic redundancy. Static redundancy 

(or masking redundancy) is achieved by duplicate components. When an error is detected in a 

component, the redundant component takes over the operation of the faulty component. Dynamic 

redundancy is achieved by distributing the functions of a faulty component among the other com

ponents in the system. An example is a distributed system in which each processing node carries 

out some specific functions. When a particular node fails, its functions are relocated to the other 

processing nodes. Incorporating redundancy in the system will increase the size and complexity 

of the system, which can lead to a decrease in reliability. Therefore, incorporating redundancy 

should be performed with great care. · 

Fault tolerance provides error detection and subsequent error recovery to return the system into 

an error-free state. However, it is still required to analyze the fault that effected the error. The 

relation between faults and errors can be very complicated. Usually, various faults can lead to 

the same error. For instance, a parity error on a memory read may indicate a faulty memory chip, 

a faulty memory bus, a faulty memory power supply, a faulty parity check, etcetera. Permanent 

faults have to be repaired by means of replacing a hardware component or modifying a software 

component; temporary faults usually require no repair actions if they occur very seldom. 

Since the 1950's, fault tolerance has been primarily concerned with physical faults in hardware. 

Fault-tolerance strategies however are not effective for dealing with design faults. The more com

plex the system, the more design faults are likely to be introduced (and to remain) in the system, 

both in.hardware and in software. Design faults are unanticipated faults, with unanticipated ef-

fects on the system. · 

Hardware faults can affect the contents of memories, which may induce changes in software code. 

Hence, hardware faults may cause software errors. 

Software faults are design faults and software redundancy cannot be achieved by replacing a soft

ware module with an exact copy. Examples of fault tolerance techniques for dealing with software 

faults are recovery blocks and N-version programming. 
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Design fault tolerance is usually achieved through two approaches: modular decomposition and 
design diversity. Modular decomposition implies factoring the system's functions into a set of 
components in such a way that the failure of one component will be confined. A failure in one 
component will not prevent the execution of the total system function, although it may cause the 
system to switch into a degraded mode (graceful degradation). Design diversity implies that mul
tiple, redundant components are designed and implemented independently. Examples of fault

tolerant systems based on modular decomposition and design diversity, are: 

• The NASA space shuttle employs fly-by-wire, which implies that any command from the 
astronauts to control the vehicle, is processed and verified by computers first, and next is
sued to the proper actuators [NAS88]. The avionics system of the space shuttle consists 
of over 300 electronic black boxes, offering dual or triple redundancy for every function. 
The black boxes are connected by serial data buses to a set of five general-purpose comput
ers (ffiM AP-1 0 l ). These computers employ redundancy both in hardware and in software. 
Four of the five identical general-purpose computers are redundant. The computers run two 
completely independent coded versions of the flight control software. 

• The Boeing 777 airplane employs a fly-by-wire flight control system [Yeh96]. The flight 
control system uses triple redundancy for all hardware resources: the computing system, the 
airplane electrical power systems, the hydraulic systems, and the communication paths. 

• The Airbus A320, A330 and A340 airplanes also employ fly-by-wire flight control systems 
[BT93, Fav94]. The flight control systems consist of several redundant computers, running 
different software versions. The redundant computers are all functionally equivalent, but 
different hardware architectures were used to implement them. For instance, the A320 uses 
two types of computers, one based on the 680 l 0 microprocessor and one based on the 80186 
microprocessor. Both computer systems were designed and implemented by two different 
companies. Additionally, the fly-by-wire system is complemented by a mechanical back-up 
system. 

In [LA90, Lee94], a layered model for hardware/software systems is proposed. Similar to the OSI 
model, each layer provides services to its upper layer. In figure 3.5, the (N)-layer receives service 
requests from the ( N+ 1 )-layer. The ( N)-layer interprets the service requests and generates service 
requests to the (N-1)-Iayer. The (N-1)-Iayer will provide responses back to the (N)-Iayer, which 
in turn will respond back to the (N+ 1 )-layer. 

The layered system model is extended with fault tolerance by means of exceptions and exception 
handlers. If the ( N)-layer receives an illegal service request from the ( N+ 1 )-layer, then the ( N)

layer returns an interface exception to the ( N+ 1 )-layer. An interface exception is often caused by 
a design fault in the (N+ 1 )-layer. 

The ( N)-layer generates an internal exception when its internal error detection mechanisms reveal 

the presence of an internal error. An internal exception activates the (N)-layer exception handler 
which provides fault tolerance services that may correct the error. The ( N)-layer returns to normal 
service if the error is ~orrected. However, if the error cannot be corrected, a failure exception 
is generated to the (N+ 1 )-layer. The failure exception indicates to the ( N+ 1 )-layer that the ( N)

layer cannot provide correct services any more. The exception handler in the (N+ 1 )-layer is called 
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to deal with the failure exception. The differentiation between interface exceptions and failure 

exceptions allows the (N+ i)-layer to discriminate a design fault in the (N+ 1 )-layerfrom a fault 

in the (N)-layer. 

The (N)-layer exception handler can receive a failure exception from the (N-1)-Iayer exception 

handler, for instance due to an unrecoverable error in the (N-1)-Iayer. The (N)-Iayer exception 

handler may be able to recover the error. However, if the ( N)-layer cannot recover the error, then 

a failure exception is generated to the (N+ 1 )-layer exception handler, etcetera. 
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Figure 3.5 Layered fault-tolerant system 

3.4 Case Studies on Faults in Hardware/Software Systems 

In literature various studies are documented on faults in hardware/software systems. We exam

ined case studies on fault-tolerant computer systems, multi-user mainframe computer systems, 

and distributed real-time systems. 

3.4.1 Fault-Tolerant Computer Systems 

In [Gra90, GR93] an analysis on failure statistics is presented for Tandem Computers systems be

tween 1985 and 1990. Tandem systems are fault-tolerant computer systems, typically consisting 

of multiple processors and discs, a few hundred terminals (e.g. automated-teller machines) and 

communication lines. The study showed a continuing increase of hardware reliability caused by 

improvements in hardware technology and fault tolerance. The growth in system complexity was 

mainly in software. The increasing software complexity, together with the reliability improve

ment of hardware, caused that in 1990 most failures were due to software faults. 
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3.4.2 Multi-User Operating System 

In [SC91] an analysis on failure statistics is presented for the mM MVS Operating System be

tween 1985 and 1989. The study describes software faults, the conditions in which the faults 

caused errors, and the subsequent failures. 

Most errors where either concurrency-related errors or overlay errors. Examples of concurrency

related errors are deadlocks, unexpected sequences of events, undefined states, and synchroniza

tion errors. Overlay errors are related to management of pointers and memory allocation. 

Most errors were due to boundary conditions, bug fixes, error recovery and timing. Examples 

of boundary conditions are unusual user input, high system workload with buffer and memory 

overflows, and changes in timing and performance characteristics due to the installation of new 

hardware. Frequently, new errors were introduced when fixing previous errors. Either the fix 

itself was incorrect, or the fix uncovered errors that were already present. Error recovery code and 

exception handlers are very difficult to test and debug, and therefore often contain latent errors. 

Timing errors are unanticipated sequences of events, like an interrupt at an inopportune moment. 

It is unfeasible to test all possible interleavings of events before the software is released. Errors in 

untested interleavings may be revealed after months or years of operational use. Although timing 

errors occur infrequently, they usually cause failures that have a high impact on the system. 

A follow-up study in [SC92] reports an analysis on failures in the MVS operating system and in 

two large database management systems running on an mM mainframe. Although the three soft

ware systems showed different error type distributions, most errors in all three software systems 

were undefined state errors. Undefined state errors arise when the system goes into an unspecified 

state due to unanticipated events. The system either misinterprets the events and moves into an 

erroneous state, or the system has no code to handle the events and ignores them. 

3.4.3 Distributed, Real':' Time Software 

In {PS93] an analysis is presented on software faults in a large distributed, real-time system of 

AT&T. About 50% of the software faults were interfacing faults, i.e. faults in the communication 

interfaces between various components. Examples of interfacing faults are: 

. • faults in protocols for interprocess communication; 

• incorrect exception handling or recovery from exceptions; 

• race conditions due to incorrect coordination of shared data; 

• violation of performance constraints such as resource access time and response time; 

• incorrect resource allocation and deallocation; 

• incorrect design and use of dynamic data structures; 

• unexpected interactions between parts of the system; 

• unexpected dependencies between parts of the system. 
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3.4.4 The Ariane 5 Failure 

The first flight of the European space rocket Ariane 5 on June 4, 1996 ended in a failure [ESA96]. 

About 35 seconds after lift off, the launcher veered off its flight path and exploded at an altitude 

of 3, 700 meter. The Ariane 5 carried four scientific satellites. 

The root cause of the failure was in the Inertial Reference System 

(SRI) which measures the attitude of the Ariane 5 and its movements 

in space. The SRI is composed of a computer that calculates angles 

and velocities based on information from an inertial platform with 

laser gyros and accelerometers. ·The data from the SRI are trans

mitted over a data bus to the On-Board Computer (OBC) which ex

ecutes the flight control program. The OBC controls the nozzles of 

the solid boosters and the main engine (see figure 3.6). The Ariane 

5 contains two SRis operating in parallel to provide fault tolerance. 

Both SRis have identical hardware and software. One SRI is the ac

tive system and the other SRI is a stand-by back-up system. If the 

OBC detects a failure in the active SRI, it immediately switches to 

the stand-by SRI. 

The Ariane 5 performed a nominal lift off and flight until H0+36 

seconds. (The point of time HO indicates initiation of the launch 

sequence and ignition of the main engine and the solid boosters; lift 

off occurs a few seconds later.) At H0+36.7 seconds, the computer 

in the back-up SRI became inoperative and about 0.05 seconds later, 

the computer in the active SRI failed for the same reason. Loss of 

the mission was now inevitable, because both SRis were inoperative 

and could no longer provide correct guidance and attitude informa

tion. 

"'I/ nozzles 

Figure 3.6 Ariane 5 

Upon its failure, the active SRI transmitted diagnostic information to the OBC. However, the OBC 

misinterpreted this diagnostic information as flight data. Due to this misinterpretation, the OBC 

concluded that a large attitude deviation had occurred. The OBC tried to correct this attitude de

viation by commanding the booster nozzles and somewhat later the main engine nozzle to full 

deflection. These extreme nozzle deflections caused the launcher to veer abruptly to an angle of 

more than 20 degrees. Subsequently at about H0+39 seconds, high aerodynamic forces caused 

disintegration by rupture of the links between the solid boosters and the core state. The Ariane 5 

initiated its self-destruction mechanism and exploded. 

The failure of the SRI computers was due to a software exception that occurred during the data 

conversion from a 64-bit floating point to a 16-bit signed integer value. The floating point value 

was too large to be represented by a 1 6-bit signed integer, which resulted in an Operand Error. The 

Operand Error triggered execution of the exception handler. The exception handler transmitted 

diagnostic information via the data bus to the OBC, stored the failure context in an EEPROM, and 

shut down the SRI processor. The design of the exception handler was based on the assumption 

that exceptions are due to hardware failures. When the OBC receives a failure indication from 
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the active SRI, it immediately switches to the back-up SRI. Obviously, this approach does not 

provide fault tolerance against design errors such as software errors, which cause that both SRis 

fail simultaneously in the same way. 

The large floating point value that caused the Operand Error, was the result of an internal align

ment function that calculates the horizontal bias (BH) related to the horizontal velocity. In the 

Ariane 5, this function computes meaningful results only before lift off, and serves no purpose 

after lift off. Nevertheless, the function was operative after lift off. The reason for this is that 

the SRI software in the Ariane 5 was re-used from the Ariane 4. The Ariane 4 requires that the 

alignment function is operative for about 40 seconds after lift off. 

When designing the SRI software, all operations that could give raise to an exception were ana

lyzed. The analysis indicated that seven variables could lead to an Operand Error during conver

sion from floating point to integer representations. Four variables required protection and extra 

software code was added. The other three variables, including the variable BH, were either phys

ically limited or there was a large safety margin. Therefore, it was decided to leaf these three vari

ables unprotected. An extra reason for not protecting these variables was the requirement that the 

maximum workload of the SRI computer should not proceed 80%. However, this analysis was 

based solely on trajectory data of Ariane 4 and was not repeated for trajectory data of Ariane 5. 
Unfortunately, the early parts of the trajectories of Ariane 4 and Ariane 5 differ considerably. The 

horizontal velocity of Ariane 5 is five times larger than for Ariane 4, which caused the Operand 

Error during conversion of the variable BH. Also during simulation and system testing, no tra

jectory data of Ariane 5 were used to verify the correct operation of the SRI software. System 

testing focused only on verifying the interfaces, while not verifying the operation of the system 

as a whole. 

3.5 Software Faults 

3.5.1 Programming Languages 

Currently, there is a large variety of software programming languages, e.g. C/C++, Ada, Java, 

Smalltalk, Pascal, Cobol, etcetera. The application domain usually imposes which programming 

language or family of programming languages to use. High-level and object-oriented program

ming languages allow rapid development of complex software. On the other hand, low-level pro

gramming languages usually provide more efficient software code regarding program size and 

execution time. For instance, in [P+96a] is reported that assembly language is still widely applied 

in embedded systems for programming microcontrollers (75% assembly language, 25% C) and 

DSPs (90% assembly language, 10% C). Although selecting an appropriate programming lan

guage is very important, there are additional requirements for obtaining high-quality software, 

such as appropriate software development tools (e.g. compilers and debuggers), extensive soft

ware testing procedures, and good skills of programmers [Spu94]. 

The high-level programming language C and its object-oriented successor C++ are currently 

widely used. The software systems described in section 3.4.2 (IBM operating system and ap

plication software) and section 3.4.3 (AT&T real-time, distributed software) were implemented 
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in the C/C++ language. C/C++ is the native language in computer systems running the Unix op

erating system. (In fact the Unix operating system itself is written in the C language.) The C/C++ 

language is also generally approved for writing 'technical' software, such as software in embed

ded, distributed or real-time systems. C/C++ language is the primary programming language in 

most hardware/software co-design projects, both in industry and in universities [MCC96]. 

There are many tools available for software development in C/C++, such as compilers, libraries 

and debuggers. Writing programs in C/C++ usually yields efficient software code regarded to pro

gram size and execution time. Nevertheless, the C/C++ language incorporates some well-known 

pitfalls. For instance, the programmer is responsible for allocating and de-allocating dynamic 

data structures in memory, for pointer management, and for providing mutual exclusive access to 

shared resources. Consequently, C/C++ is not the most suitable language for obtaining reliable 

software code. However, there are many techniques and tools for preventing and detecting errors 

in C/C++programs [Spu94]. 

Another prevalent programming language is Ada [Ada95], particularly in safety-critical applica

tion domains. Ada was originally developed for the U.S. Department of Defense, targeted towards 

reliable, real-time software. Ada is currently being used in most U.S. defense systems, but also 

in other application domains like aerospace systems (e.g. Ariane 5), telecommunication systems, 

medical systems, power plants, and railroad control systems. Ada supports concurrent tasks. Fur

thermore, Ada provides powerful error detection mechanisms, both at compile-time and at run

time, and exception handling mechanisms. 

3.5.2 Taxonomy of Software Faults 

General taxonomies of software faults are provided in [Bei90, ANS94]. The majority of soft

ware faults in these taxonomies is related to faults in software components, i.e. faults that can be 

detected by testing a software component in isolation. Interfacing faults are due to incorrect com

munication interactions between multiple components. Interfacing faults can be detected during 

integration testing, where larger and larger aggregates of components are integrated and tested. 

Proper integration testing will reveal most interfacing faults. However, some interfacing faults are 

due to very complex interactions between components in application software, system software, 

and hardware. These complex interfacing faults are system-level faults, because they can be de

tected only during system testing, where the system is tested as a whole. Examples of interfacing 

faults and system-level faults are: 

• A component tries to communicate with the wrong or a non-existing component; 

• Incorrect parameters are passed during communication; 

• Incorrect interrupt handling, for instance using an incorrect interrupt handler, or incorrect 

masking/unmasking of interrupts; 

• Incorrect communication protocols for communication with device drivers, such as incor

rect initialization, incorrect commands, or incorrect timing of commands; 

• Incorrect communication of the application software with the operating system; 
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• Faults in interprocess communication, such as faults in locking and unlocking of processes 

or resources, and faults in setting or resetting of semaphores; 

• Incorrect priorities for processes; 

• Incorrect management of shared resources; 

• Incorrect reentrance of software code; 

• Violation of response times; 

• Incorrect handling of exceptions; 

• Faults due to high system load; 

• Faults due to unanticipated sequences of events. 

3.5.3 Faults in Memory Access 

Many software faults in C/C++ programs, both in application software and system software, are 

related to corrupted memory and pointers [SC91, SC92, Dac93, Mag93, PS93, Spu94]. These 

software faults typically appear as temporary faults at run-time and often cannot be reproduced 

during debugging. Consequently, these faults are often not detected during testing, and they are 

typically revealed under exceptional conditions in the field. 

The heap is the memory area where programs can allocate and free blocks of memory at run-time 

for storage of dynamic data. In the C/C++ language, the functions 'malloc' and 'free' provide 

access to the heap. Initially, the heap memory is unallocated and uninitialized. When a program 

requires memory from the heap, it has to allocate a memory block of the appropriate size using the 

'malloc' function. Upon allocation, the program owns the memory block and may start using it. 

Obviously, a program is not allowed to read, write or free unallocated memory blocks. The con

tents of a newly allocated memory block is uninitialized, which implies that the memory block 

contains random data. Therefore, reading from an uninitialized memory block usually indicates a 

software fault. The program initializes the memory block by writing appropriate data in it. Sub

sequently, the program may read and write the memory block. If the memory block is no longer 

needed by the program, the memory block must be freed using the 'free' function. The memory 

block is now returned to the heap's pool of unallocated memory. Figure 3.7 depicts the sequences 

to allocate, write, read and free a block from the heap memory. 

Software faults related to corrupted dynamic data occur frequently, because the programmer him

self is responsible for implementing correct sequences to allocate, write, read, and free memory 

blocks. Common faults related to accessing dynamic data are reading from uninitialized mem

ory, reading and writing beyond the bounds of a memory block (e.g. reading or writing beyond 

the bounds of an array, a stack, or a buffer), reading from or writing to freed memory, and freeing 

unallocated or non-heap memory. 

Another class of software faults related to memory access are memory leaks. A memory leak is 

a memory block that cannot be accessed or freed anymore. When a memory block is allocated, a 
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Figure 3.7 Accessing heap memory blocks 
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pointer is returned that refers to the first location in the memory block. A block can be freed by 

the 'free' function, which requires as input parameter a pointer to the first location in the memory 

block. A memory leak occurs when there are no more pointers that refer to the memory block, for 

instance when the last pointer referring to the memory block is cleared or changed to a location 

outside the memory block. A potential memory leak occurs if there are pointers referring to the 

memory block, but no pointers that refer to the first location in the memory block. 

Memory leaks may cause fragmentation of the heap memory, which in turn may reduce perfor

mance. If the program section containing the memory allocation and the memory leak is executed 

repeatedly, the program may eventually run out of memory. 

Fortunately, there are powerful tools for detecting and debugging faults like memory corruption 

and memory leaks. The Purify tool [Pur94] instruments C/C++ programs to detect run-time mem

ory corruption faults and memory leaks. Purify inserts instructions into the object code at link

time. At run-time, these instructions monitor the program execution and check every read, write, 

allocation, and free of heap memory and stack memory. Purify maintains a table containing two 

bits for each byte of heap/stack memory used by the program. The first bit records whether the 

corresponding byte may be accessed, i.e. whether it has been allocated; the second bit records 

whether the byte has been initialized (see figure 3.7). 

Because of the close relation between pointers and dynamic memory access, corrupted pointers 

are often due to software faults such as memory corruption and memory leaks. Common faults 

are corrupted or dangling pointers (referring to random locations) and null pointers (uninitialized 

pointers, referring to address zero). Purify detects reading or writing through null pointers and 

reading or writing the first page of memory. Besides reporting memory corruption errors and 

memory leaks, Purify also provides watchpoints that can be configured to monitor memory ac

cesses (allocate, write, read or free) to a particular memory location. 

Despite the benefits of Purify, the tester himself is responsible for executing the right paths 

through the software. Purify uncovers faults only in software paths that are actually executed, 

and hence it does not detect faults in parts of the software that are not executed. Exhaustive soft

ware testing, in which all control-flow and data-flow paths through the software are executed, is 
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unfeasible even for very small programs. Consequently, exhaustive testing for all memory cor

ruptions and memory leaks using Purify is unfeasible. Furthermore, there are some faults that 

Purify cannot reveal, such as a wild pointer, which is a faulty pointer that coincidentally refers to 

an allocated memory location. 

3.5.4 Concurrency-Related Faults 

Another significant class of software faults is related to concurrency [SC91, SC92, Sta92, PS93]. 

Concurrency-related faults are faults in the interactions between concurrent software processes. 

Concurrency-related software faults typically manifest themselves as temporary faults. 

Concurrent software processes may be dependent or independent processes [Sta92]: 

• Independent software processes are processes that do not communicate with each other and 

that are unaware of each other. Processes in different parts of the application software may 

be performing completely unrelated tasks, and hence they are independent processes. The 

operating system however has to schedule all independent processes and provide mutual ex

clusive access to shared resources like I/0 devices. Although the processes are functionally 

independent, the timing of a process is affected by other processes. A process may have to 

wait until its request to access a shared resource is granted. Process scheduling implies in

terleaved execution of the processes on a single processor. Hence, the processor is a shared 

resource on which the processes are executed in turn. 

• Indirectly dependent processes are processes that communicate indirectly with each other 

using shared memory. These processes are indirectly aware of each other: they do not know 

each other by name but they share access to the same data. As with independent processes, 

the timing of a process is affected by other processes due to scheduling. The processes are 

also functionally dependent, because they operate on the same data. 

• Directly dependent processes are processes that communicate directly with each other using 

some form of message passing. Obviously, these processes are directly aware of each other 

and they are both functionally and time dependent. 

We can conclude from the previous that four factors affect the interactions between concurrent 

software processes: 

• Communication and synchronization protocols provide direct interaction between concur

rent software processes. Synchronization protocols are used to transfer timing or control 

information between processes; communication protocols are used to transfer data and pos

sibly timing or control information between processes. 

• Shared data allows indirect interaction between concurrent software processes that access 

the shared data. Mutual exclusive access to shared data is required, which implies that 

only one process at a time may access the shared data. The timing of a process can be af

fected, because the process may have to wait until its request for accessing the shared data 

is granted. 
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• Process scheduling is required for interleaved execution of the processes on a single pro

cessor. The timing of a process is affected, because the process must wait on its turn for 

execution, Hence, the timing of a process depends on the scheduling of all other processes. 

• Shared resources like I/0 devices require mutual exclusive access. The timing of a process 

can be affected, because the process may have to wait until access to the shared resource 

is granted. Hence, the timing of a process depends on all other processes .that also request 

mutual exclusive access to the shared resource. 

Examples of concurrency-related faults occurring in the interactions between concurrent software 

processes are: 

• Faulty communication and synchronization protocols 
Faults in the specification, design or implementation of communication and synchroniza

tion protocols may cause incorrect transfer of data or timing/control information between 

processes. An example is a faulty handshaking protocol, where the sequence of request, 

ready, and acknowledge signals is implemented incorrectly. 

• Faulty mutual exclusive access to shared data or shared resources 
Incorrect mutual exclusive access may imply that multiple processes .can access the shared 

resource simultaneously. Furthermore, requests from various processes should be sched

uled in a fair way: each access request to the shared resource from each process should 

eventually be granted. If this condition is not met, some processes may never gain access 

and will be starved. The amount of waiting time for a process should be bounded, particu

larly for real-time processes that have to satisfy timing constraints. 

• Faulty process scheduling 
Process scheduling implies suspending and resuming process execution and context switch

ing. Processes should be scheduled in a fair way to avoid starvation. Furthermore, sufficient 

processing time should be assigned to each process to avoid violation of performance and 

timing constraints. 

• Deadlock 
Deadlock implies circular waiting among multiple processes in such a way that no process 

can make any progress. For instance, if process A is waiting for a message from process B, 

while process B is waiting for a message from process A, neither process A nor process B 

can proceed. Deadlocks often occur due to incorrect scheduling of shared resources. For 

instance, if process A is granted access to shared resource P and subsequently requests ac

cess to shared resource Q, while process B is granted access to shared resource Q and subse

quently requests access to shared resource P, neither process A nor process B can proceed. 

• Race conditions 
Race conditions are faults that depend on the relative timing between processes. For in

stance, in figure 3.8 is shown how process A reads data, transforms the data, and writes 

data back into a shared memory. Between the read and write access of process A, process B 

writes data into the shared memory. Hence, process A overwrites the data written by process 

B. 



68 

This race condition can be avoided by changing the relative timing of the processes. The 

fault in figure 3.8 occurs because process A accesses the shared memory before process 

B. The fault may not occur when the processes are scheduled in a different way, i.e. when 

process B accesses the shared memory before process A as shown in figure 3.9. Different 

process scheduling may be due to different timing of external events or non-determinism 

in the scheduling algorithm. 

In preemptive multitasking systems, a process can be preempted while it is updating a 

shared data structure, and the preempting process may access and modify the data. When 

the preempted process resumes its execution, it will find a modified, inconsistent data struc

ture. A common error in assembly language is that a register or memory location is written, 

for instance by an interrupt service routine, without saving and restoring its original con

tents. 

Process A 
Request Access Read Release 
Access Granted Data Access 

Request Access Write Release 
Access Granted Data Access 

Proc~B ~--~~--------~--------~----------~f------- Request 
Access 

Access Write Release 
Granted Data Access 

Figure 3.8 Race condition 

ProcessA ~---+----------.--.-..ar---1----1_. .... _. ___ 
Request Access Read Release Request Access Write Release 
Access Granted Data Access Access Granted Data Access 

Proc~B r-~----.-EBIBBB--------------------------------
Request Access Write Release 

time 

Access Granted Data Access 
L-~~~~~~~~~~-------------------------------1-. tlme 

Figure 3.9 Avoiding race condition by different scheduling 

• Interrupt handling 
The arrival of an interrupt causes that an interrupt handler is started, which interferes in 

the execution of other processes. Consequently, interrupts affects the timing of processes. 

Figure 3.10 shows an example of a concurrency-related software fault due to an interrupt. 

In the first situation, the interrupt interferes in the process scheduling but does not introduce 

a fault. In the second situation, the interrupt occurs slightly earlier and causes process B to 

miss its deadline. 

It is extremely difficult to verify the absence of concurrency-related software faults by means of 

simulation or testing. The difficulty resides in the large number of possible sequences of events 

and the large number of possible interleavings of the different processes. For instance, a subtle 

fault in the software part providing mutual exclusive access to shared data, may remain dormant 

in most sequences of events or in most interleavings of processes. The fault may cause an error 

only in some exceptional sequences of events or interleaving of processes. It is usually impossi

ble to simulate or test exhaustively all possible sequences of events or inter leavings of processes. 
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Figure 3.10 Violating timing constraints due to interrupt 
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Furthermore, it may be very difficult to provoke a particular interleaving, because one cannot con

trol directly the order in which processes are scheduled. Process scheduling is often performed 

non-deterministically, which causes that the interleaving of processes may differ every time the 

software is executed. Consequently, it is generally impossible to reproduce an error, and therefore 

concurrency-related software faults often manifest themselves as temporary faults. 

Real-time, reactive systems respond to events occurring in the system environment. The timing 

of events affects the behavior of the system. Some dormant, concurrency-related software faults 

may only be triggered in some exceptional conditions with extraordinary timing of events. 

Concurrency-related and timing-dependent faults may remain dormant forever, because some se

quences of events or interleavings of processes can never occur, even under exceptional condi

tions. However, when the hardware is changed, for instance when upgrading the system to a pro

cessor offering higher performance, or when porting application software to another operating 

system and hardware platform, the impossible sequences or interleavings may become possible. 

Consequently, real-time software that behaved correctly under all circumstances may suddenly 

fail. 

3.6 Hardware Faults 

Hardware faults are physical hardware defects that can be introduced during manufacturing or 

field operation. The manufacturing of hardware such as ICs or PCBs, is a complicated techno

logical process. Although high yields can be obtained, they are never I 00% and hence some hard

ware components will contain manufacturing defects. Common manufacturing defects on PCBs 

are interconnection defects such as opens and bridging faults. Typical manufacturing defects on 

VLSI ICs are interconnection defects such as opens and bridges and transistor defects such as 

short and open transistors. 

Production testing is required to detect the physical hardware defects in lCs and PCBs that are 

introduced in the manufacturing process. Production testing can be considered as a filter, where 

the defect components are filtered out [Ben94b]. Production testing typically is structural testing, 

which means that the test stimuli focus on testing the physical structure instead of the functional 

behavior. 
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During field operation, hardware faults can be introduced due to wear out because hardware com

ponents have a finite life time. Hardware faults may also be due to physical effects, such as phys

ical damage, deformations, high voltages, high temperatures, vibrations, humidity, radiation, or 

electromagnetic interference. Wear out of hardware always causes permanent hardware faults, 

while physical effects may cause either permanent or temporary faults. 

We defined hardware faults as physical hardware defects, occurring during manufacturing or field 

operation. Hence, the phenomenological causes of hardware faults are physical faults, and not 

human-made design faults (see section 3.3.2.1 on fault origin). 

Obviously, design faults during the specification or design of hardware also result in incorrect 

hardware. Complex VLSI hardware circuits are typically specified and designed using hardware 

description languages such as VHDL and Verilog. Describing hardware in a hardware descrip

tion language is to a certain extent comparable to writing software code in a software program

ming language. Consequently, programming faults in hardware descriptions are likely to occur. 

As for software described in the previous section, many faults in hardware components can be 

detected by simulating or testing a hardware component in isolation. However, the increasing 

complexity of hardware components makes exhaustive simulation and testing of hardware com

ponents impossible. A notorious example of a hardware design fault that was only uncovered in 

the field, is the fault in the floating-point division algorithm of the Intel Pentium microprocessor 

[SB94, Pra95]. 

Physical faults and design faults in hardware are often correlated, particularly in the case of para

metric hardware faults. Parametric faults are dormant faults that only become active during fluc

tuations in parameters such as temperature, voltage, current, humidity, etcetera. Parametric faults 

are due to marginal hardware design with small tolerance margins for parameter fluctuations: 

a slight variation in a parameter value causes a small alteration in hardware timing that is still 

sufficient to cause an error. 

Interfacing faults are an important class of hardware faults. In [Bou90, Sch93a] is reported that 

although 90% of ASIC prototypes pass component testing, 50% fail during integration testing 

due to interfacing faults with other hardware and/or software components. Interfacing faults can 

be detected when simulating or testing larger aggregates of hardware and software components. 

Complex interfacing faults, which we will call system-level faults, can only be uncovered when 

simulating or testing the system as a whole, incorporating all hardware and software components. 

Interfacing faults and system-level faults are due to design faults in hardware and/or software. 

Faulty communication and synchronization protocols, faulty mutual exclusion, deadlocks, and 

race conditions are design faults that can occur in software as well as in hardware. 

3. 7 Fault Models 

The ultimate goal of testing is to uncover all faults, both physical hardware faults and hard

ware/software design faults, with minimal effort. Testing implies offering test stimuli to the sys

tem and observing and evaluating the responses of the system. However, exhaustive testing of 

hardware/software systems is unfeasible, because of the extremely large number of test cases. 
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For instance, exhaustive testing of an ASIC (combinational logic) with 100 inputs requires 2100 

test cases and would take 4 x 1014 years using a 100 MHz tester! Hence, in practice only a lim~ 

ited number of t~st cases can be applied. It is very important to select a set of test cases that will 

uncover as many faults as possible. In general, there are two approaches for deriving, test cases: 

• Test cases can be derived from a description of the hardware/software system, at any level of 

abstraction. However, this approach implies an implicit fault model and exhaustive testing: 

the test cases should detect all possible faults. 

• Test cases can be derived using a specific, explicit fault model. Test cases are generated 

to detect the faults defined in the fault model. This approach produces a limited set of test 

cases. Furthermore, it is possible to measure the fault coverage. Using an explicit fault 

model provides that there is a finite number of faults that can be enumerated. The fault 

coverage is defined as the ratio of faults that can be uncovered using the generated test cases. 

Explicit fault models are commonly used for deriving test cases, both in hardware and in software. 

Creating an appropriate explicit fault model is impeded by the large number and the complexity 

of physical hardware faults and hardware/software design faults. Therefore, explicit fault models 

often describe faults at a higher level of abstraction. Many faults on lower abstraction levels cause 

the same effect, and may therefore be modeled by the same fault at a higher level of abstraction. 

However, this approach implies a trade-offbetween accuracy and ease of modeling [B+92a]. 

3.7.1 Hardware Fault Models 

Typical manufacturing defects in VLSI MOS technology are spots of extra or missing conducting 

or semiconducting material, spots of extra or missing insulating material, and parasitic devices 

[BA82, MA80, Mal87]. These defects typically result in faulty transistors (shorts and opens) and 

faulty interconnections (shorts, opens, bridges). There is no single fault model that can possibly 

cover all physical hardware defects. Instead, logical fault models are used to represent the effect of 

physical faults on the behavior of the modeled hardware circuit [ABF90]. Many different physical 

faults may be modeled by the same logical fault. Furthermore, logical faults may be applicable to 

many technologies like MOS or bipolar technologies. Finally, logical fault models may be used 

to model physical faults whose effects are not completely understood yet. The logical hardware 

fault models can be classified into structural fault models and functional fault models. 

3. 7 .1.1 Structural Fault Models 

Structural fault models are related to structural hardware models, i.e. models that describe the 

hardware structure in terms of hardware components and their interconnections. A simple struc

tural model describes a hardware circuit as a network of logic gates and their interconnections. In 

general, a structural fault model assumes that the components are fault -free and that faults only re

side in the interconnections between the components. Typical structural faults are shorts (stuck-at 

one), opens (stuck-at zero) and bridging faults. 

The classical structural fault model for digital hardware circuits is the single stuck-at fault model. 

The stuck-at fault model is based on the assumption that physical faults in gates and interconnec

tions can be modeled as stuck-at-zero faults or stuck-at-one faults on the input and output lines 
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of logic gates. Although it has been demonstrated that the stuck-at fault model cannot accurately 

model faults in MOS technologies [BA82, Mal87, MA80], the stuck -at fault model is still widely 

used. Practical experiences show that test vectors derived using the stuck-at fault model, can de

tect most physical faults, achieving q'uality levels of about 200 ppm. (A quality level of 200 ppm 

indicates that 200 parts per million, i.e. 0.02%, are faulty.) The main advantage of the single stuck

at fault model is that the number of stuck-at faults in a circuit is small when compared to other 

fault models. Consequently, the single stuck-at fault model is the only structural fault model that 

allows computationally efficient test case generation. 

The multiple stuck-at fault model is an extension ofthe single stuck-at fault model, in which mul

tiple stuck-at faults are modeled simultaneously. However, usually the number of multiple faults 

is too large for practical use. 

The quality level during production testing of CMOS circuits can be improved further up to ap

proximately I 0 ppm by using lddq testing. lddq is the IEEE symbol for the quiescent power supply 

current in MOS circuits. In CMOS circuits, the transistors are arranged in such a way that the lddq 

current is very small, typically in the order of micro or nano-amperes. Most defects cause an el

evation in lddq• and hence defects can be detected by measuring lddq· 

3.7.1.2 Functional Fault Models 

Functional faults are related to functional hardware models, i.e. models that describe the func

tional behavior rather than the hardware structure. Functional hardware models are independent 

of the hardware implementation technology. Examples of functional faults are changes in Kar

naugh diagrams or truth tables, and design faults in RTL descriptions. Functional fault models 

can model both physical hardware faults and design faults. 

Functional fault models aim at reducing the complexity of test case generation by modeling faults 

at higher levels of abstraction. Functional faults can represent the effect of multiple physical 

faults. Inevitably, this is only possible at the expense of accuracy. 

A functional fault model for microprocessors has been proposed in [TA80]. A functional model 

of a microprocessor is created by capturing the register architecture and the instruction set into a 

graph. Every user-accessible register is represented by a node in the graph. Two additional nodes, 

IN and OUT, denote the connections between the microprocessor and the external world. Directed 

edges between nodes indicate that a particular instruction transfers information from one node to 

the other node. This functional fault model incorporates faults in register decoding, instruction 

decoding, instruction sequencing, data storage, data transfer, and data manipulation. 

The challenge in functional fault models is to develop accurate models that represent realistic 

physical faults. Often, heuristic or ad hoc methods are used for functional testing, in which there 

is no well-defined fault model: functional testing simply attempts to exercise the fault-free behav

ior of each system function. The major problem of heuristic methods is that the quality and fault 

coverage is unknown. Experience shows that functional testing of hardware typically detects 50 

to 70 percent of the physical faults that are revealed by structural testing [ABF90]. 
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The system specification is usually organized in a hierarchical manner. At the highest level, the 

system is composed of several components. Each component is described into more detail at the 

lower levels. A hierarchical, functional fault model may be established corresponding to the hi

erarchical system specification. For instance, faults in the interconnections between components 

can be modeled at each level of abstraction. Each component is decomposed into subcomponents 

at lower levels, and hence faults in the interconnections between these subcomponents model in

ternal faults in the component. 

An explicit, hierarchical, functional fault model is proposed in [CCP93b, CCMP94]. A system 

is modeled as a set of parallel processes that communicate over channels. The processes are de

scribed in process algebra. The fault model assumes that the processes themselves are fault free, 

and that faults reside only in the communication channels. A fault in a channel is modeled by 

introducing a new process that models the effect of the fault For instance, in figure 3.11 a system 

is modeled consisting of the processes A and B that communicate over a channel. A fault in the 

channel is modeled by introducing an extra process Fault. 

process I f process I A B 

., I H process 
Fault 

process 
A B 

Figure3.11 Functional fault model ([CCP93b]) 

The process Fault can model various faults, for instance: 

• The process Fault may model faults in a single channel (shown in figure 3.11), such as loss 

of a message on the channel or a spurious message. In more complex cases, the process 

Fault can model faults in multiple channels, such as crosstalk between two channels. 

• The process Fault may model a permanent fault, a transient fault, or an intermittent fault. 

• The process Fault may model memoryless faults, whose behavior does not dependent on 

the past sequence of messages on the channel, or triggered faults that only occur after a 

given sequence of messages. 

Test pattern generation is performed by checking weak bisimulation equivalence between the 

original, fault-free description and the description including the Fault process. 1 Although this 

approach provides a general functional fault model, there are severe restrictions that limit practi

cal use. Checking bisimulation equivalence between process algebra descriptions is only possible 

for rather small systems, due to state space explosion caused by the parallel composition of pro

cesses. Furthermore, the fault universe is very large, because the process Fault can model any 

fault effect. It is unfeasible to model and bisimulate all possible functional faults. 

will show in chapter 5 (page 136) that the approach in [CCP93b] is incorrect. Inserting a Fault process in 

general causes that the two descriptions are not weak bisimulation equivalent, regardless of the behavior of the Fault 

process. 
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3.7 .2 Software Fault Models 

There is a very large number of different types of software faults, which makes it very hard to 

define explicit fault models for software. Therefore, implicit fault models are used which typi

cally assume that faults reside in control-flow or data-flow paths. Path testing is a structural testing 

technique, based on exercising the control-flow and data-flow paths in the software code. Unfor

tunately, the number of paths increases rapidly with increasing size of the software code. This 

causes that path testing is only applicable for testing small software components or aggregates of 

components. Nonetheless, path testing techniques can reveal approximately 65% of all software 

faults during component testing [Bei90]. 

The fault assumption in path testing is that faults reside in control-flow paths and data-flow paths. 

During software testing, a fault will cause that the traversed path differs from the intended path. 

Control-flow paths describe the control structure of the software, typically in terms of conditional 

or unconditional branches, loops, if-then-else constructs, etcetera. Data-flow paths describe how 

data objects in the software are defined and used in predicates and computations. 

There are various path testing techniques based on control-flow and data-flow paths [Bei90]: 

• Statement testing (P1) is a form of testing control-flow paths in which every statement in 

the software code is executed at least once. Statement testing is the weakest form of path 

testing. 

• Branch testing (P2) is another form of testing control-flow paths in which every branch al

ternative in the software code is executed at least once. Branch testing is a stronger form 

of path testing. In fact, branch testing includes statement testing. 

• In complete-path testing (P00), all possible control-flow and data-flow paths through the 

software code are executed. Complete-path testing, which implies 100% coverage of all 

control-flow and data-flow paths, is generally impossible to achieve. 

The notation P 1, P2, ••• , P oo indicates that there is an infinite number of path-testing strategies 

stronger than branch testing and weaker than complete-path testing. A I 00% coverage of branch 

testing or statement testing is a minimal requirement in software component testing. Additional 

paths should cover extreme cases for loops and nested loops, such as executing a loop zero times, 

once, twice, one less than the maximum number of times, and the maximum number of times. 

The gap between complete-path testing and branch testing can be filled by testing data-flow paths. 

Data-flow testing is based on selecting control-flow paths through the software code in which se

quences of operations on data objects are performed. Operations on data objects can be classified 

into: 

• Define (d), create, or initialize a data object; 

• Kill (k), undefine, or release a data object; 

• Use (u) a data object either in a computation (c) or a predicate (p ). 



3. 7 Fault Models 75 

There are various data-flow path testing strategies. They differ in the sequences of operations that 

are performed on data objects on the traversed data-flow paths. Common data-flow path testing 

strategies are testing all-du paths, all-u paths, all-p/some-c paths, all- p paths, all -c/some-p paths, 

ail-e paths, and all-d paths [Bei90]. Formal proofs of the relations between these data-flow testing 

strategies and control-flow testing strategies are provided in [RW85, FW88]. 

