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ABSTRACT 

A multi-model neural-network computer has been designed and built. A compute-inten­

sive application in the field of power-system monitoring, using the Kohonen neural 

network, has then been ported onto this machine. After a short description of the system, 

this article focuses on the programming paradigm adopted. The performance of the 

machine is also evaluated and discussed. © 1996 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

I\eural networks are gaining recognition as a novel 

technique to solve large classes of problems better 

than by using traditional algorithms. One of the 

problems that neural networks encounter in prac­

tical applications is the huge computing power re­

quired. Conversely, one of the aspects that make 

neural networks interesting is their high degree of 

intrinsic parallelism. The union of these two ele­

ments is a solid ground for dedicated computers 

designed for connectionist algorithms [ 6]. 

This article presents a special purpose machine 

on which several popular neural algorithms can be 
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run. The system achieves massive parallelism 

thanks to a systolic array with up to 40 X 40 pro­

cessing elements (PEs). This article aims at out­

lining the many problems that arise in practice for 

a user to program and use this kind of machine. 

For this purpose, the hardware structure of the 

machine is overviewed in Section 2. Section :3 

shows how the machine is programmed .. from the 

implementation of low-level routines for the sys­

tolic array up to the user-library routines. Each of 

these software layers raises different problems in 

terms of performance: The array microcode has to 

exploit the hardware in the best way. whereas the 

higher-level routines should hide all the approxi­

mations and algorithmic modifications introduced 

by the dedicated hardware. The performance as­

sessment is discussed in Section 4. Finallv .. the 

use of the system for an application of the Ko­

honen network in power-system security assess­

ment is described in Section 5. Section 6 draws 

some conclusions on the whole of the project. 
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2 MANTRA I SYSTEM 

The MAI\TRA l computer is a massively parallel 

machine dedicated to neural-network algorithms 

(Fig. 1). It has been designed to provide the basic 

operations for the following models: ( 1) single­

layer networks (Perceptron and delta rule); (2) 

multilayer feedforward networks (back-propaga­

tion rule); (3) fully connected recurrent networks 

(Hopfield model); and (4) self-organizing feature 

maps (SOF~S; Kohonen model). A description of 

these algorithms can be found in any classic intro­

ductory book on neural networks (e.g ... [ 4 ]). The 

Kohonen feature maps are used in Section 3 to 

illustrate how these algorithms are mapped on the 

svstem. 

The ~Al\,TRA l accelerator is based on a bidi­

mensional systolic array composed of custom PEs 

named GEI\ES IV. In the present section, the 

hardware of the machine is overviewed starting 

from its system integration in a network of work­

stations and proceeding down to the internal ar­

chitecture of the machine and of its computational 

core. 

2.1 MANTRA I System Integration 

The YIAI\TRA I machine is controlled bv a 

T.\'IS320C40 digital signal processor (DSP) from 

Texas Instruments. Two of its six eight-bit built-in 

communication links connect the machine to an­

other TMS320C40 processor inside a SCI\ 

SPARCstation (Fig. 2). From a software point of 

view, the intermediate DSP is transparent. The 

MAl\TRA I machine (the systolic array and its 

control processor) is completely controlled by the 

front-end workstation but could be easih· inte­

grated into any other computer system based on 

TMS320C40 processors. 

FIGURE 1 The MA:\ITRA I svstem. 
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FIGURE 2 The :\-lA~TRA I system integration. 

2.2 MANTRA I System Architecture 

The structure of the ~IANTRA 1 svstem [18] is 

shown in Figure 3. The control module is the SISD 

system based on the DSP. It controls the parallel 

or 8/MD module by dispatching horizontally 

coded instructions through an FIFO. The Sl\1D 

module is frozen when no instruction is pending. 

Three FIFOs are used to feed data to the Sl~lD 

module and two to retrieve results. Temporary 

results can be held in four static RA.\1 banks con­

nected to the systolic array. The large DSP dy­

namic RAYI can be used when the capacity of the 

Microprocessor Bus 

TMS320C40 

static RAM is insufficient to contain the applica­

tion. Two units based on look-up tables, noted 

r:r(v) and r:r'(v), are inserted on the data path and 

are typically used to compute the nonlinear func­

tion of neuron outputs. The latter unit is coupled 

with a linear arrav of auxiliarv arithmetic units . . 
called GACD1 required in some phases of super-

vised algorithms. 

