
Design Guidelines for Improving User Experience in Industrial
Domain-Specific Modelling Languages
Rohit Gupta

Siemens AG

Munich, Germany

rg.gupta@siemens.com

Nico Jansen

Software Engineering

RWTH Aachen University

Aachen, Germany

jansen@se-rwth.de

Nikolaus Regnat

Siemens AG

Munich, Germany

nikolaus.regnat@siemens.com

Bernhard Rumpe

Software Engineering

RWTH Aachen University

Aachen, Germany

rumpe@se-rwth.de

ABSTRACT
Domain-specific modelling languages (DSMLs) help practitioners

solve modelling challenges specific to various domains. As domains

grow more complex and heterogeneous in nature, industrial practi-

tioners often face challenges in the usability of graphical DSMLs.

There is still a lack of guidelines that industrial language engineers

should consider for improving the user experience (UX) of these

practitioners. The overall topic of UX is vast and subjective, and

general guidelines and definitions of UX are often overly generic

or tied to specific technological spaces. To solve this challenge, we

leverage existing design principles and standards of human-centred

design and UX in general and propose definitions and guidelines for

UX and user experience design (UXD) aspects in graphical DSMLs.

In this paper, we categorize the key UXD aspects, primarily based

on our experience in developing industrial DSMLs, that language

engineers should consider during graphical DSML development. Ul-

timately, these UXD guidelines help to improve the general usability

of industrial DSMLs and support language engineers in developing

better DSMLs that are independent of graphical modelling tools

and more widely accepted by their users.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Model-driven software engineering.

KEYWORDS
Domain-Specific Languages, Model-Based Systems Engineering,

Industrial Domain-Specific Modelling Languages, Industrial Lan-

guage Engineering, User Experience

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9467-3/22/10.

https://doi.org/10.1145/3550356.3561595

ACM Reference Format:
Rohit Gupta, Nico Jansen, Nikolaus Regnat, and Bernhard Rumpe. 2022.

Design Guidelines for Improving User Experience in Industrial Domain-

Specific Modelling Languages. In ACM/IEEE 25th International Conference on
Model Driven Engineering Languages and Systems (MODELS ’22 Companion),
October 23–28, 2022, Montreal, QC, Canada. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3550356.3561595

1 INTRODUCTION
With the advancement of various systems engineering domains,

we are observing a notable shift in the way modelling is being

introduced in projects early on. The engineering process in mod-

elling involves models instead of documents for complex hetero-

geneous systems. Consequently, model-based development and

model-based systems engineering (MBSE) techniques are constantly

evolving [21]. General-Purpose Languages (GPLs) often provide dif-

ficulties in systemmodelling [44], most notably by ignoring domain

experts from contributing to solutions. Instead, Domain-Specific

Languages (DSLs) aim to reduce the gap in a particular domain by

supporting domain-specific abstractions [14, 25]. The technological

spaces for DSLs are heterogeneous, either textual, graphical, or

projectional [4, 17, 48]. Regardless of their technological spaces,

various domain-specific modelling languages (DSMLs) have been

developed to support modelling in their respective domains. Nat-

urally, as the complexity of these DSMLs increases, so does the

complexity in its engineering, as does its consequence on users.

This often leads to users, who may or may not be modelling experts,

struggling to use DSMLs effectively.

Modelling involves key decision making in systems engineer-

ing. To assist end users in achieving their modelling goals, it is

important for the DSML to convey all relevant aspects of their

domain. The entire lifecycle involved in the modelling process

should not only involve an elaborate modelling language, but also a

solid methodological foundation and an appropriate tooling mech-

anism [25] (section 3). Only with the combination of these aspects

would modelling be effective with novice and advanced users and

with small and medium enterprises [45]. Therefore, as domains

become more heterogeneous, the complexity of the syntax and the

semantics of the language increases [13, 14], and the need for a

good user experience (UX) also grows. Aspects of UX are often

overlooked by language engineers because of the false notion that

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3550356.3561595
https://doi.org/10.1145/3550356.3561595
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3550356.3561595&domain=pdf&date_stamp=2022-11-09


users are always modelling experts in their domains and can under-

stand every construct of a language easily. Especially in industrial

DSMLs, novice users who are introduced to graphical modelling

tools, often in the latter stages of the project lifecycle, need guidance

because of their lack of know-how in modelling. Challenges of UX

in using graphical DSMLs include, but are not limited to, improper

visual representation of domain aspects, difficult to find and use

language elements, burdening users with unnecessary tool func-

tionalities [50], unavailability of predefined templates of models,

and unclear documentation for the modelling language constructs.

Various definitions of UX and usability heuristics have been pro-

posed in the literature to solve these challenges [27, 38]. However,

these are overly generic and often tied to specific technological

spaces. Further, UX is a subjective topic, the preference of users

vastly differs across domains and is influenced by recent trends

from the ubiquitous software domain (section 2). UX and business

logic is often intertwined in projects, and while considerations are

made by involving key stakeholders early on, they are often lost in

translation as the project complexity grows. Naturally, no cookie

cutter solutions exist, but there are industry standards, design guide-

lines [15, 35, 49], and user experience design (UXD) aspects that

language engineers should consider when developing graphical

DSMLs. Improving UX for users is key to achieving modelling

goals. To this end, we aim to provide guidance based on our experi-

ences in developing industrial DSMLs combining aspects of UX for

a more holistic modelling experience for users of various domains.

Given our years of experience in building industrial DSMLs for

a variety of users in various domains using graphical modelling

tools such as Enterprise Architect [18], Rational Rhapsody [29], and

MagicDraw [37], we put the choice on a firmer basis in this paper:

• We define the terms user experience (UX) and user experience
design (UXD) for graphical DSMLs in general modelling tools

on the example of MagicDraw (section 4).

• We discuss human-centred design approaches and define

the important UXD aspects: visual design, information ar-

chitecture, interaction design, and usability heuristics that

language engineers should consider during graphical DSML

development.

• We illustrate the UXD aspects using an example of a feature

model DSML with product lines and products (section 5).

• Finally, we clarify the scope of UX in our modelling ap-

proaches, discuss the benefits of our approach (section 6),

related work (section 7), and conclude the paper (section 8).

2 BACKGROUND
The engineering of DSLs and DSMLs comes with the usual chal-

lenges faced in software engineering, such as maintenance or evo-

lution, as they are software themselves [19]. Generally speaking, a

software language consists of [13, 14]: (1) an abstract syntax that

defines the structure of its models, e.g., in form of context-free

grammars [28]; (2) a concrete syntax that defines how the models

are presented, e.g., graphical [17], textual [4], or projectional [12],

(3) semantics, in the sense of meaning [26]; and (4) context condi-

tions, to check the well-formedness of a language. Methodologies

for developing graphical DSMLs in the industry are often tied to

specific departments, where language engineers must be trained

to represent the domain in consideration effectively. The develop-

ment of such graphical DSMLs must also include all functional and

non-functional aspects of the language. Only with the combination

of a modelling language, a methodology, and a modelling tool can

this challenge be fully addressed. Central research units such as

Siemens Technology, therefore, provide guidelines to their language

engineers in designing DSMLs that improve the overall UX for both

novice and advanced modellers across various domains.