3.7.3 FSM-Based Fault Models 

Fault models based on Finite-State Machine (FSM) descriptions have been extensively used in 

conformance testing of communication protocols [Hol91, Sar93]. The FSM model is an excellent 

technique for specifying communication protocols. A FSM is a 6-tuple (S, I, 0, s0 , l3, A}, where: 

• S is the finite set of states; 

• I is the finite set of input symbols; 

• 0 is the finite set of output symbols; 

• s0 E S is the initial state; 

• l3 is the state transition function, l3 : S x I -+ S; 

• A is the output function, A : S x I -+ 0. 

Fault models in FSM descriptions typically model output faults and state transition faults, as 

shown in figure 3.12. An output fault indicates that on a state transition, a faulty output is pro

duced that differs from the expected output as specified in the output function. A state transition 

fault indicates that either a state transition is missing, or that a state transition transfers to a faulty 

new state that differs from the expected new state as specified in the transition function. The faulty 

new state can be an element of the state set S, or the state can be an additional state that is not an 

element of the state set S. 

a) Correct FSM 
A.(5o,a) = p 
8(so,a) = s1 

b) Output fault 
A.'(so,a) = q 

c) Transition faults 
6'(5o,a) = 52 

6'{51,b) =53 
o'(S2,C) =? 

Figure 3.12 FSM output faults and state transition faults 

A number of methods has been proposed in literature for generating test suites from a FSM de

scription to detect output faults and transition faults. The test methods are based on black-box 
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testing: input sequences are applied to the FSM, and the output sequences are observed and eval

uated. Common methods for test suite generation from FSM descriptions are the unique-input

output (UIO) method [SD88], the transition tour method [NT81], the distinguishing sequence 

method [Gon70], the UIOv method [VCI90], theW-method [Cho78] and the Wp-method [F+9t]. 

These methods are computationally intensive, and are restricted to FSMs with moderate num

bers of states and state transitions. Furthermore, these methods detect output faults and transition 

faults, assuming that there are no state transitions to additional states that are not elements of the 

state set S. The length of the test suite and the costs for test suite generation generally increase 

exponentially with the number of additional states. 

3.8 Discussion 

In this chapter we explored in depth the architecture, communication interfaces, dependability as

pects, and faults in hardware/software systems. The exploration of these topics yields a thorough 

understanding of hardware/software systems, which is a prerequisite when considering integra

tion testing and system testing. We summarize and discuss our findings in this section. 

Hardware/software architecture 
We introduced a general model for hardware/software architecture, consisting of application soft

ware, system software, a hardware nucleus, and application-specific hardware. The system soft

ware is composed of an operating system, that constitutes the interface between the application 

software and the hardware. The system software provides a high-level interface for the applica

tion software to the hardware. The application software typically consists of concurrent, coop

erating software processes, scheduled at run-time by the system software. The hardware nucleus 

provides one or more processors for executing the application software and the system software, 

and memory for storing the binary software code. The application-specific hardware comprises 

hardware components such as ASICs and FPGAs. 

Communication interfaces 
The communication between the application software, the system software, the hardware nu

cleus, and the application-specific hardware takes place at various communication interfaces. We 

identified nine communication interfaces in hardware/software systems. Four interfaces are con

cerned with internal communications inside the application software, the system software, the 

hardware nucleus, and the application-specific hardware. Two interfaces deal with communica

tion between the system and the external environment. The remaining three interfaces are con

cerned with communication between the application software and the system software (API), 

communication between the system software and the hardware nucleus, and communication be

tween the hardware nucleus and the application-specific hardware. We argued that integration 

testing and system testing should primarily focus on verifying these communication interfaces. 

Dependability of hardware/software systems 
We provided an overview of dependability aspects in hardware/software systems. Dependabil

ity is a generic term implying reliability, availability, safety and security. Dependability in hard

ware/software systems is achieved by fault avoidance, fault removal, and fault tolerance. 

• Fault avoidance is concerned with preventing the occurrence or introduction of faults. Fault 
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avoidance is accomplished by selecting appropriate design methodologies and reliable im

plementation technologies. 

• Fault removal is concerned with reducing the number of faults present in the system. Fault 

removal is accomplished by verification activities such as verification, (co-)simulation, and 

testing, which all aim at checking the correctness of the system and uncovering faults. 

When verification reveals the presence of an error, debugging is required to diagnose the 

fault that effected the error. 

• Fault tolerance is concerned with providing correct operation of the system in spite of faults. 

Traditional fault-tolerance strategies typically incorporate redundancy in hardware or in 

time. These traditional fault-tolerance strategies are effective for dealing with physical 

hardware faults, but not for hardware/software design faults, as became evident once again 

by the Ariane 5 failure. Fault tolerance against design faults should be provided by modular 

decomposition and design diversity. 

Fault, error, and failure 
The notion of fault, error and failure is used to indicate cause-effect relations and to indicate how 

an impairment evolves in time. A fault is the root cause of an impairment in a system. A fault 

may affect the system behavior, resulting in an error. A failure occurs when the user notices that 

the system behavior no longer complies with the system specification. The system behavior may 

be functionally incorrect or the timing may be impaired. A fault is either dormant or active, and 

an error is either latent or detected. 

The fault origin can reside either inside the system (internal fault) or outside the system (external 

fault). The phenomenological cause of a fault is either a physical phenomenon (physical fault) 

or human imperfection (human-made fault). Furthermore, a fault is either a permanent fault or a 

temporary fault. 

Permanent faults are irreversible, such as permanent hardware faults or hardware/software design 

faults. A temporary hardware fault is either a transient fault, which is an external fault originating 

from disturbances in the physical environment, or an intermittent fault, which is an internal fault 

resulting from the presence of rarely occurring combinations of conditions. Although software 

faults are design faults and therefore permanent faults, they can be experienced as temporary faults 

('Heisenbugs'). · 

Faults in hardware/software systems 

We argued that most design faults in hardware and software can be detected by testing hardware 

and software components in isolation. The remaining design faults are interfacing faults, that are 

due to incorrect communication interactions between multiple components. Interfacing faults can 

be detected during integration testing, where larger and larger aggregates of components are in

tegrated and tested. Proper integration testing will reveal most interfacing faults. However, some 

interfacing faults are due to very complex interactions between components in application soft: 

ware, system software, and hardware. These complex interfacing faults are called system-level 

faults, because they can be detected only during system testing, where the system is tested as a 

whole. 
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Software interfacing faults 
We showed that many software interfacing faults are related to concurrency and memory access. 

These software faults typically appear as temporary faults at run-time and often cannot be repro

duced during debugging. Consequently, these faults are often not detected during testing, and 

they are typically revealed under exceptional conditions in the field. 

Software faults related to memory access are faults in dynamic memory management, pointer 

management, and memory leaks. There are powerful tools for detecting and debugging these 

kinds of faults at run-time by instrumenting the software code. However, these tools reveal faults 

only in software paths that are actually executed. In general, exhaustive software testing in which 

all possible paths are traversed, is impossible to achieve. 

Concurrency-related software faults are faults in the interactions between concurrent software 

processes. We demonstrated that concurrent software processes may be independent processes 

(processes that do not communicate with each other), indirectly dependent processes (processes 

that communicate indirectly with each other using shared memory), or directly dependent pro

cesses (processes that communicate directly with each other using some form of message pass

ing). The interactions between concurrent software processes is affected by communication and 

synchronization protocols, shared data, process scheduling, and shared hardware resources. Typ

ical concurrency-related software faults are faulty communication and synchronization protocols, 

faulty mutual exclusive access to shared data or shared resources, faulty process scheduling, dead

locks, race conditions, and faulty interrupt handling. 

We argued that it is extremely difficult to show the absence of concurrency-related software faults 

by means of testing. Exhaustive testing is unfeasible due to the large number of possible se

quences of events and interleavings of processes. Furthermore, it may be very difficult to pro

voke a particular interleaving, because one cannot control directly the non-determinism in pro

cess scheduling. The timing and sequences of events affects the behavior of the system. Some 

software faults may only be triggered in some exceptional conditions with extraordinary timing 

of events. Furthermore, timing dependencies and non-determinism make it usually impossible to 

reproduce an error during debugging. 

Hardware interfacing faults 
Hardware faults are physical hardware defects that can be introduced during manufacturing or 

field operation. An important class of hardware design faults are interfacing faults. In [Bou90, 

Sch93a] is reported that although 90% of ASIC prototypes pass component testing, 50% fail dur

ing integration testing due to interfacing faults with other hardware and/or software components. 

Examples of hardware interfacing faults are faulty communication and synchronization protocols, 

faulty mutual exclusion, race conditions, and deadlocks. 

Fault models 
The ultimate goal of testing is to uncover all faults, both physical hardware faults and hard

ware/software design faults, with minimal effort. Testing implies offering test stimuli to the sys

tem and observing and evaluating the responses of the system. However, exhaustive testing of 

hardware/software systems is generally unfeasible, because of the extremely large number of test 

cases. Test cases can be derived using specific, explicit fault models. Fault models are widely used 
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in hardware testing (stuck-at fault model and functional fault models), software testing (faults 

in control-flow paths and data-flow paths), and conformance testing of communication protocols 

(output faults and state transition faults in FSM models). Fault models are very effective for de

riving test cases in component testing. However, we showed that the current fault models fall 

short in integration testing and system testing. There are no effective, logical fault models yet for 

modeling interfacing faults and system-level faults. The large number of interfacing faults and 

system-level faults prohibits computationally efficient test case generation. 

Integration testing and system testing 

. The most important conclusion of this chapter is that integration testing and system testing should 

primarily focus on testing the interfaces between hardware and software components in the sys

tem. Integration testing aims at detecting local interfacing faults between a limited number of 

hardware and software components. System testing aims at revealing system-level faults, which 

are faults that are due to complex interactions between many hardware and software components. 

Integration testing and system testing are both essential parts for checking that the system imple

mentation behaves conform the system specification. The Ariane 5 failure clearly demonstrated 

that both integration testing and system testing are required, and that selecting appropriate test 

cases is a prerequisite. 

The goal of this thesis is to develop design-for-test and design-for-debug techniques that support 

and improve integration testing, system testing and debugging. In the previous chapter, we al

ready showed the necessity for design-for-test and design-for-debug. In this chapter, we showed 

that system-level testing and debugging is concerned primarily with interfacing faults. Hence, 

design-for-test and design-for-debug should provide means to deal with interfacing faults. 

3.9 Summary 

In this chapter we introduced a generic architectural model for hardware/software systems, con

sisting of application software, system software, hardware nucleus, application-specific hard- · 

ware, and communication interfaces. We argued that integration testing and system testing should 

primarily focus on verifying the communication interfaces in our architectural model. However, 

we also argued that exhaustive testing for interfacing faults and system-level faults is unfeasible 

due to the large number of possible sequences of events, the interleaved execution of processes, 

timing dependencies and non-determinism. 

We classified faults considering fault origin and fault persistence, and we introduced the notions 

of fault, error and failure to reason about cause-effect relations. We showed that there are no effec

tive, logical fault models yet for modeling interfacing faults and system-level faults. We argued 

that many interfacing faults and system-level faults in hardware and software are related to concur

rency. We classified these faults into faulty communication and synchronization protocols, faulty 

mutual exclusive access to shared data or shared resources, faulty process scheduling, deadlocks, 

race conditions, and faulty interrupt handling. These faults typically appear as temporary faults 

at run-time, and they often cannot be reproduced during debugging. 

The main conclusion of this chapter is that our method towards design for test & debug should 
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primarily aim at detecting faults in communication interfaces. 
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In this chapter we present our approach to design for test & debug in hardware/software systems. 

The term 'design for test & debug' indicates that we address both design-for-test and design-for

debug simultaneously. We discuss the basic principles of our design for test & debug approach 

and we show how this approach affects the design of hardware/software systems. We elaborate 

on the concept of Point of Control and Observation ( PCO ), which forms the key element of our 

approach. We demonstrate the benefits of PCOs for improving system-level testing and debug

ging. 

81 
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4.1 Introduction 

In chapter 2 we reviewed the state-of -the-art on hardware/software co-design. We concluded that 

hardware/software co-design methods offer considerable improvements over traditional design 

methods. However, we also concluded that hardware/software integration testing, system testing, 

and debugging are still very troublesome, which is mainly due to the limited visibility into the in

ternal operation of the system. The current hardware/software co-design methods do not consider 

or support testing and debugging of hardware/software systems. We argued that design-for-test 

and design-for-debug techniques for system-level testing and debugging should be integral ele

ments of hardware/software co-design. 

In chapter 3 we examined faults in hardware/software systems. We concluded that the primary 

aim of integration testing and system testing is to detect interfacing faults. Interfacing faults are 

due to incorrect communication interactions between multiple hardware and/or software compo

nents. These interfacing faults can hardly be detected by testing hardware and software compo

nents in isolation. Therefore, they should be revealed during integration testing, when larger and 

larger aggregates of components are integrated and tested. Some interfacing faults are due to very 

complex interactions between components in the application software, the system software, the 

hardware nucleus, and the application-specific hardware. These complex, system-level interfac

ing faults should be detected during system testing, when the system is tested as a whole. 

We showed in chapter 3 that interfacing faults in software are generally related to concurrency 

and memory access. We also showed that a significant amount of interfacing faults are hardware 

design faults. Typical .interfacing faults are faulty communication and synchronization protocols, 

faulty mutual exclusive access to shared data or shared resources, faulty process scheduling, dead

locks, race conditions, and faulty interrupt handling. 

We illustrated that hardware/software integration testing, system testing, and debugging are very 

troublesome. Exhaustive testing is unfeasible due to the large number of possible sequences of 

events and the unpredictable timing of events in the system environment. Hardware/software sys

tems often incorporate non-deterministic behavior due to the interleaved execution of software 

processes. Timing dependencies and non-determinism make it usually impossible to reproduce 

an error during debugging. Testing and debugging a system through its external interfaces does 

usually not provide sufficient control and observation of the internal system operation. 

In this chapter we present our approach to design for test & debug (i.e. design-for-test and design

for-debug) in hardware/software systems to deal with the problems of integration testing, system 

testing and debugging. We first introduce the basic principles on which our approach is based. 

Next, we describe our approach in detail. Our initial ideas on design for test & debug were pub

lished in [VSSvR94, Vra94, VWvW96], while more recent work is published in [VSS96, VSS97]. 

4.2 Basic Principles 

In our opinion, integration testing, system testing and debugging of hardware/software systems 

can be improved by considering the following three basic principles. 
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Basic Principle I 

Design for test & debug is required to improve integration testing, 

system testing and debugging of hardware/software systems. 
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Integration testing, system testing and debugging are impeded by the limited visibility into the in

ternal system operation.· The external system interfaces provide insufficient observation and con

trol of the hardware and software components inside the system and their interactions. The visi

bility can be improved by using test & debug equipment to collect additional information about 

the internal system operation. Test & debug equipment typically consists of a logic analyzer, an 

oscilloscope and measurement equipment that are connected by probes to hardware buses and 

wires in the system. Although test & debug equipment can provide very detailed and accurate 

measurement, there are severe restrictions. Using test & debug equipment requires the probing 

of hardware buses and wires. However, it is generally unfeasible to connect probes to the internal 

circuitry of an IC. Unfortunately, the current trend in hardware/software systems is to integrate 

more and more functions on a single chip: yesterday's systems are today's chips. The increasing 

complexity of ICs and the inability to probe the internal IC circuitry seriously impede the use of 

traditional test & debug equipment. 

Probes can be connected to off-chip buses and wires. However, monitoring the external buses and 

wires will not easily resolve an IC's internal operation and state. For instance, modern micropro

cessors incorporate architectural features such as pipelining (parallel fetch, decode and execution 

of instructions), superscalar architectures (parallel execution of instructions, using techniques like 

. out-of-order execution, branch prediction and speculative execution), caches (both for program 

instructions and data storage) and DMA. These architectural features make it very difficult to de

termine the microprocessor's internal state and operation. 

In addition, probes connected to buses and wires will collect huge amounts of low-level data. 

Storing, processing and analyzing the data requires large memories and powerful data processing 

systems. It is very difficult to obtain high-level information about the activities of the operating 

system and application software processes by monitoring low-level data on hardware buses and 

wires. Nevertheless, modem test & debug equipment provides very sophisticated test & debug 

tools, in which hardware equipment (probes, logic analyzer, oscilloscope) is linked to software 

tools running on a workstation. The software tools offer user interfaces to control the hardware 

equipment, storage of measured data, data analysis, data visualization, and symbolic debugging. 

Visibility into microprocessor operation can be improved by using an in-circuit emulator. The 

target processor is removed from the system and the in-circuit emulator is plugged into the same 

socket. The in-circuit emulator acts identical to the target processor, but the processor's registers 

can be observed and controlled. Although an in-circuit emulator considerably improves visibility 

into a microprocessor, the obtained data is still of a low level. Furthermore, the target processor 

has to be replaced by the in-circuit emulator, and observation and control is achieved by stealing 

processor cycles. This causes interference in the real-time behavior of the system. 
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Software is typically developed on a host system, e.g. a workstation, that offers powerful soft

ware development tools, such as compilers, assemblers, testing tools, debuggers and simulators. 

Testing and debugging on a host system is very useful for software components and aggregates 

of software components. However, the real-time software behavior and the interaction with the 

hardware components cannot be verified until the software is integrated into the target system. 

Unfortunately, the target system provides no software development tools, and visibility into the 

software operation can only be achieved using test & debug equipment such as an in-circuit em

ulator. Hence, testing and debugging software in a target system is very difficult. 

The bottom line is that traditional test & debug equipment and traditional test & debug approaches 

are inadequate for hardware/software integration testing, system testing and debugging. The only 

way to achieve adequate visibility into the system's internals is by designing-in test and debug 

features into the hardware and/or software. Hence, design for test & debug (i.e. design-for-test 

and design-for-debug) is required to improve integration testing, system testing, and debugging 

of hardware/software systems. 

Basic Principle 2 

Design for test & debug should provide visibility into communication interfaces 

and into state information of software processes and hardware components. 

The focus of integration testing and system testing is on verifying the communication interac

tions between hardware and software components in the system. System debugging is mainly 

concerned with diagnosis of interfacing faults. Design for test & debug should therefore concen

trate on providing visibility of the communication interfaces in the system. Furthermore, testing 

and debugging is considerably improved when visibility is provided into the state information of 

software processes and hardware components. 

Figure 4.1 illustrates the basic concept of design for test & debug on the process level. A process 

generally consists of operations and data. The operations process input events, transform the data, 

and generate output events. This general view on a process is applicable to both hardware and 

software. 

• In hardware, a process is implemented as a hardware module that typically consists of com

binational logic which performs operations on data stored in elements such as flipflops, reg

isters, or memory. 

• In software, a process can be an object in an object-oriented programming language. The 

object consists of methods that perform operations on variables and data structures. In tradi

tional programming languages, a process with a single thread of control is implemented as 

a set of functions that perform operations on local and global variables and data structures. 
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Input Output 

Test&Debug 

Figure 4.1 Process-level design for test & debug 

Design for test & debug on the process level as shown in figure4.1 implies that the communication 

interfaces and the state information ofthe process are visible to an external tester/debugger. This 

is achieved by probing the inputs and outputs of the process (the communication interfaces) and 

by probing the data that contains state information. Visibility into the communication interfaces 

and the state information of processes provides essential information about the internal system 

operation during testing and debugging. 

In section 3.2 we stated that the system specification consists of processes that are implemented in 

software (as processes in the application software) or in hardware (as modules in the application

specific hardware). Visibility is required into the operational state of processes, i.e. whether a 

process is running/active or stopped/inactive. 

Executing concurrent processes in the application software on a single processor requires process 

scheduling. The operational state of a process can be ready, running, or blocked, as shown in 

figure4.2. 

1 

Ready Running 

Blocked 

Figure 4.2 Operational states of a software process 

A process in the ready state is waiting to be executed on the processor. When the process is exe

cuted, it goes into the running state ( 1 ). After some time, the process is suspended and goes back 
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into the ready state (2). For instance, in preemptive process scheduling a process is suspended 

when its allotted amount of processor time has been spent, or when another process with higher 

priority is waiting to be executed on the processor. A running process is blocked (3) when it is 

waiting for an external event, like waiting for access to a shared resource or waiting for an event 

from another process orfrom the system environment. A blocked process is taken away from the 

processor by the operating system and put into the blocked state. When the operating system de

tects the occurrence of the event that the blocked process is waiting for, the process state becomes 

ready (4). The scheduling of processes is performed by the dispatcher in the operating system. 

Hence, visibility into the operational state of software processes can be achieved by probing the 

dispatcher. 

A similar notion holds for processes that are implemented as modules in the application-specific 

hardware. A hardware module may be active or inactive. The operation of hardware modules is 

usually controlled by some control logic. Visibility into the operational state of hardware pro

cesses can be achieved by probing this control logic. An example is a bus that is shared among 

several hardware modules under control of a bus arbiter. The bus arbiter selects the active hard

ware module that may write data on the bus. 

Basic Principle 3 

Design for test & debug should be an elementary part of hardware/software 

co-design, and should be considered in all steps of the design flow: .system 

specification, architecture exploration, architecture refmement, and synthesis. 

Design-for-test (DFT) and design-for-debug (DFD) are not new concepts. DFT and DFD have 

been practiced for decades and in the course of time many techniques for DFT and DFD have 

been developed for both hardware and software. The traditional techniques for DFT and DFD 

are typically applied during hardware synthesis and software synthesis, as shown in figure 4.3. 

These traditional DFT and DFD techniques are very useful for component testing and debugging. 

However, they are of limited use for integration testing, system testing and system debugging. 

• Hardware DFT techniques mainly concentrate on detecting physical hardware faults dur

ing production testing and field testing. Hardware DFT techniques primarily aim at struc

tural testing and therefore do not address functional design verification, i.e. detecting hard

ware design faults. Hardware DFT techniques are well developed, both at the IC level (e.g. 

scan paths, BIST), at the PCB level (boundary scan) and at the system level (backplane test 

buses). 

The hardware DFT facilities can be used to a certain extent for design verification, like scan

based debugging in which an IC's scan paths and boundary scan architecture are used for 

debugging hardware design faults. Scan paths provide that flipflops in an IC can be con

nected in series, resulting in a serial shift register. Scan-based debugging therefore provides 

serial access to an IC's state information. However, scan-based debugging yields low-level 

information, only a single serial line is available for shifting out data, and during shifting the 
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IC's state is affected. Hence, scan-based debugging is not really suited for on-line testing 

and debugging of real-time behavior. 

Modern microprocessors incorporate hardware DFD techniques, like hardware breakpoints 

and debug modes. These hardware DFD techniques are primarily intended for debugging 

the software that is executed on the processor. However, this does not provide visibility into 

the surrounding, dedicated hardware components. 

• Software DFT and DFD techniques for testing and debugging in the target system typi

cally imply software instrumentation. There is a large variety of techniques for software 

instrumentation, ranging from very ad hoc solutions, like inserting additional debug state

ments (e.g. additional 'printf' statements in C code), to structured solutions like software 

monitors. Software instrumentation is very useful for software testing and debugging in 

the target system, but does not provide any visibility into dedicated hardware components. 
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Furthermore, software instrumentation is typically performed by inserting additional code, 

which implies modifying the software. The interference caused by software instrumenta

tion may change the software behavior and particularly the timing behavior, which is intol

erable for real-time systems. 

We gave only a brief description of hardware and software OFf and DFD techniques. A com

prehensive overview of hardware OFf and DFD techniques as well as software instrumentation 

techniques and tools will be provided in chapter 6. 

The traditional OFf and DFD techniques are typically considered during the synthesis phase in 

the design flow, as shown in figure 4.3. In our opinion, OFf and DFD should be considered 

much earlier in the design flow, starting already from the system specification. During system 

specification, the functional behavior of the system is captured in a formal description, describ

ing the system as a set of concurrent, communicating processes. The essential information for 

system-level testing and debugging, i.e. the communication interfaces and process state infor

mation, is stated explicitly in the system specification. Our design for test & debug approach 

is based on extending the system specification with additional functional behavior to achieve vis

ibility into communication interfaces and process state information. Subsequently, these test & 
debug functions are taken into account in all the successive stages of the design process. Our ap

proach provides that the OFf and DFD facilities can be used effectively for integration testing, 

system testing and system debugging. 

Our approach to design for test & debug provides access and hence visibility into the system in

ternals by means of additional test & debug functions. The primary purpose of the test & debug 

functions is to collect essential information on the system behavior, i.e. observing or monitoring 

the internal system operation. In addition, the test & debug functions may offer capabilities to 

control the internal operation of the system for testing and debugging purposes. For instance, mes

sages can be inserted on communication interfaces, or process state information can be modified. 

Hence, the test & debug functions provide both observation and control of the system behavior. 

4.3 Design For Test & Debug 

Based on the three basic principles described in the previous section, we propose an approach for 

system-level design for test & debug. In the following sections we will describe how our design 

for test & debug approach is applied in the various stages of the design flow. Figure 4.4 provides 

an overview of our design for test & debug approach in hardware/software co-design. 

4.3.1 System Specification 

In the system specification, we insert additional functional behavior to achieve visibility into com

munication interfaces between processes and visibility into process state information. The system 

specification provides a system-level view, describing the functional system behavior in terms of 

concurrent, communicating processes. The system specification explicitly describes interprocess 

communication and the process behaviors. Hence, the system specification is most suitable for 

determining where to insert additional test & debug functions for achieving visibility into com

munication interfaces and process state information. 
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Figure 4.4 Design for test & debug in hardware/software co-design 

The notion of test & debug function is an abstract concept, indicating some functional behavior 

which provides that interprocess communication or process state information can be observed 

and controlled in the system environment. In figure 4.1, we showed the concept of test & debug 

functions on the process level to access the communication interfaces and state information of 

a process. In section 4.4 we will make the concept of test & debug function more concrete by 

introducing Points of Control and Observation (PCOs). 

4.3.2 Architecture Exploration 

The test & debug functions that are inserted in the system specification, are incorporated next 

into the system architecture during architecture exploration. The test & debug functions can be 

realized in three ways: 
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Realizing test & debug functions with test & debug equipment 

Test & debug functions can be realized by using test & debug equipment, like a logic analyzer, an 

oscilloscope, an in-circuit emulator or measurement equipment The advantage of this approach 

is that there is no need for additional hardware and software in the system to realize the test & 

debug functions. 

During architecture exploration, the hardware/software system architecture is defined: the pro

cesses and communication channels in the system specification are mapped onto hardware and 

software components and communication mechanisms. Because the test & debug functions are 

part of the system specification, they are also included in the system architecture. Instead of 

adding hardware/software in the system architecture to implement the test & debug functions, the 

test & debug functions point out those places were probes should be connected, or whether a pro

cessor should be replaced by an in-circuit emulator. Hence, the test & debug functions indicate 

where to probe for what information. Visibility into communication interfaces or process state 

information is now achieved by connecting probes to a hardware bus, or by using the capabilities 

of the in-circuit emulator. 

We already indicated that the use of test & debug equipment is severely hindered by the huge 

amounts of low-level data that have to be analyzed, by the limited accessibility into the internal 

circuitry of complex ICs, and by the probe effect. Furthermore, a logic analyzer and an oscillo

scope provide only observability and no controllability of the internal system behavior. Hence, 

often test & debug equipment cannot be used effectively for realizing our test & debug functions. 

Realizing test & debug functions with dedicated hardware/software 

The test & debug functions can be realized by implementing them directly into hardware and/or 

software. In this approach, the test & debug functions are treated just like the other functions 

in the system specification. During architecture exploration, the complete system specification 

(including the test & debug functions) is mapped onto hardware and software components and 

communication mechanisms. Obviously, this approach introduces a certain amount of overhead 

costs, because additional hardware and/or software is required to realize the test & debug func

tions. In general, the preferable approach is to realize the test & debug functions with test & debug 

equipment whenever possible, and to implement the test & debug functions in hardware/software 

if additional accessibility is required which cannot be achieved by using test & debug equipment. 

In the architecture exploration phase, various alternative hardware/software architectures are ex

plored. As indicated in section 2.3.3, architecture exploration consists of partitioning, alloca

tion, transformation and estimation. Because the test & debug functions are part of the system 

specification, they are automatically taken into account during architecture exploration. Estimat

ing the quality of a system architecture, i.e. evaluating criteria like costs, performance, silicon 

area and memory size, therefore also considers the effects of additional test & debug functions. 

Realizing test & debug functions with traditional DFT and DFD techniques 

The test & debug functions may also be realized by using the traditional DFT and DFD techniques. 

For instance, the test & debug functions may be realized by using hardware DFT facilities, like 

scan paths, or by using hardware DFD facilities, like hardware breakpoints, or by using software 

instrumentation, like a software monitor. 
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Hardware DFf facilities are typically incorporated in ICs and PCBs to test for physical hardware 

faults during production testing and field testing. In some cases, it may be possible to use these 

hardware DFf facilities for realizing our test & debug functions. This is very attractive, because 

hardware DFf can now be used to test for physical hardware faults as well as to test for hard

ware/software design faults. Likewise, modern microprocessors offer built-in debug facilities, to 

support debugging of software that is executed on the microprocessor. These DFD facilities can 

be used to realize our. test & debug functions. 

A limitation of using traditional DFf and DFD techniques is that usually not all of the specified 

test & debug functions can be realized. For instance, scan-based debugging is a technique in 

which the scan paths inside an IC are used to observe and control the IC's internal state. Although 

scan-based debugging provides observability and controllability, data has to be shifted out over a 

single serial line and the internal state is affected during shifting. Hence, scan-based debugging 

cannot be used for on-line debugging of real-time behavior. DFf and DFD techniques for test

ing and debugging of software in a target system typically imply the use of a software monitor. 

However, an off-the-shelf software monitor may not provide the required degree of visibility, and 

usually offers only observation capabilities while lacking control capabilities. 

An intermediate solution is to use the traditional DFf and DFD facilities for realizing our test & 

debug functions, and to extend them with some dedicated hardware and/or software. For instance, 

extra hardware may be added on-chip to improve scan-based debugging. In fact, this approach is 

proposed in [ vRBMV97]. In chapter 6 we will elaborate further on how our test & debug functions 

can be realized by using the traditional DFf and DFD techniques in hardware and software. 

Using the traditional DFf and DFD techniques implies that during architecture exploration the 

testability and debuggability of off-the-shelf hardware components should be considered. For 

instance, during architecture exploration a particular target processor is selected to execute the 

application software and the system software. Some processors incorporate DFD facilities, like 

hardware breakpoints and advanced debug modes, while other processors lack these DFD facil

ities. It may be preferable to select a processor that incorporates DFD facilities. The traditional 

DFf and DFD techniques can be used to implement test & debug functions in application-specific 

hardware components. This implies that in our design for test & debug approach, hardware Dl<1 

and DFD is already considered during architecture exploration. This in contrast to the traditional 

approaches were hardware DFf and DFD is not considered until the synthesis stage. 

4.3.3 Architecture Refinement & Synthesis 

During architecture exploration we make decisions on how to realize the test & debug functions. 

Additional hardware/software is required when we decide to implement the test & debug func

tions using dedicated hardware/software or using traditional hardware/software DFf and DFD 

techniques. During architecture refinement and synthesis, the detailed implementation descrip

tions for the hardware and software components are generated, which include the hardware and 

software for the test & debug functions. 
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4.3.4 Dealing with the Side EtTects 

In traditional DFr and DFD methods, additional hardware and software for realizing test & debug 

functions is typically introduced during synthesis, as shown in figure 4.3. The main problem of 

.traditional DFr and DFD methods resides in the side effects caused by this additional hardware 

and software: 

• test & debug functions require overhead costs due to extra hardwarefsoftware; 

• test & debug functions affect the system performance; 

• test & debug functions interfere with the dynamic behavior of the system. 

A typical software DFr technique is to add a software monitor in the target system, which col

lects information about the internal system operation at run-time. Adding a software monitor re

quires additional program memory in the target system to store the monitor's program code. The 

software monitor causes performance degradation, because the processor has to execute the ap

plication software, the system software as well as the monitor software. The software monitor 

interferes with the system behavior, because it disturbs the real-time behavior and the relative 

timing between processes. This interference, known as the 'probe effect' or the 'instrumentation 

uncertainty principle', can either introduce new faults or prevent some faults from occurring. 

In our design for test & debug approach, we try to avoid the side effects of additional hard

ware andfor software in advance. We consider test & debug functions already in the system 

specification. In the subsequent design steps, the test & debug functions are treated just like the 

normal system functions. The effects of the test & debug functions can therefore be analyzed in 

advance, and measures can be taken if these effects are intolerable. For instance, analysis dur

ing architecture exploration may indicate that a software monitor requires a certain amount of 

additional processor time. A possible solution is to select a processor which offers high enough 

performance, such that there is sufficient processing time left for executing the software moni

tor. An alternative solution is to replace the software monitor partly or completely by a hardware 

monitor. 

We use various techniques in our design for test & debug approach to deal with side effects. First, 

the additional test & debug functions are confined to minimize the amount of additional hard

warefsoftware and performance degradation. Furthermore, the probe effect is hidden behind log

ical time, which implies that the order in which events occur inside the system is not affected by 

the additional test & debug functions. Hence, although the timing of events may be affected, their 

relative ordering remains the same. Furthermore, the probe effect can be avoided completely by 

leaving in the test & debug functions, or by realizing truly non-intrusive test & debug functions 

by means of dedicated hardware or test & debug equipment. We will elaborate further on these 

topics in chapter 5 and 6. 

4.3.5 Testability and System Architecture 

Our design for test & debug approach is based on improving observability and controllability by 

inserting test & debug functions. Hence, we improve testability by inserting additional functional 
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behavior. An alternative approach for improving testability is to consider the inherent testabil

ity of the system architecture. The characteristics of the system architecture, such as the hard

ware/software partitioning and the selected hardware components, affect how good a system can 

be tested. During architecture exploration, a number of alternative system architectures is evalu

ated, considering criteria such as costs and performance. Testability can also be used as a criterion 

for evaluating the quality of system architectures. 

In [AHLTR96, THR96] a testability-oriented approach is proposed for hardware/software parti

tioning. The system specification is decomposed first into a number of (implementation-indepen

dent) components. Each component can be implemented in hardware or in software. A number 

of alternative hardware/software partitionings is obtained by selecting different combinations of 

component implementations. The testability of each component, both for its hardware implemen

tation and for its software implementation, is estimated by considering the number of required 

test vectors to test the component. The overall system testability is obtained by considering the 

testability of all the individual components in the system. The overall system testability figure 

provides hardly any meaningful information. However, this approach is useful to identify those 

components in the system that have a major impact on the system testability, and to evaluate the 

effects on testability when implementing these components in hardware or software. Hence, the 

inherent system testability can be improved by selecting an appropriate hardware/software parti

tioning. 

In [Sch93b] it is argued that time-triggered architectures are preferable to event-triggered archi

tectures when considering testability of distributed, real-time software. In event-triggered sys

tems, all actions in the system (computations, communication protocols, and interactions with 

the environment) are initiated by the observation of an event, such as receiving a message or an 

interrupt from another process or from the external environment. On the other hand, in time

triggered systems all actions are initiated exclusively at predefined points in time, governed by 

a global clock. A time-triggered architecture implies that the computations, the communication 

protocols, as well as the interactions with the external system environment are time-triggered 

actions. Time-triggered computations imply that each computation is started and ended at pre

defined points in time. Time-triggered communication denotes that each communication protocol 

is started on a predefined point in time and ended before a predefined end time. Time-triggered 

interaction with the external environment implies that the system periodically polls the inputs at 

predefined points in time to detect whether an event has occurred since the last poll. If multiple 

events have occurred, the events are processed in a fixed order. Although a time-triggered archi

tecture puts stringent restrictions on the system architecture, it yields a completely predetermined, 

deterministic system behavior. These properties significantly enhance system testability. Hence, 

a time-triggered system architecture inherently provides better testability and debuggability than 

an event-triggered system architecture. 

4.4 Test & Debug Functions 

A basic element of our design for test & debug approach is the insertion of test & debug functions 

in the system specification. The goal of the test & debug functions is to create access and visibility 
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into communication interfaces and process state information. Our basic test & debug function 

is the Point of Control and Observation (PCO). Figure 4.5 shows a PCO that is inserted in the 

communication channel between process A and process B. 

process 
A 

Observation Mode 
Output Select 

Control 
Input 

process 
B 

Figure 4.5 Controlling and observing a communication interface 

A PCO has three modes of operation, as shown in figure 4.6: transparent mode, observation mode, 

and test mode. The PCO operation mode is selected by the PCO's Mode Select input. 

Mode 
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a) Transparent Mode 

PCO PCO .. .. -w. Output 

Observation Mode 
Output Select 

b) Observation Mode 

Figure 4.6 PCO operation modes 
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c) TestMode 

I. When the PCO operates in transparent mode, the PCO Input is connected directly to the 

PCO Output. The Observation Output and Control Input are not used. 

The transparent mode is the default mode during normal system operation. The PCO is 

completely transparent and performs no observation or control. 

2. When the PCO operates in observation mode, the PCO Input is connected to both the PCO 

Output and the Observation Output. The Control Input is not used. 

The observation mode is used to monitor the normal system behavior. The messages that 

pass through the PCO can be observed on the Observation Output. 

3. When the PCO operates in test mode, the PCO Input is connected to the Observation Out

put and the Control Input is connected to the PCO Output. Hence, there is no connection 

between the PCO Input and the PCO Output. 

The test mode is used during testing and debugging activities. The messages that are re

ceived on the PCO Input can be monitored, and simultaneously messages can be inserted 

on the PCO Output. The observation and control activities can be performed independently. 
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A PCO can be inserted in the communication interface between two processes, as shown in 

figure 4.5. When the PCO operates in transparent mode, the messages from process A are trans

ferred to processB without any interference of the PCO. In observation mode, the messages are 

transferred transparently also, but the messages can be monitored as well on the Observation Out

put. In test mode, the messages sent by process A can be monitored on the Observation Output, 

and test messages can be sent to process B through the Control Input. Hence, in test mode process 

A and process B can be tested independently and in parallel. 

A complete PCO as shown in figure 4.6, has three modes of operation. A partial PCO has only 

two modes of operation, and can be either a Point of Observation (PO) or a Point of Control (PC). 

A PO can operate in transparent mode or in observation mode (as shown in figure 4.7), while a 

PC can operate in transparent mode or in test mode (as shown in figure 4.8). 

Observation Mode 
Output Select 

Point of Observation 

Mode Control 
Select Input 

Point of Control 

PO PO 

... ... ~.~cr. . . Output 

Mode 
Select 

Transparent Mode 

PO PO '"; 71? o.;-

Observatlon Mode 
Output Select 

Observation Mode 

Figure 4.7 Point of Observation (PO) 
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Figure 4.8 Point of Control (PC) 
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A PCO can be inserted in a process to access the process state information, as shown in figure 4.9. 

The process is represented as an object, containing methods and data. In traditional object

oriented programming languages like C++, an object is activated when an input message occurs. 

The input message identifies a particular method, and the selected method is executed which typ

ically implies reading and/or writing the object's encapsulated data and generating output mes

sages. In the POOSL language [Voe95a, Voe95b, vdPV97], a process object is an autonomous 

entity that is active continuously. An input message is processed by a particular method, iden

tified by the current state of the process object. The method will typically read and/or write the 

encapsulated data and generate output messages. 
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Inserting a PCO to access state information is achieved by adding a separate method that imple

ments the PCO behavior. In figure 4.9 the method PCO is inserted, and in addition the Mode 

Select, Observation Output, and Control Input are appended. In transparent mode, the PCO per

forms no operation. In observation mode, the process state information, i.e. some or all data, 

can be monitored on the Observation Output. In test mode, the process state information can 

be modified through the Control Input. Messages on the Control Input are provided by an ex

ternal tester/debugger, and hence also the timing of these messages is controlled by the external 

tester/debugger. On the other hand, the Observation Output is controlled by the process itself, 

and hence the process is responsible for the number and the timing of messages sent on the Ob

servation Output. In general, only changes in the process state information need to be monitored. 

Hence, whenever a method modifies the process data, it can invoke the method PCO to output the 

modified state information. Another solution is to extend a method with a Point of Observation. 

In figure 4.9 the method B is equipped with a PO. Whenever the method B modifies the process 

data, it uses the PO to output the modified state information on the Observation Output. 

Process 
Inputs 

Observation Output Mode Select Control Input 

Figure 4.9 Controlling and observing process state information 

4.5 Accessing Test & Debug Functions 

A PCO provides that a communication interface or process state information can be observed and 

controlled. However, it is required that the Mode Select, Observation Output, and Control Input of 

each PCO are connected to a tester/debugger in the external system environment. Hence, commu

nication channels between an external tester/debugger and the PCOs are required for accessing the 

PCOs. The external tester/debugger controls the operation of each PCO: the PCO operation mode 

is controlled through the PCO Mode Select input, test data is inserted through the PCO Control 

Input, and test results are collected through the PCO Observation Output. The communication 
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channels between the external tester/debugger and the PCOs can be provided by using individual 

PCO channels or a shared PCO channel, as depicted in figure 4.10. 

a) Individual PCO channels b) Shared PCO channel 

Figure 4.10 PCO communication channels 

• Each PCO can be connected directly to the external tester/debugger through a private, ded

icated communication channel, as shown in figure 4.10a. This approach is simple, and 

causes no interference with the normal system behavior. The disadvantage however is that 

the number of additional communication channels increases linearly with the number of 

PCOs in the system. Hence, the number of additional communication channels may be

come very large, and the external tester/debugger should provide many connectors, one for 

each communication channel. 

• The overhead of additional communication channels can be reduced by multiplexing a 

channel. For instance, a single communication channel can be shared by all PCOs, as shown 

in figure 4.10b. Channel arbitration is required to secure mutual exclusive access for each 

PCO to the channel, for instance using time-multiplexing or a bus-arbiter in the external 

tester/debugger. In addition, the tester/debugger must be able to address each individual 

PCO on the channel. An advantage of this approach is that a single Mode Select signal can 

be used to switch all the PCOs simultaneously into the same operation mode. 

