
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

1991

DESIGN FOR TESTABILITY AND TEST GENERATION WITH TWO DESIGN FOR TESTABILITY AND TEST GENERATION WITH TWO

CLOCKS CLOCKS

Vishwani D. Agrawal
AT&T Bell Laboratories

Sharad C. Seth
University of Nebraska-Lincoln, seth@cse.unl.edu

Jitender S. Deogun
University of Nebraska-Lincoln, jdeogun1@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Agrawal, Vishwani D.; Seth, Sharad C.; and Deogun, Jitender S., "DESIGN FOR TESTABILITY AND TEST
GENERATION WITH TWO CLOCKS" (1991). CSE Conference and Workshop Papers. 55.
https://digitalcommons.unl.edu/cseconfwork/55

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/55?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages

DESIGN FOR TESTABILITY AND TEST GENERATION
WITH TWO CLOCKS

1 1
1 0
0 1
0 0

Vishwani D. Agrawal
AT&T Bell Laboratories

Munay Hill, NJ 07974, USA

Sharad C. Seth and Jitender S. Deogun
Dept. of Computer Science and Eng.

University of Nebraska
Lincoln. NE 68588. USA

Normal
Test, clock-1
Test, clock-2
Hold

ABSTRACT - We propose a novel design for testability
method that enhances the controllabiUty of storage ele-
ments by use of additional clock lines Our scheme is
applicable to synchronous circuits but is otherwise tran-
sparent to the designer. The associated area and speed
penalties are minimal compared to scan based methods,
however, a sequential ATPG system is necessary for test
generation. The basic idea Is to use independent clock
lines to control disjoint groups of flip-flops. No cyclic path
are permitted among the flip-flops of the same group.
During testing, a selected group can be made to hold its
state by disabling its clock lines In the normal mode, all
clock lines carry the same system clock signal. With the
appropriate partitioning of flip-flops, the length of the vec-
tor sequence produced by the test generator for a fault is
drastically reduced. An n-stage binary counter is used for
experimental verification of reduction in test length by the
proposed technique.

1. INTRODUCTION

The search for a good design for testability (DFT)
scheme may be viewed as finding a set of rules that impose
minimal constrain on the creative freedom of the designer.
For example, an asynchronous design can be made more
manageable by insisting that all feedback cycles be broken by
the insertion of clocked flip-flops (FF’s). This rule has a pro-
found effect in simplifying the behavior of the circuit. To
analyze an asynchronous circuit. one must, in effect, consider
a finer timing (the ”gate clock); for synchronous circuits, it is
sufficient to consider only the coarse timing (the circuit clock).
Conversion to synchronous designs, however, is not enough to
solve the testability problem. Synchronous circuits may still
have very long test sequences, in some cases, too long to rule
out gate-level automatic test pattern generation (ATPG) [l].
In general, there is evidence to suggest that the complexity of
sequential ATPG is determined essentially by the lengths of
test sequences required for individual faults [2]. The main
purpose of the DFT scheme suggested in this paper is to
reduce the required test lengths, thereby simplifying test

TH0340-0/0000/0112$01 .OO 0 1991 IEEE

generation.

Previous proposals on selective controllability [3] are
based on scan type of design. In fact, they are quite similar to
the currently popular boundary scan idea [4]. The method
presented in this paper only requires non-scan flip-flops.

2. CLOCK CONTROL FOR TESTABILITY

We will illuseate a new multiclock DIT scheme for
the simplest case of two clocks shown in Fig. 1. In the stan-
dard (Huffman) model, a circuit is partitioned into its combi-
national logic block and storage elements. In our model the
latter is further divided into two groups. The first group of
flip-flops (FF’s) is clocked by and the second group of
FF’s is clocked by q2. The two clocks are derived from the
system clock (I$) by the simple selection logic shown in the
figure. The clock select signals, S1 and S2, determine the
mode in which the circuit would operate at any given time.
The four possible modes of operation can be selected as
shown in Table 1. In the normal mode the system clock con-
trols all FF’s as in a singleclock synchronous circuit. The
two test modes, clock-1 and clock-2, are symmetrical. When
clock-1 test mode is on, the FF’s in the first group me allowed
to change their states according to the values determined by
the logic; the FF’s in the second group have their clocks dis-
abled and they must hold their current states independent of
the values on their data inputs. The situation is reversed in the
clock-2 test mode. In the hold mode all the clocks are dis-
abled and the circuit state cannot change.