Several definitions of UX [27] and best practices for DSLs and

model-driven development [49] exist in general. Consequently, a

number of notions, such as feelings, experiences, and insights, are

subsumed under the definitions of UX. This could be attributed to

the fact that UX is a vastly subjective topic covering a multitude of

domains, one that cannot be possibly represented by a single defi-

nition. ISO 9241-210 [31] defines UX as “person’s perceptions and

responses resulting from the use and/or anticipated use of a product,

system or service”. While such a definition can be reused in the con-

text of graphical modelling, it is overly generic, needs more clarity,

and does not discuss domain-specific aspects. There is also a lack of

consensus as to which UX and usability definitions (e.g., ISO 9241-

11 [6], ISO 13407 [33], Nielsen’s [41]) are best suited for graphical

DSMLs. Aspects of Human-Computer Interaction (HCI) discusses

how people interface with computers (e.g., ISO 9241-161 [30]) and

how it can be leveraged to obtain practical results related to user

interfaces [43]. The proposed definitions of UX, usability, and HCI

are often overlooked by language engineers [1], who are often

neither UX experts nor domain experts in various domains. Thus,

developing graphical DSMLs requires focusing on specific aspects

of UX, and that a one-size-fits-all approach is probably not suited.

A good UX is key to modellers effectively reaching their mod-

elling goals. Benefits of a good UX in modelling ameliorate the

challenges between the users and the constructs of the language

and reduce unnecessary burdens of the modelling tool function-

alities. In our experience of developing a diverse set of industrial

graphical DSMLs, we have not come across a standard set of UX

and usability guidelines that language engineers should consider

during graphical DSMLs development. We believe there is a need

to start the discussion towards defining specific UX guidelines that

benefit novice and advanced users and is ultimately independent

of a specific implementation or a graphical modelling tool.

3 MODELLING IN MAGICDRAW
The methodologies for the development of graphical DSMLs are

generally tied to specific departments in a large organization such

as Siemens AG. This introduces challenges in the way the combi-

nation of a modelling language is used with a methodology and

using an appropriate graphical modelling tool. We have focussed on

MagicDraw as a choice of modelling tool in developing graphical

DSMLs, as it is based on the Unified Modelling Language (UML),

comes with comprehensive extensions such as the Systems Mod-

elling Language (SysML) plugin, and provides a wide range of

customization possibilities that are used to capture most, if not all,

issues of domain-specific language engineering. A systematic engi-

neering process of developing industrial DSLs [20] using modular

reusable DSL Building Blocks in MagicDraw is described in [25].

Each building block conceptually consists of language components,

a method and a user experience design (UXD) part. The re-usable

2



language components define the language [47], wholly or in part.

The method part describes a suitable methodology for the language

to help users achieve their modelling goals. This can be in the form

of training material, including methodical steps, that ultimately

provide a comprehensive guidance to DSML users. Finally, the UXD

part describes the design decisions language engineers must con-

sider to improve the overall usability and UX of a DSL or DSML. The

heterogeneous building blocks are finally composed together to cre-

ate the DSL. The combination of the modelling language, method,

and design decisions makes modelling effective and simpler for all

kinds of users, novice and advanced alike. To this end, we consider

UX aspects in a DSL as important as the modelling language itself.

The development process is iterative and involves all key stake-

holders in the project. A feedback loop is established between mod-

ellers, domain experts, and the language engineers to ensure aspects

of the domain are continuously integrated in the DSML. Further, UX

experts are involved to ensure aspects of user experience and usabil-

ity are effectively captured in graphical DSMLs. The customization

capabilities of MagicDraw allows creation of a language profile con-

sisting of language component artefacts. An example of an artefact

is a language element, referred to as a stereotype in MagicDraw. In

addition, customization elements allow the definition of rules for the

MagicDraw DSL customization engine. Figure 1 shows an example

of the configuration of stereotypes for a feature model [11] along

with its relationships and customizations in MagicDraw. These

customizations define what model elements or diagrams can be

created and where, how an element shortcut menu should look like,

what properties of the elements are presented to the user, and so

on. MagicDraw also provides a specific Java based plugin mech-

anism that supports the integration of automation and creation

of custom functionalities. Additionally, model templates allow a

predefined model structure to be automatically instantiated during

modelling and perspectives help configure the visible number of

functionalities of MagicDraw for different kinds of users.

Over the years, we have used this methodology to build indus-

trial DSMLs in MagicDraw for a variety of consumers in various

domains. In the case of Siemens Healthineers, we developed DSMLs

that focussed on the modelling of medical devices, imaging for radi-

ation therapy, and X-ray equipment. For Siemens IT, we developed

a DSML that models the concerned IT workflow and inventory man-

agement processing. For Siemens Energy AG, we developed DSMLs

that allow for the modelling of complex industrial appliances such

as turbines along with their workflows. In the case of Siemens

Digital Industry, we developed DSMLs to model the hardware and

software aspects of the SINAMICS
1
frequency converter that al-

lows for variable frequency drives and control systems, whereas

the SIMOTICS
2
electric motors allow the modelling of synchronous

as well as asynchronous industrial motors. In a recently ongoing

public funded SpesML project [46], we built modular reusable DSL

Building Blocks to separate the concerns of the models created for a

system under development as different heterogeneous viewpoints.

In all of these projects, feedback from users regarding the usabil-

ity and UX of the DSMLs, to invoke positive feelings during the

interaction with the DSMLs, have been of paramount importance.

1
https://new.siemens.com/global/en/products/drives/sinamics.html

2
https://new.siemens.com/global/en/products/drives/electric-motors.html

4 USER EXPERIENCE IN MAGICDRAW
Definition 1 (User Experience in MagicDraw). We define

user experience (UX) for graphical DSMLs in MagicDraw as an in-
stantaneous intuitive feeling (positive or negative) of a user (modeller)
while interacting with the defined constructs of the graphical mod-
elling language and the graphical modelling tool, MagicDraw.

In other words, UX is primarily an intuitive feeling for users

during modelling with the aim that a good UX satisfies their mod-

elling expectations in easy, simple terms while also minimising the

number of interactions required between them and the modelling

tool. These interactions are the abilities of systems and users to

influence each other in order to reach a goal. We consider any pos-

itive feeling during the interaction with the modelling language

and the modelling tool as a good UX. A bad UX generally tends to

invoke negative feelings that not only leaves DSML users dissatis-

fied, but also introduces incomprehensibility between the different

stakeholders in their modelling.

Definition 2 (User Experience Design in MagicDraw). We
define user experience design (UXD) as any design decision taken by
a language engineer during the development of a graphical DSML in
MagicDraw, that ultimately fosters a good UX for a user.

The design decisions are realized and implemented by language

engineers in consultation with practitioners during the graphical

DSML development process. Any design decision should follow

the principles of human-centred design as defined in ISO 9241-210.

Language engineers must take into account the people who use

the graphical modelling language as well as other stakeholders

who are involved in the project. The following categorization of

UXD aspects in MagicDraw originate from experiences found in the

literature [23]. These UXD aspects are non-exhaustive but provide

a general foundation for graphical DSMLs, independent of their

modelling tools. Each of these design decisions is elaborated with a

rationale that provides a reasoning as to why the design decision is

required and consequently what its benefits are. These rationales

are also based on feedback from users and domain experts in various

projects (section 3). We also assign an identifier (in brackets) to

distinguish each design decisions based on their categories.