2.3 GENES IV PE 

The systolic array at the heart of the SI.\ID part of 

the machine is a square mesh of GENES IV PEs 

w 
.. ----------------------~~Memory& 

r/w FIFOs 

d 

14-,.._loiMemory & 

GACDl Array wr.FIFO 

·--------------------------------------

Control module SIMDmodule 

FIGURE 3 Architecture of the MAI'\TRA I machine. 
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[9]. each connected by serial lines to its four 

neighbours, as shown in Figure 4. All input and 

output operations are performed by the PEs lo­

cated on the north-west to south-east diagonal. 

Each PE, whose structure is shown in Figure 4, 

contains one element of a matrix \V (weight unit). 

The WGTin-WGTout path (shown in Fig .. ') but 

omitted in Fig. 4) is used to load and retrieve rna­

trices. Two vectors jh and l' are presented as input 

at each cycle. Table 1 shows the operations that 

can be performed W1 represents the i-th row of the 

stored matrix, usually containing the weight,; of a 

neuron. These operations have been chosen to 

implement most popular neural-network algo­

rithms including those mentioned at the beginning 

of Section 2. 

All of the operations may also be performed on 

the transposed matrix WT (with jh and jv as well 

as Oh and ()v exchanged). This i,.; shown in Table 

1 only for the operation mprodT. 

For problem,; involving matrices and vectors 

larger than the physical array size. the task can be 

divided in small submatrices and subvectors 

treated sequentially. The partial s urns of ,.;everal 

consecutive mprod, mprodT. and euclidean op­

erations can be accumulated thanks to the addi­

tive term jh or iv. The weight unit consists of two 

registers: one is used for the current cornputation. 

whereas the other is connected to the WGTin­

WGTout path. This makes it possible to load a 

matrix in the background, without any overhPad. 

Because an instruction is associated with each 

pair of input vectors. a new operation can be 

started on each cycle and processed in a pipelined 

fashion. The result is available 2:\' cvcles later. 

The computation is performed on signed fixed­

point values. The inputs and the weights are 

coded on 16 bits. The weights have 16 additional 

bits. but these are used only during learning 
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FIGURE 4 Architecture of the GE:\ES IY systolic ar­

ray. Sample 4 X 4 arrav. 

(weight update operations). Outputs are com­

puted on 40 bits. 

A VLSI chip with a subarray of 2 X 2 PEs ha,; 

been designed in CSH)S 111-m standard-cell tech­

nology. It contains ?1.690 transistors (:3.1 ?Y 

standard cells) on a die measuring 6.::3 X 6.1mm~. 

3 MANTRA I SOFTWARE 

Several problems arise when putting to work a 

specialized computer like \IA~TRA I. SomP of 

them hardly come to light at Parly stages of proto­

type testing and only manifest themselve,.; when 

running a real application. LsPrs are not ,;up­

posed to program ::\1Al\TRA I directly but haYe a 

Table 1. GENES IV Array Basic Operating Modes 

Operation 

mprod 
mprodT 

euclidean 

min 

max 

hebbian 

kohonen 

w. l' + jh 
jh 

II' - WTI 2 
+ Il' 

Il' if Il' s min1 (I)J 
+oo otherwis~ 

Il' if n' 2': maxi (I)J 
-oo otherwise 

jh 

jh 

l' 
wr. jh + l' 

l' 

l' 

w 

w 
w 
w 

w 

\V 

\V+ih·I'' 

W, + Il' · •I'' - W;l 
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set of libraries available on the front -end worksta­

tion. 

The first neural-rwtwork algorithm imple­

mented on YlANTRA I is the Kohonen's SOF~l. 

because this model is required by the target appli­

cation described in Section .'":>. 

Section ;3 .1 is denJted to the description of the 

Kohonen algorithm. Section 3.2 describes the 

mapping of the Kohunen routine on the systolic 

array to yield a basic Kohonen program in fixed­

point arithmetics. Section :~L3 outlines the prob­

lems in the actual production of microcode for the 

array and describes the approach taken to handle 

the ta,.;k. Finallv. Section 3.4 contain:-; the details 

on the software interface between the lower pro­

gramming level and the user level. and explains 

how this interface hides from the user some con­

straints specific to the systolic hardware. 

