
Design, Implementation, and Test of a

Multi-Model Systolic Neural-Networli.

Accelerator

THIERRY CORNU!, PAOLO IENNE 1
, DAGMAR NIEBUR2

, PATRICK THIRAN 1
, AND

MARC A. VIREDAZ3

1Swiss Federal Institute of Technology, Centre for Neuro-Mimetic Systems, IN-] Ecublens, CH-1015 Lausanne, Switzerland; e-mail:

{cornu, ienne ,thiran }@ep.fi. ch
2Now with]et Propulsion Laboratory, California Institute of Technology, Pasadena, CA; e-mail: niebur@telerobotics.jpl.nasa.gov
3Now with NEC Research Institute, 4 Independence Way, Princeton, lV] 08540; e-mail: viredaz@research.nj.nec.com

ABSTRACT

A multi-model neural-network computer has been designed and built. A compute-inten­

sive application in the field of power-system monitoring, using the Kohonen neural

network, has then been ported onto this machine. After a short description of the system,

this article focuses on the programming paradigm adopted. The performance of the

machine is also evaluated and discussed. © 1996 by John Wiley & Sons, Inc.

1 INTRODUCTION

I\eural networks are gaining recognition as a novel

technique to solve large classes of problems better

than by using traditional algorithms. One of the

problems that neural networks encounter in prac­

tical applications is the huge computing power re­

quired. Conversely, one of the aspects that make

neural networks interesting is their high degree of

intrinsic parallelism. The union of these two ele­

ments is a solid ground for dedicated computers

designed for connectionist algorithms [6].

This article presents a special purpose machine

on which several popular neural algorithms can be

Received November 1994
Revised April 1995

© 1996 by John Wiley & Sons. Inc.

Scientific Programming, Vol. S. pp. 4"?-61 (1996)

CCC 1058-9244/96/01004"?-15

run. The system achieves massive parallelism

thanks to a systolic array with up to 40 X 40 pro­

cessing elements (PEs). This article aims at out­

lining the many problems that arise in practice for

a user to program and use this kind of machine.

For this purpose, the hardware structure of the

machine is overviewed in Section 2. Section :3

shows how the machine is programmed .. from the

implementation of low-level routines for the sys­

tolic array up to the user-library routines. Each of

these software layers raises different problems in

terms of performance: The array microcode has to

exploit the hardware in the best way. whereas the

higher-level routines should hide all the approxi­

mations and algorithmic modifications introduced

by the dedicated hardware. The performance as­

sessment is discussed in Section 4. Finallv .. the

use of the system for an application of the Ko­

honen network in power-system security assess­

ment is described in Section 5. Section 6 draws

some conclusions on the whole of the project.

48 COR:\IL ET AL.

2 MANTRA I SYSTEM

The MAI\TRA l computer is a massively parallel

machine dedicated to neural-network algorithms

(Fig. 1). It has been designed to provide the basic

operations for the following models: (1) single­

layer networks (Perceptron and delta rule); (2)

multilayer feedforward networks (back-propaga­

tion rule); (3) fully connected recurrent networks

(Hopfield model); and (4) self-organizing feature

maps (SOF~S; Kohonen model). A description of

these algorithms can be found in any classic intro­

ductory book on neural networks (e.g ... [4]). The

Kohonen feature maps are used in Section 3 to

illustrate how these algorithms are mapped on the

svstem.

The ~Al\,TRA l accelerator is based on a bidi­

mensional systolic array composed of custom PEs

named GEI\ES IV. In the present section, the

hardware of the machine is overviewed starting

from its system integration in a network of work­

stations and proceeding down to the internal ar­

chitecture of the machine and of its computational

core.

2.1 MANTRA I System Integration

The YIAI\TRA I machine is controlled bv a

T.\'IS320C40 digital signal processor (DSP) from

Texas Instruments. Two of its six eight-bit built-in

communication links connect the machine to an­

other TMS320C40 processor inside a SCI\

SPARCstation (Fig. 2). From a software point of

view, the intermediate DSP is transparent. The

MAl\TRA I machine (the systolic array and its

control processor) is completely controlled by the

front-end workstation but could be easih· inte­

grated into any other computer system based on

TMS320C40 processors.

FIGURE 1 The MA:\ITRA I svstem.

.\1CL TI-:\-IODEL 1'\EURAL-~ETWORK ACCELERATOR 49

somawhere@epfl.ch

ll ethemet

user workstations

ll
SIMDmodule

Control module 1

DSP links EJ
000000

-oooooo

front-end workstation~
with internal DSP bo~ ~

Mantra client process Mantra server process

-oooooo
000000
000000
000000

MANTRA I

FIGURE 2 The :\-lA~TRA I system integration.

2.2 MANTRA I System Architecture

The structure of the ~IANTRA 1 svstem [18] is

shown in Figure 3. The control module is the SISD

system based on the DSP. It controls the parallel

or 8/MD module by dispatching horizontally

coded instructions through an FIFO. The Sl\1D

module is frozen when no instruction is pending.

Three FIFOs are used to feed data to the Sl~lD

module and two to retrieve results. Temporary

results can be held in four static RA.\1 banks con­

nected to the systolic array. The large DSP dy­

namic RAYI can be used when the capacity of the

Microprocessor Bus

TMS320C40

static RAM is insufficient to contain the applica­

tion. Two units based on look-up tables, noted

r:r(v) and r:r'(v), are inserted on the data path and

are typically used to compute the nonlinear func­

tion of neuron outputs. The latter unit is coupled

with a linear arrav of auxiliarv arithmetic units . .
called GACD1 required in some phases of super-

vised algorithms.

2.3 GENES IV PE

The systolic array at the heart of the SI.\ID part of

the machine is a square mesh of GENES IV PEs

w
.. ----------------------~~Memory&

r/w FIFOs

d

14-,.._loiMemory &

GACDl Array wr.FIFO

·--------------------------------------

Control module SIMDmodule

FIGURE 3 Architecture of the MAI'\TRA I machine.

50 COR:\L ET AL.

[9]. each connected by serial lines to its four

neighbours, as shown in Figure 4. All input and

output operations are performed by the PEs lo­

cated on the north-west to south-east diagonal.