4.1 Categorization of UXD
4.1.1 Visual Design. Visual designs represent the aesthetics or

the look and feel of models and model elements and how they

are presented to users [38]. Model elements can be configured

in the form of various icons, colours, appearance, dialogs along

with their properties such as shape, size, and opacity. In other

words, the graphical concrete syntax of the DSML is enhanced using

the following visual designs to effectively represent the various

heterogeneous domains involved in modelling:

• Icon (V-1): an extra graphical element that is displayed upon

selection for a specific model element.

Rationale: Icons help to distinguish between different model

elements and convey real-world representations of a specific

entity with some meaning for a user.

• Colour (V-2): enhances the appearance of a model element

through a specific colour.

3

https://new.siemens.com/global/en/products/drives/sinamics.html
https://new.siemens.com/global/en/products/drives/electric-motors.html


MagicDraw, 1-1 D:\Rohit\MagicDraw\Projects\DSLs\HC DSL\files\HC DSL.mdzip FeatureDSL Elements May 5, 2022 7:05:24 PM

suggestedOwnedTypes =
Technical Product Line
Technical Product

suggestedOwnedDiagrams = "HC Variant Model
Diagram", "HC Variant Matrix"

representationText = "Product Line"

possibleOwners =
Technical Variant Package
Technical Product Line
Technical Feature Trash Bin

hideMetatype = true
hiddenOwnedTypes = Element
customizationTarget = Technical Product Line
category = "Elements"

allowedRelationships =
Exclude
Select
Concretize
RealizesCustomerVariant

abbreviation = "Technical Product Line"
«Customization»

«derivedPropertySpecification»-Realized Customer V...
«derivedPropertySpecification»-All Selected Features ...
«derivedPropertySpecification»-Needed Artifacts : Ele...
«derivedPropertySpecification»-selectedFeatures : El...

attributes

Technical Product Line
«Customization»

«derivedPropertySpecification»-Realized Customer Vari...
«derivedPropertySpecification»-All Selected Features : E...
«derivedPropertySpecification»-Needed Artifacts : Elem...
«derivedPropertySpecification»-selectedFeatures : Ele...

attributes

representationText = "Product"

hideMetatype = true

category = "Elements"

abbreviation = "Technical Product"

suggestedOwnedDiagrams = "Relation Map Diagram",
"Dependency Matrix", "HC Variant Model Diagram", "HC 
Variant Matrix"

possibleOwners =
Technical Variant Package
Technical Product Line
Technical Feature Trash Bin

hiddenOwnedTypes = Element
customizationTarget = Technical Product

allowedRelationships =
Concretize
Exclude
Select
Open
RealizesCustomerVariant

«Customization»

Technical Product
«Customization»

[Class]
Technical Product Line

«stereotype»

[Class]
Technical Product

«stereotype»

[Element]
Variant Reference

«stereotype»

[Element]
Variant

«stereotype»

Figure 1: An example of the configuration of the product line and product language elements for a feature model DSL using the
customization capabilities of MagicDraw.

Rationale: Colouring schemes such as red for errors or warn-

ings provoke an increased user attention [10] and subse-

quently aids in differentiating model elements.

• Modal Dialog (V-3): a graphical control element showing

information to users on making relevant modelling decisions.

Rationale: Modal dialogs direct important information to-

wards users and therefore require a user’s immediate atten-

tion. Although it is useful in preventing or correcting vital

errors, a drawback of a modal dialog is that it often interrupts

a user’s workflow.

• Custom View (V-4): a visual representation of the textual

information of model elements in the form ofmatrices, tables,

UML or free-form diagrams.

Rationale: Custom views represent textual information visu-

ally using specific diagrams that contains information in a

particular format. As each diagram serves a specific purpose,

language engineers must consider the suitability for such

diagrams and implement them in the language definition.

• Dynamic View Plugin (V-5): a GPL (e.g., Java) based plugin
for enabling dynamic filtering and/or displaying specific

model information (e.g., legends, annotations) on existing

UML diagrams or custom views.

Rationale: Dynamic view plugins help users focus on specific

model information, for example, supporting the enabling or

disabling of a power supply unit in a complex power system.

Other model information such as legends or annotations

from other users can also be toggled using a dynamic view

plugin, allowing quick display or removal of information on

different views based on certain filtering conditions.

4.1.2 Information Architecture. Information architecture is the

practice of structuring and organizing the constructs of the graph-

ical DSML in a way that they are easy to find and use [16]. As

heterogeneous systems grow in complexity, so does the complex-

ity in modelling. With a growing number of domain concepts and

functionalities that a graphical modelling tool provides, there is

a need to alleviate the concerns of users, novice or advanced, for

presenting the DSML and the functionalities of MagicDraw in a

structured and organized manner. We consider the following infor-

mation architecture designs important in graphical modelling:

• Layout (IA-1): determination of the position of model ele-

ments on custom diagrams based on the context of use.

Rationale: The placement of model elements on specific areas

of custom diagrams helps provide structure in complex mod-

elling scenarios. An example is the positioning of incoming

ports, generally to the left of a model element, or outgoing

ports, which are positioned to the right of a model element.

• Model Browser (IA-2): a visual representation of the hier-

archy of model elements. It is a hierarchical navigation tool

for managing the model data.

Rationale: Users often struggle to quickly navigate, find, or

arrange model elements, especially in complex DSMLs. A

4



model browser is designed to provide a sound hierarchical

structure and organization of such model elements.

• Perspective (IA-3): displaying a fixed set of modelling lan-

guage constructs or tool functionalities based on the kind of

user, novice or advanced.

Rationale: Often, novice users do not need additional tooling
functionalities or language constructs to start their mod-

elling. As the complexity of models increases, users tend to

use more advanced concepts that require the enabling of

advanced functionalities.

• Creation View (IA-4): an additional pane or window that

shows the logical grouping of different language elements,

standard UML diagrams and custom views during model

element creation on the model browser.

Rationale: Language elements that belong to a certain log-

ical grouping should not belong to other logical groups to

avoid disorder and inconsistencies in structuring and or-

ganizing the constructs of the modelling language. As an

example, model elements and custom views of functional

and non-functional requirements should exclusively belong

to a logical group that defines a requirements specification.

4.1.3 Interaction Design. Interaction designs in MagicDraw help

users interact effectively with the constructs of the graphical DSML

while focussing on the cognitive dimensions [7, 40]. Such designs

subsumes auto-completion of model element names, automatic

instantiation of model elements, and transformation of models

into other formalisms [36]. Interaction designs focus mostly on the

behaviour of the modelling language constructs. We consider the

following interaction designs important in graphical modelling:

• Project Template (ID-1): is a customized project pattern

that serves as a starting point for creating a project in a

predefined format.

Rationale: When users start modelling for the first time,

they often lack the know-how on creating a robust, well-

organizedmodel consisting of possiblemodel elements. Project

templates help such users with the automatic instantiation

of a model in a predefined format. An example is the auto-

matic creation of a basic traffic light model as states in a state

machine [25], with only the triggers or actions that need to

be additionally defined by the user.