Table 1 - Two-clock operating modes 1
~

s1 s 2 I Mode I

In terms of the finite state machine theory, the grouping
of FF’s in Fig. 1 decomposes the original state machine into
two components, M1 and M2, as shown in Fig. 2. Each

112

 Proceedings, Fourth CSI/IEEE International Symposium on VLSI Design, 1991.
doi: 10.1109/ISVD.1991.185102

COMBINATIONAI pl’d m I c

I ‘ ~ .

?r”
1
11

I I 91

($ 2)

Fig. 1: The twoclock DFT model.

component machine can communicate its state information to
the other component machine but only one component
machine can change its state in a test mode. Since the state
S 2 of M2 is held fixed in the clock-1 mode, we can regard the
states of M1 as defining a partition of the states of the original
machine. Each block of the partition is defied by a constant
value of S2. Similarly, the states of M2 & f i e another parti-
tion of the states of the original machine. Each block of states
in a partition defies a submachine, that is, if the test mode
was held unchanged, all transitions between states are confiied
to the states of the currently defied partition block. By
switching test modes, however, it is possible to navigate to
other states of the original machine.

Fig. 2: Machine decomposition with two clocks.

Any DFT scheme introduces a certain area overhead
and possibly a speed penalty. However, these are insignificant
for our scheme as can be readily seen from Fig. 1. The area
overhead has three components: clock select logic, clock dis-
tribution, and the two select inputs. The clock select logic is
minimal. The clock distribution overhead comes from added
constraints in routing the two clocks: the original clock distri-
bution tree must be replaced by two subtrees determined by

the grouping of FF’s. The routing overhead here could be
“ed by a placement procedure that may take account of
the specific FF grouping. It is obvious from the figure that
the scheme may not entail any time penalties.

Criterha for Partitioning FF’s. With reference to Fig.
2, the goal of partitioning should be that any desired circuit
state (sl , s2) could be reached with minimum effort while
using only the structural knowledge of the circuit. This is rea-
sonable since most curzent ATF’G algorithms operate only on
such information about a circuit. Before proceeding further
with our discussion, we introduce a directed graph representa-
tion of a circuit and background information on definite
machines.

. . .

A directed graph representation of a synchronous
sequential circuit was introduced in [2]. A FF (or state vari-
able) i in the circuit is represented by a vertex v i in the graph.
A directed edge from vertex vi to vertex vi implies a combi-
national path from FF i to FF j in the circuit. Only the
memory elements and dependencies between memory elements
are explicitly represented in thii graph. If the circuit has FF’s
other than the D-type, we would convert them to equivalent
implementation in terms of D-FF’s before constructing the

A sequential machine M is called a definite machine of
order p if p is the least integer, so that the present state of M
can be determined uniquely from the knowledge of the last p
input to M [5] . A definite machine of order p is often called
a p-definite machine. Since the knowledge of any p past
inputs is always sufficient to completely specify the present
state of a p-definite machine, any such machine can always
be realized as a cascade connection of p delay elements to
store the last p input values and a combinational circuit that
generates the specified output. Conversely, any circuit with n
FF’s, whose graph contains no cycles, will be p-definite with
pSn. From the defiition, a p-definite circuit can always be
initialized by a sequence of length less than or equal to p.

A partitioning of the FF’s into multiple groups can be
shown by node labels 1, 2, etc., in the graph representation.
From the testability viewpoint. we claim that a good criterion
for node labeling is that it should break as many directed
cycles in the graph as possible, where, a cycle is considered
broken if not all the nodes in the cycle are identically labeled.
If all cycles can be broken, each component machine, con-
trolled by its own independent clock (e.g. M1 and M2 in Fig.
2), can be run as a definite machine in a test mode.

graph.