Each PE, whose structure is shown in Figure 4,

contains one element of a matrix \V (weight unit).

The WGTin-WGTout path (shown in Fig .. ') but

omitted in Fig. 4) is used to load and retrieve rna­

trices. Two vectors jh and l' are presented as input

at each cycle. Table 1 shows the operations that

can be performed W1 represents the i-th row of the

stored matrix, usually containing the weight,; of a

neuron. These operations have been chosen to

implement most popular neural-network algo­

rithms including those mentioned at the beginning

of Section 2.

All of the operations may also be performed on

the transposed matrix WT (with jh and jv as well

as Oh and ()v exchanged). This i,.; shown in Table

1 only for the operation mprodT.

For problem,; involving matrices and vectors

larger than the physical array size. the task can be

divided in small submatrices and subvectors

treated sequentially. The partial s urns of ,.;everal

consecutive mprod, mprodT. and euclidean op­

erations can be accumulated thanks to the addi­

tive term jh or iv. The weight unit consists of two

registers: one is used for the current cornputation.

whereas the other is connected to the WGTin­

WGTout path. This makes it possible to load a

matrix in the background, without any overhPad.

Because an instruction is associated with each

pair of input vectors. a new operation can be

started on each cycle and processed in a pipelined

fashion. The result is available 2:\' cvcles later.

The computation is performed on signed fixed­

point values. The inputs and the weights are

coded on 16 bits. The weights have 16 additional

bits. but these are used only during learning

r 1
ov

1

/h
1 0~

r 2
ov

2

/h
2 0~

r 3 o;
/h

3
oh

3

r 4 o;
/h

4 0~

FIGURE 4 Architecture of the GE:\ES IY systolic ar­

ray. Sample 4 X 4 arrav.

(weight update operations). Outputs are com­

puted on 40 bits.

A VLSI chip with a subarray of 2 X 2 PEs ha,;

been designed in CSH)S 111-m standard-cell tech­

nology. It contains ?1.690 transistors (:3.1 ?Y

standard cells) on a die measuring 6.::3 X 6.1mm~.

3 MANTRA I SOFTWARE

Several problems arise when putting to work a

specialized computer like \IA~TRA I. SomP of

them hardly come to light at Parly stages of proto­

type testing and only manifest themselve,.; when

running a real application. LsPrs are not ,;up­

posed to program ::\1Al\TRA I directly but haYe a

Table 1. GENES IV Array Basic Operating Modes

Operation

mprod
mprodT

euclidean

min

max

hebbian

kohonen

w. l' + jh
jh

II' - WTI 2
+ Il'

Il' if Il' s min1 (I)J
+oo otherwis~

Il' if n' 2': maxi (I)J
-oo otherwise

jh

jh

l'
wr. jh + l'

l'

l'

w

w
w
w

w

\V

\V+ih·I''

W, + Il' · •I'' - W;l

:\1LLTI-.\10DEL :'\ELRAL-:\Er\XORK ACCELERATOR 51

set of libraries available on the front -end worksta­

tion.

The first neural-rwtwork algorithm imple­

mented on YlANTRA I is the Kohonen's SOF~l.

because this model is required by the target appli­

cation described in Section .'":>.

Section ;3 .1 is denJted to the description of the

Kohonen algorithm. Section 3.2 describes the

mapping of the Kohunen routine on the systolic

array to yield a basic Kohonen program in fixed­

point arithmetics. Section :~L3 outlines the prob­

lems in the actual production of microcode for the

array and describes the approach taken to handle

the ta,.;k. Finallv. Section 3.4 contain:-; the details

on the software interface between the lower pro­

gramming level and the user level. and explains

how this interface hides from the user some con­

straints specific to the systolic hardware.

3.1 Kohonen SOFMs

Kohonen',.; SOF~ls are among the most widelY

used unsupervised artificial neural- network

models. Their learning algorithm performs a non­

linear mapping from a high-dimensional input

space onto a set of neurons [1 0'. These neurons

are organized as regular maps and a topological

relation between them is defined. Two-dimen­

sional grids or meshes, as shown in Figure 6. are

typical topologies, hut hexagonal grids or more

exotic topologies are possible as well.

All neurons share the same inputs. Training is

an iterative process: For every input vector i. .. its

similarity with the weights of each neuron i is mea­

sured in then-dimensional input :-;pace. The most

frequently used similarity measure i:-; the Euclid­

ean distance:

fori=1.2 m: (1)

Other common similaritY measures include the

Manhattan distance and the ,.;calar product. Csu­

ally, the input space has a much higher dimen­

sionality than the topological space of the map.

The winner neuron IE {1. 2 m} is defined

as the neuron whose weight vector is the closest to

the input vector:

~in (i., WI) :s: ~i" (i., W;).

ViE {1, 2, m}. (2)

Nin v~GTin

INSTRin

Wout

~

D
Weight

Unit

~

Win

Sout WGTout

Nout

Instr. Unit

L I
lf.

~ 11 r--

u

Arithmetic

Unit

0 __Jl
I PS

I'
t

Uout Sin Uin

INSTRout

Lin

Ein

Lout

Eout

FIGURE 5 Basic structure of a GEI\ES I\ PE.

During the learning phasP .. the wt>ights arc up­

dated as:

fori = L 2. .. m: (:3:

where ~map (i, I) is the distance between neuron i

and the winner I on the topological map. The

neighborhood function 'A restricts the update to

neurons close to the winner. The basic idea of the

update rule is to bring the winner and its neigh­

bors closer to the input vector. The uduptotiun

goin a should be decreasing during the training

process to ensure its convergence.

Apart from the differences arising from the

choice of the similarity measure ~in and the dis­

tance on the map ~map' variations exist in the way

the winner is detected and the weights updated

[12].

3.2 Mapping Kohonen Networks on the
Systolic Array

On ~Al'\TRA L the first step of the computation

consists of evaluating the Euclidean distances be­

tween the input vector and the synaptic weights of

each neuron, with the euclidean operation (Ta­

ble 1). The winner is then implicitly identified by

processing the vector containing the m distances

(m being the number of neurons) with the min

operation. The sigma unit is used to convert +x to

0 and any other value to 1. The result is a binary

vector of m elements, all equal to 0 except for the

neuron(s) closest to the input.