• Default Naming Scheme (ID-2): a naming scheme au-

tomatically assigning default names or numbers to model

elements.

Rationale: Users often forget to assign relevant names, labels,

or numbering to model element to help them distinguish

from other model elements and to avoid naming conflicts. In

complex systems, this problem cascades drastically and adds

unnecessary debug times. An example of a default naming

scheme is to create a functional requirement as “Functional

Requirement x”, x being an automatic incremental number.

• Model Transformation (ID-3): a transformation of amodel

into another formalism.

Rationale: Model transformations are an effective way to

dynamically transform models into other formalisms during

design time. An example of a model transformation is to

transform a model from an optional feature to a mandatory

feature in a feature model during modelling. The user should

be able to simply achieve such a transformation.

• Custom User Interface (ID-4): a custom user interface (UI)

programmed using frontend frameworks (e.g., Java Swing) to

access and/or edit specific model and model elements based

on the DSML requirements.

Rationale: Some modelling tools may not provide out of the

box functionalities to achieve a specific purpose. A custom

user interface adds functionality to a modelling tool by pro-

viding enhanced capabilities. An example of a custom UI

is to edit or configure model information that may not be

possible using the modelling tool’s default functionalities.

4.1.4 Usability Heuristics. Usability heuristics provide guidelines

to language engineers in making decisions during graphical DSML

development that are ultimately beneficial to users in achieving

modelling with a greater sense of effectiveness and satisfaction [42,

43]. Usability heuristics, should therefore, complement the earlier

proposed design decisions. Since most graphical modelling tools

have an underlying Application Programming Interface (API) to

support in the development of DSMLs, we consider the follow-

ing usability taxonomy attributes, proposed and compared to UX

studies in APIs [39], important in graphical modelling:

• Knowability (Clarity) (U-1): constructs of the modelling

language should be self-explanatory.

Rationale: Readability is often a challenge users face dur-

ing modelling of complex scenarios. A clarity in terms of

names, types, structure, logical grouping of common model

elements, easy to comprehend modelling constructs, which

elements to use where and when, and the ability to design

model elements that serve a particular function, is critical to

improving the overall modelling experience.

• Knowability (Helpfulness) (U-2): the graphical DSML

should provide helpful annotations and documentation to

users and also identify deprecated elements.

Rationale: Documentation is a key aspect oftenmissing when

building DSMLs. Users are left to comprehend the meaning

and usage of modelling language constructs by themselves,

which is tedious and time consuming. Providing sufficient

documentation with good usage examples reduces the effort

needed to model complex elements and consequently limits

introducing errors during modelling.

• Operability (U-3): the graphical DSML should provide the

necessary domain-specific functionalities in addition to be-

ing extensible for further language compositions.

Rationale: DSML users should be presented with constructs

that are relevant to their domain and performs the specified

functionality. Model elements should be precise, universally

recognized, and flexible to allow language compositions and

extensibility to support effective model transformations.

• Robustness (U-4): the graphical DSML should be well-

formed and be free from bugs and vulnerabilities that could

potentially expose flaws in the system.

Rationale: EveryDSML should be thoroughly tested to ensure

that runtime errors are not encountered during modelling

with a graphical modelling tool. The DSML constructs should

be error free and checked for potential vulnerability leaks.

5



• Safety (U-5): the graphical DSML should not compromise

the confidentiality or the assets of a user.

Rationale: Data belonging to the user should not be exposed

to unauthorized entities at any cost. License of use, legality,

and the personal information of users and their data should

be protected to ensure the safety of users’ assets.

4.2 Scope of UXD
The overall topic of UXD is very wide and can potentially cover a lot

of scenarios. The design decisions we discuss are non-exhaustive,

yet important in the development of any graphical DSML and leads

to a good UX. Further, the combination of quality management

standards such as ISO standards along with the ergonomics of

human-system interaction provide best practices to improve graph-

ical DSMLs for a seamless UX. Language engineers should not only

focus on the aesthetics of modelling language constructs but also

account for design decisions that improve the general usability

of graphical modelling languages. It is also common for language

engineers to focus more on the functional aspects of the modelling

language. Constraints in project duration, resources, and budget in-

troduces trade-offs in design decisions that language engineersmust

consider. To this end, we propose the following three questions that

language engineers must answer during language development:

• Q1: Does a specific design decision fulfil a user’s needs or a

modelling goal?

• Q2: Is the design decision a cause for any potential conflict,

either between the constructs of the modelling language or

with the existing functionalities of the modelling tool?

• Q3: Is the design decision specific, non-subjective, and has

relevance to the domain in consideration?

Answers to the above questions help language engineers define

the scope of UXD. In principle, those design decisions that are not

aligned with the modelling goals should not be considered. These

must be examined with all the stakeholders in the project to avoid

compromising the overall quality and UX of a graphical DSML.

5 CASE STUDY
To demonstrate the significance and implications of the presented

UX guidelines, in this section, we show their effects using a DSML

in MagicDraw. In Figure 1, we presented an example of the con-

figuration of the language elements, product line, and product for

a feature model [11] DSML that has been developed for Siemens

Healthineers. Further, we reuse the feature model DSL building

block, in other DSMLs such as the one we developed for Siemens

Digital Industry (section 3). The customization capabilities inMagic-

Draw allow design decisions such as icon (V-1), colour (V-2), default

name (ID-2), and creation views (IA-4) to be incorporated directly

into the stereotype definitions and their corresponding customiza-

tions. Modal dialogs (V-3) are created using the MagicDraw Open

Java API capabilities and custom views (V-4) are created using the

customization capabilities offered by MagicDraw. The information

architecture and interaction designs are also configurable using the

MagicDraw configuration settings. Java based plugin mechanism

allow various plugins creation, such as our dynamic view plugin

(V-5). Plugins that enable model transformations (ID-3) and custom

UI (ID-4) are also integrated directly into the feature model DSML.

Figure 2 shows an illustration of a feature model created by a user

in MagicDraw and is based on the design decisions defined by the

language engineers. The model browser (IA-2) is a functionality of

MagicDraw that hierarchically organizes and structures the model

constructs, such that a user can find and navigate quickly through

model elements. A predefined feature model project template (ID-1)

is created automatically inside the model browser upon the cre-

ation of a new feature model project. This template structures and

organizes the various models configured internally as DSL building

blocks (section 3). This ensures that all the relevant models and

model elements are exclusive to their respective building blocks

and eventually help users in quicker navigation and ease of find-

ing models, thus addressing Q1. The predefined project template

includes a default naming scheme (ID-2), with automatic naming

and numbering conventions, such as “1 UseCase Model” and “2

Requirements Model”, so that users do not forget to add relevant

identifiers and are also guided to create models in a sequential

manner (U-1). Each of the model elements is also configured with

icons (V-1), and colouring (V-2) of features in the feature model.