Instead of using dedicated communication channels for PCOs, the system's communication chan

nels can be used to transport the PCO messages. This requires carefully multiplexing the com

munication channels for transporting both PCO messages and normal system messages. In this 

case, there is no direct connection between a PCO and the external tester/debugger. Although this 

approach avoids dedicated PCO communication channels, it is less transparent and less flexible. 

Furthermore, this approach is suitable for PCOs that access process state information, but less 

suitable for PCOs that access communication interfaces. 

4.6 Using Test & Debug Functions 

During integration testing and system testing, the system behavior is exercised by offering test 

stimuli to the primary system inputs and by observing the system responses on the primary sys

tem outputs. Additional control and observation is provided by the PCOs, which offer secondary 
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system inputs (i.e. the Mode Select and Control Input inputs) and secondary outputs (i.e. the Ob

servation Output outputs). 

Testing is typically performed in four steps: bring the system into a particular state, offer test 

stimuli to the system, observe the system's responses and the system's new state, and evaluate 

the observed responses and system state. The test & debug functions (PCOs) can be used in the 

following ways during testing: 

I. Prior to offering test stimuli to the system, the system should be in a particular, predefined 

state. This particular state is usually enforced in two steps: first, the system is reset, forcing 

the system into its initial state; next, a sequence of stimuli is applied to the system to transfer 

the system from the reset state into the required state. 

This initialization procedure can be shortened by switching the PCOs into test mode. The 

state information of the processes can now be modified directly using the PCO's Control 

Input. Hence, the system can be enforced directly into the required state using the PCOs. 

2. After initialization, the PCOs are switched into observation mode and test stimuli are ap

plied to the system. The PCOs are used to observe the internal system responses and the 

new system state using the Observation Output. 

Evaluation is typically performed by comparing the observed system responses with the expected 

system responses, and by comparing the observed new state with the expected new state of the 

system. An error is detected if comparison yields a mismatch between the observed and the ex

pected behavior. When an error is detected, debugging is required next to uncover the exact fault 

that induced the error. 

Debugging can be facilitated to a large extent by using PCOs. The PCOs in observation mode 

provide detailed information during testing about the internal system behavior. If testing uncov

ers an error, the faulty system part that caused the error can therefore be identified rather easily. 

Hence, the fault can already be localized to some extent at the beginning of the debugging process. 

Debugging is usually performed by testing the local system behavior in which the fault resides. 

. The PCOs in test mode can provide direct access to control and observe the local system behavior, 

which provides excellent debugging support. 

Figure 4.11 shows an example of debugging using PCOs. Testing indicated that a fault resides 

in system part C. Debugging is performed by testing part C in isolation. By switching PC 0 1, 

PC02 and PC03 in test mode, part C can be disconnected from its surrounding system parts. 

Test stimuli are applied to part C through its primary input and the Control Input of PC01• The 

responses of part Care observed through its primary output and the Observation Output of PC 0 2 

and PC 0 3 . In addition, the internal behavior of part C can be monitored through the Observation 

Output of PC04 and PC05 , which both operate in observation mode. 
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Figure 4.11 System debugging using PCOs 

4. 7 Test & Debug Functions and System Architecture 

In section 3.2 we elaborated on hardware/software system architecture, and we identified nine 

classes of communication interfaces. When applying our design for test & debug approach by 

inserting PCOs in the system for accessing communication interfaces and process state informa

tion, we obtain the modified system architecture shown in figure 4.12. The communication in

terfaces 8 and 9 model communication between the system and the external system environment. 

There are no PCOs required in these communication interfaces, because these interfaces can be 

accessed directly in the external environment. PCOs are inserted in the communication interfaces 

I through 7. 

I. Communication interface I represents intraprocess communication, i.e. communication 

within the application software processes. PCOs in communication interface I therefore 

allow access to the internal communication of application software processes. 

In the previous sections, we stated that we typically insert PCOs during system specification 

to access the interprocess communication interfaces, which does not include intraprocess 

communication. Nevertheless, PCOs can also be inserted during system specification to 

access intraprocess communication, which offers improved control and observation of the 

internal operation of application software processes. The PCOs in interprocess communi

cation interfaces offer observation and control of the external behavior of application pro

cesses, while PCOs in intraprocess communication allow observation and control of the 

internal process behavior. Hence, PCOs in intraprocess communication interfaces allow 

more detailed control and observation, which may be very useful during system debugging 

when detailed information about some local behavior in the system is required. However, 

the insertion ofPCOs in intraprocess.communication introduces a large overhead, because 

many additional PCOs are required. 
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Figure 4.12 PCOs in hardware/software system architecture 

2. Communication interface 2 represents interprocesscommunication, i.e. communication be

tween the application software processes. PCOs in communication interface 2 therefore al

low access to the communication interfaces between application software processes. These 

PCOs are typically inserted during system specification, when PCOs are introduced to ac

cess communication interfaces. 

In addition, communication interface 2 represents the scheduling of application software 

processes for execution on the processor(s) provided in the hardware nucleus. We discussed 

in section 4.2 that information on process scheduling and the processes' operational state 

(figure 4.2) is essential during testing an debugging. This information can typically be pro

vided by inserting PCOs in the dispatcher of the system software. These PCOs are typ

ically introduced during architecture exploration and architecture refinement. Obviously, 

these PCOs cannot be explicitly modeled in the system specification, because the system 

specification does not include implementation details about the system architecture and the 

system software. 

3. Communication interface 3 represents internal communication in the system software, i.e. 

communication between the software components that build up the system software such 

as the dispatcher and 110 drivers. PCOs in communication interface 3 are typically intro

duced during architecture exploration and architecture refinement. These PCOs provide 

information about the internal operation of the system software. 

The system software offers mechanisms to provide mutual exclusive access of shared re

sources, like semaphores or monitors. PCOs in the system software may provide detailed 

visibility into these mechanisms, for instance observation and control of a semaphore. 
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4. Communication interface4 represents low-level communication between the hardware nu

cleus and the software, typically at the abstraction level of the ISA (Instruction-Set Archi

tecture). In fact, communication interface 4 is a low-level representation of the communi

cation interfaces I, 2 and 3. The application software and the system software are executed 

on the processor( s) in the hardware nucleus, and also all the software communication mech

anisms defined in the interfaces 1, 2 and 3 are performed by the processor. 

PCOs in communication interface 4 provide access to the internal operation of the proces

sor(s), like access to registers and functional units as defined in the ISA. These PCOs are 

typically defined by the DFf and DFD capabilities of the processor. For instance, modem 

microprocessors allow debug modes in which information about the processor's internal 

operation is output on some dedicated processor pins. More detailed information about the 

processor's internal state can be obtained by using scan paths. 

A microprocessor is typically an off-the-shelf component that a designer uses to implement 

a hardware/software system. The feasibility of PCOs inside the microprocessor is therefore 

defined by the built-in DFf and DFD features of the microprocessor. Although the designer 

has no direct control on designing-in PCOs in an off-the-shelf microprocessor, he can select 

a microprocessor that offers advanced DFf and DFD features instead of a microprocessor 

that lacks these features. 

Detailed observation and control of a processor's internal operation can be obtained by us

ing an in-circuit emulator. In this case, the PCOs are defined by the capabilities offered by 

the in-circuit emulator. 

5. Communication interface 5 represents internal communication inside the hardware nucleus, 

which is typically processor-memory communication. PCOs in communication interface 5 

therefore allow access to the processor-memory communication. PCOs at this level are typ

ically implemented by test equipment like a logic analyzer, that is connected by probes to 

the processor-memory bus. 

The current technological trend is to implement embedded processor cores together with 

memories and peripherals on a single chip. This prevents the use of test & debug equipment, 

because probing the internal circuitry is general unfeasible. In this case, realizing on-chip 

PCOs requires building-in hardware test & debug facilities. 

6. Communication interface 6 represents communication between the hardware components 

in the hardware nucleus and application-specific hardware components, constituted by 

hardware buses and wires. PCOs in these communication interfaces offer access to low

level communication. Likewise the PCOs in communication interface 5, realizing PCOs 

requires test equipment or built-in hardware DFf and DFD facilities. 

7. Communication interface 7 represent the communication between the application-specific 

hardware components. Communication interface 7 is conceptually equivalent to the com

munication interfaces 1, 2 and 3. Processes in the system specification are either imple

mented in software (processes in the application software) or in hardware (modules in the 

application-specific hardware). Hence, PCOs in intraprocess and interprocess communica

tion in the system specification are either implemented in communication interface 1 and 2 

for software, or in communication interface 7 in case of hardware. As in communication 
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interface 5 and 6, PCOs can be realized by test equipment or built-in hardware DFT and 

DFD facilities. 

Besides PCOs in the communication interfaces, figure 4.12 also indicates that PCOs are included 

inside the application software, the system software, the hardware nucleus, and the application

specific hardware. These PCOs are used to access process state information. The system specif

ication models the functional system behavior as a set of concurrent, communicating processes. 

These processes are implemented as application software processes or as hardware modules. 

Hence, the PCOs inside the application software provide access to the state information of process 

implemented as application software processes, while the PCOs inside the application-specific 

hardware provide access to the state information of processes implemented as hardware modules. 

The PCOs inside the system software are closely related to the PCOs in communication interface 

2 and 3. These PCOs provide access to the internal operation of the system software. In a similar 

way, the PCOs inside the hardware nucleus are closely related to the PCOs in communication 

interface 4 and 5. These PCOs provide access to the internal operation of the hardware nucleus. 

4.8 System-Level Test Cases 

Our design for test & debug approach is primarily concerned with adding test & debug functions. 

A second concern is selecting appropriate test cases for integration testing and system testing. 

These system-level test cases should exercise the system behavior, by offering test stimuli at the 

system's primary inputs and observing the system's responses at the system's primary outputs, 

and by using the control and observation capabilities of the test & debug functions (PCOs) as 

explained in the previous sections. 

The selection of appropriate test cases, together with the insertion of test & debug functions in the 

system, should be considered in each phase of the system design flow. This process is graphically 

depicted in the V-model of figure 4.13. 

In the system specification, the functional system behavior is captured into a formal model of con

current, communicating processes. The test cases used during system testing can be derived from 

the system specification. The test cases should concentrate on exercising the system behavior, 

regarding the system as a set of concurrent, communicating processes. 

During architecture exploration and architecture refinement, the hardwarefsoftware architecture 

of the system is selected and refined. The test cases used during hardware/software integration 

testing are derived from the system architecture. The test cases should concentrate on testing the 

communication interfaces between the various hardware and software components that build up 

the system. 

During hardware and software synthesis, the individual hardware and software components are 

developed. The test cases used during component testing can be derived from the descriptions 

of the individual hardware and software components. Most tools for test case generation, like 

automatic test pattern generator (ATPG) tools for hardware and test case generators for software 

data-flow and control-flow testing, are aimed at component testing. 
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In modem analysis & design methods, like structured analysis & design (SAD) methods and 

object-oriented analysis & design (OOAD) methods, the system specification is typically con

structed in the analysis stage by considering the events that oecur in the system environment and 

the subsequent behavior of the system in response to these events. 

• In Ward & Mellor's structured analysis & design method [WM86], an environment-based 

modeling approach is proposed for system analysis. This approach is based on identifying 

first the events in the environment to which the system must respond. Next, the system's 

response to each event in the environment is specified. 

In [Vra94] we used the event-response list to derive event-traces. An event-trace describes 

a sequence of events, starting with an event in the external environment that is input to the 

system, the subsequent internal events, and the response events that are the output of the 

system. An event-trace defines the causal relations between the various events. 

In a case study, we modeled an elevator control system using Ward & Mellor's structured 

analysis method. The elevator control system is used to control the operation of four ele

vators in a 40-floor building. We derived event-traces from the system specification, based 

upon the event-response list. The event-traces were used as system-level cases, and we ap

plied them to both validation and verification of the system specification, as well as to test

ing of a software implementation of the elevator control system. We will elaborate on this 

case study in chapter 7. 

• In Rumbaugh's OMT method for object-oriented analysis & design [R+9] ], first an object 

model is constructed during system analysis, which represents the static structure in terms 

of object classes and their relations. Next, a dynamic model is constructed, which repre

sents the sequences of operations that occur in response to external stimuli. The dynamic 

model consists of a collection of state diagrams that interact with each other via events. 

A scenario is defined as a sequence of events that occurs during one particular execution 

of a system. A scenario may include all events in the system, or only a subset of events 

of interest. A scenario can be regarded as the historical record of executing a system or a 

thought experiment of executing a system. The sequence of events and the objects exchang

ing events are illustrated in an event-trace diagram. 

• In Jacobson's OOSE method for object-oriented analysis & design [J+92], a similar con

cept to scenarios is used, called use cases. A use case is defined as a behaviorally related 
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sequence of transitions that a user perfonns in a dialogue with the system. The complete 

system behavior is described by the set of all use cases. Interaction diagrams are created 

for each use case, showing the interactions between communicating objects. 

• In Vander Putten & Voeten 's SHE method for object-oriented analysis & design [ vdPV97], 

a related approach to the OMT scenarios and the OOSE use cases is proposed. A scenario 

in SHE defines and describes the responses elicited by communication with one or more 

objects outside the (sub )system under analysis. A scenario in SHE also describes the inter

nal communication between the processes that model the system behavior. This in contrast 

to scenarios in OMT and use cases in OOSE, which consider the system as a black box 

and only describe the communication between the system and its external environment. A 

scenario is graphically represented in a Message Flow Diagram, in which the stimuli and 

responses are modeled of the processes that participate in a specific scenario. In addition, 

a scenario is described in a narrative form. A scenario narrative is a text that describes the 

causal relations between events in the environment and responses of objects in the system, 

as well as causal relations between events in the system and responses of objects in the en

vironment. 

Scenarios are one of the key elements in the SHE method. The system specification is cre

ated by playing scenarios. Scenarios are used to identify objects and their communication 

flows, and to reason about behavior, the ordering of events, and the reactions of collaborat

ing processes. 

We also modeled our elevator control system using the SHE method, and created a for

mal system specification in the POOSL language. We used the scenarios for validation 

and verification of the system specification. We will elaborate also on this case study in 

chapter 7. 

The concepts of event-traces, use cases and scenarios all define the interactions between concur

rent, communicating objects in the system and in the system environment. They are most suited to 

be used as system-level test cases, both for validation and verification of the system specification 

as well as for testing of the system implementation. 

System-level test cases can be derived from the system specification. An executable system 

specification implies that the system specification can be validated and verified by means of simu

lation. During simulation, typically scenarios are simulated. Evaluation of the simulation results 

is usually performed by the designer, who manually compares the simulated behavior with the 

expected behavior. During system testing, the same scenarios can be used as test cases. Evalu

ation of the test results can be automated, by automatically comparing the executed behavior of 

the system implementation with the simulated behavior of the system specification. 

As indicated, we used event-traces/scenarios in a case study as system-level test cases. These 

event-traces/scenarios describe the sequence of external events applied to the primary system in

puts, the events observed by the PCOs in observation mode inside the system, and the events ob

served on the primary system outputs. Furthermore, we used PCOs in test mode to quickly bring 

the system into a predefined state before applying a particular test case. 



4.9 Discussion 105 

4.9 Discussion 

In this chapter we introduced our approach to system-level design for test & debug in hard

ware/software systems. We discuss and summarize the major results in this section. 

In the previous chapters we argued that the current hardware/software co-design methods do 

not consider or support testing and debugging of hardware/software systems. We demonstrated 

that integration testing, system testing and system debugging should aim at detecting interfacing 

faults and system-level faults. Furthermore, we explained that testing and debugging of hard

ware/software systems is very troublesome due to limited visibility into the internal system op

eration, due to the large number of possible sequences of events and the unpredictable timing 

of external events, and due to non-deterministic behavior caused by the interleaved execution of 

software processes. 

We developed an approach to design for test & debug of hardware/software systems to deal with 

the previous problems. Our approach is based upon the following basic principles: 

1. Design for test & debug is required to improve integration testing, system testing and de

bugging of hardware/software systems. 

2. Design for test & debug should provide visibility into communication interfaces and into 

state information of software processes and hardware components. 

3. Design for test & debug should be an elementary part of hardware/software co-design, and 

should be considered in all steps of the design flow: system specification, architecture ex

. ploration, architecture refinement, and synthesis. 

Based upon these three basic principles, we derived an approach for system-level design for test & 

debug. The key element is that we insert test & debug functions in the system specification. These 

test & debug functions are taken into account in all the successive stages of the design process. 

This approach offers the following advantages: 

• The system specification provides a system-level view on the functional system behavior, 

consisting of concurrent, communicating processes. The system specification is therefore 

most suitable to identify the communication interfaces and process state information that 

require insertion of test & debug functions to improve accessibility. 

• Test & debug functions are part of the system specification, and hence they are automati

cally considered during architecture exploration. The consequences of test & debug func

tions on the system architecture can therefore be predicted in advance and appropriate mea

sures can be taken to avoid intolerable side effects, like performance degradation and the 

probe effect. 

During architecture exploration our test & debug functions are incorporated in the system archi

tecture. The preferable approach is to realize the test & debug functions with test & debug equip

ment (e.g. logic analyzer, ICE) whenever possible, and to implement the test & debug functions 

in hardware and/or software if additional accessibility is required which cannot be achieved by 

using test & debug equipment. 
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Implementing the test & debug functions can be performed either by dedicated hardware/software 

or by using the current OFf and OFO techniques in hardware and software. Using dedicated hard

ware/software implies overhead costs, but this approach is transparent and allows to implement 

test & debug functions exactly as they are specified. Using current OFf and OFO techniques 

may reduce the overhead costs. This requires that already during architecture exploration require

ments are stated on the testability and debuggability of off-the-shelf hardware components, the 

application-specific hardware components, and software components. In traditional design meth

ods these decisions are not made until the synthesis stage. 

Our basic test & debug function is the Point of Control and Observation (PCO). A PCO can oper

ate in transparent mode during normal system operation, in observation mode during testing and 

debugging to monitor the internal system behavior, and in test mode during testing and debugging 

to provide direct control and observation of the internal system behavior. Related to the concept 

of PCO are the Point of Observation (PO) and the Point of Control (PC), which have only two 

modes of operation. 

We demonstrated how PCOs can be used to access communication interfaces and process state in

formation. In addition, we discussed how PCOs can be accessed from an external tester/debugger, 

using dedicated PCO channels (either individual PCO channels or a shared PCO channel) or shar

ing the normal system channels. 

We typically insert PCOs in the system specification to access interprocess communication inter

faces and process state information. In addition, we insert PCOs during architecture exploration in 

the system software and the application-specific hardware. PCOs in the system software provide 

visibility into the scheduling of processes and into the internal operation of the system software. 

PCOs in the application-specific hardware provide visibility into control logic that controls the 

operation of hardware modules. 

We argued that system-level test cases should be derived from the system specification. We 

showed how these test cases can be used for both validation and verification of the system 

specification, as well as for testing of the system implementation. 

In this chapter, we provided a rough outline of the basic elements and concepts in our design for 

test & debug approach. Obviously, many issues need further exploration. In the remainder of this 

thesis, we will address two basic subjects: the specification of PCOs and the implementation of 

PCOs. In chapter 5, we will elaborate on the specification of PCOs and on the interference caused 

by inserting PCOs. In chapter 6, we will discuss the implementation ofPCOs in hardware and/or 

software and how the current OFf and DFD techniques in hardware and software can be utilized. 

Finally, in chapter 7 we will present experiments in which we demonstrate how our design for test 

& debug approach is applied during analysis and design of an elevator control system. 
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4.10 Summary 

Our method towards design for test & debug in hardware/software systems is based upon three 

basic principles: 

• Design for test & debug is required to improve integration testing, system testing and de

bugging of hardware/software systems. 

• Design for test & debug should provide visibility into communication interfaces and into 

state information of software processes and hardware components. 

• Design for test & debug should be an elementary part of hardware/software co-design, and 

should be considered in all steps of the design flow: system specification, architecture ex

ploration, architecture refinement, and synthesis. 

The key element of our method is to insert Points of Control and Observation (PCOs) in the sys

tem specification to access communication interfaces and process state information. The system 

specification provides a system-level view on the functional behavior, and is therefore most suit

able to identify communication interfaces and process state information. 

We next incorporate PCOs into the system architecture. Our approach provides that the effects 

of PCOs on the system architecture can be predicted in advance and appropriate measures can 

be taken to avoid intolerable side effects, such as performance degradation and the probe effect. 

Additional PCOs can be inserted during architecture exploration in the system software and in the 

application-specific hardware. These PCOs can provide visibility into the interleaved execution 

of processes, the system software and control hardware. 

In some cases, PCOs can be realized by test & debug equipment such as a logic analyzer or an in

circuit emulator. However, test & debug equipment often cannot offer the required controllability 

and observability and hence PCOs have to be implemented in hardware and/or software. Imple

menting PCOs can be performed either by dedicated hardware/software or by using the current 

DFf and DFD techniques in hardware and software. Using dedicated hardware/software implies 

overhead costs, but this approach is transparent and allows to implement PCOs exactly as they 

are specified. Using current DFf and DFD techniques may reduce the overhead costs. This re

quires that already during architecture exploration requirements are stated on the testability and 

debuggability of off-the-shelf hardware components, the application-specific hardware compo

nents, and software components. In traditional design methods these decisions are not made until 

the synthesis stage. 

Finally, we showed that system-level test cases should be derived from the system specification. 

These test cases can be used for both validation and verification of the system specification, as 

well as for testing of the system implementation. 
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In this chapter we elaborate on design for test & debug during system specification. We concen

trate on two key questions:· where should PCOs be inserted in the system specification, and what 

are the effects of PCO insenion on the system behavior. 
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5.1 Introduction 

Our design for test & debug approach is based on the insertion of Points of Control and Obser

vation (PCOs) in the system specification. An important question is where PCOs should be in

serted in the system. On the one hand, there should be a sufficient number of PCOs to provide 

an adequate level of observability and controllability during testing and debugging. On the other 

hand, the more PCOs the system contains, the more overhead is introduced because each PCO 

in the system specification has to be realized by test equipment or additional hardware/software 

in the system implementation. The number of PCOs also influences the complexity of the exter

nal tester/debugger: in observation mode the data on the observation output of each PCO has to 

be analyzed, and in test mode also test data has to be provided to the control input of each PCO. 

Hence, there should be a balanced number of PCOs, which provides maximum observability and 

controllability with minimum overhead costs. 

In this chapter we will explore various methods to identify those places in the system specification 

where insertion of a PCO is desirable or required. We will first examine related approaches from 

literature, namely OSI protocol testing, hardware testability analysis, and system-level testability 

analysis. Next, we propose scenario-based testability analysis to guide PCO insertion. 

A second, important question is how PCO insertion affects the system behavior. InsertingPCOs in 

the system specification implies modification of the system specification. The insertion of PCOs 

may cause that the system behavior becomes incorrect, i.e. the modified system behavior does 

not comply with the original system behavior. In this chapter, we will discuss the effects of PCO 

insertion. Furthermore, we will give a formal proof based on CCS process algebra that PCOs can 

be inserted while preserving the externally observable behavior. 

5.2 OSI Protocol Testing 

Design for test & debug in hardware/software systems is still a largely unexplored field. More

over, the current research initiatives on system-level design for test & debug mainly concentrate 

on the implementation of test & debug facilities in hardware and/or software. Very few research 

initiatives deal with design for test & debug during system specification, where the focus is on the 

implementation-independent, functional system behavior. One of the rare exceptions is the field 

of telecommunication systems and computer networks. 

Much work has been performed on the specification, verification, and testing of communication 

protocols. The ISO standards provide a framework, the OSI (Open Syste:rns Interconnection) Ref

erence Mod.el, in which an overall architecture for communication protocols in seven layers is 

defined [IS094b, HS88, JA90]. Besides protocol specifications, also topics related to testing have 

been standardized within the OSI framework, in particular protocol conformance testing and test 

management. 

In the OSI terminology, the term PCO is used to indicate any point where a tester can observe 

or control the system behavior. A PCO usually corresponds to an external system input/output. 

This definition does not correspond to our notion of a PCO as an internal test & debug function 
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that is inserted to improve observation and control inside the system. Therefore, we initially re

ferred to our test & debug functions as Test & Debug Points (IDPs ). However, in more recent OSI 

standards the term PCO is used also to indicate observation and control facilities inside a system, 

which matcheS exactly our definition of IDPs. To comply with the OSI terminology, we replaced 

the term IDP by the term PCO. 

5.2.1 OSI Protocol Confonnance Testing 

Conformance testing generally indicates testing a system implementation to check whether the 

externally observable behavior conforms to the system specification. Conformance testing typ

ically means black-box testing: observation and control is performed only at the external inputs 

and outputs of the system and implementation details about the internal system architecture are 

not considered or are even unknown. 

In the OSI framework, conformance testing indicates verifying by means of testing whether the 

implementation of an OSI protocol stack conforms to the protocol specifications as stated in the 

OSI standards. The objective of the OSI standards is to provide an overall architecture for com

munication systems, so that systems which conform to the OSI standards are able to communicate 

which each other. OSI conformance testing is a necessary but not sufficient condition to guarantee 

the correct interworking of system implementations. 

A framework for OSI conformance testing has been formalized in ISO Standard 9646 [IS094c, 

Kni93]. In this standard, abstract test methods are described for testing an implementation under 

test (IUT), which can be a single protocol layer, multiple protocol layers, or embedded protocol 

layer(s) in a protocol stack. Conformance testing of a protocol stack is normally performed in a 

bottom-up manner: each protocol layer is tested after its underlying protocol layers in the stack 

have passed their conformance test. 

Upper I Tester 

Test 
PCO * ASPs 

I Implementation I Coordination 
Procedures 

Under Test 

PCO * ASPs 

I Lower I Tester 

Figure 5.1 Conceptual test method 

The basic architecture for the abstract test methods is the conceptual test method, shown in 

figure 5.1. Testing is performed using a Lower Tester (LT), an Upper Tester (UT), and Test Co

ordination Procedures (TCPs) to coordinate the operation of the LT and the UT. According to 
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the OSI terminology, the PCOs correspond to the Service Access Points (SAPs) of the IUT and 

the information exchanged between the IUT and the testers corresponds to the Abstract Service 

Primitives (ASPs). 

The SAPs of a protocol layer are excellent places for observation and control during conformance 

testing. However, the SAPs in a protocol stack usually cannot be accessed directly by a tester. The 

abstract test methods in ISO 9646 therefore specify PCOs, which correspond to SAPs that can be 

accessed directly by a tester. A PCO is called local if it resides within the system under test (SUT), 

and external if it resides outside of the SUT. 

ISO 9646 describes two types of abstract test methods: the local test method and the external test 

method. In the local test method, both the UT, the LT, the TCPs and the IUT are part of the SUT. 

The local test method closely resembles the conceptual test method as shown in figure 5.1. The 

local test method is not applicable for remote testing. 

The external test method is suitable for remote testing. As shown in figure 5.2, the external test 

method can be classified into the distributed, the coordinated, and the remote test method. Each 

external test method can be used for testing a single protocol layer, multiple protocol layers, or 

embedded protocollayer(s). TCPs are required to coordinate the tests. The implementation of 

the TCPs differs in each of the test methods. 

• In the distributed test method (figure 5.2a), the LT is external from the SUT. The LT is com

municating with the SUT via the service provider. The UT is embedded in the SUT, and 

a PCO is available between the UT and the IUT. The TCPs are exchanged between the LT 

and the UT through the IUT and the service provider. 

• The coordinated test method (figure 5.2b) is an enhanced version of the distributed test 

method. There is no PCO between the UT and the IUT. A Test Management Protocol (TMP) 

is defined for the coordination of the UT and LT. 

• In the remote test method (figure 5.2c ), there is no explicit UT. The SUT is considered as a 

black box. Although the remote test method is convenient to use, its control and observation 

capabilities are limited. 

The local test method is preferable, because it allows direct control and observation of the JUT 

and easy implementation of the TCPs. However, the local test method cannot be used for remote 

testing. In the external test methods, the remote test method requires no test facilities in the SUT, 

however it offers inadequate observation and controL The distributed and the coordinated test 

method require implementation of an UT in the SUT, and they are deficient for guaranteeing syn

chronization between the UT and the LT. Practical experiences with the abstract test methods re

sulted in low test coverages, high testing costs and complex test equipment. 

An improved test method has been proposed by Zeng et al. [ZR86, ZDH88, ZCS89], introducing 

the 'ferry-clip concept'. This test method is based on the local test method, but modifications 

have been made to perform remote testing of the SUT using an external test system. The SUT is 

equipped with a 'clip', providing access to the lower and the upper interface of the IUT. Test data 

is transferred between the test system and the clip using a transparent connection ('a ferryboat'). 
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The ferry-dip concept has been improved further by Witteman & Van Wuijtswinkel at KPN Re

search. They applied the enhanced ferry-clip concept in an experimental ATM broadband ISDN 

system, as shown in figure 5.3 [VWvW96, WvW94]. PCOs are inserted to access the external in

terfaces of the IUT (layers under test). Furthermore, the PCOs allow to disconnect the IUT from 

its upper and lower layers, so that it can be tested in isolation. The PCOs are managed in the SUT 

by the Passive Ferry Control, which is connected to the Active Ferry Control in the test system. 

The test manager in the test system controls the connection between the SUT and the test system, 

while the test suite manages the actual test cases. The PCOs in the enhanced ferry-clip concept 

are functionally identical to the PCOs we defined in section 4.4. 
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Figure 5.3 Enhanced ferry-clip concept 

5.2.2 081 Test Management· 

The OSI standards define the exchange of management infonnation between open systems, con

sidering accounting management, configuration management, fault management, performance 

management and security management [IS089, IS092]. Fault management deals with the de

tection, isolation and correction of faults. One of the functions of fault management is diagnostic 

testing, which has been standardized in the Test Management Function (TMF) [IS094a, McR95]. 

The Confidence and Diagnostic Test Categories [IS096] specify general test interfaces using the 

TMF framework. Each test category specifies test characteristics and test management infonna

tion for a specific test, like connection testing, loopback testing and resource boundary testing. 

The Resource Boundary Test Category [IS096, vWW95] is depicted in figure 5.4. The test con

ductor in the managing system controls the testing by sending test requests to the test performer in 

the managed system. The test requests indicate which resources are involved in the test. The tests 

are carried out by the test perfonner in the managed system. The Resource Boundary Test Cate

gory allows testing of individual resources in the system, using the PCOs at the resource bound

aries for observation and control of signals. In the OSI management perspective, resources and 

PCOs are modelled as objects. Resources are represented by Managed Objects; a resource that is 

being tested is represented by a Managed Object Referring to Test (MORT); and a PCO is repre

sented by an Associated Object (AO). 

The Resource Boundary Test Category can be related to interoperability testing and confonnance 

testing. Each resource represents a protocol layer in a protocol stack, while the PCOs represent 

the corresponding SAPs. In this configuration, the Resource Boundary Test Category allows to 

test each protocol layer in isolation. 
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Figure 5.4 Resource Boundary Test Category 

5.2.3 Discussion 

In this section, we concentrated on one particular application domain: communication systems. 

The evolution in the OSI standards for remote testing of communication systems, both for confor

mance testing and diagnostic testing, clearly demonstrates the necessity of design-for-test during 

system specification. The concept of PCO in the OSI standards corresponds directly to our con

cept of PCO in the behavioral system specification. The main conclusion is that the communi

cation interfaces between layers in the protocol stack of a communication system are appropriate 

places for inserting PCOs. 

5.3 VLSI Testability Analysis 

System testability is related to controllability and observability of the internal system behavior. 

A general guideline for PCO insertion is therefore to insert PCOs at those points which are most 

difficult to observe and/or control. These points can be identified by performing testability anal

ysis, i.e. an analysis for evaluating testability characteristics of a system such as observability and 

controllability. Various approaches to testability analysis have been proposed in literature. In this 

section we will review testability anaJysis techniques for digital VLSI circuits. 

In the course of time, testability analysis for hardware circuits has evolved from the gate level to 

the behavioral level. On the gate level, a circuit is described in a structural model as a network of 

logic gates. On the behavioral level, a circuit is usually described in a mixed structural/functional 

model: the circuit structure is modeled as a network of modules, while the function of each mod

ule is described in a behavioral model. In the following sections we will briefly discuss gate-level 

and behavioral-level testability analysis. 
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5.3.1 Gate-Level Testability Analysis 

Testability analysis on gate-level descriptions of digital circuits was first introduced in the early 

1970s. The basic idea is that testability can be analyzed by measuring controllability and observ

ability of individual lines in a circuit. Testability analysis is performed by considering the circuit 

structure, i.e. the network topology, and the information propagation through logic gates. The 

purpose of testability analysis is to provide guidelines for modifying a circuit. A modified cir

cuit should have improved testability, which in tum should lead to a reduction of test generation 

costs. This approach however requires efficient testability analysis techniques, because the costs 

for testability analysis may not cancel out the savings in ATPG costs. 

Gate-level testability analysis became generally approved with the introduction of SCOAP (Scan

dia Controllability/Observability Analysis Program) [Gol79, GT80] and related tools. These tools 

perform testability analysis by computing observability and controllability measures for each line 

in a circuit. The controllability of a line represents the relative difficulty for justifying the logic 

value on a line to 0 or I from the primary inputs. The observability of a line represents the rela

tive difficulty for propagating the logic value on the line to the primary outputs. In general, large 

controllability and observability values indicate that a line is difficult to test. Testability can be im

proved by modifying the circuit, such as adding an observation point in a line with a high observ

ability value or adding control circuitry in a line with a high controllability value (e.g. [CB85]). 

Severa] algorithms have been proposed for calculating the controllability and observability mea

sures. The SCOAP algorithm computes the controllability value for each line by calculating the 

number of line assignments in the circuit that is required to justify a 0 or I from the primary in

puts to the line. In a similar way, the observability value for each line is derived by calculating 

the number of line assignments in the circuit that is required to propagate the logic value on the 

line to the primary outputs. Several enhancements to the SCOAP algorithm have been proposed, 

such as [JCDZ86] which considers the influence of reconvergent fanouts. In [Dus78], informa

tion theory is used for computing the controllability and observability measures for each line by 

means of conditional entropies. In [SG76, Gra79], the observability and controllability measures 

are computed by considering the input-output mapping of logic components. 

Although testability analysis on gate-level descriptions is widely used, it has several weaknesses. 

Statistics indicated that there is only a moderate correlation between SCOAP testability analysis 

and the ease of fault detection (AM82, MU84]. Furthermore, computing controllability and ob~ 

servability measures may not always identify testability problems [Sav83]. Gate-level testability 

analysis provides a large amount of controllability and observability values. It is up to the de

signer to interpret these relative values and to decide whether testability improvement is required 

or not. Moreover, gate-level testability analysis is performed late in the hardware design flow 

when redesign may be too costly. 

A common DFT technique for sequential circuits is scan design, which provides that the flipflops 

in a circuit can be chained into a serial shift register (scan chain) during test mode. Scan design al

lows direct control and observation of the flipflops in the scan chain, and hence it allows to test the 

combinational and sequential parts of the circuit separately. In full-scan design, all ftipflops are 

included in the scan chain. However, full-scan design may entail silicon area overhead and perfor" 
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mance degradation. An alternative is partial-scan design, in which only a subset of the flipflops 

is included in the scan chain. The methods for selecting a subset of ftipflops to be included in 

the partial-scan chain, can roughly be divided into three categories: methods based on gate-level 

testability analysis that use observability and controllability measures for selecting partial-scan 

flipflops; methods based on test generation that exploit the information provided by sequential 

ATPGs for selecting partial-scan ftipflops; and methods based on structural analysis which select 

flipflops to break feedback cycles in the circuit. 

Experiments on sequential circuits showed that test generation complexity grows exponentially 

with the length of feedback cycles in a sequential circuit, while this complexity grows only lin

early with sequential depth [CA90]. A feedback cycle is constituted of a flipflop whose output is 

fed back into the flipflop's input; sequential depth is the largest number of flipflops on a path be

tween primary inputs and outputs. Similar views are stated in [HS89, GMG90], where feedback 

loops and reconvergent fanouts are identified as major testability bottlenecks for sequential ATPG. 

However, more recent experiments somewhat weaken the importance of feedback cycles to se

quential ATPG complexity [MEMMR95]. Several algorithms for selecting partial-scan flipflops 

to break feedback cycles have been proposed [CA90, LR90, PA92, AM94, CBA94]. 

5.3.2 Behavioral-Level Testability Analysis 

Testability analysis on behavioral hardware descriptions offers several advantages over gate-level 

testability analysis. Behavioral-level testability analysis can be performed earlier in the design 

flow before synthesis, and it is able to cope with the increasing complexity of VLSI circuits. Testa

bility analysis on the behavioral level considers both the circuit structure, i.e. the topology of in

terconnected modules, and the information propagation through modules. Numerous approaches 

have been proposed for behavioral-level testability analysis. 

• A simplified approach is proposed in [SGP83], considering only the network topology 

while ignoring information propagation through modules. 

• In TOES (Testable Design Expert System) [AB85], a circuit is modeled as a network of 

modules. Testability analysis is performed by identifying paths for information propaga

tion through a module (the module identity mode: 1-mode), and paths for propagating in

formation from one module to another module (1-path). 

• A precise approach is described in [MH88, MH91, Mur94], where an algebraic theory of 

propagation is introduced that is used for hierarchical test generation and design-for-test. 

The theory of propagation provides a formal description of the propagation characteristics 

of a module, together with algebraic operations to calculate the propagation characteristics 

of a network of modules. 

• In [JK93], the controllability and observability measures of SCOAP are extended to the 

functional level. A circuit is modeled as a graph, where nodes represent modules and edges 

represent interconnections between modules. Each module is described by its inputs, its 

outputs, and a boolean function which models the dependencies between inputs and out

puts. 
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• In [TA89], infonnation theory is proposed for testability analysis on data-flow graphs. The 

nodes in the graph correspond to functional modules and the edges represent signal paths. 

Entropy and mutual infonnation are used to quantify the amount of infonnation that is trans

ferred from a primary input to a node, and from a node to a primary output. 

• In [VAA92, VVA93], testability analysis is perfonned during high-level synthesis. A be

havioral VHDL description is analyzed first by ATKET (Automatic Test Knowledge Ex

traction Tool), which computes test modes (i.e. initialization mode, propagation mode, hold 

mode, and status mode) for each module. Based on the evaluation of these test modes, the 

behavioral description may be modified. Next, the behavioral description is input into a 

high-level synthesis tool, performing scheduling and allocation of hardware resources. The 

synthesized design is analyzed by ATKET again. Testability bottlenecks may be removed 

by performing re-scheduling or re-allocation. 

• In [CM89, CWS91, CS92, CS93, CKS94], testability analysis is perfonned by BETA 

(Behavioral-level Testability Analyzer). BETA first perfonns path analysis on the control

flow graph (CFG) of a circuit. Next, paths are examined for controlling and observing 

variables, and each variable is classified as completely or partially controllable, and com

pletely or partially observable. This infonnation is used to select test points or partial-scan 

ftipftops. Alternatively, test statement insertion in the CFG is proposed to improve testabil

ity by making variables completely controllable or observable in test mode. 

• A common structure for hardware circuits is a datapath controlled by a control section. In 

[AM89], an approach for symbolic test generation is proposed. The datapath is described 

as an interconnection of functional modules and represented as a graph. Each node in the 

graph has a behavioral path model, which describes a propagation mode, a justification 

mode, and a status mode. The control section is defined as a finite-state machine, described 

by a state table. The test generation algorithm detennines a symbolic test path for each tar

get module in the datapath. The symbolic test path describes constraints for the primary 

inputs, and the sequence in the control section to activate the test path. 

• In {LP93], testability analysis is proposed for microprocessor circuits which may be gen

erally modeled as a datapath and a control section. The circuit behavior is represented in 

a structural data-flow graph (SDG). For each assembly instruction, a SDG represents the 

modules in the datapath that are involved in the instruction and the data-flow between them. 

Paths are computed to justify the inputs of a module and to propagate the module outputs to 

a primary output of the circuit. The test generation process is separated into path analysis 

and value analysis. During path analysis, an assembly instruction sequence is generated to 

apply the test vector to the module under test and to allow the fault effect to be observed at a 

primary output. During value analysis, the values at all modules are calculated. Testability 

analysis is used to measure the difficulty of generating an assembly instruction sequence 

and value assignments. 

• In [CLP92a, CLP92b, Chi93, c+94b], a circuit is hierarchically described in VHDL as a 

datapath and a control section. The circuit description is transfonned into an Execution 

Flow Graph (EFG), which fonnalizes the data flow and the interaction between the datapath 

and the control section. For each module in the datapath, an EFG is generated, and con

trollability and observability sequence ranges are calculated. The controllability sequence 
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range is an estimation of the minimum and maximum number of instruction cycles required 

to set a give value. The observability sequence range is an estimation of the minimum and 

maximum number of instruction cycles required to observe any value. By combining the 

sequence ranges of all modules, an overall testability sequence range is obtained, which is 

used for selecting flipflops in a partial-scan approach. 

5.3.3 VLSI Testability Analysis and PCO Insertion 

We conclude from the previous that testability analysis ofVLSI circuits is widely applied to guide 

design-for-test. Testability analysis is performed by analyzing both the circuit structure, i.e. the 

topology of interconnected modules, and the information propagation through modules. In gate

level testability analysis, a module corresponds to a basic logic gate, while in behavioral-level 

testability analysis a module corresponds to a behavioral description of combinational or sequen

tiallogic. 

An interesting question is whether the methods for VLSI testability analysis can be applied to 

guide PCO insertion in a system specification. A system specification typically consists of a 

model of concurrent, communicating processes. Testability analysis may be performed by consid

ering both the structure of the specification, i.e. the topology of interconnected, communicating 

processes, and the information propagation through each process. 