Not all cycles can be broken, however, with a fixed
number of clocks. For example, a common implementation of
an n-stage synchronous binary counter involves only self-loops
that cannot be broken by any number of clocks. Each stage of
the counter is affected by the combined state of all the previ-
ous stages and the highest order stage requires O(2”) inputs to
control its value. The goal of the multi-clock DFT in thii case
would be to contain the combinatorial explosion of state space

113

3 o f 6

by breaking long chains of identically clocked FF's. Let us
assume that under the primary criterion, the available clocks
have been used to break BS many cycles of length two or more
as possible. We condense the resulting directed graph by
identifying its strongly connected components (the nodes in
each such component must be identically labeled) and collaps-
ing them into singleton nodes. If a strongly connected com-
ponent had k nodes, we associate a weight 2' to its
corresponding collapsed node. All other nodes represent tran-
sparent FF's (unit delays) and are assigned a weight of 1. A
secondary criterion for flipflop partitioning may now be stated
as follows: minimize the weighted sum of any chain of identi-
cally labeled nodes in the graph. Thus, for the counter circuit,
this criterion would require successive stages to be clocked
differently. We illustrate the twoclock DFI' scheme by
means of two examples.

Example I : Consider the state machine described by
Table 2. It has a Synchronizing sequence of length 4, namely,
0.1,l.O. Miczo [l] uses this example to emphasize that the
existence of a synchronizing sequence is not a sufficient con-
dition for automatic test pattem generation; a proper state
assignment (if one exists at all) is equally necessary [6]. In
particular, for the above machine, he shows that the assign-
ment of Table 3 is particularly bad. With this assignment, a
gate-level test generation algorithm using three signal values
(0, 1, and X), will not be able to initialize the above machine
into a known state.

Table 2 - State table for Example 1
0 1

s2

s3

SO
s 2

Table 3 - An improper state assignment

Y z Y1
SO
S1
s2

s3

0 1
1 0
1 1
0 0

An implementation of the machine with the given state
assignment is shown in Fig. 3 along with the corresponding
graph. The graph contains self-loops on each node as well as
a cycle of length 2 between the two nodes. We break the
larger cycle by assigning Q 1 to FF-1 and 4i2 to FF-2. Now,
the behavior of the circuit in the two modes can be deduced
from the two state tables shown in Fig. 4. The corresponding
synchronization tree appears in Fig. 5. In the tree, the edges
are labeled as xi where x is the input value and i denotes the
test mode (clock I$') used. There are two synchronizing
sequences of length 4 O2,l2,ll,O2 and 11,12,11,02. Both

lead the machine to the final state So. Further, the first three
inputs in either case defme a partial synchronizing sequence
that uniquely sets Y, to 1. No similar or shorter sequence
exists in the normal mode to permit partial synchronization.

Exumpfe 2: Consider an n-stage synchronous counter
circuit with a reset to the all-zero state. Let y o , yl, ..., yn-l
represent the counter bits from the lowest to the highest order.
The minimum number of clock cycles to toggle yi. starting
from the reset state is obviously 2'. This means that the test
length for the fault line y i s-a-0 will be exponential in i. The
following lemma shows that this length can be considerably
reduced by the two-clock scheme.

Lemma I : An upper bound on the test length for the
fault y i s-a-0 in a synchronous counter with two clocks is

'+1
L (i) = 2 - 1, i f i is even,

i-1 -
and L (i) = 3(2) - 1, if i is odd.

Y1

Circuit graph

Fig. 3: Example 1 circuit and its graph.

Proof: Partition the FF's in the counter stages into two

the first group be clocked by $, and the second group by Q 2 .