While MagicDraw, by default, provides the ability to set icons and

colours, it is left to the language engineers to design the appropriate

icons and colouring to their model elements that effectively repre-

sents the domain in consideration. In our example, we designed the

product line icon to show four blue cubes whereas a product icon,

say P1, is configured to show only one blue cube and three other

white cubes, thus providing the distinction between a product line

and a product. Similarly, design differences between the icons of

different feature types, such as mandatory (with an exclamation

mark) and an optional feature (with a question mark), provides

the appropriate distinction between the different model elements

and helps improve the aesthetics for users during modelling. The

designs for the icons we built for our feature model are similar to

the icons used by fully featured product line engineering tools like

pure::variant [5]. We also note that novice users may not neces-

sarily be aware of standard representations, and therefore proper

documentation (U-2) for such constructs are also needed.

MagicDraw offers perspectives (IA-3), for enabling or disabling

certain MagicDraw functionalities that maybe beneficial to ad-

vanced users. In addition, language engineers can use this function-

ality to restrict certain modelling constructs that is only visible to

advanced users. In our example, the perspective (IA-3) is config-

ured to a beginner (a novice user), showing only basic MagicDraw

toolbar options that is a good starting point for novice users. A per-

spective for an advanced user allows additional functionalities such

as collaboration on cloud servers for project migration, advanced

context condition checking, and merge of different projects. Per-

spectives do not cause any potential conflicts between the feature

model DSML constructs or the existing functionalities of Magic-

Draw, thus addressing Q2. The custom variant matrix (V-4) shows

various product lines or products and their respective connections

to the various features. This is also supported by specifying a layout

in the matrix definition (IA-1) that combines the variants and the

features. In our example, we show the product lines and products

in the rows of the matrix, whereas the features are displayed on

the columns for the matrix. The legend information, enabled using

our dynamic view plugin (V-5), on the matrix shows the kinds of

relationships available for the product lines, products, or features.

6



Figure 2: Annotations of design decisions in MagicDraw for a feature model consisting of (1) product lines and products, (2)
mandatory and optional features, and (3) a UI for variant configuration. The figure shows enhanced aesthetics of models, the
structuring and organization of model elements, the interactive aspects focussing on the cognitive dimensions, and the various
usability aspects that complement the design decisions.

This would otherwise be not possible as matrices and tables, in con-

trast to class diagrams, composite structure diagram, and so on, do

not generally allow legends information by default in MagicDraw.

Additionally, the matrix is interactive, meaning users can directly

right click on an empty cell and choose a relationship, directed

from the variants to the features, thereby addressing Q3. Using the

MagicDraw Open Java API a dedicated variant configuration user

interface (ID-4) is shown to users, allowing for a convenient config-

uration of product lines or products. Based on the selection of users,

we can automatically create or remove relationships between the

model elements. Additional options, such as collapsing and expand-

ing of the hierarchical structure of features, and also the inclusion

of a search bar to effectively search for features in a complex or

long list of items, enhances the configuration of each variant. A

modal dialog (V-3), integrated with the whole variant configuration

UI (ID-4), presents additional documentation and issues that could

possibly occur during a variant configuration. In general, the usabil-

ity heuristics are applied throughout the DSML. They ensure that

modelling language constructs remain self-explanatory (U-1) and

are supported with helpful documentation and annotations (U-2).

Language engineers must also validate and verify the DSML and

any external source code, such as GPL code to create user interfaces

or dynamic view plugins, to ensure robustness (U-4) and safety

(U-5) of the modelling language and the modelling tool.

Figure 3 shows an illustration of how a custom view (V-4) is

integrated with the Java API based dynamic view plugin (V-5) in a

feature model to enhance the UX in a graphical environment. While

only the graphical modelling canvas is provided by MagicDraw, the

7



Figure 3: An example of a custom view (V-4) integrated with a dynamic view plugin (V-5), that filters diagram elements based
on a configured product line or product. The element E2 is marked as potential, which means that the element might or might
not be included in the products, but on the currently displayed product line it is still undecided. On the other hand, the element
E3 is marked as excluded, hence the respective connections are greyed out and the element is marked with a red cross.

configuration and structuring (IA-1) of model elements inside the

canvas is configured by the language engineers. During design time,

users can reposition and restructure these model elements based

on their needs, fostering flexibility in their modelling. The applied

view can be dynamically changed to select either a product line or a

product in a feature model tree. The selected configurations for this

particular variant, a product line in this case, is dynamically updated

and made visible to users in this connections diagram (V-4). In this

example, the electronic element E1 is configured to be included (IA-

1) using a custom user interface (ID-4). Therefore the electronics

and power connections to E1 is also made visible to this product

line on this custom view. The element E2 is marked as potential,

meaning it is currently not included in the currently displayed

product line, but could be included for a subsequent product in

the product line. In this scenario, the respective connections are

visible, although the element itself is greyed out for the product line.

Finally, element E3 is marked for exclusion for this product line,

meaning the features are excluded for subsequent products. Such a

scenario can exist when building a low cost variant of a product

line requiring less features. For E3, the connections are greyed out

and the element is marked with a red cross (V-1, V-2).

Model transformations (ID-3) in the form of refactoring of mod-

els, is achieved by changing the stereotype configuration of a model

element. A modal dialog (V-3) is created by language engineers us-

ing the MagicDraw customization capabilities to support such a

kind of model transformation. Figure 4 shows an example of a

model transformation (ID-3) for refactoring features in a feature

model. An already defined optional feature in a feature model can

be refactored to a mandatory feature. While such a transformation

is allowed during design time to enhance the modelling experience

and to introduce extensibility of the feature model language, it also

includes the risk of losing certain incompatible properties, which

is subsequently informed to users using a modal dialog (V-3).

Figure 5 illustrates an example of a creation view (IA-4), created

by language engineers, that lists the creation of only feature ele-

ments: mandatory, optional, or, and Xor. This additional window

8



Figure 4: An example of a model transformation (ID-3) in
the form of refactoring an optional feature to a mandatory
feature. While the modal dialog for selecting the target meta-
class lists all possible element conversion types, the risk of
losing incompatible properties is informed to users.

showing the logical grouping of language elements ensures that

users can only create the above mentioned four features under

the “4.1 Technical Features” package. This avoids inconsistencies

in model element creation, such as the creation of features under

the “4.2 Technical Variants” package, which introduces disorder

in logically structuring and grouping elements together. Further,

a default naming scheme (ID-2) not only assigns relevant names

and labels to features and variants, but also guides a user into first

creating the features, within “4.1 Technical Features” package. Next,

users create the variants, within “4.2 Technical Variants” package,

needed for a product line or a product configuration.

6 DISCUSSION
In this paper, we present definitions for UX and UXD for graphical

DSMLs in MagicDraw. Further, we discuss a categorized set of de-

sign decisions that help improve UX for all kinds of users to achieve

their modelling. Many traditional approaches to developing graphi-

cal DSMLs exist, but they often lack good UX aspects that language

engineers must consider during DSML development. The combi-

nation of a methodology along with a modelling tool elevates the

experience of using graphical DSMLs, which can get complex and

hard to use. In our years of experience in building graphical DSMLs

for industrial projects, we have explored MagicDraw as a graphical

modelling tool capable of providing the combination of a modelling

language, methodology and good UX for both novice and advanced

users. Relevant key stakeholders must be involved from the start

of the project. An iterative feedback loop should be established

Figure 5: An example illustrating the creation view (IA-4)
where the creation of a model element inside a Technical
Features package allows only a mandatory, or, Xor, or an
optional feature to be created.

between users (modellers), domain experts, and language engineers

to understand the specifics of the domain in consideration.