5.3.3.1 Analysis of Information Propagation 

The effort for analyzing the structure of a system specification is to some extent comparable to the 

effort for analyzing the structure of a VLSI circuit. However, analyzing the information propaga

tion through a process is usually much more complex than analyzing the information propagation 

through a logic gate or a relatively simple combinational or sequential hardware module. The be

havioral specification of a process typically incorporates a non-trivial control flow and data flow. 

Analyzing the information propagation in the behavioral specification of a process is compara

ble to path analysis in software. We indicated in section 3.7.2 that it is generally impossible to 

analyze all control-flow and data-flow paths through a software module. Hence, in general testa

bility analysis of the system specification cannot be performed efficiently when considering the 

information propagation through processes. 

In chapter 7 we will discuss experiments on an elevator control system as a case study. We 

specified the elevator control system using the POOSL language. The POOSL specification con

sists of nine concurrently operating, communicating processes and all nine processes are of sim

ilar complexity. Figure 5.5 shows the control flow of one of the processes named Individual El

evator Control. Each node in the control-flow graph corresponds to a statement in the POOSL 

specification; for the sake of clarity we annotated the statements in the POOSL specification with 

line numbers. The POOSL specification of the process consists of a number of methods, indicated 

by the grey boxes, that call each other. 
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Figure 5.5 Control-flow graph of POOSL process 'Individual Elevator Control' 
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In figure 5.5, there are only 62 basic control-flow paths between the initial node I and node Ill in 

the method loop. However, these 62 basic control-flow paths do not include any loop statements, 

tail recursion and interrupts, because this would lead to an exponential increase in the number of 

control-flow paths as explained below. 

• Counting in loops causes an exponential increase in the number of control-flow paths. For 

instance, the method disableElevator2 contains the following loop: 

{192) 

(193) 

(194) 

(195) 

{196) 

(197) 

(198) 

(199) 

a:=l; 

while (a<=40) 

do if ( ) 

od; 

then 

fi; 
a:=a+1; 

There are 240 control-flow paths through this piece of code due to the if-statement in the 

loop. 

• A POOSL process typically exhibits infinite, non-terminating behavior, which is achieved 

by tail recursion. The process in figure 5.5 contains tail recursion in the method loop: 

node 111, the last statement of the method loop, recursively calls the method loop. The 

62 basic control-flow paths between node 1 and node 111 are simple paths, because they 

do not incorporate the tail recursion. 

• A POOSL process can be interrupted, which is specified by an interrupt or an abort state

ment. An interrupt or abort statement is used to specify that a process should be willing 

to accept some message at any instant. The process in figure 5.5 has two levels of inter

rupts. lnterrupt2 may interrupt all methods except for the method initl, while interrupt 1 
may interrupt all methods. (Note that interrupti may interrupt interrupt2.) 

Considering interrupts causes an enormous increase in the number of control-flow paths. 

For instance, the statement (ch?n1; ch?n2 ; ch?n3 ) interrupt ch?n is equivalent to the state

ment (ch?n1 ; m2) or (ch?n; m 1 ), where mh m2 and m3 are methods defined as: 

m1 = (ch?nt; m2) or (ch?n; m1) 

m2 = (ch?n2; m3) or (ch?n; m2) 

m3 = (ch?n3) or (ch?n; m3) 

Obviously, it is impossible to give an upper bound for the number of control-flow paths 

through this statement. 

It can be concluded that it is unfeasible to give an upper bound for the number of control-flow paths 

when considering loop statements, tail recursion and interrupts. The example in figure 5.5 clearly 

demonstrates that analysis of information propagation through a process by means of exhaustive 

path analysis cannot be performed efficiently. Hence, testability analysis of a system specification 

cannot be based on an analysis of information propagation. 
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5.3.3.2 Analysis of Specification Structure 

A simplified approach to testability analysis of a system specification is to consider only the struc

ture of the specification, while ignoring information propagation through processes. The structure 

of a specification can be represented in a directed graph (digraph), where each node represents a 

process and each directed edge represents communication between a sending process and a re

ceiving process. 

A directed graph G = ( V, E) consists of a set of vertices V and a set of directed edges E. A path in 

a directed graph is a sequence of vertices v1, ••• , Vn such that v 1 -+ v2, ••• , Vn-1 -+ Vn are edges. 

The length of the path is the number of edges on the path. A path is simple if all vertices on the 

path, except for possibly the first and last, are distinct. A simple cycle is a simple path of length 

at least one that begins and ends at the same vertex. The number of vertices in graph G is n = I VI, 
and the number of edges is e = lEI. 

Testability analysis can be performed by analyzing the structure of the graph. There are various 

well-known algorithms for analyzing directed graphs: 

• The single-source shortest paths algorithm computes the shortest paths in a digraph from a 

source vertex to each vertex in V. The notion of shortest path can be extended to the path 

with minimum cost when each edge has an associated label representing the cost. The cost 

of a path is the sum of the costs of the edges on the path. An efficient algorithm of complex

ity O(elogn) has been developed by Dijkstra [Dij59]. A related algorithm of complexity 

O(en Iogn) has been developed by Floyd [Fio62] to determine the shortest paths between 

any pair of vertices in the graph. 

• The eccentricity of a vertex· v in a digraph is defined as the maximum length of the shortest 

path from any vertex w to v. The center of G is the vertex of minimum eccentricity, which 

is the vertex that is closest to the vertex most distant from it. The eccentricity of vertices 

and the center of the graph can be determined efficiently by Floyd's algorithm. 

• A strongly connected component of a digraph is a maximal set of vertices S ~ V in which 

there is a path between any two vertices in S. The strongly connected components in a di

graph can be determined efficiently by depth-first search traversal of the graph. An efficient 

algorithm has been developed by Tarjan [Tar72], computing the strongly connected com

ponents of a graph in a single depth-first search traversal. 

Identifying the strongly connected components in a digraph corresponds to identifying 

feedback loops in the graph. The problem of identifying strongly connected components 

is of linear-time complexity. However, the problem of finding a minimal feedback vertex 

set (MFVS) to break all feedback cycles is NP-complete [AHU74]. Heuristic and exact al

gorithms for identification of the MFVS have been proposed in [SW75, LSW88], and in 

research on selecting partial-scan flipftops to break feedback cycles in sequential circuits 

[CA90, LR90, PA92, AM94, CBA94]. 

Testability analysis can be performed by analyzing the observability and controllability of each 

node in the digraph. The controllability of a node can be determined by computing the eccentricity 

of the node with respect to the system inputs, and the observability of a node can be determined 
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by computing the eccentricity of the node with respect to the system outputs. Analysis of the 

graph structure may provide useful information. However, the behavioral view on the system is 

not captured and consequently the results of testability analysis may be inaccurate. For instance, 

figure 5.6 shows the digraph representation of the specification of the elevator control system. 

The nodes P1, ••• , P9 correspond to the nine POOSL process objects; the nodes It, ... , 19 cor

respond to the system inputs; and the nodes Ot, ... , 0 9 correspond to the system outputs. Fig

ure 5.7 shows the length of the shortest path between each process node and the system inputs and 

outputs, and the eccentricity of each process node with respect to the system inputs (E1) and the 

system outputs (Eo). It follows from figure 5.7 that the nodes P3, Ps, P1 and P9 have the largest 

eccentricity, and hence they are most difficult to control and observe from the system inputs and 

outputs. For instance, process P3 is difficult to access because of paths like Is ~ P3 and P3 ~ 0 5 

of length 5. However, P3 and Ps are behaviorally independent processes, and hence process P3 
is not correlated to Is and Os. This example clearly demonstrates that a pure structural analysis 

of the specification, which ignores the behavioral view, is inadequate for testability analysis. The 

structural analysis can be improved by considering only those paths that can actually be traversed. 

This would eliminate the paths Is ~ P3 and P3 ~ Os. We will elaborate further on this improved 

approach in section 5.5. 

Figure 5.6 Digraph ofthe specification structure of the Elevator Control System 
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p9 3 4 5 4 5 4 5 2 1 5 

Figure 5.7 Shortest paths and eccentricity 

Another aspect of structural analysis is to identify feedback loops in a specification. Feedback 

loops are typically key contributors to the complexity of a system specification. PCOs may be 
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inserted to break feedback cycles. This approach is analogous to selecting partial-scan flipflops 

for breaking feedback cycles. For instance, a minimum feedback vertex set (MFVS) for the di

graph in figure 5.6 is { P2, P4, P6 , P8}. Removing the nodes in the MFVS eliminates all cycles in 

the digraph. However, also in this case structural analysis alone is insufficient for guiding PCO 

insertion because the behavioral view on the system is ignored. 

5.3.3.3 Discussion 

In this section, we argued that techniques for VLSI testability analysis cannot be applied effi

ciently to guide PCO insertion in a specification. The analysis of information propagation through 

processes in a system specification implies analysis of all control-flow and data-flow paths in a 

process, which is generally impossible to achieve. Analysis of the specification structure while 

ignoring the information propagation through processes, yields inaccurate results because the be

havioral view on the system is not taken into account. The only reasonable approach is to analyze 

the specification structure and to identify a limited set of paths through the specification. This im

plies that for each process a limited set of paths is analyzed. This approach is elaborated further 

in section 5.5. 

Another topic that impedes testability analysis is that the system specification consists of a number 

of concurrent processes. These processes operate in parallel, and hence the control flow in the 

system specification is in fact composed of the control flows of all the concurrent processes in the 

system specification. The control flows of the individual processes are closely related, because 

the processes communicate with each other. Hence, testability analysis of the system specification 

should in fact analyze concurrent, interacting control-flow paths. 

5.4 System-Level Testability Analysis 

System-level testability analysis has been proposed by Sheppard & Simpson (ARINC, USA) in 

their work on integrated diagnostics, and by Robach et al. (LSR-IMAG, France) in their work on 

testability-oriented hardware/software partitioning. 

5.4.1 Testability Analysis for Integrated Diagnostics 

Sheppard & Simpson developed an approach towards integrated diagnostics for US military sys

tems [SS9lb, SS9la, SS92b, SS92a, SS93b, SS93a, SS94a]. Until the 1980s, the design of mil

itary systems concentrated on meeting performance constraints, while field maintenance and di

agnostics were hardly considered. Consequently, systems in the field showed retest-ok rates over 

40%, no-fault-found rates over 50%, and false-alarm rates exceeding valid alarm rates. To deal 

with these problems, a shift took place from design-for-performance to design-for-field operation. 

Initially, this resulted in ad hoc design modifications that did not lead to significant improvements 

in the field. A more structured approach has been introduced by Sheppard & Simpson. Although 

their primary application domain is US military systems, their approach is generally applicable. 

The Sheppard & Simpson approach is based on the assumption that a failure during field operation 

is due to a physical hardware fault The fault can be diagnosed by applying a particular set of test 
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Figure 5.8 Sheppard & Simpson approach to integrated diagnostics 

cases to the system, possibly using the system's built-in test facilities. The Sheppard & Simpson 

approach deals with two key issues: testability analysis, which means analyzing how well a fault 

can be diagnosed by applying a set of tests, and developing efficient diagnostic strategies. The 

approach is based on creating a mathematical model of a system. Figure 5.8 shows the subsequent 

stages of this approach. 

First the analysis level is determined. This level defines the smallest isolatable part during diagno

sis, such as an IC, a PCB, or a collection of PCBs. Next an information-flow model of the system 

is created. The information-flow model is a directed graph, where each node represents a test or a 

fault-isolation conclusion, and each edge represents a (first-order) dependency between a test and 

a fault-isolation conclusion. Tests are regarded as information sources, and for each test the con

sequences of a pass or fail are evaluated. A fault-isolation conclusion corresponds to an element 

that can be isolated, like a PCB or an individual component. The purpose of the information-flow 

model is to reason about combinations of tests for diagnosing faults. When the information-model 

is completed, it is processed which implies calculating higher order dependencies between tests 

and fault-conclusions in the information-flow model. 

The information-flow model is used to identify several characteristics of system testability, such 

as conclusion ambiguity and test redundancy. Conclusion ambiguity indicates that a set of tests 

cannot distinguish among two or more fault-conclusions. Test redundancy indicates that two or 

more tests provide identical information. Testability analysis is used to evaluate system testa

bility. If the system testability is inadequate, an iteration step is performed to improve testability. 

Testability can be improved by specifying additional test cases and/or by removing redundant test 

cases. If testability analysis is performed before the system is actually implemented, redesign can 
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be performed. However, redesign usually requires extra costs and may affect the system perfor

mance. Furthermore, redesign may solve the current testability problems but at the same time it 

may introduce new testability problems. A simple form of redesign is .to repack the system in 

such a way that all the testability problems are grouped into a single isolatable unit. 

When an adequate level of system testability is reached, diagnostic strategies are developed. A 

diagnostic strategy consists of a particular set of tests and the order in which these tests are ap

plied in order to locate a fault. Optimization is required to minimize the number of tests needed 

for isolating a fault. The problem of constructing an optimal diagnostic strategy is known to be 

NP-complete, and therefore exhaustive search is unfeasible. Sheppard & Simpson proposed a 

number of heuristics of which an entropy-directed search offers the best results. Finally, the di· 

agnostics strategies are incorporated in maintenance tools, like technical manuals and automated 

test equipment. 

The Sheppard & Simpson approach concentrates on providing diagnostic strategies for dealing 

with hardware faults. The system architecture, the built-in test facilities, and the test cases are all 

modeled to some extent in the information-flow model. Hence, the information-flow model and 

testability analysis are based on the physical implementation of the system. Our design for test 

& debug approach is completely different. We concentrate on hardware/software design faults, 

in particular on interfacing faults, and we propose testability analysis on the implementation

independent system specification. The main conclusion is that both approaches are complemen

tary. Our approach focuses on design for test & debug during system specification and architec

ture design, while the Sheppard & Simpson approach concentrates on deriving diagnostic strate

gies from the physical implementation. However, this also implies that the techniques for testa

bility analysis proposed by Sheppard & Simpson are not applicable for guiding PCO insertion. 

5.4.2 Testability Analysis for Hardware/Software Partitioning 

Robach et al. propose system-level testability analysis to guide hardware/software partitioning. 

Initially, Robach et a!. used Information Transfer Graphs (lTG) [TR95b, TR95a, AHLTR96, 

AHTR97] to model hardware circuits. An lTG is a directed graph that is closely related to the 

data-flow model. Each node corresponds to a function of the circuit and each edge models the 

possibility to transfer information from one node to another one. The SATAN (System's Auto

matic Testability ANalysis) tool [RMM84] is used for testability analysis and automatic genera

tion of test cases from the lTG. This process is performed in three steps. First, the information 

flows in the lTG are identified. An information flow is a path in the lTG from inputs to output. 

Next, a set of information flows is selected to be used as test cases. Finally, a testability measure 

is computed. Each node in the lTG corresponds to a function or module. A weight is assigned to 

each node to represent the effort for testing the node. System testability is measured as a func

tion of the weights of the nodes in all information flows in the test set. In later work, the lTG is 

replaced by the control-flow graph (CFG) [THR96, AHTR97]. 

Each node in an lTG or a CFG represents some functional behavior that can be implemented in 

hardware or in software. There are two weights assigned to each node, which represent the testing 

effort, i.e. the number of test cases, for respectively the hardware implementation and the software 

implementation of the node [AHLTR96, HR96a, HR96b, THR96, AHTR97]. The functional be-
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havior of a node is specified in behavioral VHDL, and this behavioral VHDL specification is re

garded as the software implementation of the node. Robach et al. propose mutation analysis to 

derive a test set for the software implementation. Mutation analysis is based on creating a set of 

faulty versions or mutants of the software implementation. Each mutant differs from the correct 

software implementation by a single, unique and syntactically correct fault. Fault classes can be 

modeled by a set of mutation operators. A mutant is created by applying a mutation operator to 

the original software implementation. Robach et al. defined a set of simple mutation operators 

for behavioral VHDL descriptions, such as changing an arithmetic, logic, relational, or unary op

erator, or replacing a constant or a variable by another constant or variable. The test set for the 

hardware implementation. of the node is derived in exactly the same way, however additional test 

cases are defined to detect physical hardware faults. 

Various hardware/software partitionings can be obtained by considering the hardware or software 

implementation for each node in the lTG or CFG of the system. The testability of each hard

ware/software partitioning is computed by considering the paths through the lTG or CFG and by 

the weights of the individual nodes. 

Robach et al. propose an interesting approach to address system testability, however several weak

nesses Cllll be identified. They assume that a behavioral specification of a hardware module is 

comparable to a software program. This is a valid argument to some extent, however the reversed 

argument is definitely not valid. The control flow and data flow of a software program or a sys

tem specification is typically much more complex than the behavioral specification of a hardware 

module. We clearly demonstrated this in section 5.3.3.1 where we discussed the complexity of a 

POOSL process. In section 5.3, we also concluded that path analysis and information propagation 

cannot be applied efficiently for testability analysis of behavioral system specifications. However, 

the approach of Robach et al. is based on exhaustive path analysis. Hence, the work of Robach 

is applicable to hardware systems, but it does not truly address testability of hardware/software 

systems. 

Robach et al. propose mutation analysis for obtaining a test set, focusing on simple design faults, 

such as incorrect arithmetic, logic, relational or unary operators and incorrect variables or con

stants. It is assumed that more complex design faults can be detected by the same test set. How

ever, in chapter 3 we argued that testing of hardware/software systems should concentrate on in

terfacing faults. Faults like deadlocks and race conditions may not be identified easily by a test 

set that is obtained from mutation analysis. Moreover, mutation analysis as proposed by Robach 

et al. implies that testing a hardware implementation always requires more effort than testing a 

software implementation. 

5.4.3 Formal Analysis of System Testability 

In [DASC93] a formal analysis is presented on conformance testability of embedded components 

in a system. Conformance testing of a component in isolation implies checking whether the exter

nally observable behavior of the component's implementation I is conforming to the component's 

specification S. The relation I conf S indicates that implementation I conforms to specification 

S when tested in isolation, as indicated in figure 5.9a. 
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Figure 5.9 Conjonnance testing of a component 

In [DASC93] is analyzed how conformance testability of a component may degrade when the 

component is embedded in a system. The embedded component cannot be accessed directly from 

the system environment due to its surrounding components in the system. Consequently, testing 

the embedded component implementation I for conformance with respect to its specification S 

requires that test stimuli and test responses are passed through the surrounding components. The 

relation I confE S denotes that the embedded implementation I conforms to specification S, as 

indicated in figure 5.9b. 

Testing an embedded component in a system for conformance may lead to four possible conclu-

sions: 

1. (Icon/ S) and (lconfES) 

2. -.(I conf S) and -.(lconfE S) 

3. (Icon! S) and -.(JconfES) 

4. -.(Jconf S) and (lconfES) 

The conclusions I and 2 indicate correct situations: if the component is found to be conforming 

or non-conforming to its specification when tested in isolation, then the same result is obtained 

when testing the embedded component. 

Conclusion 3 indicates that a conforming implementation may become non-conforming when em

bedded in the system. Conformance testing aims at verifying the behavior of the implementation 

with respect to the specified behavior. However, conformance testing does not verify the imple

mentation for non-specified behavior. (Conformance testing does not include robustness testing.) 

When embedded in the system, non-specified inputs or input sequences may be offered to the 

component, which imposes non-specified behavior to the component that may lead to the conclu

sion of non-conformance. 

Conclusion 4 indicates that a non-conforming implementation may become conforming when em

bedded in the system. It may be impossible to offer (specified) inputs or input sequences to the 

embedded component which would impose non-conforming behavior to the component. Hence, 

due to testability degradation, the non-conforming behavior may be non-detectable. 

In [DASC93], a formal approach using refusal graphs is proposed for finding the limits of testa

bility degradation when testing embedded components. This approach is based on Brinksma's 
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formal definition of conformance testing [BSS87, Bri88]. 

5.4.4 Discussion 

In this section, we discussed three approaches to system-level testability analysis. The approach 

of Sheppard & Simpson concentrates on diagnostic strategies for hardware systems. We showed 

that this approach is complementary to our design for test & debug approach. C{)nsequently, their 

testability analysis method is not applicable to guide PCO insertion in a system specification. 

We argued that the approach of Robach et al. does not truly address hardware/software systems. 

Their testability analysis method is applicable to hardware systems, but it is not suited for guiding 

PCO insertion in a system specification. 

Finally, we provided a theoretic discussion on testability degradation of embedded components 

during conformance testing. Although this discussion did not provide any guidelines for PCO in

sertion, it clearly demonstrated how the testability of individual components may degrade when 

embedded in a system. A plausible approach is to insert PCOs at the boundaries of those embed

ded components that suffer from testability degradation. This approach would require an exten

sion of the formal framework in [DASC93]. However, we did not study this approach any further. 

5.5 Scenario-Based PCO Insertion 

In section 4.8 we elaborated on the role of scenarios during system specification. We showed that 

scenarios are key elements for creating the system specification. Moreover, we argued that sce

narios are well suited to be used as system-level test cases, both during validation and verification 

of the system specification, as well as during testing of the system implementation. 

In this section we will show that scenario-based testability analysis of the system specification 

is suited for guiding PCO insertion. The system behavior is defined by a set of scenarios. Each 

scenario defines some specific system behavior. A scenario is defined by events that occur in the 

system environment to which the system must respond, the subsequent behavior of the processes 

in the system and their interactions, and the responses of the system. In general, only a subset of 

all the processes and <;ommunication channels in the system is involved in a particular scenario. 

The goal of scenario-based testability analysis is to identify a subset of processes and communi

cation channels that are involved in a particular scenario and that provide essential information 

on the system behavior. The essential information should be sufficient for an external observerto 

explain the system behavior. 

When executing a particular scenario, the involved processes will interact and exchange messages. 

Whenever a process receives a message, the process will typically evaluate both its current state 

and the input message, and subsequently the process will generate output messages and modify 

its state. Usually, only part of the process state is relevant for evaluating the input message and 

for deciding what the subsequent behavior of the process will be, and only part of the process 
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state is modified. Hence, the essential information is that part of the process state which is evalu

ated and modified during the scenario. Also the input and/or output messages of the process (i.e. 

communication channels) can be identified as essential information that is required to explain the 

behavior of the process. 

The second element of scenario-based testability analysis is to analyze the external visibility of 

the relevant processes and communication channels. If the essential state information of a rel

evant process cannot be easily determined by observing just the external system behavior, then 

inserting a PCO to access the process state information is desirable. Likewise, if the messages 

on a relevant communication channel cannot be easily determined by observing just the external 

system behavior, then inserting a PCO to access the communication channel is desirable. 

In summary, scenario-based PCO insertion addresses two basic questions for each scenario: 

• What is the essential information in the system for the particular scenario, which allows an 

external observer to explain the system behavior? 

• How well is this essential information visible to an external observer? If the information is 

not reasonably visible to the external observer, then PCO insertion is desirable. 

A scenario can be regarded as a path through the system specification in which multiple processes 

are involved. We showed in section 5.3.3.1 that an exhaustive path analysis through a single pro

cess is unfeasible due to the large number of control-flow and data-flow paths. Furthermore, we 

showed that the system specification consists of a number of concurrent, communicating pro

cesses and hence the control flow through the system specification is composed of the control 

flows of all the concurrent processes. A scenario can be regarded as a single path through the 

system specification, which is composed of subpaths through the processes that are involved in 

the scenario. Hence, for each process only a limited number of paths is considered for one par

ticular scenario. 

We showed in section 5.3.3.1 that the number of control-flow paths through a process may become 

very large when considering loops, tail recursion and interrupts. We limit the number of paths 

during scenario-based testability analysis in the following way: 

• We do not perform exhaustive path analysis through a loop. Usually it suffices to consider 

loop invariants, pre- and postconditions, and/or boundary conditions to extract the essential 

information in the loop. Forinstance, the example in section 5.3.3.1 contained the following 

loop: 

a:=l; 

while (a<=40) 

do if (destinations get(a)) 

od; 

then db!indicateDestination{a,false); 

destinations put(a,false) 

fi; 
a: 
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The postcondition of this loop is: Va : 1 :::; a 5 40: destinations[a}=false. The essential 

information in this loop is provided by the array destinations. However, the essential infor

mation is directly visible in the system environment, because changes in destinations are 

communicated on the channel db which is connected to objects in the system environment. 

(In fact, the statement db!indicateDestination( ajalse) models that the light of a destination 

request button in the elevator cage is turned off.) 

• A scenario indicates how many times tail-recursive calls need to be evaluated. For instance, 

the method loop in figure 5.5 contains tail recursion. A particular scenario is that the system 

operator first enables an elevator and next disables the elevator. This scenario will traverse 

the path from node 73 to 111 (enabling the elevator), a tail-recursive call to node 67, and 

the path from node 67 to 111 (disabling the elevator). Hence, the scenario indicates which 

paths are traversed in the two subsequent executions of the method loop. 

• In a similar way, the scenario indicates when interrupts should be considered. For instance, 

a particular scenario defines the system behavior when a passenger presses a summons but

ton. In figure 5.5, pressing a summons button will cause an interrupt (node 25). The in

terrupt behavior will subsequently modify a variable (node 26). In the method loop, this 

variable is only considered in the path from node 58 to node Ill, and not in all other paths 

through the method loop. Hence, interrupti in figure 5.5 needs only to be considered in this 

particular scenario that traverses the path between node 58 and Ill, and may be ignored in 

all other scenarios. 

A remaining question is the completeness of scenario-based testability analysis. As indicated, 

scenario-based testability analysis traverses only a limited number of paths through the system 

specification for each individual scenario. However, analysis of the individual scenarios results 

in traversal of all relevant paths. For instance, we stated in section 5.3.3.1 that there are 62 basic 

control-flow paths through the process in figure 5.5. When scenario-based testability analysis of 

all the individual scenarios is completed, all62 basic paths will have been traversed. Furthermore, 

additional paths will be traversed that contain relevant loops, tail recursion and interrupts. 

It should be noted that scenario-based analysis of individual scenarios is sufficient for PCO in

sertion. However, this approach does not provide an exhaustive analysis. Consequently, it is in

sufficient for test case generation, because the execution of multiple, simultaneous scenarios in the 

system should be considered during testing. Scenario-based PCO insertion provides that PCOs 

are inserted to access the essential information for each individual scenario. Hence, even if there 

are multiple, simultaneous scenarios being executed in the system, the PCOs provide that the es

sential information of each individual scenario is visible to an external observer. 

5.5.1 Example of Scenario-Based PCO Insertion 

In the case study on the elevator control system, one particular scenario defines the system be

havior when a passenger in an elevator cage presses a button to indicate that he wants to be trans

ported to a particular floor. Pressing the particular button is modeled in the system specification as 

a destinationRequest(Floor) message that is input to the system. The parameter Floor indicates 

the floomumber where the passenger wants to be transported to. The subsequent system behavior 

is as follows: 
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• If the elevator is halted and if the elevator is not positioned at the floor of the destination 
request, then the elevator will be scheduled to service the destination request. The elevator 
doors will be closed, and subsequently the elevator will start moving. 

• If the elevator is halted or stopped and if the elevator is positioned at the same floor as 
specified in Floor, then the system will generate no responses. 

• If the elevator is disabled, then the system will not generate responses. 

• If the elevator is moving or if the elevator is stopped at a floor differing from Floor, then 
the destination request is stored and no explicit scheduling is required. 

It is easy to see that the essential information in this scenario is the elevator state (which can be 
halted, stopped, moving, or disabled) and the current floor at which the elevator is positioned. In 
the external environment, the current floor of the elevator is directly visible, because each eleva
tor is equipped with arrival lights that indicate the current position of the elevator. However, the 
elevator state is not directly visible in the system environment For instance, an external observer 
who observes an elevator that is waiting on a particular floor, is unable to determine whether the 
elevator is halted or stopped. Hence, it is desirable. to insert a PCO in the system specification so 
that the elevator state can be observed and/or controlled. The specification of the elevator control 
system will be discussed in depth in chapter 7. We will show in chapter 7 that the elevator state is 
contained in a process named Individual Elevator Control. This process will indeed be equipped 
with a PCO to access the elevator state. Further examples of scenario-based PCO insertion will 
be provided in chapter 7. 

5.6 Effects of PCO Insertion 

5.6.1 Formal Analysis of PCO Insertion 

In this section, we will examine the effects of PCO insertion on the system specification. The in
sertion of PCOs implies that the system specification is modified. However, the modified system 
specification should still be correct with respect to the original system specification: the insertion 
of PCOs in the system specification should not induce faulty behavior. In order to examine the 
effects of PCO insertion, we consider the system specification to be a collection of concurrently 
operating, communicating processes. We use the CCS process algebra [Mil80, Mil89, Koo91] to 

describe such a system specification for the following reasons: 

• Process algebra provides a formal, mathematical theory on communication and concur
rency. The behavior of a system is typically expressed in process algebra as a composi
tion of concurrent. communicating processes. This corresponds directly to our view on the 
system specification. 

• Process algebra provides a formal, mathematical theory on equivalence relations between 
systems. Hence, process algebra allows to formally express whether two systems are equiv
alent or not and under what conditions this equivalence holds. The effects of PCO insertion 
can be studied by examining whether the system behavior including PCOs is equivalent to 
the system behavior without PCOs. 
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• There is variety of process algebras, such as ACP, CCS, CIRCAL and LOTOS, which have 

slightly different semantics and characteristics. In this thesis we will use Milner's CCS pro

cess algebra. This choice is mainly motivated by our focus on the POOSL language for 

system specification. POOSL is largely based on CCS. 

The previous arguments clearly show that CCS process algebra is a valid choice for analyzing 

the effects of PCO insertion. However, there are some restrictions. In CCS process algebra, 

the communication between processes is based solely on synchronous pair-wise message pass

ing. Furthermore, in CCS process algebra there is no notion of time. Only the ordering of ac

tions performed by a process and the ordering of interprocess communication actions are consid

ered. Hence, analyzing the effects of PCO insertion will focus on whether PCO insertion causes 

a change in the ordering of actions in the system. The absence of time is not a severe restriction, 

because in the system specification the primary focus is on a high-level, abstract description of 

the functional system behavior which concentrates on topics like concurrency, communication, 

synchronization and ordering of events. The notion of time becomes more important during ar

chitecture exploration and the subsequent stages of the design flow. 
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Figure 5.10 Inserting a PCO in a communication channel 

Figure 5.10a shows an example system described in the CCS process algebra. The system A0 is 

composed of two concurrent, communicating processes (agents in CCS terminology) Po and Q0 • 

The two agents communicate when agent Po performs output action c and agent Q0 performs 

input action c simultaneously. The behavior of the agents Po and Qo is defined as: 

Po in.Pt 

P
def-n 

1 =c.ro 

def 
Qo = c.Q1 

def-
QI = out.Qo 
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The behavior of system Ao is defined as: Ao ~(Pol Qo)\c. This indicates that system Ao is con

stituted by the parallel composition of the agents Po and Q0 , and restriction \ {c} (or shortly \c). 
Restriction \c implies that the agents may perfonn the actions c and c only to communicate with 
each other. The monolithic behavior of the system Ao is: 

Ao = in.A, 

A,= 1:.A2 

A2 = in.A3 + out.Ao 

A3 =out.A1 

The behavior of Ao can be minimized under observation equivalence to A0: 

A' • A' 
''Q = m. I 

A I • A' -A, 
1 = zn. 2 + out .• 'Q 

A; =out.A~ 

Next, we insert a PCO to observe and control the communication between the agents Po and Q0 . 

Inserting a PCO however should not change the externally observable system behavior. An ob
server in the system environment that interacts with the system, should not be able to distinguish 
the original system without a PCO from the system with a PCO operating in transparent mode. 
In CCS process algebra, this constraint can be fonnalized as: the behavior of the original system 
Ao should be observational equivalent to the behavior of the system Bo. where Bo is the modified 
system in which a PCO has been inserted that operates in transparent mode. 

In [Mil89], two agents are said to be observational equivalent if they can both perfonn the same 
externally observable actions. This corresponds to the notion of bisimulation, i.e. both agents 
should be able to simulate each other's behavior. The fonnal definition in [Mil89] is: 

A binary relationS s;; P x P over agents is a (weak) bisimulation if (P, Q) E S implies, for all 
a EAct, 

a a 
(i) Whenever P ~ P' then, for some Q!, Q;;;;} 0: and (P', Q') E S. 

(ii) 
a a 

Whenever Q ~ 0: then, for some P', P;;;;} P' and (P', Q') E S. 

In the course of time; many equivalence relations have been defined in process algebras, such 
as observation equivalence [Mil89], trace equivalence [Mil89], failure equivalence [Hoa85], and 

testing equivalence [NH84]. We will use observation equivalence here, because it closely corre
sponds to the intuitive notion that two systems are equivalent if and only if an external observer 
that is interacting with the systems, cannot distinguish between them. Hence, two systems are ob
servational equivalent if their externally observable behavior is equivalent. Observation equiva
lence incorporates all distinctions which reasonably can be made by an external observer [Abr87]. 

Observation equivalence is quite a strong equivalence relation: if two systems are observational 
equivalent, then they are also equivalent under many other equivalence relations such as trace 
equivalence, failure equivalence and testing equivalence. However, observation equivalence is 
sometimes considered as too strong, because it goes beyond those observations that reaiiy can be 
made by an external observer. For instance, the agents A= 1:.a.b + 1:.a.c, B = a.(<.b + t.c) and 
C = a.b + a.c are not observational equivalent. 
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On the other hand, for our application area it is preferable to use a strong equivalence relation 

such as observation equivalence. The stronger the equivalence relation, the better we can restrict 

the effects of inserting a PCO. Another appealing property is that observation equivalence can be 

proven by means of bisimulations. 

In figure 5.l0b, we insert a PCO in the communication channel between the agents P0 and Q~. 

The agents P0, PC00 and Q~ are defined as: 

P.' def. P' o =m. 1 

P, def- P.' 
I = c1. 0 

def 
PCOo = CJ.PC01 

PC01 ~ Ci.PCOo 

Q' def rv 
o = c2·~1 

Q, def- Q' 
1 =out. 0 

The monolithic behavior of the composed system B0 ~ (P 0 1PC0 0 1Q~)\{c~o cz} in figure 5.10b is 

given by: 

Bo = in.B1 

B1 = r./h. 
Bz = r.B3 + in.B4 

B3 = in.Bs + out.Bo 

B4 r.Bs 

Bs = 1:.B6 + out.B1 

B6 = in.B7 + out.B2 

B1 =out.B4 

The behavior of Bo can be minimized under observation equivalence to Bb: 

B~ = in.B~ 
Bi = in.B; + out.Bb 

B2 = out.B~ + in.B) 

B3 =out.B2 

It can easily be shown by bisimulations that the agents A0 and Bo are not observational equiv

alent. Hence, the insertion of the PCO in figure 5.1 Ob causes a change in the system behavior. 

In fact, the PCO is acting as a buffer in the communication channel. As a consequence, agent 

B0 in figure 5.1 Ob can perform the sequence in.in.in, which cannot be performed by agent Ao in 

figure 5.10a. 

In order to insert a PCO while preserving the externally observable behavior, we adjust the be

havior of the agents Po and Q0 as follows (see figure 5.10c): 

P.
/1 def • J')lf 

o = m.rl 

P!f ~- Dff 
I - S.r2 

Dff~- P." •z - CJ. o 

def 
PCOo = c1.PCOI 

PC01 ~ Cz.PCOo 

Q /1~ Q" 
0 -S. I 

Q "~ Q" I - Cz. 2 

Q
,def- rvr 
2 = out.~ 0 

The monolithic behaviorofthecomposed system Co~ (PQ'iPCOol Q0)\{s, c1 , c2 } in figure 5.10c 

is: 
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Co= in.Ct 

Ct = r.C2 

C2 = r.C3 

C3 = r.C4 + in.Cs 

C4 = in.Q, +out.Co 

Cs = r.C6 
c6 =out.Ct 

S. Design For Test & Debug during Specification 

The behavior of Co can be minimized under observation equivalence to C~: 

C~ =in.Ci 

c; = in.q +out.C~ 

q =out.c; 

It can easily be seen that the systems Ao in figure 5.10a and Co in figure 5.10c are observational 

equivalent. Hence, we inserted a PCO in the communication channel while preserving the exter

nally observable system behavior. However, this required adjusting the behavior of the agents Po 
and Q0 to avoid the PCO acting as a buffer in the communication channel. In fact, we replaced 

the communication behavior in system Ao (passing message c) by the communication behavior 

in system Co (passing the messages s, c1 and c2). Intuitively, the message s can be considered 

as a synchronization signal between the agents P~' and Q0, and the messages c1 and c 2 can be 
considered as the original message c that passes through the PCO. 

In section 3.7.1.2 we discussed the functional fault model as proposed in [CCP93b, CCP93a, 

c+94a]. In this work, the CCS process algebra is used to model a system as a set of concurrent 

processes. A fault in a communication channel is modeled by introducing a new process Fault 

that models the fault effect. For instance, inserting a fault in communication channel c in sys

tem Ao (figure 5.10a) results in system B0 (figure 5.10b), where the agent PCOo is replaced by 

the agent Fault. However, inserting an agent Fault suffers from the same problem as inserting an 

agent PC00• The system Ao is not observational equivalent to system B0 , regardless of the behav

ior of the agent Fault. In later work [ CCMP94], this problem is overcome by switching from CCS 

to CIRCAL process algebra [Mil85, Mil91]. CIRCAL allows multi-way rendez-vous communi

cation and simultaneous actions. The agent PC00 in figure 5.1 Ob would be defined in CIRCAL as 

PCOo {ct, cz} . PCOo, which specifies that the actions Ct and are performed simultaneously. 

However, this solution rather misuses the semantical features offered by CIRCAL. Furthermore, 

the behavior of such agent PC00 cannot be implemented directly in hardware or in software. 

5.6.2 Transformation Functions for PCO Insertion 

In general, adjusting the behavior of agents for PCO insertion is not a trivial task. In appendix A, 

we formally define the transformation functions :f and fJ' for agents that send messages on a com

munication channel containing a PCO, and the transformation functions (j and Z for agents that 

receive messages from a communication channel containing aPCO. In the example in figure 5.1 Oc 
we obtained the agents P~' and Q0 by: Pf: = :f(fJ'(Po)) and Q0 = (j(Z( Q0 ) ). 

The formal definitions in appendix A define the transformation functions as parameterized func-
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tions (see figure 5.11): 

• The function lJ/; is applied to an agent that outputs the message c on a channel in which a 

PCO is inserted. The function application lJ/;(P) returns an agent that is syntactically iden

tical to agent P except that every occurrence of action c in Pis replaced by c.O in lJ/;(P). 

The function application :fo(P) returns an agent that is syntactically identical to agent P 

except that every occurrence of 6 in P is replaced by ii in :fo(P). 

Hence, :fa( lJ/;( P)) returns an agent that is syntactically identical to agent P except that every 

occurrence of action c in Pis replaced by c.ii in :fo(lJ/;(P)), as illustrated in figure 5.11. 

• The function Zc is applied to an agent that inputs the message c from a channel in which a 

PCO is inserted. The function application Zc(Q) returns an agent that is syntactically iden

tical to agent Q except that every occurrence of action c in Q is replaced by c.~ in Zc(Q). 

The function application ~(Q) returns an agent that is syntactically identical to agent Q 

except that every occurrence of~ in Q is replaced by bin ~( Q). 

Hence, ~(Zc(Q)) returns an agent that is syntactically identical to agent Qexcept that ev

ery occurrence of actionc in Q is replaced by c.b in ~(Zc(Q) ), as illustrated in figure 5.11. 

c c 

:fo(lJ/;(P)) 
al PCO I b 

~(Zc(Q)) 
ii b 

I 0 I 

Figure 5.11 Applying transformation functions for PCO insertion 

The transformation functions can be generally applied to all agents in the complete calculus of 

CCS and even to non-finite state agents. The behavior of these agents may be expressed us

ing prefix, summation, composition, restriction and relabelling. Hence, the agents P and Q in 

figure 5.11 do not necessarily have to be monolithic; they may be complete systems consisting of 

several concurrent agents.· 

In appendix A, we also give a mathematical proof that the modified system, in which a PCO has 

been inserted and in which transformation functions have been applied to the relevant agents, is 

observational equivalent to the original system when the PCO is operating in transparent mode or 

in observation mode. This is a very powerful result, because this proof implies that PCO insertion 

using the transformation functions preserves the externally observable system behavior. Hence, 

there is no need for an a posteriori proof of equivalence by means ofbisimulation, which is in gen

eral a very complex or even impossible task. The transformation functions provide correctness

preserving PCO insertion. 
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The agent PCOo in figure 5.10 and figure 5.11 represents a PCO operating in transparent mode. 

However, the agent may also represent the composed behavior of a PCO operating in observation 

mode and an external observer. For instance, the behavior of PC00 in figure 5.11 can be re

placed by a system (PC00jE0 )\obs. The agent PClYo represents the PCO in observation mode, 

whose behavior is defined as: PClYo ~ a.obs.b.PC00. The behavior of the external observer 

Eo is defined as Eo obs.Eo. It can easily be shown that PCOo ~ (PC001Eo)\obs. Hence, 

the agent PC00 may be considered as representing a PCO in transparent mode or in observation 

mode. 

The transformation functions can be applied also to systems in which multiple agents communi

cate over a single channel. For instance, the system in figure 5.12a consists of four agents that all 

communicate over channel c. From the associativity of the parallel composition, it follows that 

(AIBICID)\c =((AID) I (BIC))\c, as depicted in figure 5.12b. 

I A I 1 
B I 

c c 

I D I I c I 
a) (AIBICID)\c b) ((AID) I (BIC))\c 

Figure 5.12 Associativity of parallel composition 

We now apply the transformation functions defined in appendix A to insert a PCO in channel c. 