Let C (j) represent the minimum number of clock cycles (of
q 1 or Q 2) needed to toggle y j for j = 0, 1, ..., n-1. We know
that C (0) is 1 since only one 9, cycle (with the data input 1)
will toggle the least significant bit. Similarly, C(l) is 2; in this
case we need to apply followed by Qz while holding the
data input high. In general, we can write the following recur-
sive relation between C(j) and C (j - 1):

group: {YO,Y~,yair ... I and (y1.y3, ... ,~2i+lr ... 1. Let

p$J
C (j) = C(j-1) + 2 (1)

where, is the highest integer that is less than or equal to x.
This is because just before yj-l toggles all preceding stages

I14

I
4 of 6

State Encoding:

state

y2 y1
I I

Mode State Table

SO

Q2 Mode State Table
0 1

Fig. 4: Test mode state tables for Example 1 circuit.

must be all-one. After it toggles. all preceding stages that are
even-distance away from the (j-1)-stage change to 0 while
those that are odd-distance away remain at 1. There are

exactly p = 191 stages of the fmt kind and these are all

clocked identically, say, by clock Q k where k is either 1 or 2.
By running 2’- 1 cyclcs of Q k while holding the data input
high, we can tum all 0 stages to 1 (they would be incremented
like a k-bit counter). Further, all stages that stored 1 origi-
nally, remain unchanged as their clocking is disabled. One
more clock cycle after this will toggle yj. This justifies the
recurrence in Eq. (1) from which the bound in the lemma fol-
lows immediately.

3. TEST GENERATION WITH TWO CLOCKS
In a synchronous clocked circuit, the primary input (PI)

signals and flip-flops (FF’s) normally change once during a
period of the clock. The combinational logic of the circuit
receives its inputs from PI and FF’s and it feeds into the pri-
mary outputs and FF’s. In the interval between the instances
when FF’s change their state, the circuit can be analyzed like
combinational logic. Since all FF’s change only once in the
clock period, it is only when the time advances to the next

Fig. 5: Test mode synchronizing tree for Example 1.

clock period, that the FF must be updated. For test genera-
tion, the combinational logic can be duplicated for each clock
period. Each duplicated block contains its PI and PO and FF
signals flow between the blocks. With this model, it is possi-
ble to generate tests using a combinational test generation
algorithm [7].

For generating tests with two clocks, we expand the
combinational logic in two dimensions. This is shown in Fig.
6. Clock-1 periods are shown along the x-direction and
Clock-2 periods are along the negative ydirection. Each
block is a copy of the combinational logic. The block i , j is
the circuit in the i -th period of Clock-1 and j - t h period of
Clock-2. Each block contains PI and Po that are not shown
in Fig. 6.

All communication between the blocks is through two
buses named Y, and Y2. The Y1 bus carries the signals of
Clock-1 FF. These signals are shown exiting to the right and
entering from the left. A block writes on the Y, bus on its
right only if Clock-1 is activated. The writing, however,
changes the state of the bus only for the future time. The
state of the bus is applied to every block it feeds. The opera-
tion of Y, buses, that run from left to right and cany the states
of the Clock-2 FF, is similar.

For test generation, the target fault is introduced in all
modules. We begin at the fault site in the block 0’0. Only
one clock is activated at a time in the test mode. A test may
consist of several contiguous Clock-1 periods, followed by
several Clock-2 periods, then again Clock-1, and so on. All
state variables, entering from the top and left, are in the
unknown (X) state in the beginning. Line justification follows

115

5 of 6

-1 0 1 2 Clock-1
I)

Y, bus

Fig. 6: Two-clock test generation model.

the normal backtrace to the PI of this block or to the Y,, Y2
inputs. In the latter case, assuming a Clock-1 mode, the test
generator will move to the block -1.0 to justify the states of
Y, FF’s. Once these states are justified. the fault effect is pro-
pagated toward PO. If necessary, blocks 1,0 and 2.0 will be
used. However, Clock-1 mode may end leaving the fault
effect in a Y, FF or with some Y, FF requiring initialization.
At this point, the test generator will switch to Clock-2 mode.
Again, if this mode produces no test, Clock-1 mode follows.