Language engineers are certainly not UX or programming ex-

perts, therefore, they often need additional trainings. Consequently,

design decisions taken by language engineers are aimed at improv-

ing the UX. Categorization of the design decisions achieves separa-

tion of concerns for language engineers possessing different skills.

Visual designs improve the aesthetics of the model elements and the

models. Models should be designed to look and feel similar to their

real world abstractions for easy understandability. Icons, colours,

modal dialogs, and custom views can be configured to model real

world abstracts. Information architecture design decisions help or-

ganize and structure the constructs of the modelling language so

that they are easy to find and use. Interaction designs help users

interact effectively with the modelling language while focussing

on the cognitive dimension. These designs alleviate problems of

building models from scratch with little guidance. Finally, usability

heuristics provide the necessary guidelines to language engineers in

developing graphical DSMLs that improve the effectiveness and sat-

isfaction of users. Therefore, we consider the taxonomy attributes

of knowability, operability, robustness, and safety most important.

The customization capabilities of MagicDraw allow design deci-

sions to be easily integrated into the DSML. Each language element

can be configured as per the project requirements and language

components consisting of such language elements, or stereotypes,

can be easily created and bundled together with MagicDraw. Func-

tionalities that are not provided by default can be achieved through

Java based plugin mechanisms in MagicDraw. Finally, all the com-

ponents are composed together into the final DSML that is used by

modellers to realize their modelling. Leveraging the customization

capabilities of MagicDraw allow language engineers to capture a

greater variety of design decisions that ultimately are beneficial

for all kinds of users. Further, building blocks from heterogeneous

domains are composed together that ultimately fosters re-usability

of language components and design decisions.

Generally, our design guidelines for improving the UX are tai-

lored to industrial DSMLs. However, they naturally apply to all

9



graphical DSMLs (e.g., research). We specifically focus on indus-

trial languages since they have a greater necessity for good UXD

decisions. While DSMLs in research often represent proofs of con-

cept that do not need to support all categories of visual design,

information architecture, interaction design, or usability heuristics,

this is essential for industrial applications as they are intended

for practical use. Therefore, although the guidelines have a more

general claim, they present particular challenges in the industrial

context. Specific guidelines, such as defining a custom UI for gen-

erating abstract syntax trees from a textual grammar, could also

be considered for non-graphical DSMLs but needs more research.

Additionally, while the presented guidelines are primarily based on

our experiences with the modelling tool MagicDraw, they gener-

ally apply to comparable frameworks as well, as the principle of

graphical modelling remains unchanged.

Naturally, no single solution exists for improving the UX in

graphical DSMLs. This is due to the fact that UX is a vastly sub-

jective topic covering a wide range of domains and is a research

area that transcends traditional usability heuristics. Often, language

engineers are not UX experts and struggle to effectively convey the

semantics of a modelling language. While some definitions of UX

can be reused in the context of graphical DSMLs, it is often overly

generic or tied to very specific technological spaces. We believe our

definitions of UX and UXD along with the categorization of UXD

aspects in MagicDraw will foster the discussion in improving UX

for graphical DSMLs across various modelling tools. Language engi-

neers should work cohesively with UX experts in integrating design

decisions during industrial DSML development for improving the

UX. Consideration should also be made for language engineers to

be trained with relevant domain and UX knowledge. The aspects

of UX described in our paper are not exhaustive, but in our experi-

ence of developing industrial DSMLs, ameliorates the challenges

faced by a multitude of users in graphical modelling. While these

design aspects may seem specific to MagicDraw as tooling func-

tionalities, we observe that other graphical modelling tools also

provide ample functionalities and customization capabilities for

the effective application of these design decisions. We intend on

exploring the application of the design aspects considered in this

study to other modelling tools as well. In this way, both the risk

to a vendor-locked scenario and the generalizability of the design

aspects can be overcome. This would also help us shape, refine, and

improve the design guidelines to be able to perform an elaborate

guideline review. Further, the scope of UX and UXDmust be defined

by language engineers and trade-offs in design decisions must be

carefully analysed according to project requirements, resources,

and costs. One key takeaway in developing industrial DSMLs across

various domains over the years is that these guidelines improve the

overall DSML experience of users and domain experts in modelling

effectively. To this end, we consider the proposed UX and UXD

guidelines in this paper a good reference point for future discus-

sions towards defining UX aspects for industrial DSMLs that is

independent of graphical modelling tools.

7 RELATEDWORK
Many studies exist on general design guidelines for DSLs and

DSMLs [3, 22, 35]. While these guidelines apply generically to DSLs,

our guidelines are tailored specific to graphical modelling tools and

focusses on industrial DSMLs designed for practical use. Studies on

usability driven development of DSLs [2, 8, 42] focus on usability

evaluation during the DSL development process to address usability

problems, but miss discussions on a variety of complex industrial

domains. In contrast, our guidelines have been applied over the

years on a wide variety of industrial domains (section 3). Often,

experimental usability evaluations [34] do not consider all stages

in the DSML development lifecycle. Our guidelines propose that

the design decisions are taken early on in the projects with all the

stakeholders involved. While crowdsourcing and collaborative tech-

niques for shaping graphical notations of DSLs have emerged [9, 32],

it allows for more subjectivity as it permits a wider spectrum of

users to collaborate, validate, and promote DSL acceptance. For the

description of interaction designs in our guidelines, the cognitive di-

mensions of notations framework (CDF) [7, 24] has been considered.

This is beneficial in covering cognitive dimensions aspects of hid-
den dependencies, diffuseness, and viscosity. While human-centred

design approaches for usability evaluation [43] have been reviewed,

we consider the principles of human-centred design defined in ISO

9241-210 [31] to be generally applicable. In our work, we consider

only certain DSL usability heuristics proposed by [39] important

in the context of industrial DSMLs. Further, challenges and future

direction for UX in model-driven engineering approaches is dis-

cussed in [1], whereas our work focusses on improving the general

usability and UX in industrial graphical DSMLs.

8 CONCLUSIONS
As systems become complex and heterogeneous in nature, chal-

lenges in developing industrial DSMLs that ameliorate UX have

emerged. Modelling tools such as MagicDraw aim to improve UX by

introducing a variety of customization capabilities during graphical

DSML development. While such tools provide sufficient function-

alities for developing a modelling language, there still exists the

challenge of providing UX and UXD guidelines for language en-

gineers. To address this challenge, we leverage the standards of

human-centred design and UX in general, and propose aspects of

UX and UXD for graphical modelling languages in MagicDraw,

which we hope is generalizable to other graphical modelling tools.

We categorize design decisions by utilising the wide range of cus-

tomization capabilities in MagicDraw: visual designs to improve

the aesthetics of model and model elements, information archi-

tecture to organize and structure the constructs of the modelling

language, interaction designs to help users interact seamlessly with

the modelling language and providing usability heuristics language

engineers should consider to help users model with effectiveness

and satisfaction. These aspects of UX and UXD improve the overall

experience of novice and advanced users in using graphical DSMLs.