The resulting system including the PCO is shown in figure 5.13. As proven in section A.3, it 

follows that: ((AID) I (BIC))\c ~ (Ja('Tc(AID)) I PCO I 9i,{z:t(BIC)))\{a, b, c}. 

The transformation functions may be distributed over the parallel composition, as defined in sec

tion A. I (definition 2 and definition 4), which results in the following: 

Ja('Tc(AID)) = Ja('Tc(A) I 'Tc(D)) = Ja('Tc(A)) I !fa('Tc(D)) and 

9i,(Zc(BIC)) = 9i,(Zc(B) I Zc(C)) = 9i,(Zc(B)) I 9i,(Zc(C)). 

Hence, the systems shown in figure 5.12 and figure 5.13 are observational equivalent. 

1 lc Ja('Tc(A)) I c: 9i,(z:t(B)) I 
a b 

al PCO lh 
I I 

ii b 

I Ja('Tc(D}) :c c: 9i,(z:t(C)) I 

Figure 5.13 Applying transformation functions for PCO insertion 
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5.6.3 Example of Correctness-Preserving PCO Insertion 

In this section we provide an example of PCO insertion in a non-trivial system. We consider the 

system Ao shown in figure 5.14a, which is composed of the agents Po, Qo and Ro. 

a) SystemAo 

in 
Po 

p p 
Qo 

lq r 

p 

ii Ro 
; 

b) SystemBo 

p p 

in P.' C4J 0 Pi PtlpcoP~ 
I o 

q qz P2 r2 

qz i'2 

I PC06 PCOO I 
qt rt 

p P2 
q) n 

q RQ ;: 

Figure 5.14 Example of PCO insertion 

The agents Po. Qo and Ro are defined as: 

p, 
def. p 

o=m. 1 

P def-p, -n 
1 =p. o+p.q 

ndefp, ·p .rz = q. o + m. 1 

def 
Qo = p.QJ +r.Qo 

Q 
def-

1 = out.Qo 

Ro p.R1 

Rt q.Ro +r.Ro 

out 

out 

r 

The monolithic behavior of the composed system Ao '!E! (PoiQoiRo)\{p, q, r} in figure 5.l4a is: 
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Ao = in.A 1 

A, = <.Az + r.A3 

Az = in.A4 + out.Ao 

A3 = r.Ao +in. As 

A4 = r.A6 + r.A1 + out.A, 

As = r.A6 + r.A1 + r.A1 

A6 = in.As + out.A3 

A1 = r.Az + in.As +out .A3 

As =out.As 

5. Design For Thst & Debug during Specification 

We insert three PCOs in the communication channels p, q and r. We use the transformation func

tions to adjust the behaviors of the agents for PCO insertion, as discussed in the previous section. 

• Inserting a PCO in channel p requires the transformations ~('Ip(Po)) and 

gpz(Zp(QoiRo)), where gp2 (Zp(QoiRo)) = (gp2 (Zp(Qo))lgp2 (Zp(Ro))). 

• Inserting a PCO in channel q requires the transformations ~(~(Ro)) and gq
2
(Zq(P0 )). 

• Inserting a PCO in channel r requires the transformations Ji:;($(R0 )) and ~ 2 (Z,.(Q 0 )). 

The agents P~, eo.~ in figure 5.l4b are now obtained by: 

P0 = ~(Tp(qq,(Zq(Po)))), 

eo= Ypz(Zp(~z(Z..(Qo)))), 
R~ = gp 2 (Zp(~(~(Ji:;($(Ro)))))). 

The resulting agents P0, Q~. R~ and the agents Pcog, PCO~ and PC00 in figure 5.14b are given 

by: 

P~ = tn.Pr 

P; = p.P2 + p.P3 

p~ =pj.P~ 

P3 = pj.P~ 
P~ = q.P~ +in.P; 

Ps = qz.P~ 

Pcog ~ p,.PCOf 

PCOf ~ pz.PCOg 

Q~ = p. Q2 + r. Q~ 
Ql =rz.eo 

Q2 = pz.Q3 

Q3 =out. eo 

Pcog ~ q,.PCOj 

PCOj ~ q 2 .PCO~ 

~= p.R; 

R! = Pz.R;_ 
R2 q.R3 + r.R~ 
R) 7j'j.~ 

R~ = i'(.R~ 

PCOQ ~ r 1 .PCO~ 
PC~ ~ rz .PCO~ 

The behavior of the composed system B0 in figure 5.14b is defined as: 

Bo ~ (P 0 IQ~IR~iPCOgiPCOZIPCO~)\{p, p" Pz,q, q,, q2,r, r., rz}. 

As proven in appendix A, the transformation functions guarantee that system A0 in figure 5.14a 

is observational equivalent to system B0 in figure 5.14b: A0 ~ B0 . Hence, there is no need for 

proving this equivalence afterwards by means ofbisimulation, which is in general a very complex 

or even impossible task. This example clearly demonstrates the strength of our transformation 

functions for PCO insertion while preserving the externally observable system behavior. 
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5. 7 Discussion 

In this chapter we concentrated on two key questions: where should PCOs be inserted in the sys

tem specification, and what are the effects of PCO insertion in the system specification on the 

system behavior. We discuss and summarize our conclusions in this section. 

5.7.1 Guidelines for PCO Insertion during System Specification 

There should be a balanced number of PCOs in the system, which provides maximum observabil

ity and controllability of the internal system behavior at minimum costs. We studied three related 

fields in literature to derive guidelines for PCO insertion: 

• Much work has been performed and standardized in the application domain of communica

tion systems. The evolution in the OSI standards for remote testing clearly demonstrates the 

necessity of design-for-test during system specification. The communication interfaces be

tween protocol layers in communication systems are appropriate places for inserting PCOs. 

• Testability analysis of VLSI circuits is widely applied to guide hardware design-for-test. 

VLSI testability analysis techniques have evolved from the gate level to the behavioral level. 

These techniques analyze both the circuit structure, i.e. the topology of interconnected logic 

gates or modules, and the information propagation through these logic gates or modules. 

We argued that a similar approach can be applied to guide PCO insertion in the system 

specification, by analyzing both the topology of the specification structure and the informa

tion propagation through individual processes. However, we concluded that this approach 

cannot be applied efficiently. The analysis of information propagation through a process 

implies exhaustive analysis of all control-flow and data-flow paths, which is generally un

feasible. Furthermore, we argued that analysis of simply the specification structure while 

ignoring information propagation, is inaccurate because the behavioral view on the system 

specification is not taken into account. 

• System-level testability analysis has been proposed by Sheppard & Simpson in their work 

on integrated diagnostics. However, we argued that their approach is complementary to 

our design for test & debug approach, and that their testability analysis is not applicable to 

guide PCO insertion. System-level testability analysis has also been proposed by Robach 

et al., however we showed that their work is directed at hardware systems instead of hard

ware/software systems. Finally, we outlined how formal analysis of conformance testability 

might be used to guide PCO insertion. 

The overall conclusion is that the previous approaches are all relevant in their own application do

main, however none of them is truly applicable to guide PCO insertion in the system specification 

of hardware/software systems. Instead, we propose scenario-based testability analysis to guide 

PCO insertion. Scenario-based PCO insertion addresses two key questions: what is the essen

tial information in the system for a particular scenario, and how well is this essential information 

visible to an external observer in the system environment. We showed that scenario-based testa

bility analysis traverses a relevant subset of paths through a system specification in the POOSL 

language, including loops, tail recursion and interrupts. Scenario-based testability analysis is suit

able to identify the essential communication channels and process state information. 
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The discussion on PCO insertion in this chapter is entirely focused on the system specification. 

We did neither consider how to incorporate PCOs in the system architecture, nor how to imple

ment PCOs in hardware and/or software. We will elaborate on these topics in chapter 6. Fur

thermore it should be noted that additional PCOs may be inserted during architecture exploration 

and the subsequent stages in the design flow. For instance, we discussed in chapter 4 that in

formation on the scheduling of processes, both in hardware and in software, is essential for an 

external tester/debugger. The system specification usually does not specify the exact scheduling 

of processes, because this is often implementation-dependent. In order to observe and control the 

scheduling of processes, additional PCOs may be required. A typical example is to insert a soft

ware monitor in the operating system to observe the scheduling of software processes. Hence, 

PCO insertion in the system specification is necessary but not sufficient to obtain full controlla

bility and observability of the internal operation of a hardware/software system. 

5.7.2 Effects of PCO Insertion during System Specification 

Inserting PCOs in the system specification implies modification of the system specification, and 

consequently PCO insertion may induce faulty system behavior. This problem is analogous to 

the probe effect or the Heisenberg principle in testing: inserting a probe in hardware or software 

for testing purposes may interfere in the behavior of the hardware or software in such a way that 

existing faults are masked or that new faults are introduced. 

We provided a formal discussion on the effects of PCO insertion in the system specification using 

CCS process algebra. We demonstrated that inserting a PCO in a communication channel intro

duces a buffer in the channel. This causes that the behavior of the system including the PCO is 

generally not observational equivalent to the behavior of the system before PCO insertion. We 

showed that a PCO can be inserted in a communicati.on channel while preserving observation 

equivalence. However, this requires adjusting the behaviors of the processes that communicate on 

the channel. We illustrated that adjusting the process behaviors is in generally not a trivial task. 

Furthermore, proving observational equivalence by means of bisimulation is a computationally

intensive task that is applicable only to systems of moderate size due to state space explosion. 

To overcome these problems, we formally defined a set of mathematically proven transformation 

functions. Inserting a PCO in a communication channel and applying the transformationfunctions 

to the involved processes, guarantees (mathematically proven) that the modified system including 

the PCO is observational equivalent to the original system without PCO. Hence, applying these 

transformation functions to processes provides correctness-preserving PCO insertion. 

5.8 Summary 

In this chapter we concentrated on two key questions: where should PCOs be inserted in the sys

tem specification, and what are the effects of PCO insertion on the system behavior. 

A balanced number of PCOs should be inserted in the system, providing maximum observability 

and controllability of the internal system behavior at minimum costs. We propose scenario-based 

testability analysis to guide PCO insertion. Scenarios are key elements in modern analysis and 

design methods for creating a system specification. A scenario describes some specific part of 
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the system behavior. Our scenario-based approach to PCO insertion addresses two key questions: 
what is the essential information in the system for a particular scenario, and how well is this essen
tial information visible to an external observer in the system environment. Scenario-based testa
bility analysis is suitable to identify the essential communication channels and process state infor
mation in a system specification. We showed that scenario-based testability analysis traverses a 
relevant subset of paths through a system specification in the POOSL language, including loops, 

tail recursion and interrupts. 

We discussed related approaches to PCO insertion in a system specification, considering PCOs in 
the OSI standards for communication systems, testability analysis in VLSI circuits, and system
level testability analysis techniques. We concluded that these approaches are all relevant in their 

own application domain, however none of them is truly applicable to guide PCO insertion in the 
system specification of hardware/software systems. 

Inserting PCOs in a system specification implies modifying the system behavior. Unfortunately, 
the PCOs may interfere in the system behavior in such a way that the system behavior becomes 

incorrect. We provided a formal discussion on the interference of PCOs in the system behavior us
ing CCS process algebra. We showed that the system behavior including PCOs is not necessarily 
observational equivalent to the system behavior before PCO insertion. However, we proved that a 
PCO can be inserted in a communication channel while preserving observation equivalence. We 
formally defined a set of transformation functions that should be applied to those processes that 
communicate over a channel in which a PCO is to be inserted. We gave a mathematical proof that 
the modified system behavior, obtained after applying the transformation functions and inserting 
PCOs, is observational equivalent to the original system behavior. Hence, we proved that we are 
able of inserting PCOs in a system specification in such a way that the interference of PCOs does 
not induce incorrect behavior. 
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In this chapter we elaborate on design for test & debug during system implementation. We pro

vide an overview of the current design-for-test and design-for-debug techniques for both hard

ware and software. Next, we discuss how these techniques can be used to implement PCOs and 

to implement the infrastructure for accessing PCOs from the external environment. 

145 
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6.1 Introduction 

Our design for test & debug approach is based on the insertion of Points of Control and Observa

tion (PCOs) in the system specification. In the subsequent phases of the design process, the PCOs 

are actually realized. We argued in chapter 4 that PCOs can be realized either by test & measure

ment equipment, or the PCOs can be incorporated into the hardware/software architecture of the 

system. In the latter case, the PCOs are implemented by dedicated hardware/software,. by using 

the current hardware DFT and DFD facilities, or by software instrumentation. In this chapter, we 

provide an overview of the state-of-the-art on DFT and DFD techniques in both hardware and 

software. In addition, we discuss how these techniques can be used to implement PCOs and to 

implement the infrastructure for accessing the PCOs from an external tester/debugger. 

6.2 Hardware DFT 

Hardware DFT techniques primarily aim at detecting the physical faults in hardware components 

that arise during production or field operation. In the course of time, various DFT techniques have 

been developed for ICs, PCBs and hardware systems (i.e. a collection of PCBs). 

Hardware DFT techniques can be employed to enhance external testing or to provide built-in self

test (BIST). For external testing, DFT provides built-in test facilities to improve observability and 

controllability of the internal system operation to an external tester. BIST is a DFT technique com

bining built-in test and self test, which implies that the system incorporates hardware and/or soft

ware to perform self testing. BIST can be performed off-line or on-line. Off-line BIST indicates 

that testing is performed by switching the system from normal operation mode into a dedicated 

test mode. On-line BIST indicates that testing is performed during normal system operation, and 

hence there is no dedicated test mode. On-line BIST can be either concurrent, in which testing is 

performed by redundancy and comparison techniques as with fault-tolerant techniques, or non

concurrent, in which testing is carried out while the system is in an idle state. 

6.2.1 Hardware DFT on the IC Level 

In the 1960's, IC testing was generally performed by means of exhaustive, functional testing using 

a black-box, functional view. This approach became unfeasible in the 1970's due to the increas

ing complexity of ICs. Consequently, structural testing techniques were developed in which test 

sequences are derived from the internal structure of the IC. In addition, DFT became a necessity 

to enable structural IC testing. 

It is generally recognized (e.g. [Tex96]) that the cost of finding a faulty IC after assembly onto 

a PCB is an order of magnitude more than detecting the fault before assembly. When the fault 

is detected after integration in the system, the cost increases once more an order of magnitude. 

Finally, when a faulty IC is discovered in a system at a customer site, the cost is three orders of 

magnitude higher than the cost of discovering the fault before assembly. Hence, it is essential to 

test an IC thoroughly before it is assembled onto a PCB. 

A typical ad hoc DFT technique on the IC level is to insert test points in the circuit that are ac-
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cessible through IC pins (e.g. [CB85, GMG90, TM96]). A test point can be a control point or an 

observation point. Obviously, the major constraint using test points is the demand for additional 

IC pins. The number of additional IC pins for testing can be limited by multiplexing. Other ad hoc 

OFf techniques are improving circuits to ease their initialization or to disable internal oscillators 

and clocks during testing. 

A promising, structured approach to OFf at the IC level is BIST, which implies that the IC is ca

pable of self testing by means of built-in test features (e.g. [Fuj85, ABF90, AKS93a, AKS93b, 

Ben94b]). The basic architecture for IC-level BIST consists of a test pattern generator, a test re

sponse analyzer, and a test controller. The test controller controls the operation of the test pattern 

generator and the test response analyzer. A test pattern generator typically consists of a ROM with 

stored test patterns, a counter or a LFSRs (linear feedback shift register). A test response analyzer 

usually consists of a comparator with stored test responses or a LFSR or MISR (multiple-input 

signature register) used as signature analyzer. Advanced BIST facilities combine test pattern gen

eration and test response analysis, such as STUMPS (self-test using MISR and parallel shift reg

ister sequence generator) and BILBOs (built-in logic block observer). 

Testing sequential circuits is considerably more complex than testing combinational circuits. A 

common OFf technique for sequential circuits is to incorporate a (full or partial) scan path, which 

provides that the memory elements in the circuit can be switched into test mode to form a serial 

shift register. Scan paths allow separate testing of the memory elements and the combinational 

logic in the circuit. There are several forms of scan design which primarily differ in the design of 

the scan cells. 

Philips developed an IC-level OFf approach called macro testability [B+86, BOSvdS90, B+92b, 

B+93, MKW93, BBT95]. Macro testing is based on partitioning an IC into testable blocks 

(macros) and providing that every macro can be controlled and observed from the external IC 

pins. This approach allows the use of specific test strategies and specific test generation algo

rithms for each macro. Accessing a macro from the external IC pins is provided by means of test 

protocol expansion or by inserting test interface elements (TIEs). In test protocol expansion, the 

local macro test protocol described at the terminals of the macro, is transformed into a global test 

protocol described at the terminals of the IC. TIEs may be inserted at the interfaces of the macros 

to provide direct access, and they can be chained to form a serial shift register. 

Test points, scan cells and TIEs provide observation and control inside a circuit and hence they 

can be regarded as low-level hardware implementations of PCOs. Although these facilities are 

intended for structural testing of physical defects, they can be re-used for functional testing and 

debugging. However, access to these test facilities is rather restricted: test points can only be ac

cessed through multiplexed IC pins; scan cells and TIEs can only be accessed serially and their 

state is affected during shifting. Hence, these test facilities are of limited use for real-time obser

vation and control. 

6.2.2 Hardware DFT on the PCB Level 

Initially, printed circuit boards (PCBs) were tested using in-circuit testing (ICT). ICT implies that 

the ICs and their interconnections on a PCB are tested by accessing the IC pins with probes or a 
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bed-of-nails. However, ICT is effective only after the board has been removed from the system, 

and ICT became even impossible with the rise of surface-mount technology (SMT) in which com

ponents are mounted densely on both sides of the board. Traditional, hierarchical testing did not 

provide a satisfying solution to PCB testing. ICs mounted on a board are difficult to access from 

the board's edge connectors because access paths through other ICs are required. This is not only 

limiting control and observation capabilities, but also the generation of test cases is very difficult. 

A solution at the PCB level has been provided by means of the IEEE 1149.1 boundary-scan stan

dard [IEE90, MT90, Par92, BvdEdJ93, Tex96]. In the boundary-scan architecture, each IC incor

porates a test access port (TAP), a test controller and test registers, as shown in figure 6.1. 

Figure 6.2 PCB with boundary-scan architecture 

TMS&TCK 
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TOO 
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Figure 6.3 Boundary-scan cell 

test MUX2 

The TAP requires four IC pins: test data input (TDI), test data output (TOO), test mode select 

(TMS) and test clock (TCK). Boundary-scan cells are placed at all IC inputs and outputs. The 

boundary-scan cells can be chained to form a serial shift register (the boundary-scan register). 

Data can be shifted in and out of the boundary-scan register through the TAP. 

The TDI and TOO pins of all ICs on a board are connected as shown in figure 6.2, providing 

a serial access path to the boundary-scan register of every IC from the board's edge connector. 

The boundary-scan architecture supports testing of both individual ICs and the interconnections 

between the ICs on the PCB. 

A possible implementation of a boundary-scan cell is shown in figure 6.3. The control signals 

clock, update, mode (shift/load) and mode (test/normal) are provided by the TAP controller. The 

test input and test output are connected to adjacent boundary-scan cells, so that the chain of 

boundary-scan cells builds up the boundary-scan register. If the boundary-scan cell is placed in 

an IC input, the normal input is connected to the IC input pin and the normal output is connected 

to the core logic; if the boundary-scan cell is placed in an IC output, the normal input is connected 

to the core logic and the normal output is connected to the IC output pin. A boundary-scan cell 

can be considered as a hardware implementation of a PCO, providing a transparent mode, an ob

servation mode and a test mode. 

• In transparent mode, the multiplexer MUX2 is switched into normal mode by the mode 

(test/normal) signal, providing a direct connection between the normal input and the normal 

output. 

• In observation mode, multiplexer MUX2 is switched into normal mode and multiplexer 

MUXI is switched into load mode. Hence, the normal input signal is passed to the nor

mal output and as well to the input of flipflop FFl. The clock signal is used to capture the 

data in flipflop FFI. 

Subsequently, MUXI is switched into shift mode, providing a serial connection to the ad

jacent boundary-scan cells. The data in the bounctary'-scan register can now be shifted out 

under control of the clock signal. The data can be observed on the TOO pin. Note that shift

ing can be performed during normal system operation, because the transparent connection 

between normal input and normal output is not affected. 
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• In test mode, first a test stimulus is placed into the boundary-scan register. The multiplexer 

MUXI is operating in shift mode to shift the test stimulus into flipflop FFL Shifting in the 

test stimulus can be performed during normal system operation. When the test stimulus is 

in place, the signal update is generated to capture the test stimulus in FF2. 

Subsequently, multiplexer MUXl is switched into load mode and multiplexer MUX2 is 

switched into test mode. Hence, the normal input is passed to FFl, while the test stimu

lus in FF2 is passed to the normal output. The normal input can be captured in FFI by the 

clock signal, and next the boundary-scan register can be shifted out by switching MUXI 

into shift mode. 

The boundary-scan architecture is primarily intended for structural testing of interconnections 

on PCBs and for accessing individuallCs. Nevertheless, the boundary-scan architecture can be 

used also for functional testing and debugging purposes [Cro89, HYC89, FM90, Lef90, Dan92, 

Tex96]. We showed that a boundary-scan cell can be considered as a hardware implementation 

of a PCO. The major limitation however is that only serial access is provided, which restricts the 

observation and control of real-time system behavior to repeatedly sampling and shifting out the 

boundary-scan registers. In spite of this limitation, boundary scan is a powerful and cheap tech

nique for system testing and debugging. 

Effective boundary-scan testing requires that most ICs on a board incorporate the boundary

scan architecture. Fortunately, many ICs like microprocessors and DSPs currently incorpo

rate the boundary-scan architecture. Furthermore, devices like buffers and latches are avail

able that incorporate the boundary-scan architecture (e.g. Texas Instruments Scope octal devices 

[Cro89, HYC89, Lef90]). 

At the moment, embedded cores and multi-chip modules (MCMs) are emerging. Consequently, 

PCBs containing multiple chips may be implemented in the near future on a single silicon chip that 

contains multiple cores/modules. As with PCBs, also multi-chip modules may be equipped with 

boundary-scan like facilities to test the interconnections between cores/modules and to access the 

individual cores/modules. For instance, the ARM7 microprocessor core incorporates a boundary

scan architecture that allows to access the core once it is embedded in an ASIC [ARM95b]. We 

will elaborate further on the use of the boundary-scan architecture for debugging purposes in sec

tion 6.3. 

6.2.3 Hardware DFT on the System Level 

Hardware systems typically have a hierarchical structure consisting of ICs, PCBs and racks of 

PCBs. The traditional, hierarchical testing techniques are insufficient on the PCB level and the 

system level. Test stimuli have to be transferred from the system level through many layers of 

circuitry down to the element under test, and vice versa the test results have to be transferred up 

again through many layers of circuitry. 

A hierarchical solution to system-level testing is to equip all hierarchical levels with built-in test 

or BIST facilities [HK92, Mau93, HK94]. The system in figure 6.4 consists of several PCBs, 

where each PCB contains several ICs. Each level is equipped with a test manager which controls 
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the built-in test or BIST facilities at the particular leveL The ICs are equipped with the boundary

scan architecture and the TAP controller is used also to control the IC's BIST for self-testing of 

the chip's core logic. On the PCB level, the IEEE 1149.1 boundary-scanarchitecture provides an 

infrastructure for testing ICs and their interconnections. The test manager on a PCB is responsi

ble for managing the testing of the board. The PCB test manager is not standardized in the IEEE 

1149.1 standard, but several proposals have been described in literature (e.g. [Whe92, HK94]). A 

collection of boards can be tested using the module test and maintenance (MTM) bus, which has 

been standardized in the IEEE 1149.5 standard [IEE95]. The MTM bus provides a communica

tion protocol for exchanging test and maintenance commands and serial data. 
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The hierarchical built-in test architecture of figure 6.4 provides that the test managers at each level 

can be accessed through standardized test interfaces. An important step is to make sure that the 

test infrastructure itself is correct. Therefore, the test buses, the test interfaces and the test man

agers themselves should be tested first. 

The hierarchical built-in test architecture may adopt a centralized or a distributed system test strat

egy. In the distributed strategy, each level is equipped with BIST: test stimuli are generated and 

test responses are analyzed locally on each level. On the IC level, the IC-level test manager ac

tivates the IC's BIST. The BIST generates test stimuli and analyzes the test responses. Finally, 

the BIST transmits an OK or NOK message (and possibly diagnostic information) to the IC-level 

test manager. On the PCB level, the PCB-level test manager activates the IC-level test managers 

and performs a self-test of the IC interconnections on the board. Subsequently, the PCB-level test 

manager collects the test results of the IC-Ievel test managers and evaluates the IC interconnection 

test. Final I y, the PCB-level test manager transmits an 0 K or NO K message (and possibly diagnos

tic information) to the system-level test manager. In a similar way, the system-level test manager 

activates the PCB-level test managers and performs a self-test of the interconnections between 

the PCBs. Next, the system-level test manager collects the results of the PCB-level test managers 

and evaluates the PCB interconnection test. Finally, the system-level test manager transmits an 

OK or NOK message (and possibly diagnostic information) to the external system environment. 

The centralized strategy is not based on BIST. The test stimuli are transmitted from the system

level test manager to the PCB level or the IC level, and vice versa the test responses are trans

mitted back to the system-level test manager. The system-level test manager is responsible for 

evaluating the test responses. The centralized strategy resembles the traditional, hierarchical test

ing approach. However, the test interfaces and the test managers provide that test stimuli and test 

responses can be transferred rather easily between the various levels. The system-level test man

ager in the centralized strategy is usually implemented in software. 

Incorporating a hierarchical built-in test or BIST architecture in a system requires additional costs 

due to the extra hardware for the built-in test facilities at all levels. However, these costs pay off 

because of less expensive test equipment and improved testing and diagnosis during assembly, 

integration, and field operation. In general, the benefits of a hierarchical test architecture are small 

at the chip level, they are larger on the board level, and they are considerable at the system level. 

The hierarchy of ICs on PCBs, PCBs in subsystems, and subsystems in a system can be extended 

when considering a number of systems connected in a communications network. As described in 

section 5.2.2, the ISO 10164 standard provides a test management interface which can be used 

for testing systems connected in a network. 

We stated in the previous sections that test points, scan cells, TIEs and boundary-scan cells can 

be considered as hardware implementations of PCOs. The hierarchical test infrastructure as de

scribed in this section provides access to these PCOs. 
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6.3 Hardware DFD 

Hardware DFD techniques aim at incorporating built-in hardware facilities to facilitate the de

bugging of hardware/software systems. When testing reveals an error in the system, debugging is 

required next to locate the fault in the system that caused the error. Hardware DFD techniques are 

useful for debugging physical hardware defects as well as for debugging design errors in hardware 

and/or software. 

The hardware DFT techniques described in section 6.2 are primarily intended to facilitate struc

tural testing for physical defects that arise during production, assembly, integration and field op

eration. Nevertheless, these hardware DFT facilities may be re-used for debugging purposes. We 

already discussed in section 6.2 that hardware DFT facilities may be considered as PCOs and 

hardware DFT facilities also provide a test infrastructure to access these PCOs. However, we 

also indicated that this approach is rather restricted when testing and debugging real-time behav

ior. Furthermore, these hardware DFT facilities concentrate on hardware components, while ig

noring the observation and control of software. 

At the moment, hardware DFD techniques are becoming more and more important. They provide 

improved observation and control of the internal system operation to facilitate debugging of hard

ware and/or software. Hardware DFD techniques are useful for silicon debugging and embedded 

system debugging. Silicon debugging indicates the debugging of physical defects and hardware 

design errors in ICs. Silicon debugging is typically required to debug the first silicon prototypes 

of an IC and is performed on an IC tester. (Hence the IC is debugged in isolation.) Embedded sys

tem debugging indicates the debugging of ICs and embedded software once they are integrated in 

a system. Faults may reside either in the embedded software or in the hardware (physical defects 

or design errors). Modem processors incorporate advanced DFD facilities for embedded system 

debugging. In this section we will review the state-of-the-art of hardware DFD techniques for 

silicon debugging and embedded system debugging. 

6.3.1 Hardware DFD for Silicon Debugging 

Due to the increasing complexity of VLSI chips, the internals of ICs are becoming less and less 

accessible. This problem is becoming even worse with the rise of embedded cores and multi-chip 

modules. Currently, test equipment is used for silicon debugging, such as IC testers and e-beam 

probers. IC testers provide access only to the IC's UO pins, which is insufficient for silicon de

bugging. Improved access can be provided by e-beam probers, which allow to observe internal 

IC nodes by probing on metal wires. However, only the top metal layers can be probed. Lower 

metal layers can be probed only after removing the top metal layers by focused ion beam equip

ment. However, the use of focused ion beam equipment largely depends on the circuit layout and 

is time-consuming. Employing e-beam probers and focused ion beam equipment becomes nearly 

impossible with the rise of new IC process technologies that allow multiple metal layers and new 

IC packaging technologies. Hence, DFD to support silicon debugging is becoming a necessity. 

An ad hoc DFD technique is to provide additional IC pins through which internal signals can 

be accessed directly. However, the cost of additional IC pins usually prohibits this approach. A 

compromise is to multiplex multiple signals on a single IC pin. For instance, Sun's UltraSPARC 
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processor has 15 dedicated pins for monitoring, which allow to observe 75 internal signals [L +95, 

Lev97]. 

A structured DFD approach is proposed in [PDW95], where DFD is considered during high-level 

synthesis of ASICs. Given a set of relevant variables, the CFG is adjusted to provide that these 

variables are controllable and observable during debugging on the chip's 110 pins. Pipelining 

techniques and 110 buffers provide that no dedicated IC pins are required. 

A frequently used DFD technique is scan-based debugging, which is based on re-using the IC's in

ternal scan paths and boundary-scan paths fordebuggingpurposes [Cro89, HYC89, FM90, Lef90, 

Tex96]. Scan-based debugging has been promoted particularly by Texas Instruments, providing 

software tools and test equipment to support scan-based debugging. TI's ASSET (Advanced Sup

port System for Emulation and Test) provides a software environment running on a host PC, from 

which the scan paths in a target system can be accessed through the IEEE 1149.1 TAP for testing, 

debugging and emulation [Cro89, HYC89, FM90]. Scan-based debugging is attractive because it 

provides detailed access to the internals of ICs and the interfaces of embedded cores. Moreover, 

scan-based debugging requires no additional costs because the scan paths, which are basically 

OFT facilities, are re-used. However, we showed in section 6.2 that scan-based debugging is re

stricted. The internal scan paths in the IC's core logic can only be accessed when the IC is halted. 

Furthermore, scan paths can be accessed only by serially shifting data in or out. 

An improved scan-based debugging approach is proposed in [vRBMV97]. The IC runs at full 

speed, interacting at real-time with its environment, and is halted after a particular number of clock 

cycles. Next, the IC's state is examined and single step execution is provided by scan-based de

bugging. The IC is halted by a trigger mechanism, consisting of a trigger control block, shadow 

registers that contain trigger conditions, and comparators that detect matches between values in 

functional registers and the shadow registers. 

Modern microprocessors and DSPs incorporate advanced DFD facilities that can be used for 

both silicon debugging and for debugging the software that is executed on the processor. A 

huge amount of papers is available in which various processors and their OFT and DFD facil

ities are described, such as the ARM7TDMI [ARM95b, ARM95a, ARM96a, ARM96b], DEC 

Alpha 21164 [BE94, BE97], Hewlett-Packard HP PA7100LC [JDA93], IBM/Motorola/Apple 

PowerPC 603 [HVTL94] and PowerPC 620 [Y+95], Intel Pentium [Int93, NG96], Motorola 

68HC16Z1 [U91], Motorola MC68060 [CPC94, KSFM95, Kum97], Sun Microsystems mi

croSPARC [H+94b, Kat94], Sun Microsystems SuperSPARC [PY93], Sun Microsystems Super

SPARe II [HB95, HA95], Sun Microsystemsffexas Instruments UltraSPARC I [L+95, Lev97], 

and Texas Instruments TMS320C80 [HSBP95]. 

As an example, we will briefly outline the hardware DFD facilities in the SuperSPARC proces

sors. The SuperSPARC [PY93] microprocessor includes OFT features as full scan, BIST, SRAM 

test mode for accessing on-chip caches, and IEEE 1149.1 boundary scan. These OFT features 

are intended for production testing. The processor also incorporates DFD features by means of 

15 dedicated observability pins on which 75 internal nodes can be monitored. However, it was 

felt that these OFT and DFD facilities were insufficient for silicon debugging. Consequently, en

hanced debug capabilities were included in the SuperSPARC II [HB95, HA95]. 
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The DFD facilities in the SuperSPARC II consist of a controllable internal clock, full internal 

scan, IEEE 1149.1 boundary scan and embedded memory debug modes. All debug operations 

are controlled through the IEEE 1149.1 controller. The internal clock can be stopped through a 

dedicated pin or through the IEEE 1149.1 controller. When the clock is stopped, the chip enters a 

debug mode in which the clock operates under control of the IEEE 1149.1 controller. Afterwards, 

the clock can be restored. 

The SuperSPARC II incorporates a single full-scan chain containing 7,939 flipflops. In debug 

mode, the data in the scan chain can be shifted out ('scandump' [H+94b, Kat94]) under control 

of the IEEE 1149.1 controller. Furthermore, the contents of the on-chip caches can be extracted 

('cachedump'), which is also controlled by the IEEE 1149.1 controller. Other memories, such as 

the register files and the instruction queue, can be accessed indirectly. For each memory, a set 

of flip flops can be identified that controls the address and the read signals and observes the data 

output. These ftipftops can be accessed via the scan chain. 

6.3.2 Hardware DFD for Embedded System Debugging 

Embedded systems typically contain both hardware components and embedded software. Once 

an error in an embedded system is detected, the aim of embedded system debugging is to locate 

the fault that caused the error. The fault may reside in the embedded software or in the hardware 

(physical defect or design error). 

Modern microprocessors and DSPs include advanced DFD features to support embedded system 

debugging. Typically, these DFD features can be accessed through dedicated processor pins ('de

bug port'). In most processors, the debug port is provided by the IEEE 1149.1 TAP and additional, 

proprietary pins. The DFD facilities typically allow to enter and leave debug modes (e.g. by stop

ping and restoring the internal clock), to observe and control the internal scan chains (scan-based 

debugging), to observe the on-chip memories (e.g. cachedump) or to modify their contents, and 

to download software code into the on-chip program memory. 

Most processors provide execution tracing, which means that the contents of caches, pipelines and 

processor status registers are output on the processor's 1/0 pins during execution. For instance, 

the Motorola MC68060 microprocessor [CPC94] provides a background debug mode, in which 

a 64-bit state vector is output on the external data and address bus during unused bus cycles in 

normal operation. 

In addition, most processors provide both hardware and software breakpoints. A software break

point is a particular instruction (e.g. the instruction 'INT3' on the Intel Pentium) that is inserted in 

the program code. Whenever the instruction is executed, an exception handler is invoked. Hard

ware breakpoints are provided by dedicated debugging registers. A breakpoint occurs when the 

values in the debugging registers match some values on the address, data and/or control buses. 

An example of DFD for embedded processor cores is the ARM7TDMI processor core [ARM95b, 

ARM95a, ARM96a, ARM96b]. The processor core incorporates the boundary-scan architec

ture and also uses a separate macrocell ('embeddediCE' or 'ICEbreaker') that provides hardware 

breakpoints. The IEEE 1149.1 TAP is used to access the boundary-scan register and to access the 
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registers in the embeddediCE macrocell. The hardware breakpoints can be set up as breakpoints 

(on instruction fetches) or as watchpoints (on data load and store operations). 

Hardware DFD facilities like scandumps, cachedumps and execution tracing provide observation 

and control for debugging and hence they can be considered as PCO implementations. Break

points can be used during debugging to stop the system when a particular part of software is ex

ecuted (software breakpoints) or when particular values are detected on buses (hardware break

points). Breakpoints themselves do not provide PCO functionality, however the system state can 

be observed and controlled using other debug facilities after a breakpoint is detected. 

6.4 Software Debugging 

Typical software debugging techniques [Dac93, Mag93, Spu94] for debugging sequential soft

ware programs on a host computer are post-mortem debugging and symbolic debugging. Operat

ing systems can produce a dump of the program state whenever an error is detected. For instance, 

the Unix operating system produces a coredump file on errors like segmentation faults and bus 

errors. Post-mortem debugging is performed by examining the coredump file using a symbolic 

debugging tool. Symbolic debugging tools may work directly with the source code, translating 

the low-level machine code and addresses into symbolic names. Interactive, symbolic debugging 

tools offer features like stack traces, breakpoints, watching variables and single-step execution. 

Obviously, these software debugging techniques are of limited use for debugging both hardware 

and software in a target system. 

A frequently used software debugging technique is software instrumentation, which implies that 

additional code is inserted in the software to output debugging information or to perform run-time 

checks. There are various approaches to software instrumentation: 

• The programmer may manually instrument the software by inserting output statements. 

These statements typically output variables at run-time or flags that a particular point in 

the code has been reached. 

Assertions are a special form of instrumentation instructions. An assertion is an expression 

which is evaluated at run-time. The expression should be true during normal conditions, but 

may become false in case of an error. Languages such as C and Eiffel provide direct support 

for assertions. Assertions can easily be inserted and removed from C code by preprocessing 

facilities such as conditional compilation. 

• The compiler may add run-time checks to the software, such as checking for stack overflows 

and array bound violations. 

• Debugging tools may instrument software at compile-time or link-time to detect errors at 

run-time. For instance, the Purify tool (see also section 3.5.3) inserts instructions at link

time to check allocation and accesses to heap memory and pointers at run-time. 
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6.5 Debugging of Distributed Real-Time Systems 

Distributed real-time systems are hardware/software systems with real-time timing constraints 

and distributed processing nodes. In the course of time, various techniques have been developed 

to support the debugging of real-time behavior in distributed real-time systems [TY95]. 

A distributed real-time system is typically used to control physical processes in its environment, 

which requires real-time control and continuous system operation. The sequence of events and 

the exact timing of events in the system environment are usually difficult to predict. Stringent tim

ing constraints require that the system responds to events within a predefined period of time. A 

distributed real-time system typically consists of communicating processes running on different 

processors. The traffic loads on the communication network may cause unpredictable communi

cation delays, which in tum may lead to race conditions when using shared resources. Due to the 

unpredictable communication delays, race conditions, dynamic process scheduling, and unpre

dictable sequences and timing of events, the system behavior is non-deterministic. Consequently, 

the behavior of the system may be non-repeatable when re-running the system with the same in

put data. The processes in a distributed real-time system can be running on different processors 

with separate clocks, which makes it very difficult to determine the global system time and the 

global system state during testing and debugging. 

The traditional debugging approach is cyclic debugging. For instance, a sequential software pro

gram is typically debugged on a host computer using interactive debugging tools. The program 

execution is repeatedly stopped to examine the program state, and next the program execution 

is continued or the program is re-executed to stop at an earlier point in the execution. However, 

cyclic debugging is inappropriate for distributed real-time systems [MH89, TY95] due to the non

repeatable system behavior, the lack of a global clock and the lack of interactive debugging tools 

in the distributed target system. 

Debugging of distributed real-time systems is typically performed using event-based debuggers. 

The run-time behavior of the system is monitored and relevant events are recorded. The system 

execution is viewed as a sequence or several parallel sequences of events, which are stored as event 

histories. Event-based debugging [Bat89] is based on comparing the recorded event histories with 

the system specification. Various methods can be used to monitor event histories, ranging from 

additional statements in software code to hardware test and measurement equipment. One of the 

main problems with event-based debugging is the probe effect [MRW92]. Any attempt to gain 

information about the system execution will cause overhead costs and will interfere with the run

time behavior. The probe effect, which is analogous to the Heisenberg Uncertainty principle in 

quantum mechanics, may mask errors or introduce new errors. There are several solutions to deal 

with the probe effect in event-based debugging: 

• The probe effect can be minimized by using fast monitoring operations in hardware and/or 

software that cause minimal intrusion in the system behavior. For instance, software code 

can be instrumented with additional output statements to provide run-time debugging in

formation. Obviously, this approach implies reducing the probe effect but not eliminating 

it. 

• The probe effect can be eliminated to a large extent by using test & measurement equipment 
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for monitoring. For instance, a logic analyzer can be used for monitoring data on a hardware 

bus. However, this requires that hardware probes are connected to the hardware bus. The 

probe effect cannot be eliminated completely due to the parasitic electrical properties of the 

hardware probes. 

• The probe effect can be eliminated completely by designing in probes and leaving them 

permanently in the system. In fact, we apply this approach when incorporating PCOs in 

the specification and the subsequent implementation of hardware/software systems. The 

PCOs can be considered as permanent probes in the system. 

This approach avoids the probe effect in the system implementation. Monitoring can be 

performed using the built-in PCOs, and there is no need for auxiliary hardware, software 

and test & measurement equipment. However, the insertion of PCOs may induce a probe 

effect during system specification, because the insertion of PCOs implies modifying the 

system behavior, as indicated in section 5.6. Nevertheless, we showed in section 5.6 that 

we can insert PCOs in a system specification while preserving the externally observable 

behavior, which completely eliminates the probe effect. 

We argued in section 6.2 and section 6.3 that PCOs can be implemented efficiently in hard

ware to some extent by using the current hardware DFf and DFD facilities. 

The current monitoring techniques for run-time detection and recording of event occurrences in 

distributed real-time systems can be classified into software monitoring, hardware monitoring and 

hybrid monitoring. Software monitoring is implemented either by embedding monitoring code in

side the application software or by embedding monitoring code inside the system software. Hard

ware monitoring is implemented either by embedding a monitoring device as a permanent part of 

the target system, or by using a separate device or coprocessor in the target system. Hybrid mon

itoring is an intermediary technique using both software and hardware. In the following sections 

we will discuss these monitoring techniques in depth. 