52 COR!\'U ET AL.

The vector contammg the m elements a ·

A(~map(i, /))is computed by multiplying the above

binary vector by an m X m matrix A (mprod oper­

ation). The elements of this symmetric matrix are

AiJ = a· A(~map(i,j)) and therefore contain all the

information about the topology of the map. The

advantage of this formulation is that there are no

constraints on the dimensionality of the map, on

the arrangement of the neurons (orthogonaL hex­

agonal, or other grids), nor on the shape of the

neighborhood (e.g"' rectangular or triangular).

Finally the weights c~n be modified by injecting

this update vector as Jh and the original input

vector as iv, and by performing the kohonen op­

eration. ~T eight matrices larger than the systolic

array can be decomposed into submatrices .. which

are then time-multiplexed on the array.

As it is the case with most dedicated hardware

systems for neural networks, the described map­

ping produces an algorithm that is, in "everal re­

spects, slightly different from the basic algorithm.

The main differences are:

1. Fixed-point arithmetic. GE:\"ES IY PEs are

designed for fixed-point number represen­

tation. In the absence of general analytical

results on the required precision (see abo

Section 4.3). simulations of the application

described in Section 5 have been used to

determine the precision to be implemented.

2. Balch update. A characteristic of the sys­

tolic architecture is that the time required to

produce a result (latency) is much longer

than the delav between two successive in­

puts (inverse of the throughput). Therefore.

it is natural to process batches of input vec­

tors to hide the latency. For this purpose.

the same weights are used to compute the

distances for all these vectors. Hence, the

last ones of the batch do not take advantage

of the weight modifications that would have

resulted from the first ones.

3. Learning parameter discretization. In the

described implementation, all the informa­

tion on the topology of the map is contained

in a relatively large matrix. This matrix de­

pends on the learning and neighborhood

coefficients a and A, both evolving with time

during the learning process. Whereas for

some shapes of the A function an update of

the topology matrix inside the array is possi­

ble, the current implementation recomputes

a new matrix in the SISD module. This im­

plies that, for efficiency purposes, the learn-

ing factors a and A, instead of continuously

evolving during the learning process, should

be changed as seldom as possible. HoweveL

this does not appear as a major obstacle to

the algorithm convergence.

4. J1ultiple winners. In traditional implemen­

tations, when multiple neurons have the

same minimal distance from the input, one

is arbitrarily selected (e.g., the one with the

smallest index): on the contrary, in MAJ'\­

TRA I all these neurons get updated. This

multiple update is similar to the sequential

presentation of some input vectors, each

slightly closer to one of the winners. Hence ..

it represents a small distortion of the proba­

bility distribution and should not hinder the

convergence of the network. A more severe

consequence is that. if two or more neurons

have the same weights and the neighbor­

hood is nulL the neurons can no longer be

separated, therefore reducing the mapping

capabilities of the network. The weight reso­

lution of YlAJ'\TRA I is rather high and this

problem should seldom occur. Additional

techniques could also be applied to mini­

mize the problem in critical cases.

3.3 Scheduling the Systolic Array

Hand-coding programs for YIAJ\TRA I is an ex­

tremely complex task. As shown in Figure 3, a

single instruction controls all pipeline stages of the

SIMD module in parallel. This implies that an in­

struction may depend on several activities started

at different times in the past and sometimes con­

ceptually independent. The complexity and re­

configurability of the pipeline make it difficult to

mimic its delays in the instruction decodeL How­

ever, it would be desirable to code the whole pro­

cessing of a data set in the same instruction.

The basic idea that has been implemented is to

describe complete operations on groups of data

independently from other concurrent activities

[5]. Operations include, for im;tance, the com­

plete matrix downloading process or the computa­

tion of a set of distances.

Each of these algorithm building blocks, called

microtasks (MT), is similar to a microoperation in

a microcoded processor, and alleviates the pro­

grammer from dealing with low-level machine de­

tails. In contrast to traditional microoperations,

MTs extend over many cycles, often in the order of

twice the number of PEs per side. If no special

action is taken, executing MTs in sequence causes

MCL Tl-.\lODEL :\IECRAL-:\ETWORK ACCELERATOR 53

the parallelism of the machine to be lost. :MTs

should start as early as the required resources are

available and, in general, before all phases of the

previous MT have been completed. This process is

very similar to issuing instructions in a pipelined

processor: It requires verifying the availability of

resources and data and generating ,;tall cycles if

these conditions are not met.

In contrast to what happens in pipelined pro­

cessors, here the sections of the pipeline are heav­

ily interdependent and data are synchronously

transmitted between stages. Therefore, if one

stage is stalled, the others will be halted as well.

Hence, hazards must be forecasted and an MT

can only be started if it can be completely per­

formed. The blocks of microcode are therefore

treated as rigid entities and the program is com­

pacted by overlapping each YlT with the neigh­

boring ones, provided that no conflict arises. For

each cvcle. the horizontallv coded MAI\TRA lin-. .
struction is then determined by the .\1Ts taking

place in the different parts of the machine.

As a result of this kind of program optimization ..

the programmer can describe all activities as if

completely serialized, including typically concur­

rent tasks such as background weight matrix ex­

changes. Compared to a hypothetical hand-coded

implementation, the loss in performance observed

in the implementation of the Kohonen algorithm

appears negligible [5]. The compaction algorithm

is also very quick. making it possible to prepare

the horizontal code just before run-time when the

problem size is completely defined.

3.4 High-level Implementation

Requirements

The low-level Kohonen procedure does not hide

all the machine-dependent aspects that should be

made transparent to the user. A further software

layer is required with two primary purposes: (1)

automatic conversion of user's floating-point data

(weights, input vectors) to and from fixed-point

representation and (2) discrete variation of all pa­

rameters that should evolve in time during the

learning process, namely the learning coefficient a

and the radius of the neighborhood function A..

Constraints Imposed by the Hardware

The hardware architecture imposes a few con­

straints in order to get the best performance from

the MANTRA I machine. First, the optimal epoch

should be at least 2N, where N is the number of

PEs per side in the bidimensional systolic array.