Further, these guidelines serve as a reference point for future discus-

sions towards defining UX aspects for graphical DSMLs. Naturally,

UX is a subjective topic and our proposed list of design decisions

are non-exhaustive. We consider discussions on improving UX for

graphical modelling for every kind of user important. We believe

guidance for language engineers in developing industrial DSMLs

that combines various UX aspects ultimately improves the usability

and UX in graphical modelling that is independent of graphical

modelling tools.

10



REFERENCES
[1] Silvia Abrahão, Francis Bourdeleau, Betty Cheng, Sahar Kokaly, Richard Paige,

Harald Stöerrle, and Jon Whittle. 2017. User experience for model-driven engi-

neering: Challenges and future directions. In 2017 ACM/IEEE 20th International
Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE,
229–236.

[2] Ankica Barišić, Vasco Amaral, and Miguel Goulão. 2018. Usability driven DSL

development with USE-ME. Computer Languages, Systems & Structures 51 (2018),
118–157.

[3] M. Becker and J.L. Diaz-Herrera. 1994. Creating domain specific libraries: a

methodology and design guidelines. In Proceedings of 1994 3rd International
Conference on Software Reuse. 158–168. https://doi.org/10.1109/ICSR.1994.365788

[4] Lorenzo Bettini. 2016. Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd.

[5] Danilo Beuche. 2008. Modeling and building software product lines with pure::

variants. In Software Product Line Conference, International. IEEE Computer Soci-

ety, 358–358.

[6] Nigel Bevan, James Carter, and Susan Harker. 2015. ISO 9241-11 revised: What

have we learnt about usability since 1998?. In International conference on human-
computer interaction. Springer, 143–151.

[7] Alan F Blackwell, Carol Britton, Anna Cox, Thomas RG Green, Corin Gurr,

Gada Kadoda, Maria S Kutar, Martin Loomes, Chrystopher L Nehaniv, Marian

Petre, et al. 2001. Cognitive dimensions of notations: Design tools for cognitive

technology. In International conference on cognitive technology. Springer, 325–341.
[8] Holger Stadel Borum, Henning Niss, and Peter Sestoft. 2021. On Designing

Applied DSLs for Non-programming Experts in Evolving Domains. In 2021
ACM/IEEE 24th International Conference on Model Driven Engineering Languages
and Systems (MODELS). IEEE, 227–238.

[9] Marco Brambilla, Jordi Cabot, Javier Luis Cánovas Izquierdo, and Andrea Mauri.

2017. Better call the crowd: using crowdsourcing to shape the notation of domain-

specific languages. In Proceedings of the 10th ACM SIGPLAN International Confer-
ence on Software Language Engineering. 129–138.

[10] Scott Brave and Cliff Nass. 2007. Emotion in human-computer interaction. In

The human-computer interaction handbook. CRC Press, 103–118.

[11] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas

Wortmann. 2019. Systematic Composition of Independent Language Features.

Journal of Systems and Software 152 (June 2019), 50–69. https://doi.org/10.1016/

j.jss.2019.02.026

[12] Fabien Campagne. 2014. The MPS language workbench: volume I. Vol. 1. Fabien
Campagne.

[13] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. 2009. Vari-

ability within Modeling Language Definitions. In Conference on Model Driven
Engineering Languages and Systems (MODELS’09) (LNCS 5795). Springer, 670–684.
http://www.se-rwth.de/publications/Variability-within-Modeling-Language-

Definitions.pdf

[14] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard Rumpe.

2015. Conceptual Model of the Globalization for Domain-Specific Languages.

In Globalizing Domain-Specific Languages (LNCS 9400). Springer, 7–20. http:

//www.se-rwth.de/publications/Conceptual-Model-of-the-Globalization-for-

Domain-Specific-Languages.pdf

[15] Gerald Czech, Michael Moser, and Josef Pichler. 2018. Best practices for domain-

specific modeling. A systematic mapping study. In 2018 44th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). IEEE, 137–145.

[16] André de Lima Salgado, Fabrício Horácio Sales Pereira, and André Pimenta

Freire. 2016. User-Centred Design and Evaluation of Information Architecture

for Information Systems. In Handbook of Research on Information Architecture
and Management in Modern Organizations. IGI Global, 219–236.

[17] Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais, and Jean-

Marc Jézéquel. 2015. Melange: A Meta-language for Modular and Reusable

Development of DSLs. In 8th International Conference on Software Language
Engineering (SLE). Pittsburgh, United States.

[18] Enterprise Architect 2022. . Retrieved May 10, 2022 from https : / /

sparxsystems.com/

[19] Jean-Marie Favre, Dragan Gasevic, Ralf Lämmel, and Ekaterina Pek. 2010. Em-

pirical language analysis in software linguistics. In International Conference on
Software Language Engineering. Springer, 316–326.

[20] Martin Fowler. 2010. Domain-specific languages. Pearson Education.

[21] Robert France and Bernhard Rumpe. 2007. Model-driven Development of Com-

plex Software: A Research Roadmap. Future of Software Engineering (FOSE
’07) (May 2007), 37–54. http://www.se-rwth.de/publications/Model-driven-

Development-of-Complex-Software-A-Research-Roadmap.pdf

[22] Ulrich Frank. 2013. Domain-specific modeling languages: requirements analysis

and design guidelines. In Domain engineering. Springer, 133–157.
[23] Jesse James Garrett. 2010. The elements of user experience: user-centered design for

the web and beyond. Pearson Education.

[24] Thomas RGGreen. 1989. Cognitive dimensions of notations. People and computers
V (1989), 443–460.

[25] Rohit Gupta, Sieglinde Kranz, Nikolaus Regnat, Bernhard Rumpe, and An-

dreas Wortmann. 2021. Towards a Systematic Engineering of Industrial

Domain-Specific Languages. In 2021 IEEE/ACM 8th International Workshop
on Software Engineering Research and Industrial Practice (SE&IP). IEEE, 49–56.
http://www.se-rwth.de/publications/Towards-a-Systematic-Engineering-of-

Industrial-Domain-Specific-Languages.pdf

[26] David Harel and Bernhard Rumpe. 2004. Meaningful Modeling: What’s the

Semantics of ”Semantics”? IEEE Computer 37, 10 (October 2004), 64–72. http://

www.se-rwth.de/~rumpe/publications20042008/Meaningful-Modeling-Whats-

the-Semantics-of-Semantics.pdf

[27] Marc Hassenzahl. 2008. User Experience (UX): Towards an Experiential Perspec-

tive on Product Quality. In Proceedings of the 20th Conference on l’Interaction
Homme-Machine (Metz, France) (IHM ’08). Association for Computing Machinery,

New York, NY, USA, 11–15.

[28] Katrin Hölldobler, Oliver Kautz, and Bernhard Rumpe. 2021. MontiCore Lan-
guage Workbench and Library Handbook: Edition 2021. Shaker Verlag. http:

//www.monticore.de/handbook.pdf

[29] IBM Rhapsody 2022. . Retrieved May 10, 2022 from https://www.ibm.com/

products/systems-design-rhapsody/

[30] ISO 9241-161:2016(E) 2016. Ergonomics of human-system interaction — Part 161:
Guidance on visual user-interface elements. Standard. International Organization
for Standardization, Geneva, Switzerland.