In literature, monitoring in distributed real-time systems is typically used for both performance 

measurement and software debugging. The major difficulties reside in collecting enough infor

mation without causing intolerable monitoring inference, and in determining the relevant events 

that should be monitored. In general, it is felt that intrusive monitoring is not suitable unless the 

perturbation caused by intrusion can be precisely quantified and predicted. Non-intrusive moni

toring is nearly impossible if monitoring facilities have not been designed in. 

6.5.1 Software Monitoring 

In software monitoring, the detection and recording of events is performed by software. Software 

monitoring techniques embed monitoring code either in the target application software (by means 

of software instrumentation or an additional monitoring process) or in the system software. 

Embedding monitoring code in the target application software is very flexible, because a designer 

can insert dedicated monitoring functions at specific places in the application software. However, 

this approach is less transparent, because the monitoring code is usually distributed all over the 

application software. Embedding monitoring code in the operating system is more transparent 

but less flexible. 
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The advantages of software monitoring are transparency, flexibility and no needs for additional 

hardware. However, software monitoring is non-intrusive because the monitoring code requires 

additional memory space and additional processing time for context switching and execution. 

In [CJD9l], the application software is annotated to specify the 'observable events' that should be 

observed during run-time monitoring. The observable events are either label events, which indi

cate the initiation and completion of a sequence of statements, or transition events, which indicate 

variable assignments ('watchable variables'). Furthermore, constraints are expressed as invari

ants on observable events. The application software is instrumented to evaluate the constraints at 

particular points during execution, and a separate monitoring process is added that continuously 

monitors some constraints. The software monitor in [CID9l] is extended in [RRJ92, Jah95] for 

distributed real-time systems that consist of concurrent processes running on multiple processes. 

In [JLSU87], a distributed software monitoring system is described to monitor the interprocess 

communication between concurrent processes. The interprocess communication is monitored by 

loading a separate interprocess communication protocol that incorporates the monitoring func

tion. 

In [TKM89], the ART software monitor is described for monitoring distributed real-time systems. 

The monitor is embedded as a permanent part of the operating system. The monitor is embedded 

inside the kernel code that performs process switching. The monitor records changes in process 

states and it sends the recorded events from the target system to a host system. The event histories 

are visualized on the host system. The interference of the monitor is predicted during the system 

analysis phase using a schedulability analyzer for worst case situations. 

6.5.2 Hardware Monitoring 

In hardware monitoring, the detection and recording of events is performed by dedicated hardware 

devices. The concept of a hardware monitor is similar to a logic analyzer: run-time information 

is collected by monitoring the real-time system execution at certain points without intrusion. The 

monitored data is stored and processed off-line. 

A hardware monitoring system typically consists of hardware monitoring devices that are con

trolled by a central control module. The hardware monitoring devices collect data by snooping 

signals on control, address and data buses. Relevant events are identified by comparing the mon

itored data with predefined events such as read/write signals, interrupt signals, specific memory 

addresses or program instructions. 

Hardware monitoring causes no or minimal intrusion in the real-time behavior of the target sys

tem. However, hardware monitoring requires additional costs for hardware monitoring devices. 

Hardware monitoring provides low-level information and is also less flexible and less transparent 

than software monitoring. 

A typical hardware monitoring system is presented in [TFC90, TFCB90]. The hardware moni

toring system consists of an interface module and a development module. The interface module 

is attached to the target system for monitoring and data collection. The development module is a 
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host computer that contains software for initializing the interface module and post-processing the 
collected data. The interface module copies the internal state of the target processor and records 
data from buses into memory buffers on predefined trigger conditions. The main feature of the in
terface module is that it contains a processor that is identical to the target processor. The interface 
module consists of four functional units: 

• The Dual Processor Unit (DPU) contains a processor identical to the target processor. The 

dual processor mimics the behavior of the target processor. 

• The Interface Control Unit (ICU) connects the dual processor to the same buses as the target 

processor. The ICU prevents the dual processor from writing on the buses. 

• The Qualification Control Unit (QCU) samples the buses in the target system on each bus 
cycle. When the sampled data matches any user-specified conditions, a trigger signal is 

generated to start recording. 

• The High-Speed Buffer Unit (HSBU) is used to store the monitored data from the buses in 
the target system. 

The DPU is synchronized first with the target processor by sending a low-priority interrupt to the 
target system. The interrupt triggers an interrupt service routine in the target system, which copies 
the contents of all registers in the target processor to the dual processor. This interrupt is the only 
interference of the monitoring system in the target system. 

After initialization, the dual processor runs synchronously and in parallel with the target proces
sor. When the QCU generates a trigger signal, the dual processor is isolated from the target system 
and its state is frozen. Hence, the dual processor provides a snapshot of the target processor's state 
at the beginning of recording. Simultaneously, data from the buses in the target system is recorded 
in the HSBU. The monitoring activity continues until a stop trigger is generated by the QCU. Fi
nally, the recorded information in the HSBU and the state of the dual processor is transferred to the 
development module for post-processing. The monitored data provides information on process
level activities (e.g. process creation, process termination, changes in process states, communica
tion and synchronization between processes, interrupts), function-level activities (e.g. procedure 
calls and returns) as well as instruction-level activities (e.g. step-by-step instruction trace). 

6.5.3 Hybrid Monitoring 

In hybrid monitoring, both software and hardware are used to perform monitoring [Pla84]. The 
target software is instrumented to signal the occurrences of relevant events. A hardware monitor 
is used to detect these signals and to record data. Hybrid monitoring offers the advantages of 
hardware and software monitoring: it is flexible and transparent, the intrusion of monitoring in 

the target system is limited, and the costs for hardware monitoring devices are small. However, 
the intrusion may still be unacceptable and the hardware devices may be too limited or too costly. 

In [HW90) a hybrid monitor is presented for a distributed real-time system. Each computing node 
in the target system contains a Test and Measurement Processor (TMP) for monitoring, recording, 
and evaluating the node's behavior. The target software on each node is instrumented permanently 
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to generate events which are detected by the TMP. All TMPs are connected via a separate network 

to a central monitoring station. 

The relevant events are either associated to the application software or to the system software. 

The system software is instrumented to signal dispatcher events (reflecting changes in the states of 

processes), kernel events (reflecting low-level operations such as initialization ofUO queues), and 

communication events (reflecting interprocess communication). Instrumentation is performed by 

inserting store address, value instructions at specific points in the software code. The store instruc

tion writes through the processor cache and is immediately visible on the system bus, where it is 

detected by the TMP. The address in the store instruction indicates an event class, while the value 

is a parameter which specifies a particular event within the event class. The TMP continuously 

checks the addresses on the system bus. If an address is within the range of event classes, the 

values on the address and data bus are stored along with a time stamp. The recorded events are 

processed first on the TMP and next they are transferred to the central monitoring station. Spe

cial synchronization mechanisms are incorporated into the hybrid monitoring system to provide 

a notion of global time and global state. 

In addition, a distributed debugging system is built on top of the hybrid monitoring system. The 

debugging system consists of local debuggers running on each TMP and a controller running on 

the central station. The local debuggers cooperate to detect a global breakpoint and to halt the 

entire system. The central station is informed when the global breakpoint has been reached and 

the system has been halted. The debugging and monitoring system are used in an incremental test 

methodology [Hab87]. 

Related hybrid monitoring systems are the HMON monitoring system [DR92] and the ZM4 moni

toring system [H+94a]. These hybrid monitoring systems consist of instrumented target software, 

local hardware monitoring devices that detect events by bus snooping, and a central processing 

workstation. 

A somewhat different approach to hybrid monitoring has been proposed in [Gor91]. The hybrid 

monitor is not based on bus snooping, but instead a coprocessor is used to monitor the real-time 

behavior of software running on a microprocessor. The application software is instrumented with 

monitoring instructions that are executed by the coprocessor. This concept is analogous to the 

use of a floating-point coprocessor for executing floating-point instructions. When a monitoring 

instruction is executed on the microprocessor, the coprocessor is triggered and the coprocessor 

subsequently performs recording while the target processor proceeds to other tasks. The recorded 

information consists of time-stamped events (both kernel-level events like process dispatching 

and application-level events like procedure calls} and possibly additional data. 

In [CP95, CP98], a hybrid monitoring system for performance assessment of embedded multi

processor systems is presented. The MCSE co-design method [Cai93J is used to model the func

tional behavior of the system as a set of concurrent tasks. The events of interest for monitoring are 

identified in this functional model, which are basically changes in task states and communication 

actions between tasks. The hardware or software implementations of the tasks are instrumented 

to indicate the events. In software tasks, the instruction capture(i) is added at locations which cor

respond to a state modification of a task or communication between tasks. The instruction writes 
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the argument i at a specific address to be detected by a hardware monitoring device. The real-time 

kernel is also instrumented to capture task allocations. In hardware tasks, appropriate statements 

are added in the VHDL specification. Synthesizer tools are used to implement the instrumented 

hardware tasks on FPGAs. 

Dedicated hardware devices (TransProbe) are used for hardware monitoring. The TransProbe de

vices monitor events and time stamp them. The monitored data is transferred next to a PC which 

runs performance analyzer software. The TransProbe devices are connected to the PC by a serial 

bus (TransBus), which was originally developed for interconnecting transputers on a single bus 

using a token-ring protocol [CP92]. The bus provides a common reset signal and a global clock 

signal to all TransProbe devices. 

6.6 Discussion 

In this chapter we outlined DFf and DFD techniques for both hardware and software. We dis

cussed hardware DFf techniques, hardware DFD techniques, software debugging techniques, 

and monitoring techniques for distributed real-time systems. In this section we will discuss our 

findings, focusing on two basic questions: how to implement PCOs in hardware/software and 

how to implement the infrastructure for accessing the PCOs from an external tester/debugger in 

the system environment. 

In our design for test & debug approach, we insert PCOs in the system specification and we next 

incorporate them into the hardware/software architecture. The effects of PCO insertion on the 

system performance can be predicted and dealt with during architecture exploration and the sub

sequent phases in the design flow. Furthermore, we showed in chapter 5 that we can insert PCOs 

in a system specification without disturbing the externally observable system behavior. Hence, 

we eliminate the probe effect already during system specification. 

The PCOs may be realized by using test & measurement equipment or the PCOs may be imple

mented in hardware/software. In this chapter, we focused on the latter. The PCOs are imple

mented either by dedicated hardware and/or software, or by (re-)using hardware DFf and DFD 

facilities. 

In general, there are two approaches towards test & debug of hardware/software systems: a 

breakpoint-based approach and a monitoring-based approach. Break-point based test & debug 

implies running the system for some time and subsequently halting the system. The internal state 

of the halted state can be observed and controlled, and next the system execution can be continued. 

Hence, this approach implies that observation and control is performed off-line when the system 

is halted. Breakpoints and related techniques are used to halt the system on the occurrence of 

predefined conditions. On the other hand, monitoring-based test & debug implies continuously 

monitoring the real-time system behavior. This approach allows to observe the internal system 

behavior at real-time, while the possibilities for controlling the system behavior are limited. The 

monitored data is usually analyzed off-line. 

Both breakpoint-based and monitoring-based techniques are supported by incorporating test & 
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debug facilities in the hardware/software architecture of the system. These test & debug facil

ities provide implementations for PCOs and the infrastructure to access PCOs from the system 

environment. 

6.6.1 Breakpoint-Based Test & Debug 

Breakpoint-based test & debug implies halting the system on the occurrences of predefined 

conditions. Subsequently, the internal state of the system can be observed and/or controlled. 

Breakpoint-based debugging is typically applied in cyclic debugging of sequential software, in 

which breakpoints can be inserted and removed interactively. In embedded systems, software 

breakpoints can be inserted by instrumenting the code. However, a more practical and less in

trusive approach is to provide hardware breakpoints in which dedicated hardware is used to de

tect the occurrence of predefined conditions and to halt the system. The concept of breakpoints 

is not equivalent to the concept of PCO. However, breakpoints can be used to specify on which 

conditions a PCO should be activated. After all, breakpoints indicate when the system is halted 

to allow subsequent observation and control activities. 

PCOs are directly related to the built-in facilities to observe and control the internal state of a 

halted system. A cheap solution is to re-use hardware DFf facilities for observation and control, 

like scan-based debugging and debug modes for reading/writing memories. The test infrastructure 

of IEEE 1149.1 and 1149.5 test buses, test interfaces and test controllers can be used to access 

these built-in facilities. Hardware DFf and DFD facilities provide very detailed information on 

the internal state. 

Another powerful debugging technique is single-stepping. By using special debug modes or con

trolling the internal clock, the system execution can be controlled and observed after every exe

cution cycle. However, single-stepping is a static debugging technique, which cannot be used to 

debug real-time behavior. 

6.6.2 Monitoring-Based Test & Debug 

Monitoring-based test & debug implies continuously observing the real-time system behavior. 

Monitoring is typically performed using Points of Observation (POs) to observe relevant events. 

The monitored events are transferred to a separate processing station and are analyzed off-line. 

Monitoring-based debugging is particularly useful for debugging real-time systems. Modern mi

croprocessors offer monitoring pins on which internal signals can be observed, or background 

debug modes in which state information is output on the buses in non-used bus cycles during nor

mal operation. In distributed real-time systems, typically monitoring techniques are used that are 

based on DFD in hardware and/or software. 

A cost-effective but limited approach is to use the boundary-scan cells for repeatedly sampling 

and shifting out the values on IC pins. Boundary-scan cells can be considered as non-intrusive 

implementations ofPOs. The IEEE 1149.1 and 1149.5 test infrastructure can be used to transport 

the observed data to the external environment. However, the resolution of the observed infor

mation is rather low, because the sampled data in the boundary-scan cells has to be shifted out 
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serially. Furthermore, the observed information is not very detailed because only the IC pins are 

observed. 

More powerful monitoring-based test & debug techniques have been developed for distributed 

real-time systems. These monitoring techniques can be classified into software monitoring, hard

ware monitoring and hybrid monitoring. In software monitoring, the application software and/or 

the system software is instrumented to detect and record the occurrences of relevant events. Soft

ware monitoring is flexible, transparent and inexpensive. However, software instrumentation is 

non-intrusive and induces the probe effect. In hardware monitoring, the detection and recording 

of relevant events is performed by dedicated hardware devices that snoop buses. Hardware mon

itoring is less flexible, less transparent and more expensive than software monitoring. However, 

hardware monitoring causes no or minimal intrusion and almost eliminates the probe effect. In 

hybrid monitoring, the software is instrumented to signal the occurrences of relevant events, while 

the recording of data is performed by dedicated hardware devices. The flexibility, transparency, 

costs and intrusion of hybrid monitoring are in between software monitoring and hardware mon

itoring. Both software monitoring, hardware monitoring and hybrid monitoring techniques can 

be used to implement POs and the infrastructure to access POs from the system environment. 

6.7 Summary 

In this chapter we elaborated on design for test & debug during implementation. We outlined the 

state-of-the-art on hardware DFT and DFD, software debugging, and hardware/software monitor

ing. We concentrated on two basic questions: how to implement PCOs in hardware/software and 

how to implement the infrastructure for accessing PCOs from the external system environment. 

We argued that there are generally two approaches towards testing and debugging. Breakpoint

based test & debug implies running the system for some time, halting the system on the oc

currence of predefined conditions, and subsequently observing and controlling the internal state 

of the halted system. The concept of breakpoints is not equivalent to the concept of PCO. 

However, breakpoints can be used to specify on which conditions a PCO should be activated. 

Monitoring-based test & debug implies continuously monitoring the real-time system behavior. 

Both breakpoint-based and monitoring-based techniques are supported by incorporating test & 

debug facilities in the hardware/software architecture of the system. 

Hardware DFT facilities on the IC level (e.g. test points, scan cells, boundary-scan cells and test 

interface elements), and hardware DFD facilities (e.g. scandumps, cachedumps and execution 

tracing), can reasonably be regarded as low-level hardware implementations of PCOs. The test 

infrastructure of IEEE 1149.1 on the PCB level and IEEE 1149.5 on the system level provides 

test buses, test interfaces and test controllers that can be used to access these built-in facilities. 

In general, hardware DFT and DFD facilities provide very detailed access to the system's inter

nals, however they are somewhat restricted when debugging dynamic, real-time system behavior. 

Improved control and observation into the internal system operation can be obtained by using ded

icated software monitors, hardware monitors or hybrid monitors. These monitors are particularly 

useful for distributed real-time systems. The monitors can be considered as implementing POs 

and the infrastructure for accessing the POs from the system environment. 
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7.1 Introduction 

In this chapter, we describe the specification and implementation of an elevator control system 

(ECS) as a case study to illustrate our design for test & debug approach. The example of the ECS 

originates from [You89]. We modified and extended Yourdon 's description to resemble a realistic 

system. The ECS may be considered as an embedded system incorporating complex dynamic 

behavior, a high degree of parallelism, interactions with humans and systems in its environment, 

and real-time constraints. 

This chapter is divided into three parts. In the first part, we give an informal description of the 

requirements for the ECS. In the second part, we discuss our experiences with the Ward & Mel

lor method for analysis and design of the ECS. We will apply a simplified version of our design 

for test & debug approach. In the third part of this chapter, we discuss our experiences with the 

SHE method for formally specifying the ECS in the POOSL language. We will elaborate on the 

verification of the specification and on the use of our design for test & debug approach. 

7.2 ECS System Requirements 

The elevator control system (ECS) controls the operation of four elevators in a building with 40 

floors. The elevators transport passengers between the floors. A general requirement is that the 

ECS should schedule the elevators efficiently and reasonably. For instance, an elevator should 

not suddenly reverse its direction. We developed a sophisticated algorithm to schedule the four 

elevators. 

7.2.1 System Environment 

The ECS interacts with humans and various systems in its environment. A general impression of 

the ECS environment is shown in figure 7 .1. 

Prospective passengers that are waiting on a particular floor, can summon an elevator by press

ing a summons button. There is a summons panel on each floor with two summons buttons, one 

marked UP and one marked DOWN. The summons panel on floor 1 has only an UP button, and 

the summons panel on floor 40 has only a DOWN button. Hence, altogether there are 78 summons 

buttons (39 UP but.tons and 39 DOWN buttons). After a summons button has been pressed, the 

ECS will schedule an available elevator to service the summons request. Furthermore, the ECS 

will illumine the pressed summons button to indicate that the summons request has been noticed. 

Pressing an already lit summons button has no effect. The summons button light is turned off 

when an elevator arrives. 

The interior of each elevator cage is equipped with a destination panel containing 40 destination 

buttons. There is a destination button for each of the 40 floors.· A passenger entering the elevator 

cage may press a destination button to indicate the floor he wants to be transported to. The ECS 

illumines a destination button after it has been pressed, to indicate that the destination request has 

been noticed. Pressing an already lit destination button has no effect. When the elevator cage 

arrives at the requested floor, the light of the particular destination button is turned off. 
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The interior of each elevator cage is equipped also with an arrival lights panel, containing one 

light for each of the 40 floors. The purpose of the panel is to display the current floor number to 

the passengers in the elevator cage. The ECS turns on an arrival light for a particular floor when 

the elevator cage arrives at the floor, and turns it off when the elevator arrives at the next floor. 

There is a floor sensor on each floor in each elevator shaft. The ECS receives a signal whenever 

.an elevator cage passes a floor sensor. After receiving a signal from a floor sensor, the ECS de

termines whether the elevator should stop at the floor or pass the floor without stopping. 

Each elevator is equipped with an overweight sensor which signals the ECS whenever the elevator 

cage gets overloaded. The ECS turns on the audible ai.arm when the elevator cage gets overloaded, 

and subsequently the elevator cage is not moved. Next, the ECS waits until the overweight sensor 

signals that the overweight is removed, before turning off the audible alarm. 

The ECS controls the motor of each elevator by sending signals to move an elevator cage upwards, 

downwards, or to stop an elevator cage. There is a separate control system for stopping an elevator 

cage at the correct position in the elevator shaft. This control system is not part of the ECS. 

The doors for each elevator are opened and closed by a separate doors control system, which is 

not part of the ECS. However, the ECS sends commands to the doors control systems to initiate 

the opening and closing of elevator doors. A doors control system signals the ECS whenever the 

elevator doors are fully opened and fully closed. After sending a command to close the doors of a 

particular elevator, the ECS waits for the doors closed signal. If this signal is not received within 

30 seconds, the ECS will turn on the audible alarm. The ECS turns off the audible alarm as soon 

as the doors closed signal is received. 
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A system operator controls the operation mode of each individual elevator by means of four 

switches on the elevators control panel that is connected to the ECS. The operation modes can 

be normal mode, maintenance mode or disabled. An elevator in normal mode may service both 

destination requests and summons requests, while an elevator in maintenance mode may service 

destination requests only. A disabled elevator will not respond to any requests until it is enabled 

by the operator into normal mode or maintenance mode. 

7 .2.2 Operation of Elevators 

An elevator is either in the disabled, halted, stopped or moving state. When the system operator 

disables an elevator, the elevator state becomes disabled. An elevator operating in normal mode 

or maintenance mode may be in the halted, moving or stopped state. Figure 7.2 shows the elevator 

state transition diagram. 

Halted Halted 

~ Maintenance Disabled Nonnal f+-
Mode Mode 

Moving Moving 
Maintenance Nonnal 
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Figure 7.2 Elevator state transition diagram 

Initially, all four elevators are disabled. A disabled elevator does not respond to any requests until 

it is enabled by the system operator at the elevators control panel. When an elevator is enabled, it 

is switched into normal mode or maintenance mode and its state becomes halted. The ECS next 

turns on the arrival light in the elevator cage for the current floor. 

An elevator in the halted state is parked at a floor with opened doors. A halted elevator is ready to 

be scheduled to service a destination or summons request in normal mode or a destination request 

in maintenance mode. An elevator is in the moving state when the elevator cage is actually moving 

to service a request, or when the elevator cage is about to start moving as the elevator doors are 

being closed. 

An elevator is in the stopped state when it stands still on a floor to service a request. As soon as the 

elevator goes into the stopped state, the ECS issues the command to open the doors. Subsequently, 
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the ECS waits for an acknowledgement that the doors have been fully opened. If the elevator was 

scheduled for the floor reached, then the elevator state becomes halted. If the elevator was not 

scheduled for the floor reached, then the stop is an intermediate stop and after a 10 seconds delay 

the elevator will start moving again. 

The following scenario is performed when a halted or stopped elevator starts moving: 

1. The overweight sensor is checked first. The ECS turns on the audible alarm if the elevator 

is overloaded. Next, the ECS waits until the overweight is removed before turning off the 

audible alarm. 

2. The elevator state is set to moving and next the ECS issues a command to close the elevator 

doors. The ECS waits for an acknowledgement that the doors have been fully closed. The 

audible alarm is turned on if the acknowledgement is not received within 30 seconds. The 

ECS waits until the acknowledgement is received before turning off the audible alarm. 

3. Finally, the overweight sensor is checked again because passengers may have entered the 

elevator during the closing of the elevator doors. The elevator cage starts moving if the 

elevator is not overloaded. However, if the elevator is overloaded, the doors are opened 

and subsequently the scenario is restarted from step 1. 

The operator may disable an elevator at any moment. The following scenario is performed when 

the operator disables an elevator: 

1. The ECS first checks whether the elevator is scheduled to service a summons request. If 

this is true, then another available elevator is scheduled to service the summons request. 

2. The ECS next checks the elevator state, before setting the elevator state to disabled. If the 

elevator state is halted or stopped, then the elevator is already parked at a floor with opened 

doors. If the elevator state is moving, then the elevator is either actually moving between 

two floors or the elevator is about to start moving (i.e. the doors are being closed). In the 

first case, the elevator is stopped as soon as it arrives on the next floor and subsequently the 

doors are opened. In the second case, the elevator doors are opened again and the elevator 

is parked at the current floor. 

3. After the elevator has been parked with its doors opened, all destination requests are re

moved and the destination button lights as well as the arrival light are turned off. 

4. The elevator remains disabled until it is enabled again by the operator. Once an elevator is 

disabled, it cannot be enabled until step 3 has been performed. 

7.2.3 Elevator Scheduling 

The purpose of elevator scheduling is to schedule the elevators for servicing destination requests 

and summons requests. Each elevator has its own destination panel, and therefore a destination 

request is always mentioned for one particular elevator. On the other hand, a summons request 

can be serviced by any of the four elevators. When a summons request occurs, all four elevators 

are examined and an available elevator is scheduled to service the summons request. 
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Scheduling a particular elevator means that the elevator is directed to move to a particular floor 

for servicing one particular destination request or summons request. On its way, the elevator may 

service other, intermediate destination requests and/or summons requests. 

Elevator scheduling is performed upon the occurrence of a destination request or a summons re

quest, and upon an elevator state transition. 

7 .2.3.1 Scheduling and Elevator State Transitions 

Elevator scheduling is performed whenever one of the following elevator state transitions occurs 

(see figure 7.2): 

• Disabled -+ Halted in Normal Mode 

Disabled -+ Halted in Maintenance Mode 

When the operator enables an elevator, the operation mode is set to normal mode or main

tenance mode and the elevator state is set to halted. Subsequently, the halted elevator is 

scheduled. The ECS first checks whether there is a summons request on the current floor. 

a. If there is no summons request on the current floor, then the operation mode is 

checked. The elevator remains halted at the current floor if the elevator is in main

tenance mode. If the elevator is in normal mode, then the elevator is scheduled to ser

vice a summons request. The elevator remains halted at the current floor when there 

are no summons requests pending. Note that there are no destination requests pend

ing, because all destination requests are removed whenever an elevator is disabled. 

b. If there is a summons request at the current floor, then the elevator services this sum

mons request regardless of its operation mode. If there are two summons requests at 

the current floor, then the elevator services both summons requests simultaneously. 

Next, the elevator doors remain open for 10 seconds to let passengers enter the eleva

tor and press destination buttons. After the 10 seconds interval expires, the elevator is 

scheduled to service destination requests. If there are no destination requests and the 

elevator is in maintenance mode, then the elevator remains halted at the current floor. 

If there are no destination requests and the elevator is in normal operation mode, then 

the elevator is scheduled to service a summons request. The elevator remains halted 

when there are no summons requests pending. 

• Stopped in Normal Mode -+ Halted in Normal Mode 

Stopped in Maintenance Mode -+ Halted in Maintenance Mode 

When an elevator stops at the floor it was scheduled for, then subsequently the elevator state 

becomes halted. The halted elevator is scheduled as described in section 7.2.4. 

• Stopped in Normal Mode -+ Disabled 

Moving in Normal Mode -+ Disabled 

When an elevator in normal mode is disabled and the elevator was scheduled to service a 

summons request, then another elevator must be scheduled to service the summons request. 

Because summons requests are serviced only by elevators in normal mode, the state transi

tions Stopped in Maintenance Mode -+ Disabled and Moving in Maintenance Mode -+ Dis

abled do not require elevator scheduling. 
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7 .2.3.2 Scheduling a Destination Request 

The ECS receives a destination request for a particular elevator when a passenger presses a des

tination button for a particular floor. The ECS schedules the elevator to service the destination 

request only when the elevator state is halted and the elevator is not positioned at the floor of the 

destination request. In all other situations, no scheduling is required because: 

• A disabled elevator will not respond to any destination request. 

• A response on a destination request is not required if the elevator is halted or stopped and 

positioned at the floor of the destination request. 

• When the elevator is moving or the elevator is stopped at a floor differing from the floor of 

the destination request, then the destination request is stored and no explicit scheduling is 

required. The moving elevator may service the destination request when it passes the floor 

of the destination request accidentally. However, this does not necessarily happen. There

fore, the elevator is scheduled as soon as the elevator state becomes halted, as described in 

section 7.2.3.1. 

7 .2.3.3 Scheduling a Summons Request 

The ECS receives a summons request when a prospective passenger at a particular floor presses 

a summons up button or a summons down button. Explicit scheduling is not required in the fol

lowing situations: 

• There is a halted elevator positioned at the floor of the summons request. 

• There is a stopped elevator at the floor of the summons request and the direction of the sum

mons request is the same as the moving direction of the elevator. 

• All four elevators are disabled. 

• There are no halted elevators available. The summons request is stored and no explicit 

scheduling is required. The summons request may be serviced when an elevator passes 

the floor accidentally. However, to guarantee that the summons request will be serviced 

eventually, scheduling is performed as soon as an elevator state changes to halted. 

In all other cases, scheduling is performed whenever a summons request occurs. Scheduling im

plies selecting a halted elevator in normal mode to service the summons request. When there are 

multiple halted elevators in normal operation mode, the halted elevator is selected that is near

est to the floor of the summons request, or an arbitrary halted elevator is selected when there are 

multiple halted elevators at the same distance from the floor with the summons request. 

The summons requests are scheduled in a fair way by adopting a FCFS (first-come first-served) 

strategy. This provides that summons requests are scheduled in the order in which they occur. 

The FCFS strategy can easily be modeled using a priority counter. When the ECS receives a 

summons request, it stores the summons request to~ether with the current value of the priority 

counter. Subsequently the priority counter is increased. The priority counter is decreased every 

time a summons request is serviced. The ECS always schedules first the summons request with 

the lowest priority number. 
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7.2.3.4 Servicing Intermediate Summons Requests 

A moving elevator may service summons requests on its way for which the elevator was not sched

uled. We refer to such summons requests as intermediate summons requests. Whenever an eleva

tor services an intermediate summons request, the elevator that was originally scheduled for the 

summons request, must be rescheduled. The rescheduling is performed as soon as this elevator 

arrives at a floor. 

An elevator may not always service an intermediate summons request: 

• An elevator in maintenance mode will not service intermediate summons requests. 

• An elevator in normal mode that is scheduled to service a destination request, will service 

an intermediate summons request on! y if the direction of the intermediate summons request 

is the same as the moving direction of the elevator. 

• An elevator in normal mode that is scheduled to service a summons request, will service an 

intermediate summons request only if the direction of the intermediate summons request is 

the same as the moving direction of the elevator, and if the moving direction of the elevator 

is the same as the direction of the summons request it is scheduled for. 

We will clarify this requirement with the following example. Suppose that an elevator at 

floor 5 is scheduled to service a summons down request at floor 20. The elevator starts 

moving upwards to floor 20. After the elevator has reached floor 20, it will probably start 

moving downwards because passengers entering the elevator at floor 20 will generate desti

nation requests for the lower floors. When the elevator is moving up from floor 5 to floor 20, 

it will not service intermediate summons requests. Intermediate summons down requests 

would not tolerate that the elevator is first moving up to floor 20. Intermediate summons up 

requests would not tolerate that the elevator is moving down after floor 20 has been reached, 

because passengers may generate destination requests for floor 21 to 40. 

When an elevator services an intermediate summons request, the priority counter is decreased by 

one as explained in the previous section. In addition, the priorities of those pending summons re

quest is decreased whose priority is higher than the priority of the intermediate summons request. 

7 .2.4 Stopping an Elevator 

The ECS receives a signal from a floor sensor whenever an elevator cage arrives at a floor. The 

ECS next turns off the arrival light in the elevator cage for the previous floor and turns on the 

arrival light for the reached floor. Subsequently, the ECS decides whether the elevator should 

stop or not at the reached floor. 

First the elevator state is checked, which is either disabled or moving. If the elevator state is dis

abled, then the elevator stops at the floor reached. The ECS signals the elevator motor to stop the 

elevator cage and the ECS also signals the doors control system to open the doors. The ECS next 

waits for an acknowledgement that the doors have been fully opened. Finally, the ECS removes 

all destination requests and turns off the destination button lights and the arrival light. 
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If the elevator state is moving, then the ECS decides whether the elevator should stop or not at 

the reached floor by considering the following four conditions: is the elevator operating in nor

mal mode or maintenance mode; is the elevator scheduled to service a destination request or a 

summons request; is there a destination request or a summons request at the floor reached which 

the elevator must service; and, is the rescheduled flag set? The rescheduled flag indicates that the 

elevator is scheduled to service a summons request, but the summons request has already been 

serviced by another elevator that passed the floor of the summons request accidentally. These 

conditions are evaluated in the following scenario: 

1. If the elevator is scheduled to service a destination request, then the elevator stops at the 

floor reached only if there is a destination request and/or a summons request that the elevator 

may service. 

A destination request at the floor reached is either the destination request that the elevator 

was scheduled for or an intermediate destination request. In both cases, the ECS stops to 

service the destination request 

A summons request at the floor reached is serviced only if the direction of the summons 

request is the same as the moving direction of the elevator. Furthermore, the elevator 

should be operating in normal mode or there should also be a destination request at the floor 

reached. In the latter case, the elevator stops at the floor to service the destination request 

and it services the summons request at the same time. 

If the elevator stops at the reached floor, the elevator state is set to stopped. The ECS turns 

off the light of the destination button and/or the summons button that is being serviced. 

Next, the ECS commands the elevator doors to be opened. After receiving the acknowl

edgement signal that the doors have been fully opened, the ECS waits for I 0 seconds. Sub

sequently, the elevator is scheduled in the following way: 

(a) The elevator is scheduled for a pending destination request in the current direction. 

(b) When there are no pending destination requests in the current direction, the elevator's 

moving direction is reversed. The ECS now checks whether there is a summons re

quest at the floor reached in the reversed direction. If this is true, the elevator services 

the summons request: the summons button light is turned off and the elevator doors 

stay opened for another I 0 seconds. Subsequently, the scheduling is restarted from 

step (a). Note that the summons request is serviced regardless of the elevator's oper

ating mode. 

(c) When there is no summons request at the floor reached in the reversed direction, the 

elevator is scheduled for a destination request in the reversed direction. 

(d) When there are no destination requests pending in the reversed direction and the ele

vator is in normal mode, the elevator is scheduled for a pending summons request. If 

there is no summons request pending or if the elevator is in maintenance mode, then 

the elevator state is set to halted. 

2. If the elevator is scheduled to service a summons request, then it is operating in normal 

mode. The subsequent actions depend on the rescheduled flag. 

(a) The following scenario is performed if the rescheduled tlag is not set: 
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• The elevator stops if the elevator is scheduled for the floor reached. The elevator 

state is set to stopped, the elevator doors are opened, and the doors stay opened 

for 10 seconds. Next, the elevator is scheduled as described in step 1. If there 

is also a destination request for the floor reached, then this destination request is 

serviced at the same time. 

• If the elevator is not scheduled for the floor reached, then the elevator stops only 

if there is a destination request and/or an intermediate summons request at the 

floor reached. An intermediate summons request is serviced only if the moving 

direction of the elevator, the direction of the intermediate summons request, and 

the direction of the scheduled summons request are the same. 

• In all other cases, the elevator will not stop at the floor reached. 

(b) The following scenario is performed if the rescheduled flag is set: 

• If there is a destination request and/or an intermediate summons request at the 

floor reached, then the elevator will service these requests. An intermediate sum

mons request is serviced only if the moving direction of the elevator is the same as 

the direction of the summons request. If the elevator services a request, the eleva

tor stops and the elevator state becomes stopped. The elevator doors are opened 

for 10 seconds and next the elevator is scheduled as described previously in step 1. 

• If there is no destination request and no intermediate summons request at the floor 

reached, then the elevator continues moving if there is a destination request pend

ing in the current direction. Else, the elevator is stopped and the elevator state 

becomes stopped. The elevator doors are opened for 10 seconds and next the el

evator is scheduled as described previously in step 1. 

7.3 Specification and Design Using SAD 

Initially, we used Ward & Mellor's method [WM86] for Structured Analysis & Design (SAD). 

We applied Ward & Mellor's analysis method to capture the ECS requirements into a system 

specification. Next, we implemented the ECS in software using a small operating system. We 

refer to section 2.6 for a discussion on the advantages and the shortcomings of SAD methods. 

7 .3.1 ECS Specification 

We used Ward & Mellor's analysis method to transform the ECS system requirements as de

scribed in section 7.2, into a detailed system specification. Ward & Mellor's analysis method 

provides an environment-based modeling approach to capture the system behavior in an essential 

model. The essential model consists of an environmental model, describing objects and events in 

the system environment, and a behavioral model, describing the system behavior in response to 

events in the environment. 

The environmental model consists of a context diagram, describing the intetfaces between the 

system and objects in the environment, and an event list, describing the external events in the 

environment to which the system must respond. Figure 7.3 shows the ECS context diagram. 
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The behavioral model is a hierarchical model containing transformations (processes), stores, 

event flows, time-discrete data flows and time-continuous data flows. The behavioral model is cre

ated by considering the system behavior in response to external events as described in the event 

list. Figure 7.4 shows the top level of the behavioral model for the ECS. The process Handle 

Passengers & Operator Input deals with passengers who press destination buttons and summons 

buttons and with the operator who enables and disables elevators. The process Schedule Eleva

tors carries out the elevator scheduling. The process Control Elevator Motor & Doors controls 

the motor and the doors of an individual elevator. The process Handle Floor Reached determines 

whether an elevator should stop or not every time a floor is reached. There are four processes 

Control Elevator Motor & Doors and also four processes Handle Floor Reached, one for each 

individual elevator. The process Manage Data Access provides mutual exclusive access to the 

data stores that contain the state information of the individual elevators. 

We discussed the use of event-traces for validation and verification of an essential model in sec

tion 4.8. An event-trace describes a part of the system behavior as a sequence of events. An event

trace starts with an external event from the event list, i.e. an event in the system environment, that 

is input to the system. The event occurs when the system is in a particular state. The event-trace 

next describes all the subsequent internal events, i.e. events that are produced and consumed by 

processes in the behavioral model. An event-trace also describes the output events that are sent 

to objects in the system environment. An event-trace defines the causal relations between the 

various events. An event-trace typically describes some finite system behavior, starting with an 

external input event an ending with an output event. 

An example of an event-trace is shown in figure 7.6. The event-trace is initiated by a summons 

request event in the system environment. Upon the occurrence of the event, the system is pre

sumed to be in a state where all four elevators are in the halted state and positioned at floor I. The 

summons request models a prospective passenger pressing a button at an arbitrary floor (different 

from floor I). 

We applied a simplified version of our design for test & debug approach in the ECS behavioral 

model. We required that each internal event is directly observable in the system environment. 
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Therefore, we inserted Points of Observation (POs) to monitor all internal events. The modified 

behavioral model is shown in figure 7.5. 

Event 
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2. Summons Indication 

3. Data Access 1 

4. Data Access 1 

5. Schedule Summons Request 
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Figure 7.6 Example of an event-trace 

7 .3.2 ECS Implementation 

We derived a software implementation for the ECS from the essential model. The software archi

tecture is depicted in figure 7.7. 

The processes in the behavioral model are implemented as application software processes running 

on a microprocessor. The processes are scheduled by a dispatcher that is part ofMBOS (Message 

Based Operating System). The application processes communicate with each other by writing 

messages into FIFO queues. A message contains the actual message, the name of the sending 

process, the name of the destination process and possibly a number of parameters. A priority 

number is assigned to each queue. The MBOS dispatcher looks for a message in the queues, start

ing from the queue with the highest priority number. If there is a message present, the dispatcher 

starts the destination process indicated in the message. An application process is a collection of 

C functions that is organized as a finite-state machine. Whenever a process receives a message 

from another process through the dispatcher, the current process state and the message determine 

which C function is executed. After the function is terminated, the dispatcher is started to read the 

next message from the queues. Hence, there is a single thread of control in the system, alternately 

executing the dispatcher and a function in an application process. In addition, an application pro

cess can start and stop timers. Whenever a timer expires, the timer writes a message into a queue. 

Messages from timers are treated in the same way as messages from application processes. A 

hardware timer provides interrupt signals at a fixed frequency. A timer interrupt invokes the exe

cution of an interrupt handler that decreases the counters in the timers. A timer expires when its 

counter becomes zero. 

As stated, we implemented the ECS in software (C programming language) using a small oper

ating system (MBOS). The processes and flows in the Ward & Mellor behavioral model could be 

mapped rather easily onto the software architecture imposed by MBOS. We embedded the ECS 

software implementation into an interactive, software simulator running on a PC. The simulator 
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consists of the ECS application processes, MBOS and a graphical user interface (GUI). The GUI 

provides a graphical screen showing the movements of the four elevator cages, summons but

tons, destination buttons, arrival lights and a menu window. The user can make selections in the 

menu window by keyboard inputs to simulate passengers pressing buttons, the operator enabling 

and disabling elevators, and overweight sensors signaling overload situations. The GUI is imple

mented as just another application process in the MBOS architecture as depicted in figure 7.7. In 

addition, we added a second application process that models the behavior of objects in the ECS 

environment, such as the doors control systems and the floor sensors. The simulator provides a 

powerful interactive environment that allows the user to act as a passenger or the system oper

ator. A limitation of the GUI is that the user can input only one event at a time. For instance, 

a passenger pressing two buttons simultaneously can only be simulated as two successive user 

inputs. Another limitation is that the simulation proceeds at real-time, and hence the interactive 

user has to anticipate to the real-time behavior of the ECS software. It may be difficult to simu

late scenarios in which the user inputs should occur at predefined points in time. For instance, the 

operator may disable an elevator when the elevator is moving between two floors or closing the 

doors. Simulating this scenario requires that the user inputs the disable message within the time 

interval that the elevator is moving or closing the doors. 

We incorporated the POs as shown in figure 7.5 into the ECS software implementation. As stated, 

the application processes in the MBOS architecture communicate by sending messages to each 

other. Sending a message corresponds to writing a message into a FIFO queue, and receiving 

· a message corresponds to the dispatcher removing a message from the FIFO queue and starting 

the destination process. Hence, every message passes through the dispatcher. We extended the 

MBQS dispatcher with a simple monitoring function. Every time the dispatcher reads a message 

from a queue and starts a process, the monitoring function is called which writes the message to a 

file on disk. Hence, the monitoring function records the event-trace during a simulation session. 
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The monitoring function provides a simple implementation of all POs in the system specification. 

The entire software simulation system consists of about 2,400 lines of C code, of which the mon

itoring function takes about 0.5%. The monitoring function has a minor impact on the system 

performance, because it is executed only when the dispatcher reads a message from a queue. 