This is because 2N is also approximately the

depth of the pipeline realized by the systolic ma­

chine. In the current configuration, N = 20 so that

the optimal epoch is T = 40 (larger values do not

improve the parallelization but make the algo­

rithm even more different from the sequential ver­

sion). The number of input vectors passed to one

call of the low-level procedure should be a multi­

ple of the chosen epoch, also for performance

considerations.

Another set of constraints concerns the number

of input vectors and the epoch. Each time that one

of these is changed, the microcode for the sy,;tolic

unit is prepared and recompacted internally in the

low-level Kohonen procedure (Section 3.:3). This

process causes an overhead in the computation

that should be avoided as far as possible. There­

fore, the value of the epoch and of the number of

input vectors should be kept constant in the multi­

ple calls to the low-level procedure that will occur

during a learning process. if at all possible.

Implementation

The MAI\TRA I machine communicates with user

processes, running on the Cnix front-end com­

puter, in a client/ server fashion. 1'\io more than

one user process at a tirne may be connected to

the machine. A user process issues remote proce­

dure calls executed by the server program running

on the .\1ANTRA I control processor. The pot en­

tial parallelism between the front-end workstation

and the MAI\TRA I SISD component has not been

exploited so far: For the sake of software simplic­

ity, processes on the Cnix system wait idle until

the end of the remote procedure call.

The software upper layer is implemented in thP

server program on the .\1Al\TRA 1 DSP. The pro­

cedure provided to the end user implements a

complete Kohonen algorithm. 1t is included in a

library that users can link to their own programs

running on the workstation. Thus, the .\IA~TRA I

machine operates as an accelerator for the work­

station.

The user has to provide the high-level proce­

dure with the neural-network size, floating-point

input data, a function au(t) describing the evolu­

tion of the adaptation gain during learning, and a

two-dimensional function "-u(d, t) describing the

evolution of the neighborhood function A.(d). Fi­

nally, the desired number of learning iterations

sho~ld be provided. The procedure returns the

weight matrix after training. If desired, the weights

54 COR."''U ET AL.

may also be extracted at intermediate points dur­

ing learning, in order to monitor the training pro­

cess.

The software upper layer first searches the

training set for the maximum and minimum val­

ues for each parameter of the input vectors. Each

input component x, in the interval [x 111 ;n, Xrnax] is

then mapped to the interval [-2 14
, 214

- 1]: the

weights are initialized with small random values.

The Kohonen update rule then ensures that no

overflow in the fixed -point computation will ever

occur during learning.

The number of iterations required by the user is

divided into a number of intervals of equal length

l. This length is, if possible, a multiple of the re­

quired epoch length. For each of these intervals.

the low-level Kohonen procedure will be called

with l input vectors, randomly chosen in the train­

ing set, and with constant values for a and for the

function A.(d), computed by discretizing the origi­

nal au(t) and A.,Jd, t) functions provided by the

user.

4 PERFORMANCE ASSESSMENT

The performance of the machine is conditioned by

the efficiency of the different levels that build up

the user library. The first component is the effi­

ciency of the low-level routines used to access the

systolic hardware. To that, one should add the

effects of the algorithmic modifications outlined in

Sections 3.2 and 3.4 ("Constraints Imposed by

the Hardware"). This section presents perfor­

mance measurements of the low-level routines

and discusses the impact of the key modifications

on the connectionist performance. For the later

purpose, a general framework to judge the perfor­

mance of hardware dedicated to neural networks

is introduced.

4.1 Performance of the Low-level
Subroutine

The peak performance in connection updates per

second (CUPS) for single-layer networks can be

roughly computed as:

(4)

where N 2 is the total number of PEs, f is the clock

frequency, Nps = 40 is the number of clock cycles

per operation (bit-serial communication). and U is

the utilization rate. The constant nop evaluates the

number of operations required to update a con­

nection; for instance, in a Kohonen network with

the same number of inputs and neurons, nop = 4

(euclidean, min, mprod, and kohonen). Con­

sidering the largest possible configuration of the

MAl\TRA I system (40 X 40 PEs) running at a

dock frequency off = 8 ~1Hz, the peak perfor­

mance (U = 100%) of the system is 80 ~1CCPS for

the Kohonen network. Equation 4 gives the per­

formance for single layers: otherwise the global

performance is given by a weighted harmonic

mean of the individual layer performances. For

instance, a back-propagation network with one

hidden layer and the same number of inputs and

neurons on both layers would have a peak perfor­

mance of 128 MCCPS.

In practice, the performance degrades from the

ideal value because of several components.

~amely. the utilization rate C is the product of

three independent element,.;:

1. A spatial utilization rate, expressing the

fact that, depending on the size of the map,

some PEs may be left idle during some

phases of the computation.

2. A temporal utilization rate. indicating the

ratio of active instructions (array instruc­

tions other than no operation) over the com­

plete microprogram.

3. A dynamic utilization rate, which is the ra­

tio of clock cvdes when the SI~1D module is

active over the total. It models situations

when the control DSP is delaying the paral­

lel module because of unavailability of data

or instructions.

The performance P has been measured on the

current configuration of the ~1ANTRA I prototype

(8 MHz, 20 X 20 PEs). The results are shown in

Figure 7. In the most favorable conditions. a frac­

tion slightly below 70% of the ideal performance

has been measured.

4.2 Neural-Network Performance on
Dedicated Hardware

In addition to the MANTRA I machine, other pro­

grammable machines.. based on custom digital

chips and aimed at running neural algorithms,

have been described in the literature (see [6] for a

review). Among the most interesting, in terms of

advertised performance and versatility, one can

mention the CNAPS machine from Adaptive Solu-

MULTI-\IODEL 1\~ELRAL-:'\ETWORK ACCELERATOR 55

Yr

FIGURE 6 Kohonen feature map arranged on a two­

dimensional grid.

tion [3], the MY-NEUPOWER machine from Hi­

tachi [15] and the SYNAPSE machine from

Siemens [14]. All these machines are essentially

based on SI~1D parallel architectures and some­

how modify the alrogithms to make them more

suitable to the hardware [1].