Since the circuit has a d e j i i e memory depth with
respect to any of the two clocks, operating one clock at a time
restricts the length of each mode. In general, the two modes
can alternate any number of times. Thus a test follows a
manhattun path in the array of Fig. 6. The normal operation
of the circuit, with both simultaneous clocks, follows the diag-
onal.

4. RELATED GRAPH PROBLEMS

The graph theoretic notations used in this section can be
found in any standard text [8]. The FF-partitioning problem in
the multi-clock DFT is closely related to a coloring problem in
directed graphs. We assume that n clocks are available for
breaking the cycles in a circuit graph f?ee of self-loops. The
goal is then to “ize n consistent with the objective of
breaking aN the cycles. Let G = (V , E) be a directed graph
without loops and multiple edges. An edge < a . b > ~ E is
assumed to be incident from a and to b, that is. directed from
a to b. By Qn we denote the complete directed graph on n
vertices with all n(n - 1) edges.

Definition: A vertex coloring of G is proper if there is

no monochromatic directed cycle in G.

The problem of clock minimization manslates into find-
ing a minimum proper coloring of a given directed graph G.
If G is acyclic then one color suffices. Otherwise, two or
more colors are necessary. The worst case occurs for com-
plete directed graphs. It is easily seen that Q m requires n
colors for a proper coloring. The problem of finding minimum
proper vertex coloring as defined here is similar, though not
identical, to the standard vertex coloring problem that is
known to be NP-complete. We conjecture that this problem is
also NP-complete. To the best of our knowledge, no results
have been reported in the graph theory literature on proper
coloring as defied above. In Fig. 7 we show three digraphs
requiring one, two and four colors, respectively. Here, we fol-
low the convention that vertices of graphs are identified by
capital letters and colors by integers. The color assigned to a
vertex is shown within parentheses next to its name.

A (l ~

A(l)w

D(2) E(1)
(a) A directed acyclic graph (b) A directed graph with 3 cycles

(3)

D(4)
(c) A complete directed graph Q4

Fig. 7: Three examples of proper coloring.

Observation: It may be observed that a directed cycle
requires at least two colors for a proper coloring and in any
two-coloring of a three cycle, two vertices must be assigned
the same color.

The smallest digraph that requires 3 colors is Q 3 . If
directed two cycles are not allowed, the smallest digraph that
is not 2-colorable is of order seven. This is a consequence of
the following theorem.

Theorem: Let G be a digraph of order six or less, such
that G contains no directed two-cycles. Then G is 2-colorable.
A proof appears elsewhere [9].

5. IMPLEMENTATION AND PRELIMINARY RESULTS

We have implemented a graph-labeling algorithm [9]
that assigns two labels (clocks) according to the criteria stated
in Section 2 and are in the early stages of implementing a test

generator based on the multi-dimensional time-frame

116

I
6 of 6

expansion discussed in Section 3. In order to prove the vali-
dity of the basic approach, however, we used an available
sequential test generator, Contest [lo], even though it does not
use the time-hme expansion method for test generation.
Contest is a concurrent fault-simulation based test generator
that fmds a test sequence through cost reduction by single-bit
changes in vectors. The reader is referred to the original
paper for details [lo]. In order to do twoclock test generation
using Contest, we added an extra primary input and a small
amount of logic to select the clock-1 or clock-2 modes for test
generation. The extra primary input is added as the last PI so
that Contest would try all other input changes in the current
mode before trying to switch the test mode. Normal mode test
generation was carried out by omitting the extra PI and the
associated logic. The results for the binary synchronous
counter are summarized in Table 4.