The event-traces recorded by the monitoring function during simulation, turned out to be very 

useful. During simulation, the entire system deadlocked every now and then for no apparent rea

son. In a deadlock situation, the simulator did not respond to any user inputs and needed to be 

restarted. Unfortunately, we could not reproduce deadlock situations afterwards when replaying 

the same scenarios. These symptoms seemed to point to a timing-related error. We already dis

cussed the limitation of the interactive GUI when interacting with the real-time behavior of the 

ECS software. This limitation impedes to replay scenarios with exactly the same timing of user 

inputs, which explains why we could not reproduce deadlock situations. 

We analyzed the event-traces obtained from simulations that ended in a deadlock situation. We 

found that the errors were due to race conditions. Initially, we used a single FIFO queue for all 

messages. A message generated by a user input or a timer expiration corresponds to an external 

event, which subsequently starts a particular scenario. However, user inputs and timer expirations 

may occur at arbitrary points in time. Consequently, there may be multiple, concurrent scenar

ios in the system. For instance, while the system is executing a scenario started by a summons 

request, additional scenarios may be started such as the scenario for handling a destination re

quest or an elevator arriving on a floor. The application processes that are involved in a scenario, 

communicate by writing messages into the FIFO queue. Hence, when there are multiple scenar

ios, the message sequences pertaining to the various scenarios are stored in the FIFO queue in an 

interleaved order. The dispatcher reads these messages from the FIFO queue and starts the appli

cation processes for the various scenarios in the same interleaved order. Errors may occur when 

the application processes in the various scenarios interfere in each other's behaviors. All appli

cation processes access the process Manage Data Access that contains data stores for the state 

information of the individual elevators. When executing a particular scenario A, an application 

process may read the data stores, perform some computations and send a message to another ap

plication process which subsequently updates the data stores. Meanwhile, an application process 

in another scenario B may already have updated the data stores. Hence, the data of scenario B is 

overwritten by the data of scenario A. Subsequently, the application processes in scenario B start 

using incorrect data which causes incorrect behavior. This is a typical example of a race condition 

as described in section 3.5.4. 

We solved the problem of race conditions by using two FIFO queues with different priorities. The 

messages generated by user inputs and timer expirations, which correspond to external events, are 

stored in the queue with the lower priority, while all other messages, which correspond to internal 

communications, are stored in the queue with the higher priority. The modified implementation 

with two queues provides that there is only one active scenario in the system at a time, which 

excludes the occurrence of race conditions. 

The experiences obtained from the case study clearly demonstrate the advantages of our design 

for test & debug approach for dealing with timing-related errors. We inserted POs in the sys

tem specification and we next incorporated the POs into the software implementation. We could 
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quickly debug timing-related errors due to race conditions by analyzing the monitored event

traces. Standard, interactive debugging tools are inadequate to deal with such timing-related er

rors in the real-time system behavior. 

We applied only a simplified version of our design for test & debug approach. We did not perfonn 

a testability analysis to detennine the essential communication interactions and state infonnation 

that should be monitored. Instead, we simply required that all internal events should be monitored. 

Furthennore, we did not analyze in depth the effects of the POs on the system behavior. We only 

showed that the monitoring function has a minor impact on the program size and on the system 

perfonnance. In the next section, we will address these topics more thoroughly. 

7.4 Specification and Design Using SHEIPOOSL 

We also applied Vander Putten & Voeten's SHE method [vdPV97] to the ECS. We already 

discussed some aspects of the SHE method and the POOSL language in the sections 2.6, 4.8 

and 5.3.3. In this section we provide an overview of the SHE method and the POOSL language, 

we discuss the fonnal specification of the ECS in the POOSL language and we outline the use of 

our design for test & debug approach. 

7.4.1 SHE and POOSL 

SHE (Software/Hardware Engineering) [vdPV97] is a specification method to model the behav

ior of concurrent, reactive hardware/software systems. SHE provides an activity framework that 

guides the development of system specifications. The focus is on concurrency, synchronization, 

communication, scenarios and distribution. SHE uses several views to model a system, such as a 

behavior view and an architectural view. These separate views are combined into a unified system 

model that is expressed in the fonnal specification language POOSL (Parallel Object-Oriented 

Specification Language) [Voe95a, Voe95b, vdPV97]. 

POOSL provides process objects and data objects. Data objects are comparable to objects in tra

ditional object-oriented programming languages. A data object is a passive entity that becomes 

active only when it receives a message. When activated, a data object perfonns some sequential 

behavior, possibly outputs a message and next becomes inactive again. Data objects are instan

tiated from data classes. They incorporate instance variables, local variables and methods. Data 

objects model data structures and the operations that can be applied to these data structures. 

Process objects are instantiated from process classes. They incorporate instance variables, local 

variables and methods. In contrast to data objects, process objects can exchange messages without 

becoming passive and they can have infinite, non-tenninating behavior. Process objects typically 

behave like state machines. The behavior of a process object depends on its past and on the re

ceipt of messages. Furthennore, the behavior of a process object can be interrupted or aborted 

on the receipt of particular messages. The internal data of process objects is represented by data 

objects. Process objects can communicate by exchanging messages that contain data objects as 

parameters. 
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A system specification is modeled in POOSL as a static structure of communicating process ob

jects. The process objects behave as (asynchronous) concurrent, self-contained, autonomous, rel

atively independent and weakly coupled entities. Process objects are interconnected by channels 

and they communicate by exchanging messages over the channels. Message exchange is based 

on the synchronous pair-wise message-passing mechanism of CCS {Mil80, Mil89]. Broadcast 

communication is supported as well. Hierarchy can be introduced by grouping process objects 

and channels into clusters. 

The interconnection structure and the communication between process objects is visualized in an 

object instance model. An object instance model consists of message flow diagrams that visualize 

process objects and communication flows, and instance structure diagrams that visualize process 

objects and communication channels. 

We discussed in section 4.8 the importance of scenarios in the SHE method for creating a system 

specification. By playing scenarios, the designer can identify objects and their communication 

flows and reason about behavior, the ordering of events, and the reactions of cooperating pro

cesses. A scenario can be visualized in message flow diagrams, showing the process objects that 

participate in the scenarios and their communications. 

single message flow - .. 
message with repty flow ... _ ... 

Sanding . - Receiving continuous flow 
Process Process 

interrupt message flow 

interrupt with reply flow .. 
-'' -buffered massage flow 

Figure 7.8 Message flows 

The communication flows in message flow diagrams are visualized as shown in figure 7.8. A sin

gle message flow represents one-way, synchronous message passing between two objects, which 

is the basic communication primitive. The message is passed instantaneously from the sending 

process to the receiving process in a rendez-vous. The message with reply flow represents two sub

sequent rendez-vous communications. The second rendez-vous follows immediately on the first 

rendez-vous, representing a reply to the sending process. The continuous flow represents a time

continuous flow that has a value at every instant in time. The interrupt message flow represents 

synchronous message passing that can be forced to happen after the receiving process finishes its 

current atomic process statement. An interrupt message flow in POOSL can be an interrupt or 

an abort. An interrupt indicates that the receiving process can resume its current behavior after 

the interrupt behavior is finished. An abort indicates that the current behavior is interrupted and 
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cannot be resumed. The interrupt with reply flow represents an interrupt message followed im

mediately by a reply to the sending process. The buffered message flow represents asynchronous 

communication. Asynchronous communication is modeled by introducing a buffer. The sending 

process can send a message to the buffer without knowing whether the receiving process is willing 

to receive a message from the buffer. 

The behavior of a process object can be described in POOSL using the process statements listed 

in figure 7.9. Furthermore, a process object can have infinite, non-terminating behavior. Such 

infinite behavior is described by methods in the process object that incorporate tail recursion (see 

also section 5.3.3.1). 

I Statement I Meaning 

S1; s2 Sequential composition of statements S1 and Sz. 

if E then S1 else S2fi Conditional selection of statement S 1 or statement S2• 

while E do S od Repeat statement S while condition E is true. 

sel S1 or Sz les Non-deterministic selection of statement 81 or statement S2• 

[E] s Guarded command; wait until condition E becomes true 

before executing statement S. 

m(EJ, ... , En}(pJ, ... , Pm) Call method m; expressions E1, ... , En are evaluated and bound 

to input parameters of m; the results of m are bound to output 

parameters PI , ... , Pm · 
ch!m(EJ, ... , E11 ) Send message m with the evaluated expressions E,, ... , En 

as parameters on channel ch. 

ch?m(pJ, ... , PmiE) Receive message m with parameters PI· ... , Pm from channel ch 

when condition E is true. 

S 1 interrupt Sz Enable interruption of statement S1 with alternative statement S2. 

S1 abort Sz Enable abortion of statement S1 with alternative statement Sz. 

Figure 7.9 POOSL process statements 

The formal semantics of POOSL is a computational interleaving semantics, which implies that 

the behavior of a system is interpreted as a sequential, interleaved execution of all atomic actions. 

Hence, nothing happens really simultaneously except for the sending and receiving of a message 

in a rendez-vous. Atomic actions are assumed to take zero time. This semantic model can be 

considered as using a time scale with a fine enough grain, such that each atomic action can be 

mapped upon this time scale at an unique point in time. POOSL has been extended with a notion 

of real-time by means of the delay primitive [Gei96]. 

7 .4.2 ECS Specification 

We used the SHE method to create a formal system specification of the ECS in the POOSL lan

guage. Figure 7.10 shows the ECS instance structure diagram and figure 7.11 shows the ECS 

message flow diagram. The specification of the ECS consists of nine concurrent process objects. 

The process Summons Handler deals with the summons buttons. The four processes Individual 

Elevator Control are instances from the class Individual Elevator Control. Each process corre

sponds to one particular elevator, which is specified by an instantiation parameter containing the 
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elevator identification number. Hence, the process Individual Elevator Control ( 1) corresponds 

to the elevator with identification number 1. A process Individual Elevator Control deals with 

the destination buttons, the arrival indication lights, the floor sensors and the operator input for 

one particular elevator. The four processes Elevator Mechanism Control are instances from the 

class Elevator Mechanism Control. Each process corresponds to one particular elevator, indicated 

by the instantiation parameter containing the elevator identification number. A process Elevator 

Mechanism Control deals with the audible alarm, the overweight sensor, the doors and the motor 

for one particular elevator. In the following subsections we detail the behavior of these process 

objects and also the behavior of the process objects in the system environment. 

7 .4.2.1 Process Objects in the System Environment 

The process object Arrival Indications models the 40 arrival lights in an elevator cage. There is 

a separate process for each of the four elevators. The ECS can tum on or off an arrival light in 

an elevator cage for a particular floor by sending the message indicateFloorArrival(jf.oor; on) or 

indicateFloorArrival(jloor, off). 

The process object Floor Sensors models the 40 floor sensors in an elevator shaft. There is a 

separate process for each of the four elevators. The ECS receives an interrupt message floor

Reached(jf.oor) whenever an elevator sensor detects the arrival of an elevator cage on a particular 

floor. 

The process object Audible Alarm models the audible alarm in an elevator cage. There is a sep

arate process for each of the four elevators. The ECS can tum on or off the audible alarm for a 

particular elevator by sending the message audibleAlarm( on) or audibleAlarm( off). 

The process object Overweight Sensor models an overweight sensor. There is a separate process 

for each of the four elevators. The ECS receives an interrupt message overweight( on) whenever 

the overweight sensor detects an elevator cage getting overloaded. The ECS receives an interrupt 

message overweight( off) when the overweight sensor notices that the overweight is removed. 

The process object Elevator Motor models an elevator motor. There is a separate process for each 

of the four elevators. The ECS can send the messages stop, move Down and move Up to an elevator 

motor to stop, move down or move up the corresponding elevator cage. 

The process object Doors Control System models a doors control system. There is a separate pro

cess for each of the four elevators. The ECS can send the message openDoors or closeDoors to 

initiate the opening or closing of the elevator doors. When the doors are fully opened or closed, 

the ECS receives the messages doorsOpened or doorsClosed. 

The process object Operator models the system operator. Although there is only one system oper

ator, the operator can enable or disable each individual elevator by a separate switch. Therefore, 

we introduce a separate process Operator for each of the four elevators. The ECS can receive 

the interrupt messages disableElevator, enableElevatorNormalMode or enableElevatorMainte

nanceMode. 
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The process object Destination Buttons models the 40 destination buttons in an elevator cage. 

There is a separate process for each of the four elevators. The ECS receives the message destina

tionRequest(jloor) whenever a passenger presses the destination button for a particular floor. The 

ECS can turn on or off the light of a destination button by sending the messages indicateDestina

tion(jloor, on) or indicateDestination(jloor, off). 

The process object Summons Buttons models the 78 summons buttons. The ECS receives the in

terrupt message summonsRequest(jloor; direction) whenever a prospective passenger presses the 

summons button on a particular floor in a particular direction. The ECS can turn on or off the light 

of a summons button by sending the message indicateSummons(jloor; direction, on) or indicate-

Summons(jloor; direction, off). · 

7 .4.2.2 ECS Process Objects 

The process Individual Elevator Control models a subsystem of the ECS that deals with the desti

nation buttons, the arrival indication lights, the floor sensors and the operator input for one partic

ular elevator. The entire state information of a particular elevator is stored in the instance variables 

of the process Individual Elevator Control, as indicated in figure 7.12. 

I Iustam;e Variable I Type I Meaning 

floor 1, ... ,40 position of elevator cage in shaft 

direction up, down moving direction of elevator cage 

operationMode disabled, normLllMode, maintenanceMode elevator operating mode 

elevator State disabled, halted, moving, stopped elevator state 

elevatorSchedule none, destinationRequest, summonsRequest elevator schedule 

rescheduled true, false rescheduled flag (see section 7.2.4) 

doorsAreClosing true ,false flag set when elevator doors are closing 

doorsAreOpening true ,false flag set when elevator doors are opening 

Figure 7.12 Elevator state information 

The process Individual Elevator Control receives the message destinationRequest(jloor) when

ever a passenger presses a destination button. The process next schedules the destination request 

as described in section 7.2.3.2. The process receives an interrupt message enableElevatorNor

malMode, enableElevatorMaintenanceMode or disableElevator whenever the operator changes 

the operation mode of the elevator. The process handles the operator input as described in the 

sections 7.2.2 and 7.2.3.1. Finally, the process receives the interrupt messagejloorReached(jloor) 

whenever the elevator cage arrives at a floor. The process handles this message as described in 

section 7 .2.4. 

In the scenarios for handling the messages from the operator and the floor sensors, the process 

Individual Elevator Control must check whether there is a summons request on the current floor 

that the elevator may service. The information on pending summons requests is contained only 

in the process Summons Handler. Therefore, the process Individual Elevator Control interacts 

with the process Summons Handler by sending the message serviceSummons and receiving the 

message summonsServiced. 
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The process Elevator Mechanism Control models a subsystem of the ECS that deals with the au

dible alarm, the overweight sensor, the doors and the motor for one particular elevator. As shown 

in figure 7 .I 0, each process Elevator Mechanism Control ( id) communicates over a channel with 

the process Individual Elevator Control ( id), where id indicates the elevator identification number. 

When the process Elevator Mechanism Control receives the message moveElevatorUp, moveEl

evatorDown or stopElevator, the process performs the scenario as described in section 7.2.2 to 

control the audible alarm, the elevator doors and the elevator motor. The process receives the in

terrupt message overweight whenever an overload condition appears or disappears. The process 

returns the message elevatorMoving, elevatorParked or elevatorStopped as acknowledgement to 

the process Individual Elevator Control. 

The process Elevator Mechanism Control receives the interrupt message disable from the pro

cess Individual Elevator Control whenever the operator disables the elevator. When the interrupt 

message is received while the doors are being closed, then the doors are opened again and the el

evator is parked at the current floor with doors opened. The message elevatorParked is returned 

to the process Individual Elevator Control. However, the process may receive the disable inter

rupt message after the elevator doors have been closed and the message moveUp or moveDown 

has been sent to the elevator motor. In this case, the elevator cannot be disabled until the next 

floor is reached. Now the message elevatorMoving is returned to the process Individual Elevator 

Control. 

The process object Summons Handler models the subsystem of the ECS that deals with the 

summons buttons. The process receives the interrupt message summonsRequest(jloor, direction) 

whenever a prospective passenger presses a .summons button. The process next schedules the 

summons request as described in section 7.2.3.3. Scheduling a summons request requires eval

uating and comparing the state information of all four elevators. However, the elevator state in

formation is contained only in the processes Individual Elevator Control. Therefore, the process 

Summons Handler broadcasts the interrupt message summonsScheduleRequest to each of the four 

processes Individual Elevator Control. These processes return the elevator state information by 

sending the message elevatorlnfo. The process Summons Handler now schedules the summons 

request and sends the message summonsSchedule to each of the four processes Individual Eleva

tor Control. 

As indicated in section 7 .2.3 .I, elevator scheduling is required also whenever the operator disables 

or enables an elevator. The process Individual Elevator Control therefore sends the message el· 

evatorDisabled or elevatorHalted to the process Summons Handler, which subsequently tries to 

schedule pending summons requests. 

The behavior of the process objects could be specified in POOSL rather easily by considering the 

informal description and narrative scenarios in section 7 .2. However, the major difficulty resided 

in guaranteeing the correct system behavior when there are multiple scenarios being executed si

multaneously. The ECS specification consists of nine concurrent processes that may participate in 

multiple scenarios. For instance, the process Summons Handler, all four processes Individual El

evator Control and possibly one process Elevator Mechanism Control are involved in the scenario 

for dealing with a summons request. At the same time, a process Individual Elevator Control and 

a process Elevator Mechanism Control may be involved in a second scenario for dealing with a 
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destination request. And the process Summons Handler, one process Individual Elevator Control 

and one process Elevator Mechanism Control may be involved in a third scenario for dealing with 

an elevator arriving at a new floor. This can easily lead to deadlock situations where processes are 

circular waiting on each other. For instance, the process Summons Handler that is dealing with 

a summonsRequest, can be waiting to interact with all four processes Individual Elevator Con

trol for receiving elevator state information. At the same time, some process Individual Elevator 

Control that is dealing with adestinationRequest, can be waiting to interact with the process Sum

mons Handler for receiving information on summons requests. In an early version of the ECS 

specification, this situation actually led to a deadlock situation. 

We solved this problem by introducing a deadlock-free protocol for communication between the 

process Summons Handler and the four processes Individual Elevator Control. The communi

cation protocol is based on priorities for interrupt messages and on hand-shaking by exchanging 

the messages lockRequest, locked and unlock. Figure 7.13 and figure 7.14 provide outlines of 

the POOSL specification of the communication protocol in the processes Summons Handler and 

Individual Elevator Control. 
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SummonsHandler ( ) 

initl () () 
init2 () () 
interrupt 

sel (!lockRequest[l]J 
sh?lockRequest(id I id=l); 
lockRequest[lJ:=true 

or [!lockRequest(2)) 
sh?lockRequest(id I id=2l; 
lockRequest[2J:=true 

or [!lockRequest(3)] 
sh?lockRequest(id I id=3); 
lockRequest[3J:=true 

or [!lockRequest[4JJ 
sh?lockRequest(id I id=4); 
lockRequest[4J:=true 

les. 

init2 () () 
loop()() 
interrupt 

[!summonsRequest) 
(sb?summonsRequest(floor,direction); 
summonsRequest:=true). 

loop()() 
sel [lockRequest[l]) 

sh! locked(ll; 

sh?unlock; 
lockRequest(lJ:=false 

or [lockRequest[211 
sh! locked(2J; 

sh?unlock; 
lockRequest{2):=false 

or [lockRequest[3]] 
sh!locked(3); 

sh?unlock; 
lockRequest(3):=false 

or [lockRequest£411 
sh! locked(4); 

sh?unlock; 
lockRequest[4J:=false 

or [summonsRequest 
& !lockRequest!ll 
& !lockRequest[2J 
& !lockRequest(3l 
& !lockRequest[4J] 

sh!*summonsScheduleRequest; 

summonsRequest:=false 
les; 
loop() ( l. 
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Figure 7.13 Outline of process object 'Summons Handler' 
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IndividualElevatorControl(elevatoridl 
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Figure 7.14 Outline of process object 'Individual Elevator Control' 

189 



190 7. 

7.4.2.3 Validation and Verification 

We used the POOSL-simulator to simulate the ECS specification together with the process ob

jects in the ECS environment. We introduced hierarchy by grouping process objects and channels 

into clusters. Figure 7.15 shows the top-level of the ECS simulation model. The cluster Eleva

tor Control System contains the process objects Summons Handler, Individual Elevator Control 

and Elevator Mechanism Control. Each cluster Elevator Environment contains the process ob

jects Arrival Indications, Floor Sensors, Audible Alarm, Elevator Motor and Doors Control Sys

tem for one particular elevator. The cluster Indications contains process objects that model the 

lights of destination buttons and summons buttons. The process object Passengers & Operator 

models passengers pressing destination buttons and summons buttons, the operator enabling and 

disabling the elevators, and the overweight sensors. 

ElevatorEnvironment ElevatorEnvironment 

I 
ElevatorEnvironment 

I 
ElevatorEnvlronment 

aa al de em fs aa ai de em t aa ai de i[Jl ~ aa ai 9 em t 

aa1 ai1 dc1 em1 ~1 aa2 ai2 dc2 em2 fs2 aa3 ai3 dc3 em3 fs3 aa4 ai4 dc4 am4 s4 

... 
aa1 ai1 dc1 em1 fs1 aa2 ai2 dc2 em2 fs2 aa3 ai3 dc3 am3 fs3 aa4 ai4 dc4 am4 ts4 

ElavatorControiSystam 

obs clrt ms opt op2 op3 op4 os1 os2 os3 os4 db1 db2 db3 db4 sb 

Obs ctrl ms op1 op2 op3 op4 os1 os2 os3 os4 db1 db2 db3 sb 

in out ms op1 op2 op3 op4 os1 os2 os3 os4 db1 pdbt 

db2 pdb2 

PCOhandler Passengers&Operator db3 db3 Indications 

db4 1 db4 

sb sb 

Figure 7.15 ECS simulation model in POOSL-simulator 

The POOSL-simulator provides a graphical environment, visualizing the exchange of messages 

over channels during simulation. We used the POOSL-simulator to validate and verify the ECS 

specification in various simulation runs. In each simulation run, the process Passengers & Op

erator offers different stimuli to the Elevator Control System. We first used branch testing (see 

section 3.7.2) to verify the behavior of each individual process object. Branch testing implies 

that in each process, each branch alternative in each method is executed at least once. Next, we 

simulated individual scenarios, such as the scenario started by a passenger pressing a particular 

destination button or the scenario started by the operator enabling an elevator. Finally, we simu

lated the ECS with random behavior of the passengers, the operator and the overweight sensors 
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to verify the system behavior when there are multiple, simultaneous scenarios being executed. 

Simulation turned out to be very useful for uncovering some subtle specification errors. Further

more, simulation uncovered the deadlock situations that occurred due to interference of multiple 

scenarios. As described in the previous section, we eliminated these deadlocks by introducing a 

deadlock-free communication protocol. Our structured approach to simulation gives confidence 

that the ECS specification is correct. However, exhaustive simulation, i.e. simulation of all pos

sible combinations of scenarios, is impossible to achieve and hence simulation cannot prove the 

complete absence of faults. 

We used formal verification to mathematically prove that the communication protocol between 

the processes Summons Handler and Individual Elevator Control, as described in the previous 

section, is indeed deadlock-free. We therefore transformed the POOSL specification of these 

process objects into CCS specifications. We considered only those POOSL statements that are 

involved in the communication protocol, as outlined in figure 7.13 and 7.14. 

A POOSL specification can be transformed rather easily into an equivalent CCS specification. 

However, the interrupt behavior in POOSL has to be specified explicitly in CCS. Furthermore, 

data objects in POOSL have to be made explicit in CCS or they should be abstracted from. An 
example is shown in figure 7.16. In the CCS specification, we specified explicitly the inter

rupt behavior. We abstracted from the data object t, but we explicitly specified the data object 

intReceived, because it is used in guards and affects the control ftow.1 The behavior of the CCS 

specification in figure 7.16b is: 

So~ (AoiBo)\{ intReceivedFalse, intReceivedTrue, intReceivedSetFalse, intReceivedSetTrue} 

So = r. S1 + r. S2 + int?. So 

S1 = overflow! . So + int?. S1 

S2 = tick! . So + int?. S2 

1 We remark that a precise translation ofPOOSL specifications into CCS specifications is not as easy as depicted in 

figure 7.16. This is mainly due to the combination of guarded commands and non-deterministic selection statements. 

For instance, consider the following POOSL specification and the corresponding CCS specification: 

sel (Eo] ch?fi'I{J 

or [Ed ch?m, 

les. 

P = EoTrue? . ch?mo . NIL 

+ E1 True? . ch?m, . NIL 
+ EoFalseAndE, False?. P 

In the POOSL specification, the actual choice depends on the expressions Eo and E1 and also on whether the pro

cesses in the environment are willing to communicate by ch!fi'I{J or ch!m1. In the CCS specification, an a priori choice 

is made by evaluating the expressions Eo and E1 only. Subsequently, a deadlock may occur if the processes in the 

environment are unwilling to communicate the message that is specified in the selected branch. 

A more precise definition for translating POOSL intoCCS should be based on the formal semantics of POOSL. How

ever, this is beyond the scope of the research described in this thesis. 

Our only purpose of translating POOSL into CCS, is to check for deadlocks between communicating processes. Our 

translation from POOSL into CCS results in CCS specifications that are more non-deterministic than the correspond

ing POOSL specifications. Consequently, if a CCS specification is deadlock-free, then the corresponding POOSL 

specification is deadlock-free as well. However, the reverse may not be true in the case of false-negatives. Fortu

nately, the examples in this section do not suffer from this problem. 



192 7. 

a) POOSL Specification b) CCS Specification 

(1) init() () 
{2) t:,O; 

(AoiBo)\( illtRecelvedFalse, lntRecelvedTrue, 

lntRecelvedSetFalse, lntReceivedSetTrue l 
{3) intReceived:=false; 
(4) loop()() 
(5) interrupt 
(6) (ch?int; 
(7) intReceived:=true). 

{8) loop()() 
{9) sel [intReceivedJ 

{10) t:=O; 
{11) intReceived:=false 
(12) or [!intReceivedl 
(13) t:=t+l; 
{14) if {t>60) 
( 15) then t: =0; 
(16) ch!overflow 
(17) else ch!tick 
(18) fi 
(19) les; 
(20) loop()(). 

Ao inlReceivedTrue? . A1 

+ in!Rel:eivedFalse? . A2 

+ int? . As 

A 1 intReceivedSeiFalse! . Ao 
+ int? . A6 

A2 : T • A3 
+ T .At 
+ ill!? . A1 

A3 = overflow! .AQ 
+ int? • As 

A4 =tick! . Ao 
+ int? . A9 

As ~ intReceivedSetTrue! . Ao 

A, = intReceivedSetTrue! . A2 

As = intReceivedSetTrue! A3 

Bo = intReceivedFalse! . Bo 
+ intReceivedSeiPalse? . Bo 
+ intReceivedSetTrue? . 8 1 

Bt "' intReceivedTrue! . 81 

+ intReceivedSetflalse? . Bo 
+ intReceivedSetTrue? . B1 

(9) [intReceived] 
(12) [! intReceived] 

{6) ch?int 

{11) intReceived:=false 
{6) ch?int 

(14) if (t>60) then 
(l?) else 

(6) ch?int 

(16) ch! overflow 
(6) ch?int 

{17) ch!tick 
{6) ch?int 

(7) intReceived:=true 

(7) intReceived:=true 

(7) intReceived:=true 

(7) intR~ceived:=true 

{7) intReceived:=true 

intReceived = false 

intReceived = true 

Figure 7.16 Transforming POOSL specification into CCS specification 

In a similar way, we transformed the POOSL specifications of the processes Summons Handler 

and Individual Elevator Control, as shown in figure 7.13 and 7.14, into CCS specifications. We 

used a software tool [vRV94] to calculate the parallel composition of the CCS agent Summons 

Handler and four CCS agents Individual Elevator Control. We proved that the resulting mono

lithic behavior is observational equivalent to: 

So = sb?summonsRequest(jloor,direction). So 

+ fs/ ?floorReached(jloor). So+ ... + fs4?floorReached(jloor). So 

+ opl ?disableElevator. So+ ... + op4?disableElevator. So 

+ opl ?enableElevatorNonnalMode. So+ ... + op4?enableElevatorNonnalMode. So 

+ op/ ?enableElevatorMaintenanceMode. So+ ... + op4?enableElevatorMaintenanceMode. So 

+ dbl ?destinationRequest(jloor). So+ ... + db4?destinationRequest(floor). So 

The agent So indicates that the system is continuously ready to receive messages from the sum

mons buttons, the floor sensors, the operator and the destination buttons, which indeed corre

sponds to the wanted behavior. Furthermore, the agent So clearly is deadlock-free. 



7.4 Specification and Design Using SHEIPOOSL 193 

7 .4.2.4 Design For Test & Debug 

We applied our design for test & debug approach to the POOSL specification of the ECS. First, 

we used scenario-based PCO insertion as described in section 5.5, to determine appropriate places 

for inserting PCOs. Next, we actually incorporated PCOs at the identified places in the POOSL 

specification. We applied the transfonnation functions as described in section 5.6 to preserve the 

correctness of the specification. Finally, we used the POOSL-simulator to simulate the system 

specification including PCOs. We will elaborate on these three steps in the following. 

Scenario-Based Analysis for PCO Insertion 
Scenario-based analysis addresses two basic questions for each scenario: what is the essential 

infonnation in the system for the particular scenario, and how well can this information be ac

cessed from the system environment? We considered these two questions for each scenario in the 

POOSL specification of the ECS. We first identified the essential infonnation for each scenario. 

Next, we analyzed the accessibility of the relevant state infonnation contained in the ECS process 

objects and the accessibility of the relevant communication interfaces between the ECS process 

objects. The results of this analysis are outlined below. 

The process Summons Handler comprises instance variables that store pending summons requests 

and the summons requests' priority counter. The instance variables for the pending summons re

quests can be controlled directly in the ECS environment by pressing summons buttons. Further

more, they can also be observed directly because the summons button light of a pending summons 

request is illumined. The priority counter is not directly visible in the ECS environment. How

ever, we did not consider the priority counter as essential state infonnation. 

Each process Individual Elevator Control comprises instance variables that store the state infor

mation of a particular elevator, as listed in figure 7 .12. The information contained in the instance 

variables floor, direction, operationMode, doorsAreClosing and doorsAreOpening is directly con

trollable and observable in the ECS environment. On the other hand, the information contained 

in the instance variables elevatorState, elevatorSchedule and rescheduled is not directly visible 

in the ECS environment. These variables contain infonnation that is essential to explain the be

havior of the ECS, and hence inserting a PCO to access these variables is desirable. A process 

Individual Elevator Control also comprises instance variables that store pending destination re

quests. These instance variables can be controlled directly in the ECS environment by pressing 

destination buttons. Furthermore, they can be observed directly because the destination button 

lights of pending destination requests are illumined. 

Each process Elevator Mechanism Control comprises instance variables that hold state infonna

tion for the elevator doors, the elevator motor and the overweight sensor. However, this infor

mation is directly controllable and observable in the ECS environment and hence a PCO is not 

required. 

The communication interfaces between the ECS process objects consist of the channels on which 

messages are exchanged. The channels emc1 , emc2 , emc3 and emc4 between the processes Indi

vidual Elevator Control and the processes Elevator Mechanism Control are used to communicate 

commands and acknowledgement signals related to the elevator doors and the elevator motors. 
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Every message sent by a process Individual Elevator Control on a channel emc directly results in 

the process Elevator Mechanism Control sending a reply message and sending messages to the 

Elevator Motor, the Doors Control System and the Audible Alarm. Hence, the messages on the 

channel emc are indirectly visible in the system environment and a PCO is not required. 

The channel sh between the process Summons Handler and the processes Individual Elevator 

Control is used to communicate messages related to the scheduling of elevators. This informa

tion is not directly visible in the ECS environment. The communication protocol on the channel is 

the most complex part of the ECS. An external observer cannot always tell why an elevator starts 

moving, how an elevator is scheduled, or whether an elevator may service intermediate summons 

requests or destination requests. Hence, a PCO in the channel sh is desirable. 

In summary, our scenario-based analysis identified the channel sh and the instance variables el

evatorState, elevatorSchedule and rescheduled of the processes Individual Elevator Control as 

appropriate places for PCO insertion. 

Insertion of PCOs 

We incorporated the PCOs next into the POOSL specification. The modified instance structure 

diagram is shown in figure 7.17. The process object PCO Controller in the ECS environment 

controls the operation mode of the PCOs, receives messages from the PCOs' observation outputs, 

and sends messages to the PCOs' control inputs. 

--
""' em4 dc3 em3 

dc.2 om2 
de1 m1 

Figure 7.17 ECS instance structure diagram with PCOs 
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The insertion of PCOs implies a modification of the POOSL specification. Initially, we tried 

to prove that the original specification is equivalent to the modified specification. We therefore 

transformed both POOSL specifications into CCS specifications, and we tried to prove that both 

specifications are observational equivalent using a CCS software tool [vRV94]. However, due to 

state space explosion we could only prove observation equivalence for a system with one elevator, 

i.e. a system with a process Summons Handler, one process Individual Elevator Control and one 

process Elevator Mechanism Control. Observation equivalence could not be proven for systems 

with two or more elevators, because the requirements on memory space and computing time grew 

too large. 

This problem could be overcome by applying the correctness-preserving transformation functions 

for PCO insertion, as discussed in section 5.6. The specifications before and after applying the 

transformation functions are observational equivalent by construction, and hence there is no need 

for proving observation equivalence afterwards. 

An example of applying the transformation functions is as follows. Consider the system in 

figure 7.18 which consists of two POOSL process objects, A and B, that are connected by the 

channel ch over which the messages p and q are exchanged. Process object A performs the behav

ior( ... ch!p; ... ch?q; .. . ) and process object B performs the behavior( ... ch?p; ... ch!q; ... ). 

These behaviors can be expressed by the following CCS agents: 

Ao= p.A, 
A, =q.Ao 

Bo p.B, 

Bt q.Bo 

Next, we insert a PCO in channel ch to control and observe the messages p and q, as shown in 

figure 7.19. We obtain the modified agents A0 and B0 by applying the transformation functions: 

AO = 'ft1(1]fi(qq2 (Zq(Ao)))) and B0 = Jif,('I{j(qp2 (Zp(Bo)))). The resulting agents are: 

A0 = p.A~ 

Ai::::: Pt·A2 
A2 = q.A) 

A)= q2.Ao 

BO = p.BJ 
Bi Pz·B2 
B?_ =q.B) 
B) =tit·BO 

The PCO behavior is expressed by the agents PCOp = p1.p2.PCOp and PCOq = q 1.q2.PCoq. 

The behavior of the PCO in channel chis defined as PC00 ~ (PCOp IPCOq): 

PC00 = p1.PC01 +q1.PCQz 

PCO, = ftz.PCOo + q,.PC03 

PCOz = p,.PC03 +qz.PCOo 

PC03 = j)z.PC02 +q2.PCO, 

The corresponding POOSL process objects A' and B' perform the behavior 

( ... cho !p; ch, !p,; ... cho?q; ch, ?q2; .. . ) and( ... cho?p; ch2 ?pz; ... cho!q; chz!q,; .. . ). 

The messages p and q on channel cho in figure 7.19 can be considered as synchronization mes

sages, while the messages p 1 and P2 correspond to the original message pin figure 7.18 and sim

ilarly the messages q1 and q2 correspond to the original message q. 
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In a similar way we applied the transformation functions to the process objects in the ECS 

specification to insert a PCO in the channel sh. 

process 
A 

process 
A' 

ch process 
B 

Figure 7.18 Example instance structure and message flow diagram 

cho 

process 
B' 

process 
P1 A' 

q2 

p 

q 

PCOp 
P2 

PCOq 
q1 

process 
B' 

Figure 7.19 Example instance structure and message flow diagram with PCO 

Simulating the ECS Specification with PCOs 
Finally, we simulated the modified ECS specification with the PCOs in the POOSL-simulator as 

shown in figure 7 .IS. The process PCO Handler in the ECS environment controls the PCO opera

tion modes, it receives the results from the PCO observation outputs and it also sends messages to 

the PCO control inputs. As expected, the simulated system behavior is equivalent to the initially 

simulated system behavior without the PCOs. 

Obviously, the PCOs are of no direct use in the simulator, because the simulator environment 

itself provides powerful facilities to view the internal operation of process objects and the mes

sages on communication channels. The PCOs are intended to provide similar facilities in the hard

ware/software implementation of the system. 

We simulated the ECS specification with the PCOs in the POOSL-simulator to demonstrate the 

use and the benefits of PCOs. When the PCOs are switched into observation mode, the moni

tored messages on channel sh and the monitored state information from the processes Individual 

Elevator Control provide detailed information on the internal behavior of the ECS. This infor

mation, together with the messages on the external inputs and outputs in the ECS environment, 

provides sufficient information to explain and verify the internal system behavior. For instance, 

we simulated an early version of the ECS specification that contained a deadlock, as described in 

section 7.4.2.2. It was nearly impossible to identify the cause ofthe deadlock by just analyzing the 

messages in the ECS environment. However, by additionally analyzing the monitored data from 

the PCOs, we could quickly identify that the deadlock was due to an incorrect communication 

protocol on channel sh. 



7.5 197 

At the beginning of each simulation run, we switched the PCOs into test mode. This allowed us 

to quickly impose a certain state by writing appropriate values into the instance variables of the 

processes Individual Elevator Control. This considerably shortened the set-up time required for 

bringing the ECS in a particular initial state. Subsequently, we switched the PCOs into observa

tion mode and monitored the internal behavior as described before. 

7.5 Summary 

In this chapter we discussed the specification and implementation of an elevator control system 

(ECS) and we applied our design for test & debug approach. We first used the Ward & Mellor 

analysis method to create a system specification and we subsequently implemented the ECS in 

software. We applied a simplified version of our design for test & debug approach, which turned 

out to be invaluable for debugging some complicated, timing-related errors in the software im

plementation caused by race conditions. 

Next, we used the SHE method to create a formal specification in the POOSL language. We 

used simulation and formal verification to validate and verify the correctness of the specification. 

We applied our design for test & debug approach, using scenario-based analysis and correctness

preserving transformation functions for PCO insertion. We demonstrated the use of PCOs for 

testing and debugging by simulating the modified system specification including PCOs. 
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Chapter 8 

Conclusions 

1. Introduction I 

,__2_._H•a•rd•w-ar•e•/S•o•ftw-•are-C•o•·•D•e•s•ig•n_... 13. Faults in Hardware/Software Systems ~ 

4. Design For Test & Debug in Hardware/Software Systems 

5. Design For Test & Debug 
during Specification 

7. Experiments 

6. Design For Test & Debug 
during Implementation 

In this chapter we summarize the conclusions of this thesis and we recommend directions for 

future research. 
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8.1 Conclusions 

We developed a generic method towards design for test & debug to deal with the problems of 

system-level testing and debugging in hardware/software systems. The main conclusions are: 

• Our method is fully integrated into the system design process and considers design for test 

& debug in the behavioral specification, the architecture and the hardware/software imple

mentation of a system. 

• The major strength of our approach is that we consider design for test & debug already dur

ing system specification. We identify communication interfaces and process state informa

tion in the functional behavior that are difficult to control and/or to observe in the system 

environment Our method allows the insertion of Points of Control and Observation (PCOs) 

while preserving the correctness of the system behavior. The PCOs provide detailed visi

bility into the internal system behavior during system-level testing and debugging. 

• Our method towards design for test & debug provides a genuine multi-disciplinary, system

level approach that is capable of dealing with the vast complexity of hardware/software sys

tems. 

8.1.1 Motivation 

We founded our method towards design for test & debug on analyses of co-design methods, hard

ware/software architectures, and a characterization of faults in hardware/software systems. The 

results of these analyses are: 

• We defined a hardware/software co-design flow consisting of system requirements capture, 

system specification, architecture exploration, architecture refinement, synthesis, and hard

ware/software integration. 

• We concluded that the current co-design methods strongly emphasize verification, using 

formal verification, (co-)simulation and emulation. However, testing is still an essential 

necessity to verify the correctness of a hardware/software implementation. Unfortunately, 

the current co-design methods provide no support to improve the testing and debugging of 

hardware/software systems and they do not address design for test & debug. 

• We identified the limited visibility into the internal system operation as the basic problem 

of system-level testing and debugging. Access through the external interfaces and auxiliary 

instruments such as oscilloscopes, logic analyzers and in-circuit emulators, are inadequate 

to provide detailed controllability and observability of the internal system operation. 

• We defined a generic architectural model for hardware/software systems, comprising ap

plication software, system software, hardware nucleus, application-specific hardware and 

various communication interfaces. We concluded that integration testing and system testing 

should primarily focus on verifying these communication interfaces. 

• We showed that faults in communication interfaces of hardware/software systems are typi

cally related to concurrency. We classified these faults into faulty communication and syn

chronization protocols, faulty mutual exclusive access to shared data or shared resources, 

faulty process scheduling, deadlocks, race conditions, and faulty interrupt handling. 
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• We concluded that exhaustive testing for interfacing faults and system-level faults is unfea

sible due to the large number of possible sequences of events, the interleaved execution of 

processes, timing dependencies and non-determinism. Furthermore, these properties cause 

that faults typically appear as temporary faults at run-time and they usually cannot be repro

. duced during debugging. In addition, we concluded that there are no effective fault models 

yet for modeling these interfacing faults. 

8.1.2 Design For Test & Debug 

We based our method towards design for test & debug in hardware/software systems upon three 

basic principles: 

• Design for test & debug is required to improve integration testing, system testing and de

bugging of hardware/software systems. 