The kind of modifications listed in Section 3.2

is far from being peculiar to .\1ANTRA 1: For in­

stance, almost all of the machines dedicated to

neural networks implement fixed-point arithmetic

because it is one of the fundamental sources of

simplification of the hardware. Similarly, batch

processing is a typical requirement of pipelined

machines or of systems that associate a heavy cost

to partitioning large networks on smaller hard­

ware. In the latter case, it is sensible to average

this cost over a batch of input vectors.

At the same time, these problems are not spe­

cific to Kohonen maps but, in different ways .. af­

fect most algorithms. Concerning batch update,

although some connectionist models have an in­

trinsically batch nature (such as conjugate-gradi­

ent optimization techniques), others are originally

designed to perform a weight update after each

vector is presented (e.g., stochastic back-propa­

gation or Kohonen self-organizing maps) and may

suffer from an injudicious conversion to batch up­

date. The problem of incorporating these effects

in a fair assessment of the achieved speed-up is

addressed in the next section.

Speed-Up Revisited

Performance of neurocomputers is traditionallv

measured in CUPS, from which the time neces­

sary for one training iteration can be derived. A

fair performance metric should rather depend on

the time taken during training to reach a predeter-

mined output error, and not on the time taken to

execute a predetermined number of learning iter­

ations. Let E be the training error of the neural­

network model J1 implemented. For supervised

neural networks, E can be the output error while

for unsupervised models such as the Kohonen

modeL one may choose the quantization error.

(The quantization error is the sum of the Euclid­

ean distances between each vector and the weight

vector of the corresponding winner. It essentially

measures the quadratic error incurred by repre­

senting the input data by the closest neurons in

the map.) The speed-up achieved by a neurocom­

puter compared to a reference machine, should be

defined by

S (
E) _ l,T(Eo)

~~ ~o - l (E) '
hw 0

(5)

where Eo is some predetermined value of the con­

vergence metric, and th" (Eo) and lc,.(Eo) are, re­

spectively, the times necessary for the neurocom­

puter and for a reference computer (for instance, a

conventional workstation using double-precision

floating- point variables) to reach the de:oired con­

vergence value Eo (Fig. 8).

To link this new definition of speed-up to the

traditional CCPS ratings, a measure of the quality

of convergence of the algorithms may be intro­

duced: The algorithmic efficiency of a neurocom­

puter implementation ()f model ivf can be defined

as follows:

14

12

10

kcc(Eo)

khw(Eo).
(6)

Performance (m MCUPS) vs. Number of Prototypes

40 neurons, 20 inputs &

40 neurons, 40 inputs -+--
40 neurons, 60 inputs _0----
60neurons,2_Qj~- >~.

60 n~ufQf'J'S,· 40 inputs -~>-- -

__ .-G(rfleurons, 60 inputs -lll- _

'/ J>· -----

. ;./ ~---------------~~-
- ,,'

4000 6000 8000 10000 12000

FIGURE 7 Performance of the system in millions of

connections updated per second.

56 COR:'\li ET AL.

E

specialized hardware

',><_
conventional computer

EO ~

t (s)

FIGURE 8 Convergence speed of a neurocomputer

compared to a conventional computer as a function of

time.

where k,n,(Eo) and kcc(Eo) are, respectively .. the

number of iterations necessarv for the neurocom­

puter and for a reference computer to reach the

same £ 0 (Fig. 9). The efficiency, always positive,

will be typically below unity, showing the losses

introduced bv the hardware constraints.

The definition (Equation S) of speed-up and

(Equation 6) of algorithmic efficiency then yields

(7)

where 7hw and Tee are the tirnes necessary to pro­

cess one learning iteration on the neurocomputer

and on the reference computer, respectively. The

ratio Tee! 7hw expresses the traditional notion of

hardware performance measured as the ratio of

the CUPS on the special-purpose hardware and

on the reference svstem.

Equation 7 weighs the hardware speed-up with

the algorithmic efficiency of the implementation.

A good implementation should have an efficiency

as close as possible to unity. The more the algo­

rithm has to be tuned to fit the hardware con­

straints, the smaller the resulting efficiency.

This suggests that there may be a trade off be­

tween improving the parallelization efficiency in a

neurocomputer implementation and preserving

an acceptable algorithmic efficiency. A compro­

mise might lead to the optimum global speed-up.

4.3 Effects of the Hardware Constraints

The implementation constraints on MANTRA I

induce important modifications of the Kohonen

algorithm as described in Section 3, "Constraints

Imposed by the Hardware." These may lead to a

poor algorithmic efficiency or even prevent the

convergence. The two most important ones are the

quantization on a finite number of bits of the in­

put signals and synaptic weights and the batch

updating of the weights.

Quantization EHects

Contrarv to other neural networks. the Kohonen

algorithm with quantized weights and inputs has

received little attention so far. Three factors influ­

encing its correct convergence can be put in evi­

dence [17]. Clearly, there is a minimal number of

bits required to encode the weights. depending on

the input distribution and dimension, as well as

the number of neurons. Second, the adaptation

gain a must decrease slowly enough, or have an

initially large value, because otherwise the weight

updates get rounded to zero before the algorithm

has converged. Finally. the neighborhood func­

tion should decrease with the distance from the

winner neuron, especially if the input dimension is

low. These qualitative results were confirmed by a

mathematical analvsis based on the .Ylarkovian

formulation of the algorithm [161. giving the nec­

essary and sufficient conditions for the self-orga­

nization of the map in the case where the input

and weight spaces are one dimensional. Roughly

speaking. the results proven for the continuous

case [2] also apply in the quantized case if the

number of bits is large enough.