[31] ISO 9241-210:2010(E) 2010. Ergonomics of human system interaction - part 210:
Human-centred design for interactive systems. Standard. International Organiza-
tion for Standardization, Geneva, Switzerland.

[32] Javier Luis Cánovas Izquierdo and Jordi Cabot. 2016. Collaboro: a collaborative

(meta) modeling tool. PeerJ Computer Science 2 (2016), e84.
[33] Timo Jokela, Netta Iivari, Juha Matero, and Minna Karukka. 2003. The Standard

of User-Centered Design and the Standard Definition of Usability: Analyzing ISO

13407 against ISO 9241-11. In Proceedings of the Latin American Conference on
Human-Computer Interaction (Rio de Janeiro, Brazil) (CLIHC ’03). Association for

Computing Machinery, New York, NY, USA, 53–60.

[34] Juha Kärnä, Juha-Pekka Tolvanen, and Steven Kelly. 2009. Evaluating the use of

domain-specific modeling in practice. In Proceedings of the 9th OOPSLA workshop
on Domain-Specific Modeling.

[35] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler,

and Steven Völkel. 2009. Design Guidelines for Domain Specific Languages. In

Domain-Specific Modeling Workshop (DSM’09) (Techreport B-108). Helsinki School
of Economics, 7–13. http://www.se-rwth.de/publications/Design-Guidelines-

for-Domain-Specific-Languages.pdf

[36] Thomas Kühne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and Manuel

Wimmer. 2009. Systematic transformation development. Electronic Communica-
tions of the EASST 21 (2009).

[37] MagicDraw Enterprise 2022. . Retrieved May 10, 2022 from https : / /

www.3ds.com/products-services/catia/products/no-magic/magicdraw/

[38] Daniel Moody. 2009. The “Physics” of Notations: Toward a Scientific Basis for

Constructing Visual Notations in Software Engineering. IEEE Trans. Softw. Eng.
35, 6 (Nov. 2009), 756–779.

[39] Eduardo Mosqueira-Rey and David Alonso-Ríos. 2020. Usability heuristics for

domain-specific languages (DSLs). In Proceedings of the 35th Annual ACM Sym-
posium on Applied Computing. 1340–1343.

[40] Jakob Nielsen. 1994. Enhancing the explanatory power of usability heuristics.

In Proceedings of the SIGCHI conference on Human Factors in Computing Systems.
152–158.

[41] Jakob Nielsen. 2000. Designing web usability. (2000).

[42] Ildevana Poltronieri, Avelino Francisco Zorzo, Maicon Bernardino, and Marcia

de Borba Campos. 2018. Usa-dsl: usability evaluation framework for domain-

specific languages. In Proceedings of the 33rd Annual ACM Symposium on Applied
Computing. 2013–2021.

[43] Ildevana Poltronieri Rodrigues, Márcia de Borba Campos, and Avelino F Zorzo.

2017. Usability evaluation of domain-specific languages: a systematic literature

review. In International Conference on Human-Computer Interaction. Springer,
522–534.

[44] Henderik A. Proper and Marija Bjekovic. 2019. Fundamental challenges in

systems modelling. EMISA Forum 39, 1 (2019), 13–28.

[45] Nikolaus Regnat. 2018. Why SysML does often fail - and possible solutions. In

Modellierung 2018, 21.-23. Februar 2018, Braunschweig, Germany. 17–20.
[46] Nikolaus Regnat, Rohit Gupta, Nico Jansen, and Bernhard Rumpe. 2022. Im-

plementation of the SpesML Workbench in MagicDraw. In Modellierung 2022
Satellite Events. Gesellschaft für Informatik e.V., Bonn, 61–76. https://doi.org/

10.18420/modellierung2022ws-008

[47] Bernhard Rumpe. 2016. Modeling with UML: Language, Concepts, Methods.
Springer International. http://www.se-rwth.de/mbse/

[48] Juha-Pekka Tolvanen. 2006. MetaEdit+ integrated modeling and metamodel-

ing environment for domain-specific languages. In Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming systems, languages, and
applications. 690–691.

11

https://doi.org/10.1109/ICSR.1994.365788
https://doi.org/10.1016/j.jss.2019.02.026
https://doi.org/10.1016/j.jss.2019.02.026
http://www.se-rwth.de/publications/Variability-within-Modeling-Language-Definitions.pdf
http://www.se-rwth.de/publications/Variability-within-Modeling-Language-Definitions.pdf
http://www.se-rwth.de/publications/Conceptual-Model-of-the-Globalization-for-Domain-Specific-Languages.pdf
http://www.se-rwth.de/publications/Conceptual-Model-of-the-Globalization-for-Domain-Specific-Languages.pdf
http://www.se-rwth.de/publications/Conceptual-Model-of-the-Globalization-for-Domain-Specific-Languages.pdf
https://sparxsystems.com/
https://sparxsystems.com/
http://www.se-rwth.de/publications/Model-driven-Development-of-Complex-Software-A-Research-Roadmap.pdf
http://www.se-rwth.de/publications/Model-driven-Development-of-Complex-Software-A-Research-Roadmap.pdf
http://www.se-rwth.de/publications/Towards-a-Systematic-Engineering-of-Industrial-Domain-Specific-Languages.pdf
http://www.se-rwth.de/publications/Towards-a-Systematic-Engineering-of-Industrial-Domain-Specific-Languages.pdf
http://www.se-rwth.de/~rumpe/publications20042008/Meaningful-Modeling-Whats-the-Semantics-of-Semantics.pdf
http://www.se-rwth.de/~rumpe/publications20042008/Meaningful-Modeling-Whats-the-Semantics-of-Semantics.pdf
http://www.se-rwth.de/~rumpe/publications20042008/Meaningful-Modeling-Whats-the-Semantics-of-Semantics.pdf
http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf
https://www.ibm.com/products/systems-design-rhapsody/
https://www.ibm.com/products/systems-design-rhapsody/
http://www.se-rwth.de/publications/Design-Guidelines-for-Domain-Specific-Languages.pdf
http://www.se-rwth.de/publications/Design-Guidelines-for-Domain-Specific-Languages.pdf
https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
https://doi.org/10.18420/modellierung2022ws-008
https://doi.org/10.18420/modellierung2022ws-008
http://www.se-rwth.de/mbse/


[49] Markus Voelter. 2009. Best Practices for DSLs and Model-Driven Development.

Journal of Object Technology 8, 6 (2009), 79–102.

[50] Jon Whittle, John Hutchinson, Mark Rouncefield, Håkan Burden, and Rogardt

Heldal. 2013. Industrial adoption of model-driven engineering: Are the tools

really the problem?. In International Conference on Model Driven Engineering
Languages and Systems. Springer, 1–17.

12


	Abstract
	1 Introduction
	2 Background
	3 Modelling in MagicDraw
	4 User Experience in MagicDraw
	4.1 Categorization of UXD
	4.2 Scope of UXD

	5 Case Study
	6 Discussion
	7 Related Work
	8 Conclusions
	References