• Design for test & debug should provide visibility into communication interfaces and into 

state information of software processes and hardware components. 

• Design for test & debug should be an elementary part of hardware/software co-design, and 

should be considered in all steps of the design flow: system specification, architecture ex

ploration, architecture refinement, and synthesis. 

The key element of our method is the insertion of Points of Control and Observation {PCOs) to 

access communication interfaces and process state information. We make a clear distinction be

tween activities related to system specification and activities related to system implementation. 

We first insert PCOs in the system specification and next we incorporate these PCOs into the 

hardware/software system architecture during the subsequent stages of the design flow. 

Specification of PCOs 
During system specification, we insert a balanced number of PCOs to provide observability and 

controllability of the internal system behavior. We concentrate on two key questions: where 

should PCOs be inserted in the system specification, and what are the effects of PCO insertion 

on the system behavior. 

• Guidelines for PCO insertion 

We propose scenario-based testability analysis to guide PCO insertion. Scenario-based 

testability analysis first identifies for each scenario the essential communication channels 

and process state information in a system specification. We showed that scenario-based 

testability analysis traverses a relevant subset of paths through a system specification in the 

POOSL language, including loops, tail recursion and interrupts. 

Scenario-based testability analysis next examines how well the relevant communication 

channels and the relevant process state information can be observed and controlled in the 

external system environment. A PCO is inserted if improved visibility is required. 

We examined related approaches for PCO insertion in a system specification, considering 

PCOs in the protocol stacks of communication systems, testability analysis in VLSI cir

cuits, and system-level testability analysis techniques. We concluded that these approaches 
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are all relevant in their own application domain, however none of them is truly applicable 

to guide PCO insertion in the system specification of hardware/software systems. 

• Effects of PCO insertion 

Inserting PCOs implies modifying the system specification. However, the interference of 

PCOs on the system behavior may cause incorrect behavior. We provided a formal discus

sion on the effects of PCO insertion using CCS process algebra. We showed that the system 

behavior including PCOs is not necessarily observational equivalent to the system behavior 

before PCO insertion. However, we proved that a PCO can be inserted in a communication 

channel while preserving observation equivalence. 

We provided a set of transformation functions that should be applied to those processes 

that communicate over a channel in which a PCO is to be inserted. We gave a mathemat

ical proof that the modified system behavior, obtained from applying the transformation 

functions and inserting PCOs, is observational equivalent to the original system behavior. 

Hence, we proved that we are able of inserting PCOs in a system specification in such a 

way that- by construction - the interference of PCOs does not induce incorrect behavior. 

The system specification provides a system-level view on the functional behavior, consisting of 

concurrent, communicating processes. The system specification is most suitable to identify those 

communication interfaces and process state information that should be equipped with PCOs. The 

PCOs are incorporated next into the hardware/software architecture. Our approach provides that 

the effects of PCOs on the system architecture can be predicted in advance and appropriate mea

sures can be taken to avoid intolerable side effects such as performance degradation. PCO inser

tion in the system specification is necessary but not sufficient to obtain full controllability and 

observability of the internal operation of a hardware/software system. During architecture explo

ration and architecture refinement, additional PCOs may be inserted in the system software and 

the application-specific hardware to access implementation-dependent information, such as the 

interleaved execution of processes and the operation of the system software and control logic. 

Implementation of PCOs 
The PCOs in the system specification may be realized by using test & measurement equipment, 

such as a logic analyzer or an in-circuit emulator. However, test & measurement equipment of

ten cannot offer the required controllability and observability and hence PCOs have to be imple

mented in hardware and/or software. Implementing PCOs can be performed either by dedicated 

hardware/software or by using the current DFf and DFD techniques in hardware/software. Us

ing dedicated hardware/software implies overhead costs, but this approach is transparent and al

lows to implement PCOs exactly as they are specified. Using current DFf and DFD techniques 

may reduce the overhead costs. This requires that already during architecture exploration require

ments are stated on the testability and debuggability of off-the-shelf hardware components, the 

application-specific hardware components, and software components. In traditional design meth

ods these decisions are not made until the synthesis stage. 

We argued that there are generally two approaches towards testing and debugging: breakpoint

based and monitoring-based. Both approaches rely on test & debug facilities in the hardware/

software architecture of the system. The concept of breakpoint is not equivalent to the concept 
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of PCO. However, breakpoints can be used to specify on which conditions a PCO should be acti

vated. Monitoring-based test & debug implies the use ofPOs and off-line analysis of the observed 

data. 

Hardware DFf facilities on the IC level (e.g. test points, scan cells, boundary-scan cells and test 

interface elements), and hardware DFD facilities (e.g. scandumps, cachedumps and execution 

tracing), can reasonably be regarded as low-level hardware implementations of PCOs. The test 

infrastructure of IEEE 1149.1 on the PCB level and IEEE 1149.5 on the system level provides 

test buses, test interfaces and test controllers that can be used to access these built-in facilities. 

In general, hardware DFf and DFD facilities provide very detailed access to the system's inter

nals, however they are somewhat restricted when debugging dynamic, real.:.time system behavior. 

Improved control and observation into the internal system operation can be obtained by using ded

icated software monitors, hardware monitors or hybrid monitors. These monitors are particularly 

useful for distributed real-time systems. The monitors can be considered as implementing POs 

and the infrastructure for accessing the POs from the system environment. 

Experiments 

We performed several experiments by applying our design for test & debug approach in the 

specification and implementation of an elevator control system. We first used the Ward & Mellor 

method for structured analysis and we implemented the elevator control system in software. We 

inserted POs in the system specification and subsequently in the software implementation. The 

POs turned out to be very useful for debugging some complicated errors in the software imple

mentation caused by race conditions. 

Next, we used the SHE method to create a formal specification in the POOSL language. We 

applied our design for test & debug approach, using scenario-based analysis and correctness

preserving transformation functions for PCO insertion. We demonstrated the use of PCOs for 

testing and debugging by simulating the system specification including PCOs. 

8.2 Recommendations for Future Research 

There are many issues in our method towards design for test & debug that need further research: 

• The theory in this thesis has been applied successfully to an elevator control system. How

ever, it is required to gain more experience by applying our method into practice on indus

trial hardware/software systems. This should provide more insight into the costs and the 

benefits of PCO insertion. 

• We outlined the current DFf and DFD techniques in hardware/software and we argued that 

they can be used to implement PCOs and the infrastructure for accessing PCOs. How

ever, further research and practical experience is required on the mapping of PCOs on hard

ware/software DFf and DFD facilities. 

• This thesis concentrated on design for test & debug, while paying less attention to the prob

lem of test-case generation. We discussed the use of scenarios as system-level test cases. 



204 8. Conclusions 

Further research is required on test-case generation for system-level testing and on coverage 

metrics. In particular, this requires research on system-level fault models. 

An interesting option is to explore the use of automatic test-case generation tools, for in

stance using the FSM-based techniques for protocol conformance testing. Related to this is 

the question whether test-case generation can be facilitated by taking into account the PCOs 

for additional observation and control. At the moment, test-case generation techniques re

gard the system as a black box and hence control and observation is only considered at the 

primary inputs and outputs. 

• During testing and debugging, large amounts of data have to be analyzed. The evaluation of 

test responses can be automated to a large extent by comparing the observed responses with 

the expected responses. However, debugging requires a detailed analysis of the test results, 

which is in general a very complex task. This can be facilitated by visualizing the test stim

uli and test responses with appropriate representation techniques, e.g. Message Sequence 

Charts. 

• We defined transformation functions for correctness-preserving PCO insertion using pro

cess algebra. An interesting research question is to define similar transformation functions 

for other formalisms and languages. 

We showed that our transformation functions can be applied reasonably to POOSL specif

ications, because the basic communication mechanism in POOSL is the one-way, syn

chronous message passing mechanism originating from CCS. We indicated that a more pre

cise definition of transformation functions in POOSL should be based on the formal seman

tics of POOSL. 

In languages that lack formal semantics (e.g. VHDL) it may be rather difficult to formally 

define correctness-preserving transformation functions for PCO insertion. 

• We concluded that exhaustive path analysis is unfeasible, which largely impedes testability 

analysis. We provided an informal discussion on how scenario-based testability analysis 

may circumvent this problem. However, a more precise and preferably formal theory on 

path analysis should provide more insight into this problem field. 



Appendix A 

Formal Proof for PCO Insertion 

In this appendix we give a fonnal proof for inserting a PCO in a communication channel while 

preserving the externally observable system behavior. The proof is based on the process algebra 

CCS [Mil80, Mi189]. This appendix provides: 

• Fonnal definitions of transformation functions that are applied to agents that communicate 

over a channel in which a PCO is inserted. 

• A fonnal proof that the modified system, in which a PCO has been inserted and in which 

transfonnation functions have been applied to the relevant agents, is observational equiva

lent to the original system when the PCO is operating in transparent mode or in observation 

mode. 

A.l Definitions 

We extend the process algebra CCS, as defined in [Mi189], with two new symbols: () and S· The 

semantics are defined by e.P.! P and s-.P ..£,. P for PeP, where Pis the new set of agents. 

We further extend the definition of observation equivalence in such a way that the symbols () and 

s are interpreted as silent actions. 

Definition l 

(1) We define the parameterized set of agents !l{(abc) ~Pas follows: 

(Note that !l{(abc) is a short notation for !l{(a, b, c).) 

(i) 0 E !l{(abc) 

(ii) if P E !1{ (abc) then a.P E !1{ (abc) if a ;f. a, ti, b, b 
(iii) if P, Q E !l{(abc) then P + Q E !l{(abc) 

(iv) if P, Q E !l{(abc) then PIQ E !l{(abc) 

(v) if P E !l{(abc) then P[f] E !l{(abc) if f(l) b iff l = b I 
f(l) a iff l = a 

f(l) = c iff l = c 

(vi) if P E !l{(abc) then P\L E !l{(abc) if a,b, c if: L 

(vii) if P E !l{(abc) then A e !l{(abc) if A~ P 
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In this definition: A is an agent constant, f is a relabelling function, and L ~ £. An agent 
P E '.!{(abc) cannot perfonn the actions a, ii, b, b. 

(2) We define the parameterized set of agents .9!o(a, b, c) s;; P, or shortly .9lo(abc), as follows: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

0 E .9lo(abc) 

{ 

O.P E .91o(abc) if P ~ 

if P E .91o(abc) then a.P E .9lo(abc) if P ~ and a =Fa, ii, b, b, c 
c.O.P E J'le(abc) if P ~ 

if P,QEJ'Ie(abc) then P+QEJ'Ie(abc) if p,! and Q~ 
if P, Q E J'le(abc) then PIQ E J'le(abc) 

{ 

/(l) =a iff l =a 

if P E J'le(abc) th. en P[f] E .91o(abc) if f(l) = b iff l = b 

f(l) = c iff l = c 

if P E .9lo(abc) then P\L E .91o(abc) if a, b, c ¢ L 

if P E .91o(abc) then A E .91o(abc) if A~ P and P.! 

An agent P E J'le(abc) cannot perform the actions a, ii, b, b. Furthennore, whenever agent 
P performs an action c, subsequently the agent will eventually perfonn the action e. 

(3) We define the parameterized set of agents ~(a, b, c) s;; P, or shortly ~(abc), as follows: 

(i) 0 E ~(abc) 

{ 

,.P E ~(abc) if P .1 
(ii) if P E ~(abc) then a.P E ~(abc) if P .1 and a =Fa, ii, b, b, c 

c.,.P E ~(abc) if P .1 
(iii) if P, Q E ~(abc) then P + Q E ~(abc) if P .1 and Q 
(iv) if P, Q E 'B~(abc) then PIQ E ~(abc) 

{ 

f(l) =a iff l =a 

(v) if P E ~(ab. c) then P[f] E ~(abc) if f(l) = b iff l = b 

f(l) = c iff l = t 
(vi) if P E ~(abc) then P\L E ~(abc) if a,b, c ¢ L 

(vii) if P E ~(abc) then A E ~(abc) if A~ P and P .1 

An agent P E ~(abc) cannot perfonn the actions a, ii, b, b. Furthermore, whenever agent 

P performs an action c, subsequently the agent will eventually perfonn the action '· 

0 
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Definition 2 

(1) We define the parameterized function Tc: !!{(abc) ---+ .9lo(abc) as follows: 

(i) %(0) = 0 

( 1
•
1
.) rr'( P) { a.Tc(P) if a =I= c 

.r..c a. 
5 c.fJ. fli(P) if a = c 

(iii) fli(P + Q) = fli(P) + fli(Q) 

(iv) fli(PIQ) = fli(P) I fli(Q) 

(v) fli(P[f]) = tzi(P)[f] 

(vi) fli(P\L) = fli(P)\L 

(vii) fli(A) = B where B ~ fli(P) if A~ P 
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The function application fli(P) returns an agent that is syntactically identical to agent P 

except that every occurrence of action c in Pis replaced by c.fJ in fli(P). 

(2) We define the parameterized function Zc: !!{(abc) ---+ 'Bt(abc) as follows: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

Zc(O) = 0 

Zc(a.P) 5 { a.Zc(P) ~fa =I= c 
c.~.Zc(P) tf a= c 

Zc(P+ Q) = Zc(P) +Zc(Q) 

Zc(PIQ) = Zc(P) I Zc(Q) 

Zc(P[f]) = Zc(P)[f] 

Zc(P\L) = Zc(P)\L 
def . def 

Zc(A) = B where B = Zc(P) tf A = P 

The function application Zc(P) returns an agent that is syntactically identical to agent P 

except that every occurrence of action c in Pis replaced by c.~ in Zc(P). 

0 

Definition 3 

(1) We define the class of agents .91,.(abc) ~ Ylo(abc), or shortly .91,, for n EN, as follows: 

(i) .% = { P E Ylo(abc) I P ~ } 
/) 

(ii) .91,+1 = { P E Ylo(abc) I P---+ P' for some P' E .91,} 

Agents in the set .91, can perform a sequence of n successive (} actions. 

(2) We define the class of agents ~(abc) ~ 'Bt(abc), or shortly~. for n EN, as follows: 

(i) ~ = { P E 'Bt(abc) I Pit. } 
~ 

(ii) ~+I = { P E 'Bt(abc) I P---+ P' for some P' E ~} 

Agents in the set ~ can perform a sequence of n successive ~ actions. 

0 
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Definition 4 

(1) We define the parameterized function 1ii : ~(abc) ~ Pas follows: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

J'a(O) = 0 

tt( P) = { a..Ja(P) if a. # 8 
Jii a.. - ii.Jii(P) if a. = 9 

Jii(P + Q) = Ja(P) + Jii(Q) 

J'a(PIQ) J'a(P) IJ'a(Q) 

Jii(P[f]) = Jii(P)[f] 

Jii(P\L) = Jii(P)\L 
def • def 

Jii(A) = B where B = J'a(P) tf A = P 

The function application Ja(P) returns an agent that is syntactically identical to agent P 

except that every occurrence of 9 in Pis replaced by ii in Jii(P). 

(2) We define the parameterized function §b: ~(abc) ~ Pas follows: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

§i,(O) = 0 

§i,( P) = { a.§b(P) if a# { 
a. - b.§b(P) if a= { 

§b(P+ Q) = §i,(P) + §b(Q) 

§i,(PIQ) = §i,(P) I §i,(Q) 

§i,(P[f]) = §i,(P)(f] 

§b(P\L) = §i,(P)\L 
def • def 

§i,(A) = B where B = §i,(P) tf A = P 

The function application §i,(P) returns an agent that is syntactically identical to agent P 

except that every occurrence of {in Pis replaced by bin §i,(P). 

Definition 5 

We define a new equivalence relation"" based on the following notion of (9, {)-bisimulation. 

S 5; P x P is a (9, {)-bisimulation if the following holds for each (P, Q) e 5: 

(i) 

(ii) 

(iii) 

(iv) 

if P ~ P' and Q ~ then (P', Q) e S 

if P !4 and Q ~ Q' then (P, Q') E S 
e.{ e.~ 

if P ~ P' and Q ~ Q' then (P', Q') e S 

'f p e.~ d Q e.~ h f II A I if P ~ P' then Q ~ Q' and (P', Q') e S 
1 .- an .- t en, or a a E ct a a 

if Q ~ Q' then P ~ P' and (P', Q') e S 

Two agents P and Q are (9, {)-equivalent, written as P-Q, if (P, Q) e S for some 

(9, S)-bisimulation S. 

0 
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Here Act is the set of actions defined by Milner in [Mil89], and hence 9, ~ ~ Act. The notation 

P :!:i P' indicates that either P ..! P' or P ~ P', while the notation P ~ implies that P can 

neither perform action 9 nor action ~· 

It is not difficult to prove that"" satisfies the following proposition. Let P1 ""P2, then 

(1) a.PJ ,.,.. a.Pz 

(2) PdQ"" PziQ 

(3) P, \L"" Pz\L 

(4) P, [/]- P2lf1 

It is not necessarily true that Pt + Q"" Pz + Q. 

In fact, (9, ~)-equivalence""' is stronger than observation equivalence~. but it is weaker than 

strong equivalence"'. We introduce (9, ~)-equivalence to prove the validity of our proposition 1. 

A.2 Lemmas 

Lemma! 

(1) (i) 

(ii) 

(iii) 

(2) (i) 

(ii) 

(iii) 

If P E J4,(abc) and P ~ P' for a# c, 9, then P' E J4,(abc) 
c 

If P E J4,(abc) and P ~ P', then P' E J4..+t(abc) 
(J 

If P E J4..+t(abc) and P ~ P', then P' E J4,(abc) and P-P' 

If P E 'B,.(abc) and P ~ P' for a# c, ~. then P' E 'B,.(abc) 

If P E 'B,.(abc) and P ~ P', then P' E 'B,.+ 1(abc) 

If P E 'B,.+t(abc) and P ~ P', then P' E 'B,.(abc) and P""P' 

Proof of lemma 1 

(1) Let P E J4,(abc) and P ~ P'. We will refer to J4,(abc) by the short notation J4,. 

The proof is by transition induction on the inference of P ~ P'. 

(a) 

(b) 

Let P ~ P' because P = a. P'. 

If a# c, 9 then by definition P E Jlo, P' and P' E 5fo. 

If a c then by definition P = c .9. P", P' 9. P", and P" ~. 
Hence, P E 5lo and P' E 5'l1 . 

If a= 9 then by definition P E 5'l1 and P' E 5fo. Clearly, P-P'. 
a a 

Let P ~ P' because P = Q + R and Q ~ P'. 

Since Q and R ~.it follows that a# 9 and P E 5fo. 
If a # i3 then Q E 5lo and by induction P' E 5fo. 
If a = i3 then Q E 5lo and by induction P' E 5'l1• 

Let P ~ P' because P = Q+ R and R P'. 

D 
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(c) 

(d) 

(e) 

(f) 

Analogous, symmetric case. 

Let P ~ P' and P = QIR. 

A. Formal Proof for PCO Insertion 

Since P E .91,, it follows that P..!. Pn-1 ..!. Pn-2 ..!. · · · ..!. Po~
Then, for some Qk-t. ... , Qo and Rt-1, ... , Ro. with n = k + l, 

6 6 6 6 6 6 (J 

P = QIR-+ Qk-tiR-+ · · ·-+ QoiR-+ QoiRt-1-+ ···-+Po= QoiRo ......,., 

or any other interleaved sequence of QdRi ..!. Q;-tiRi or Q;IRi ..!. Q;IRi-1. 
I) (J (J (J (J 

Hence, Q-+ Qk-1-+ Qk-2-+ · · ·-+ Qo......,. and Q E J\, 
(J 6 • (J . (J 

and R-+ R,_, -+ Rt-2 -+ · · ·-+ Ro......,. and R E ~. 

Let P ~ P' because P = QIR, Q Q' and P' = Q'IR. 

If a :f. c, () then by induction Q' E j\, and it is easy to see that P' = Q'IR E .91,. 

If a c then by induction Q' E J\+1, and it is easy to see that P' = Q'IR E .91,+1. 

If a=() then by induction Q' E ~- 1 and Q-Q'. It is easy to see that 

P' = Q'IR E .91..-1 and P-P'. 

Let P ~ P' because P = QIR, R ~ R' and P' = QIR'. 

Analogous, symmetric case. 

Let P ~ P' because P = Q\L, Q ~ Q' and P' = Q'\L. 

If a =I= c, () then by induction Q' E .91,. It is easy to see that P' = Q'\L E .91,. 

If a= c then by induction Q' E .91..+1· It is easy to see that P' = Q'\L E .91..+ 1• 

If a = () then by induction Q' E .9J,_1 and Q""" Q'. It is easy to see that 

P' = Q'\L E .91..-t and P-P'. 
a p 

Let P-+ P' because P = Q[f], Q-+ Q', /({3) =a and P' = Q'[f]. 
If a :f. c, () then {J :f. c, () and by induction Q' E .91,. 

It is easy to see that P' = Q'[f] E .91,. 

If a = c then {3 = c and by induction Q' E .91,+1. 

It is easy to see that P' = Q'[f] E .91,+1. 

If a=() then {J = () and by induction Q' E .9J,_1 and Q-Q'. 

It is easy to see that P' = Q'[f] E .91,_1 and P-P'. 
a def a 

Let P-+ P' because P =A, A= B, B-+ B' and P' = B'. 

By definition 1.2, B ~. 
If a :f. c then by induction B' E .91,. It is easy to see that P' = B' E .91,. 

If a = c then by induction B' E .91,+ 1. It is easy to see that P' = B' E .91,+ 1. 

(2) Ina similar way, theproofoflemma 1.2 is by transition induction on the inference of P ~ P', 

with() replaced by s. c replaced by c, and .91, replaced by 'It. 

0 
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Lemma2 

(1) If P E .91e(abc) then 

(i) P P' iff :fa(P) a.!; :fa(P') 

(ii) P ~ P' iff :fa(P) .! :fa(P') 

(2) If P E tJlt;(abc) then 

(i) P ~ P' iff (fo(P) a:: (}b(P') 

(ii) P 1;,. P' iff (fo(P) ~ {fo(P') 

Proof of lemma 2 

The proof is an easy transition induction. 

Lemma3 

P ~ 'Ic(P) and P ~ .Z,(P) for P E !!{(abc). 

Proof of lemma 3 

It can easily be shown that {(P, 'Ic(P)} I P E !!{(abc)} and {{P, .Z,(P)} I P E !!{(abc)} 

are (weak) bisimulations. 

211 
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A.3 Propositions 

See figure A. I. 

Let P, Q E !!{(abc), 'lf(P) E .9Jo(abc), Zc(Q) E ~(abc), and :Ja('Jf(P)), Yl,(Zc(Q)) E P. 

We will prove that (PIQ)\c isobservationalequivalentto (:Ja('Jf(P))IBoiYl,(Zc(Q)))\(a, b, c}. 

The agent Bo represents a PCO operating in transparent mode or in observation mode. Its behavior 

is defined as Bo ~ a.Bt and B1 ~ b.Bo. It can easily be seen that the agent Bo represents a PCO 

in transparent mode. The agent B0 may also represent the composed behavior of a PCO operating 

in observation mode and an external observer. The behavior of the PCO in observation mode is 

defined as Co~ a.Ct. C1 ~ obs.C2 and C2 ~ b.Co. The behavior of the external observer Eo is 

defined as Eo~ obs.Eo. It can easily be shown that Bo ~ (CoiEo) \obs. Hence, the agent Bo may 

be considered as representing a PCO in transparent mode or in observation mode. 

(a) 

(b) 

'Jf(P) 
l: c 

Zc(Q) 

(c) 
l: c 

:Ja('lf(P)) 
lh 

Yl,(Zc(Q)) 
ii al b 

I Bo I 

Figure A.l Transforming (PIQ)\c while preserving observational equivalence 

Proposition 1 

Let P, Q E !/{(abc). 

Then ('Jf(P) IZr(Q) )\c is observational equivalent to (.1.i('lf(P) )IBol Yl,(Zc(Q)) )\{a, b, c}. 

Proof of proposition 1 

For readability, we define R = %(P) and S = Z:(Q). 

Hence, we havetoprovethat (RIS)\c is observationalequivalentto (:fa(R)IBol Yl,(S) )\{a, b, c}. 
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We will show that Sis a bisimulation up to~ (see [Mil89] and accompanying errata1
), where 

S = { ((RIS)\c, (~(R)IBol{1b(S))\{a,b,c}) IRE 54,(abc), S E £8,(abc)} 

U { ((RIS)\c, (~(R)IBt 1{1b(S))\{a,b,c}) IRE 54,(abc), S E £8..+t(abc)} 

For our case, it suffices to show that for each (X, Y) e S, the following holds: 

(i) 

(ii) 

a a 
Whenever X --+ X' then, for some Y', Y :::} Y' and X' ""'S ~ Y'. 

a a 
Whenever Y --+ Y' then, for some X', X :::} X' and X' ~ S- Y'. 

The proof proceeds by the applied cases on the inference of X ~ X' and. Y ~ Y'. 

(a) Let R E 54, and S E £8,.. 

Let X= (RiS)\c ~X' because R ~ R',a =I= c,e and X'= (R'IS)\c. 

Then it follows from lemma 1.1 that R' E 54,, and from lemma 2.1 that ~(R)?: ~(R'). 

Hence, Y = (~(R)IBol{1b(S))\{a,b, c} ~ Y' where Y' = (~(R')IBol{1b(S))\{a, b, c} 
and R' E 54,, S E £8,.. And thus, (X', Y') E 5. 

(b) Let R E 54, and S E £8,.. 

Let X= (RIS)\c ~X' because S ~ S',a =F c, ~ and X'= (RIS')\c. 
a¥b 

Then it follows from lemma 1.2 that S' E £8,., and from lemma 2.2 that {1b(S) --+ {1b(S'). 

Hence, Y = (~(R)!Bol{ii,(S))\{a,b, c} ~ Y' where Y' = (~(R)IBol{1b(S'))\{a,b, c} 
and R E 54,, S' E £8,.. And thus, {X', Y') E 5. 

(c) Let R e 54, and S e £8,.. 
6 6 

Let X= (RIS)\c--+ X' because R--+ R' and X'= (R'IS)\c. 

Then it follows from lemma 1.1 that R' e )4,_1 and R""' R'. 
ii 

It follows from lemma 2.1 that ~(R)--+ ~(R'). 

Hence, Y = (~(R)IBol{1b(S))\{a, b, c} ~ Y' where Y' = (~(R')IBd{1b(S))\{a, b, c} 
and R' E )4,_1, S E £8,.. And thus, {X', Y') E S. 

(d) Let R E 54, and S E £8,.. 

Let X= (RIS)\c ~X' because S ~ S' and X'= (RIS')\c. 

Then it follows from lemma 1.2 that S' e £8,._ 1 and S""'S'. 
b 

It follows from lemma 2.2 that {1b ( S) --+ 9b ( S'). 

Because S ~ S' implies that n :::: l, it follows that R .! R'. 
6 (J 

Hence, X'= (RIS')\c--+ X" because R--+ K and X"= (R'IS')\c. 

Then it follows from lemma 1.1 that R' e )4,_ 1 and R""' K. 

It follows from lemma 2.1 that ~(R) ~(K). 

1 Sis a (weak) bisimulation up to ~ if P SQ implies, for all a, 
a a 

(i) Whenever P=*'P' then,forsomeQ', Q=*'Q' and P'~S~Q', 
~ ii 

or alternatively, whenever p _.,. P' then, for some Q', Q::} Q' and P' ~ s~ Q'. 
~ ii 

(ii) Whenever Q =*' Q' then, for some P', P =*' P' and P' ~ S ~ Q', 

or altemati~ely, whenever Q ~ Q' then, for some P', P,! P' and P' ~ S- Q'. 
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r r 
Hence, Y= (J,i(R)IBolyi,(S))\{a,b,c}--+- (J,i(R')IBdyi,(S))\{a,b,c}--+- Y' 

where Y' = (J,i(R')IBolyi,(S'))\{a,b,c} and R' E J'l,._l, S' E 1t-1· 
Because (X", Y'} e S and X'""' X", it follows that (X', Y'} e ""' S ~. 

(e) Let R E J'l,. and S E 1t. 
r f i 

Let X= (RIS)\c--+- X' because R--+- R', S--+- S' and X'= (R'IS')\c. 

If t = c then it follows from lemma I that R' e J'l,.+t and S' e 1t+t· 

From lemma 2 it follows that J,i(R) ~ J,j(R') and yi,(S) _;. yi,(S'). 

Hence, Y = (J,i(R)IBolyi,(S))\{a, b, c} _;. Y' where 

Y' = (J,i(R')IBol yi,(S') )\{a, b, c} and R' e J'l,.+l> S' e 1t+l· 
And thus, (X', Y'} E S. 

If t :I= c then it follows from lemma 1 that R' e J'l,. and S' e 1t. 

From lemma2 it follows that J,i(R) ~ J,i(R') and yi,(S) J. yi,(S'). 

Hence, Y= (J,i(R)IBolyi,(S))\{a,b,c} ~ Y' where 

Y' = (J,i(R')IBolyi,(S'))\{a,b,c} and R' e J'l,.,S' e 1t. 
And thus, (X', Y'} e 5. 

(f) Let R E J'l,. and S E 1t. 

Let Y = (J,i(R)IBol yi,(S))\{a, b, c} ~ Y' because J,i(R} ~ J,i(R'), a. :I= c, a 
andY' (J,i(R')IBolyi,(S))\{a,b,c}. 

Then it follows from lemma 2.1 that R ~ R', and from lemma 1.1 that R' e J'l,.. 

Hence, X (RIS)\c ~ X' where X'= (R'IS)\c and R' e J'l,., S e 1t. 
And thus, (X', Y'} E 5. 

(g) Let R E J'l,. and S E 1t. 

LetY=:(J,i(R)!Bolyi,(S))\{a,b,c} Y' because yi,(S)~ yi,(S'),a.:/=c,b 

and Y' = (J,i(R)IBolyi,(S'))\{a, b, c}. 

Then it follows from lemma 2.2 that S S', and from lemma 1.2 that S' e 1t. 

Hence, X (R!S)\c ~ X' where X'= (RIS')\c and R e J'l,., S' e 1t. 
And thus, (X', Y'} e 5. 

(h) Let R E J'l,. and S E 1t. 
'C , a 

Let Y = (J,i(R)IBolyi,(S))\{a, b, c}--+- Y' because J,i(R)--+- J,i(R') 

and Y' = (J,i(R')IBdyi,(S))\{a,b, c}. 

Then it follows from lemma 2.1 that R .! R'. 
It follows from lemma 1.1 that R' e J'l,._1 and R-R'. 

II 
Hence, X= (RIS)\c--+- X' where X'= (R'IS)\c and R' e J'l,.-1. S e 1t. 
And thus, (X', Y') e 5. 

(i) Let R E J'l,. and S E 1t. 
r t i! 

Let Y = (J,i(R)IBolyi,(S))\{a, b, c) --+- Y' because J,i(R)--+- J,i(R'), G(S)--+- G(S') 

and Y' = (J,i(R')IBolyi,(S'))\{a,b,c}. 

If t = c then it follows from lemma 2 that R ~ R' and S _;. S'. 

It follows from lemma 1 that R' e J'l,.+1 and S' e 1t+1· 

Hence, X (RIS)\c ~X' where X'= (R'IS')\c and R' E J'l,.+h S' E 1t+l· 
And thus, (X', Y') E 5. 
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If l :p c then it follows from lemma 2 that R ~ R' and S -i S'. 

From lemma I it follows that R' E .91,. and S' E ~-

Hence, X= (RIS)\c ~X' where X'= (R'IS')\c and R' E .91,., S' e ~
And thus, (X', Y') E S. 

(j) Let R E .91,. and S E ~+I• 

Let X= (RiS)\c ~X' because R ~ R',a :p c,fJ and X'= (R'IS)\c. 
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a# 
Then it follows from lemma 1.1 that R' E .91,., and from lemma 2.1 that :fa(R) - Ji(R'). 

Hence, Y = (:fa(R)iBd yi,(S))\{a, b, c} ~ Y' where Y' = (Ji(R')IBdyi,(S))\{a, b, c} 

and R' E .91,., S E ~+I· And thus, (X', f') E 5. 

(k) Let R E .91,. and S E ~+l· 

Let X= (RiS)\c ~X' because S ~ S',a :p c, ~ and X'= (RIS')\c. 

Then it follows from lemma 1.2 that S' e ~+I• and from lemma 2.2 that yi,(S) ~ yi,(S'). 

Hence, Y = (Ji(R)IBdyi,(S) )\{a, b, c} ~ Y' where Y' = (Ji(R)IBdyi,(S'))\{a, b, c} 

and R E .91,., S' E ~.;. 1 . And thus, (X', Y') e 5. 

(I) Let R E .91,. and S E ~+I· 

Let X= (RiS)\c X' because S _.;.. S' and X'= (RIS')\c. 

Then it follows from lemma 1.2 that S' E ~ and s-S'. 
b 

It follows from lemma 2.2 that yi,(S) - yi,(S'). 

Hence, Y = (:fa(R)IBdyi,(S))\{a,b, c} ~ Y' where Y' = (Ji(R)IBol(1i,(S'))\{a,b, c} 

and R' E .91,., S E ~- And thus, (X', f') E 5. 

(m) Let R E .91,. and S E ~+I· 
e e 

Let X= (RIS)\c- X' because R- R' and X'= (R'IS)\c. 

Then it follows from lemma 1.1 that R' E .91,._ 1 and R-R'. 
ii 

It follows from lemma 2.1 that Ji(R) - :fa(R'). 

Because R .! R' implies that n ::: I, it follows that S _.;.. S'. 

' s Hence, X'= (R'IS)\c- X" because S- S' and X"= (R'IS')\c. 

Then it follows from lemma 1.2 that S' E ~ and S-S'. 
b 

It follows from lemma 2.2 that yi,(S)- yi,(S'). 

Hence, Y= (,%(R)IBtl(1i,(S))\{a,b,c} ~ (Ji(R)IBolyi,(S'))\{a,b,c} Y' 

where Y' (Ji(R')IBdyi,(S'))\{a,b,c} and R'E.91..-~>S'e~. 

Because (X", Y') E S and X'-X", it follows that {X', Y') E ""s~. 

(n) Let R E .91,. and S E ~+I· 
l l 

Let X= (RIS)\c X' because R- R', S- S' and X'= (R'IS')\c. 

If i = c then it follows from lemma 1 that Ir E .91,.+1 and S' e ~+ 2 . 

From lemma 2 it follows that Ji(R) ~ !fa(R') and yi,(S) ~ yi,(S'). 

Hence, Y = (Ji(R)IBtl yi,(S))\{a, b, c} ~ Y' where 

Y' = (Ji(R')IBtiyi,(S'))\{a,b, c} and Ire .91,.+1• S' E ~+2· 

And thus, (X', Y') E 5. 
If l :p c then it follows from lemma 1 that R' E .91,. and S' E ~+I· 

From lemma 2 it follows that :fa(R) ~ :fa(R') and yi,(S) l yi,(S'). 
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Hence, Y = (_?i(R)IBrl §i,(S))\{a, b, c} ~ Y' where 

Y' = (_?i(R'}IBtl§i,(S'))\{a,b,c} and R' eJli,,S' E 1t+l· 

And thus, {X', Y') E S. 

(o) Let R E .91, and S E 1t+1· 

Let Y = (.?i(R)IBJ!§i,(S))\{a,b,c} ~ Y' because .?i(R) ~ .?i(R'),a :f:. c,a 
and Y' = (_?i(R')IBtl §i,(S))\{a, b, c}. 

Then it follows from lemma 2.1 that R ~ R', and from lemma 1.1 that R' E .91,. 

Hence, X= (RIS)\c ~X' where X'= (R'IS)\c and R' E .91,, S E 1t+t· 

And thus, (X', Y'} E S. 

(p) Let R E .91, and S E 1t+1· 

Let Y = (.?j(R)IBII§i,{S))\{a,b,c} ~ Y' because §i,(S) ~ §i,(S'),a :f:.c,b 

and Y' = (.9i(R)IB1I §i,(S') )\{a, b, c}. 

Then it follows from lemma 2.2 that S ~ S', and from lemma 1.2 that S' E 1t+l· 

Hence, X s (RIS)\c ~X' where X' s (RIS')\c and R E .91,, S' E 1t+l· 

And thus, (X', Y'} E S. 

(q) LetReJll, and Se1t+l· 

LetY=(.?i(R)IBtl§i,(S))\{a,b,c} Y' because §i,(S)~ §i,(S') 

and Y' = (.?i(R)!Bol§i,(S'))\{a,b, c}. 

Then it follows from lemma 2.2 that S S'. 

It follows from lemma 1.2 that S' E 1t and S,.., S'. 

Hence, X= (RIS)\c ~ X' where X'= (RIS')\c and R E .91,, S' E 1t. 

And thus, (X', Y'} E S. 

(r) Let R E .91, and S E 1t+l· 
r t t 

Let Y = (.?j(R)IBtl §i,(S) )\{a, b, c} - Y' because .?j(R) - .?j(R'), G(S) - G(S') 

and Y' = (_?i(R')IBd §i,(S'))\{a, b, c}. 

If l = c then it follows from lemma 2 that R R' and S ~ S'. 

It follows from lemma I that R' E .91,+1 and S' E 1t+2· 

Hence, X= (RIS)\c ~ X' where X' (R'IS')\c and R' E .91,+1• S' E 1t+z· 
And thus, (X', Y'} E S. 

If l :f:. c then it follows from lemma 2 that R ~ R' and S .i S'. 

From lemma 1 it follows that R' E .91, and S' E 1t+l· 
t 

Hence, X= (RIS)\c- X' where X'= (R'IS')\c and R' e .91,, S' E 1t+l· 
And thus, (X', Y'} E S. 

0 
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Proposition 2 

Let P, Q E !!{(abc). 

(PI Q)\c is observational equivalent to (.'fa(l]i(P) )IBol 9b(Zc(Q)))\{a, b, c}. 

Proof of proposition 2 

Because P, Q e !/{(abc) and l]i(P) e ~(abc), Zc( Q) e ~(abc), it follows from lemma 3 

that P:.::::: l]i(P) and Q:.::::: Zc(Q). Hence, (PIQ)\c:.::::: (l]i(P)IZc(Q))\c. 

From proposition 1 it follows that (l]i(P)IZc(Q))\c:.::::: (.'Ji(l]i(P))IBol9b(Zc(Q)))\{a, b, c}. 

From the transivity of the equivalence relation:.:::::, it now follows that 

(PIQ)\c:.::::: (.'Ji(l]i(P) )IBol 9b(Zc(Q)) )\{a, b, c}. 

0 

This concludes the proof that a PCO can be inserted in a communication channel while preserving 
the externally observable system behavior. 
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Stellingen 

behorende bij bet proefschrift 

Design For Thst & Debug in Hardware/Software Systems 

door H.P.E. Vranken 

1. In de huidige ontwerpmethoden voor hardware/software co-design wordt nauwelijks aan

dacht besteed aan design for test & debug. Het testen en debuggen van aldus ontworpen 

hardware/software systemen blijft derhalve uitermate problematisch. 

[Dit proefschrift, hoofdstuk 2.] 

2. Design for test & debug in hardware/software systemen dient zich met name te richten op 

bet vergroten van de observeerbaarheid en de controleerbaarheid van communicatie inter

faces en toestandsinformatie van processen in hardware en software. 

[Dit proefschrift, hoofdstuk 4.] 

3. Design for test & debug voor hardware/software systemen dient een elementair onderdeel 

te zijn in aile on twerp fasen, nl. systeem specificatie, architectuur onderzoek, architectuur 

verfijning en synthese. 

[Dit proefschrift, hoofdstuk 4.] 

4. Het is mogelijk om het invoegen van PCOs uit te voeren als een correctheid behoudende 

transformatie in een transformationeel ontwerp systeem. 

[Dit proefschrift, hoofdstuk 5 en appendix A.] 

5. De ontwerper be last met design for test & debug op systeem niveau, dient eenzelfde kennis

niveau te hebben van het systeem gedrag en de systeem architectuur als de ontwerpers be last 

met systeem specificatie en architectuur definitie. 

6. De rnislukte lancering van de eerste Ariane 5 ra.ket leert dat foutentolerantie in hardware/ 

software systemen niet verkregen wordt door bet gebruik van redundante, identieke com

ponenten met ontwerpfouten of software fouten. 

[Dit proefschrift, hoofdstuk 3.] 

7. Het 'debuggen' van hardware/software systemen kan helaas niet meer worden uitbesteed 

aan de gemeentelijke ongedierte bestrijdingsdienst. 

8. Waarom reist de reiziger? Hij is op zoek naar bet Andere. Alles op aarde is in wezen het

zelfde. Maar bet zijn de kleine verschillen die ons bet oude en bekende als nieuw doen zien. 

[Bertus Aafjes, Dag van gramsclwp in Pompeji.] 

9. Het feit dat men in regionale kranten regelmatig onjuistheden kan aanwijzen in de bericht

geving over gebeurtenissen waarvan men persoonlijk de achtergrond kent, geeft ernstig te 

denken over de betrouwbaarheid van deze kranten. 



10. Door haar gedoogbeleid op diverse gebieden draagt de Nederlandse overheid zelfbij aan 

de vervaging van normen en waarden. 

11. In de industrie is een research succes pas een echt succes als het leidt tot een business succes. 

Aan de universiteiten daarentegen is een research succes pas een succes als bet leidt tot een 

groot aantal hoogstaande publicaties. 

12. De meeste promovendi zullen over hun promotiewerk zeggen: "That's one small step for 

mankind, but a giant leap for a man." 

[Vrij naar Neil Armstrong bij het zetten van de eerste voet op de maan.] 

13. De stellingname dat stellingen bij een proefschrift beproefbaar dienen te zijn, stelt eisen aan 

de stelligheid waarrnee stellingen gesteld worden. 

14. Tegen aile verwachting zal pagina 215 van dit proefschrift vaak geraadpleegd worden. 