Batch Updating

As explained in Section 3.2. the Kohonen algo­

rithm is implemented in a modified batch version

on MAJ\"TRA I. The batch mode is fundamental to

exploit the parallelism of the systolic array [8]. Cp

to now, the differences between the batch and the

classical online versions have not been studied in

the literature for this particular model. The .YIAN­

TRA I version is not purely batch, because the

winner neuron is computed with the value of the

weights at the beginning of the epoch but the

weight update is an online operation. This imple­

mentation proved to be the most economic in

terms of hardware complexity. In fact, although

more counterintuitive, the convergence of the im­

plemented algorithm has been proven in the case

of scalar inputs and time invariant parameters,

whereas the pure batch algorithm convergence

can only be proven with more restrictive assump­

tions on the parameters [7]. In the one-dimen­

sional case, it has been proved, using Markov

chains' properties, that when the neighborhood

MULTI-,\IODEL l\'ECRAL-:\ETWORK ACCELERATOR 57

function is rectangularly shaped and time invari­

ant, and the adaptation gain is also time invariant.

the weights self-organize with probability 1. When

the adaptation gain decreases to zero, it has then

also to be proved, using the ordinary differential

equation (ODE) method [11], that the weights

converge with probability 1 to the same asymp­

totic values as the ones reached by the originaL

unmodified algorithm.

Comparative simulations for a wide range of

learning parameters have been performed to sup­

port the theoretical results. On a real-size bench­

mark (speech codebook classification .. 10 X 10

neurons, 12 inputs), the quadratic quantization

error has been measured as a performance indica­

tion of the self-organizing map (£). Figure 10

shows the evolution of the convergence metric for

the three versions of the algorithm. Already after

the 8th epoch, the original algorithm is within

20% of the best result, assessed after 200 epochs.

The fully batch version is distinctly slower during

the whole convergence and needs 28 epochs to fall

below the same threshold. Thus, the algorithmic

efficiency of the batch version compared to the

reference algorithm io; only A\1 = 8/28 = 0.29. For

lower values of E0 , the efficiency will become even

lower and eventually reach 0, because the asymp­

totic minimum error reached is larger in the

neurocomputer than in the reference algorithm.

However, the best final error achieved by the

MAl\TRA I algorithm with batches of ;)0 vectors is

within a few ppm from the result of the standard

version. .\1oreover, the algorithmic efficiency at

the same £ 0 is 0.57 and for lower values of Eo it

becomes close to 1. These results indicate that the

batch nature of the ~IAl\TRA I algorithm does not

E

conventional computer

EO

/ialized hardware

k (iterations)

FIGURE 9 Convergence speed of a neurocomputer

compared to a conventional computer as a function of

algorithm iterations.

severely hinder the convergence speed of the

modeL

5 POWER-SYSTEM APPLICATION

Putting the .\1Al'\TRA I machine to work on a real

application was one of the main objectives of the

project. A target application in the field of power­

system security assessment has been chosen for its

heavy computational requirements. Section 5.1

briefly describes the application. Section 5.2 gives

an estimate of the computational power required.

Finally, Section 5.3 gives an overview of the con­

vergence quality and of the performance currently

reached on the prototype for this application.

5.1 Application to Power-System
Security Assessment

The application ofKohonen SOFY'is to power-sys­

tem security was first developed and implemented

on a conventional workstation [13]. The purpose

of this application is to predict whether the power

flows in the branches (lines and transformers) and

the bus voltages of a system wilL after an unfore­

seen outage, exceed the supported limit of the cor­

responding components or not.

Power flows in a power system may be com­

puted by solving a set of nonlinear equations using

an iterative method, for instance 1\ewton­

Raphson's. Given a current operating poinL clas­

sical static security analysis considers every poo;o;i­

ble combination of outages and iteratively

computes a power flow for each. This heavy com­

putational burden prevents real-time computa­

tion on sequential hardware. Y1oreover .. conven­

tional simulation provides only quantitative

results, leaving the interpretation of the current

system state and its potential stochastic evolution

to the power-system operators. Because decisions

in power transmission system control centers often

have to be taken under time pressure and stress. a

fast, concise, and synthetic representation of se­

curity assessment results is essential.

ln. this approach, the operational points of the

multidimensional power-system state space are

mapped onto a two-dimensional Kohonen net­

work by dividing the security space into catego­

ries. The centers of each class are the neurons

located at the coordinates defined by the weight

vectors. The two-dimensional picture of the net­

work gives a quite accurate interpretation of the

situation.

58 CORNU ET AL.

5.2 Computational Requirements

In the proposed application, a new security analy­

sis and a new learning process are to be performed

every day to account for the daily changing oper­

ating conditions. A utility, even if it controls only a

small part of the system, should take a major part

of the network into account to yield accurate

results. The Swiss high-voltage transmission net­

work, for instance, consists of roughly l.SO busses

and 250 lines. The learning phase requires the

processing of input vectors composed of 300 ele­

ments. The number of neurons in the feature map

may not realistically be much more than 1.000,

because for each of them an expensive power-flow

computation has to be performed after the neural­

network training to interpret the results. Consider­

ing the 1 0 5 iterations is an ordinary training length

for a large Kohonen network. the number of con­

nection updates necessary for a real-world power

system may be roughly evaluated to a minimum of

300 X 1000 X 10:; = 3 · 1010 connection updates

for a daily training. Such an amount of computa­

tion takes more than 8 h on a conventional work­

station (approximately 1 million of connection up­

dates performed per second), which is too slow to

be used in daily operation. An increase in compu­

tational power of one to two orders of magnitude is

required. Accelerators such as the one proposed

in this article could drastically reduce the learning

time for larger power systems down to acceptable

levels.

5.3 MANTRA I Performance on the
Power-System Application

As described in Section 4, the performance of the

system has been addressed by attempting to sepa­

rate the hardware speed-up from the algorithmic

effects. The test experiments are described in the

next sections.

Quality of Convergence

Figure 11 shows the evolution of the quantization

error for one run of the power system application

on the MAl\TRA I machine compared with a run

of the original algorithm. The training set has been

generated using the IEEE 24-bus 38-line power

system, one of the smaller standard test systems

developed for benchmark studies of power-system

software. With a dimension of 76 for the input

vectors, this power system was well suited for the

test of the MAl\TRA I and could fit into the DSP

dynamic RAM of the prototype. The same set of

Algorithm Convergsnce-Spsed Companson

0.4 ,----~--~---~--~---~----,

0.35

0.3

0.25

~--.:.