Table 4 - Two-Clock vs. Normal-Mode Test Lengths
for a-bit Counters

n Normal Mode Two-Clock L(n-I) from Lemma 1
1 1 1 1
2 2 2 2
3 4 3 3
4 8 5 5
5 16 7 7
6 32 12 11
7 _ _ 16 15

As seen in the table, Contest could not complete test
generation beyond the 6-stage counter for the normal mode
and beyond the 7-stage counter for the 2-clock mode. Further,
the normal mode test length grows exponentially with the
number of stages while the 2clock mode test length is very
close to the values predicted by Lemma 1. We have also run
Contest in a similar fashion on eight 1989 ISCAS benchmark
circuits: s208, s298, s344, s386, s444, s526, ~526% and s1488.
It was found that, with one exception (~344). the 2clock mode
produces higher fault coverage with fewer vectors. In most
cases, the two-clock mode required only half as many vectors
for a comparable fault coverage and the run time of the test
generator was also reduced to half or lower. These improve-
ments are remarkable since they were obtained without any
test-mode related guidance to the test generator. Contest
treated the primary inputs defining the mode of the circuit just
l i e other primary inputs. We expect even better results with
the time-frame expansion type of test generator that is now
being developed.

6. CONCLUSION

We have presented a simple method of modifying
finite-state machines for improved testability. The multi-clock
method is more economical than the methods like scan. In an
ideal case, each clock controls a definite machine. Our work
on the two-clock sequential circuit test generator is currently

in progress. When two clocks do not break all cycles, our
algorithm minimizes cycles. A generalization of this algo-
rithm will allow more than two clocks to break all cycles. A
tradeoff between the number of clocks and the number of
remaining cycles is then possible. For a fixed number of
clocks, the remaining cycles can also be eliminated by using
partial scan [2,11]. Our method, that provides additional con-
trollability for sequential circuits, may also be used to comple-
ment purely observability enhancing techniques, such as
CrossCheck [12]. We hope the ideas in the paper will lead to
further research and applications.

Acknowledgment - The authors are thankful to Dr. K-T
Cheng for providing the Contest program and to Mr. V.
Sivaramhishnan for assistance with experimental data.

REFERENCES

A. Micw, Digital Logic Testing and Simulation, Harper
& Row, New York, 1986.

K. T. Cheng and V. D. Agrawal, “A Partial Scan
Method for Circuits with Feedback,” IEEE Trans.

F. Hsq P. Solecky, and L. Zobniw, “Selective Control-
lability: A Proposal for Testing and Diagnosis,” Sem-
iconductor Test Cog. Digest of Papers, pp. 170-175.
1978.
F. P. M. Beenker et al, “Macro Testing: Unifying IC
and Board Test,” IEEE Design & Test of Computers,
Vol. 3, pp. 26-32. December 1986.

Z. Kohavi, Switching and Automata Theory, McGraw-
Hill, New York, 1978.

K. T. Cheng and V. D. Agrawal, “State Assignment for
Initialiazable Synthesis,” Proc. Int. Cog. CAD
(ICCAD-89). pp. 212-215, November 1989.

P. Muth, “A Nine-Valued Circuit Model for Test Gen-
eration,” IEEE Trans. Comput.. Vol. C-25, pp. 630-
636, June, 1976.

F. Harary, Graph Theory. Addison-Wesley, Reading,
MA, 1972.
V. D. Agrawal, S . C. Seth, and J. S . Deogun, “Design
for Testability and Test Generation with Two Clocks,”
Technical Report Series #102, Dept. of Computer Sci-
ence, University of Nebraska, Lincoln, NE, February
1990.

V. D. Agrawal, K. T. Cheng, and P. Agrawal, “A
Directed Search Method for Test Generation Using a
Concurrent Simulator,” IEEE Trans. CAD, Vol. 8,
pp. 131-138. February 1989.

R. Gupta, R. Gupta, and M. A. Breuer, “A Ballast
Methodology for Structured Partial Scan Design,” IEEE
Trans. Comput., Vol. 39, pp. 538-544, April 1990.

T. Gheewala, “CrossCheck: A Cell Based VLSI Testa-
bility Solution,” Proc. 26th ACMIIEEE Design. Autom.
Cog., pp. 706-709, June 1989.

Cowut . , Vol. 39, p ~ . 544-548, April 1990.

117

	DESIGN FOR TESTABILITY AND TEST GENERATION WITH TWO CLOCKS
	

	Design for testability and test generation with two clocks - VLSI Design, 1991. Proceedings., Fourth CSI/IEEE International Symposium on