0.2

Normal­
Pure Batch -

Mantra

~~-----·----===-

O.lS OL_ __ __,10'-----"20,------:':30---.L40---50'----_j60

Epoch

FIGURE 10 Comparison, on floating-point simula­

tions, of the convergence speed of the Kohonen .VIA.'\­

TRA 1 batch implementation with that of the pure batch

algorithm and with the original online algorithm. The

graph measures the quantization error of the network

after every learning step composed of T = 50 vectors.

learning parameters has been used for the original

algorithm and for the MANTRA I. Figure 11 al­

lows a rough evaluation of the algorithmic effi­

ciency of MAJ\TRA I in this application. Each unit

on the X-axis corresponds to 120 training itera­

tions.

It should be noticed that because of a com­

bined effect of integer arithmetic. batch imple­

mentation, and multiple winners, YIANTRA 1 con­

verges with a slightly higher final error than the

sequentially implemented floating-point version

of the Kohonen algorithm. On a target error rate of

50% more than the minimum error of the original

algorithm, the latter and the MA:\'TRA 1 imple­

mentation need. respectively. 12 X 120 and

16 X 120 iterations to reach the desired error

rates. This vields an algorithmic efficiency of

12/16 = 75%.

To confirm that the algorithmic efficiency on

MAJ\TRA I is high and not very far from unity, it

was tested with additional data from other appli­

cations. Test runs confirmed that the discrepan­

cies between the MAl\TRA I version and the origi­

nal version of the Kohonen algorithm are smaller

than the standard deviation of the original algo­

rithm itself. For instance, averaging ten runs for

each of several sets of learning parameters in the

speech codebook classification problem, MAK­

TRA I actually performed better in approximately

50% of the cases.

Like most neural-network algorithms, the per­

formance of the Kohonen algorithm, including the

.\1uLTI-MODEL l\'ECRAL-~ETWORK ACCELERATOR 59

Quantisation error vs. iteration coont
35000 .-----~--~---~--~---.--------,

30000

20000

15000

10000
-+---.---+---+--+---+--'"'--.... -+---l<

'"'-..._....__-+_

Mantra­
Normal -+--

5000 -+---+----+--+--+---+--+--+---+--+--+--+--+---+---+--+--

oL---~--~---~--~---L---~
0 10 15 20 25 30

FIGURE 11 .\1easurement on the power-system ap­

plication of the convergence speed of the Kohonen

~ANTRA I implementation compared to a floating­

point implementation.

version running on ::VIANTRA I. is quite sensitive

to an inappropriate choice of the training parame­

ters. Because the Kohonen algorithm converges

stochastically toward an equilibrium point. differ­

ent random initializations of the weight vectors

coupled with a nonideal choice of training param­

eters can result in different error rates. Experi­

ments with comparatively small sets of training

data (for instance, 1,562 vectors in the case of the

power system data, each presented several times

chosen at random) indicated that for several run::;

differences in the final quantization error were

higher than expected and the reasons for this be­

havior have to be investigated further. ~Whether

the ideal learning parameters are identical for the

original and the MA!'\TRA I version of the Ko­

honen algorithm is also an open question at

present time. Even though no evidence of a strong

change in robustness has been found, more ex­

tensive experiments should be conducted to pro­

duce statistically significant observations.

In conclusion, the final rate reached by MAl'\­

TRA I appears acceptable for the power-system

application and the number of iterations required

is approximately equivalent to that needed by a

traditional floating-point version of the Kohonen

algorithm.

Hardware Speed-Up

Table 2 shows the actual .YICUPS performance

reached by the current machine with the Kohonen

algorithm on the power-system application, for

different problem sizes. For efficiency reasons, the

number of neurons is chosen as a multiple of the

number of PEs per side of the array (20 in the

current machine), so that as few processors as

possible remain idle. The actual performance de­

pends heavily on the problem size: the machine

performs badly on small problems, where conven­

tional workstations could be sufficient. However.

for larger problems, up to 14 ~1CCPS have been

reached for the Kohonen algorithm, whereas a

conventional platform performs around 1 MCLPS

on the same algorithm [1 j.

6 CONCLUSION

The .\1ANTRA I machine has been designed, real­

ized, and tested. This article concentrated on the

phases beyond hardware development, toward

practical applications and real use. Topics such

as programming and practical performance seem

unfortunately seldom described in literature [6]

and appear to be often disregarded as secondary

to the hardware design itself. The MAl\TRA I ex­

perience shows that a number of key problems

arise only when one tries to put the hardware to

work and abandon toy problems to tackle real

ones.

First, a crucial issue is the complexity of low­

level programming of this type of dedicated ma­

chines, which may lead either to an overwhelming

programming complexity or to poor hardware uti­

lization and performance. The difficulties arise

because of the many independent execution units

(e.g., systolic arrays, look-up tables) exposed to

the programmer view and because of long pipe­

lines. Techniques to preserve the hardware effi­

ciency and at the same time to structure the code

have been presented.

On the other hand, neural networks are not so

insensitive to algorithmic modifications and to re­

duced precision as often supposed, especially by

hardware designers. For instance, the .YIA!'\TRA I

svstem has to use a counterintuitive version of the

Table 2. Implementation of the Kohonen

Algorithm: Measured Sustained Performance for

Different Problem Sizes

Neurons Inputs Iterations .\1CLPS

6 X 10 76 1,200 0.8

12,000 5.4

60,000 12.2

100,000 13.9

60 CORNU ET AL.

Kohonen algorithm for which convergence prop­

erties similar to those of the original algorithm

have been proved. Simulations are also presented

to confirm the theoretical results.

Finally, other problems had to be taken into

account when interfacing the dedicated hardware

itself with a conventional computational server

and designing an efficient programming environ­

ment.

Despite the many difficulties, the .VlAl\TRA I

prototype, with one fourth of the supported PEs,

displays a performance about one order of magni­

tude above that of a conventional workstation.

Still, to provide users with dedicated machines

with performances on neural networks close to

those of supercomputers but at desktop prices,

larger machines should be built with more sophis­

ticated technologies (e.g., custom layout instead

of standard cells, higher integration, and clock

rate). Also, more advanced packaging technology

would also be required to solve severe reliability

problems that have been experienced on the cur­

rent prototype.

On the grounds of the gained experience, future

research should address the following critical di­

rections: (1) Find more flexible and powerful pro­

gramming models to facilitate the low-level pro­

gramming of novel neural-network models by

trained users and thus offer the flexibility that us­

ers require. (2) Find techniques to perform the

microcode compaction online in hardware to

avoid an overhead that may become impractical

for algorithms whose control flow is heavily data

dependent. These include emerging connectionist

models such as evolutive networks. (3) Improve

the generality of the basic PE architecture to sup­

port this broadening of the algorithmic target.

Only addressing the above problems as a whole

and not restricting oneself to the latter, dedicated

systems for neural networks may become attrac­

tive for potential users and competitive with large

and expensive computational servers.

ACKNOWLEDGMENTS

The MANTRA research project is supported by

the Swiss National Fund for Scientific Research

through the SPP-IF grant 5003-34353 and by the

Swiss Federal Institute of Technology.

Many people contributed to this project and de­

serve the authors' gratitude: Fraw;ois Blayo and

Christian Lehmann for laying down the founda­

tions; Peter Briihlmeier, Andre Guignard, Chris-

tophe Marguerat, and Georges V aucher for help­

ing in designing and building the hardware: and

Giorgio Caset for undertaking the arduous task of

programming the machine. This work would not

have been possible without the constant support

of Professors Jean-Daniel l'\icoud, Alain Ger­

mond, and .\fartin Hasler.

REFERENCES

[1] T. Cornu and P. Ienne .. "'Performance of digital

neuro-computers.·' in Pruc. Fourth international

Conference on Jlicruelectronics fur .Yeural :Vet­

works and Fuzz.y Systems. 199-t. p. 8?.

[2] M. Cottrell and J.-C. Fort, "Etude d"un al­

gorithme d'auto-organisation!' Ann. lnstitut

Henri Poincare, vol. 23, pp. 1-20, 198?.

[3] D. Hammerstrom. A highly parallel digital archi­

tecture for neural network emulation. in J. G.

Delgado-Frias and W. H. t\1oore, Eds. TLSJ for

Artificial intelligence and :Yeurczl i\'etworks. '\lew

York: Plenum. 1991. pp. 35?-366.

[-t] J. Hertz, A. Krogh. and R. G. Palmer. introduc­

tion tu the Theory of Neural Computation. Santa

Fe Institute Studies in Sciences of Complexity.

Redwood Citv. CA: Addison- WesleY. 1991. . .

[5] P. Jenne, Horizontal microcode compaction for

programmable systolic accelerators .. in Proc. in­

ternational Conference on Application Specific

Array Processors. 1995. p. 8Ei.

[6] P. Ienne and G. Kuhn. ··Digital systems for neural

networks." in Digital Signal Processing Technol­

ogy, vol. CR5? of Critical Reuiews Series .. P. Pa­

pamichalis and R. Kerwin. Eds. Orlando. FL:

SPIE Optical Engineering. 1995. pp. :114-:345.

[?] P. Jenne, P. Thiran. and~- Yassilas .. '·Modified

self-organising feature map algorithms for effi­

cient digital hardware implementation.'· JELL

Trans. }'1/eural Networks, 1995 (Submitted).

[8] P. Jenne and M.A. Viredaz. ·'Implementation of

Kohonen· s self-organizing maps on YlA~TRA I.""

in Proc. Fourth International Conference on Jli­

croelectronics fur Neural Networks and Fuzzy

Systems, 1994. p. 2?3.

[9] P. Jenne and M. A. Yiredaz. ·'GE~ES 1\': A bit­

serial processing element for a multi-model neu­

ral-network accelerator. ..]. TLSI Signal Proc.,

vol. 9, pp. 2.5?-2?3, 1995.

[10] T. Kohonen, Self-Organization and Associative

Memory. vol. 8 of Springer Series in information

Sciences. Berlin: Springer-Verlag, 3rd cd., 1989.

[11] H. J. Kushner and D. S. Clark. Stochastic Ap­

proximation for Constrained and Unconstrained

Systems, vol. 26 of Applied Mathematical Sci­

ences. Berlin: Springer-Verlag, 1978.

[12] C. Lehmann, "'Reseaux de neurones competitifs

de grandes dimensions pour !'auto-organisation:

.\HJL Tl-.\10DEL :\"EURAL-:\'ETWORK ACCELERATOR 61

analyse, syntht'~sc ct implantation sur circuits sys­

toliques:' PhD Thesis no. 1129. Ecole Polytcch­

niquc Federale de Lausanne. Lausanne. 1993.

[13] D. :\'iebur and A . .T. Germond, '"l'nsupervised

neural network classification of power system

static security states, Int 'l]. Electrical Power En­

ergy Systems, vol. 14. pp. 233-242. 1992.

[14] C. Hamacher, '·SY:\"APSE-A neurocomputer

that synthesizes neural algorithms on a parallf'l

systolic engine,,.]. ParallellJistrib. Compul .. vol.

14. pp. 306-318 .. 1992.

[15] Y. Sato, K. Shibata. :\1. Asai. :\1. Ohki. :\1. Sugie.

T. Sakaguchi. :\1. Hashimoto, and Y. Kuwahara.

"Development of a high-performance general pur­

pose neuro-computer composed of .') 12 digital

neurons, in Proc. of the International]oint Con­

ference on Neural Networks. vol. lL 199:3. p. 1967.

[16] P. Thiran and M. Hasler. "Self-organisation of a

one-dimensional Kohonen network with quan­

tized weights and inputs." .Vcural.\'etu·orks. vol.

7, pp. 1427-1439. 1994.

[17] P. Thiran. \'. Peiris. P. Ilein1. and B. Hochet.

'"Quantization effects in digitally behaving circuit

implementations of Kohonen nPtworks. · · IEEE

Trans. :Vew·al Xetworks, vol. :\":\"-S. pp. 4S0-

458, 1994.

[18] M. Viredaz. ·'Design and analYsis of a systolic ar­

ray for neural computation... PhD Thesis no.

1264. Ecole Polytechnique FederalP de Lau­

sanne. Lausanne. 1994.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