3.1 Kohonen SOFMs 

Kohonen',.; SOF~ls are among the most widelY 

used unsupervised artificial neural- network 

models. Their learning algorithm performs a non­

linear mapping from a high-dimensional input 

space onto a set of neurons [ 1 0'. These neurons 

are organized as regular maps and a topological 

relation between them is defined. Two-dimen­

sional grids or meshes, as shown in Figure 6. are 

typical topologies, hut hexagonal grids or more 

exotic topologies are possible as well. 

All neurons share the same inputs. Training is 

an iterative process: For every input vector i. .. its 

similarity with the weights of each neuron i is mea­

sured in then-dimensional input :-;pace. The most 

frequently used similarity measure i:-; the Euclid­

ean distance: 

fori=1.2 ...... m: (1) 

Other common similaritY measures include the 

Manhattan distance and the ,.;calar product. Csu­

ally, the input space has a much higher dimen­

sionality than the topological space of the map. 

The winner neuron IE {1. 2 ..... m} is defined 

as the neuron whose weight vector is the closest to 

the input vector: 

~in (i., WI) :s: ~i" (i., W;). 

ViE {1, 2, ..... m}. (2) 
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FIGURE 5 Basic structure of a GEI\ES I\ PE. 

During the learning phasP .. the wt>ights arc up­

dated as: 

fori = L 2. .. m: (:3: 

where ~map (i, I) is the distance between neuron i 

and the winner I on the topological map. The 

neighborhood function 'A restricts the update to 

neurons close to the winner. The basic idea of the 

update rule is to bring the winner and its neigh­

bors closer to the input vector. The uduptotiun 

goin a should be decreasing during the training 

process to ensure its convergence. 

Apart from the differences arising from the 

choice of the similarity measure ~in and the dis­

tance on the map ~map' variations exist in the way 

the winner is detected and the weights updated 

[12]. 

3.2 Mapping Kohonen Networks on the 
Systolic Array 

On ~Al'\TRA L the first step of the computation 

consists of evaluating the Euclidean distances be­

tween the input vector and the synaptic weights of 

each neuron, with the euclidean operation (Ta­

ble 1 ). The winner is then implicitly identified by 

processing the vector containing the m distances 

(m being the number of neurons) with the min 

operation. The sigma unit is used to convert +x to 

0 and any other value to 1. The result is a binary 

vector of m elements, all equal to 0 except for the 

neuron(s) closest to the input. 
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The vector contammg the m elements a · 

A(~map(i, /))is computed by multiplying the above 

binary vector by an m X m matrix A (mprod oper­

ation). The elements of this symmetric matrix are 

AiJ = a· A(~map(i,j)) and therefore contain all the 

information about the topology of the map. The 

advantage of this formulation is that there are no 

constraints on the dimensionality of the map, on 

the arrangement of the neurons (orthogonaL hex­

agonal, or other grids), nor on the shape of the 

neighborhood (e.g"' rectangular or triangular). 

Finally the weights c~n be modified by injecting 

this update vector as Jh and the original input 

vector as iv, and by performing the kohonen op­

eration. ~T eight matrices larger than the systolic 

array can be decomposed into submatrices .. which 

are then time-multiplexed on the array. 

As it is the case with most dedicated hardware 

systems for neural networks, the described map­

ping produces an algorithm that is, in "everal re­

spects, slightly different from the basic algorithm. 

The main differences are: 

1. Fixed-point arithmetic. GE:\"ES IY PEs are 

designed for fixed-point number represen­

tation. In the absence of general analytical 

results on the required precision (see abo 

Section 4.3). simulations of the application 

described in Section 5 have been used to 

determine the precision to be implemented. 

2. Balch update. A characteristic of the sys­

tolic architecture is that the time required to 

produce a result (latency) is much longer 

than the delav between two successive in­

puts (inverse of the throughput). Therefore. 

it is natural to process batches of input vec­

tors to hide the latency. For this purpose. 

the same weights are used to compute the 

distances for all these vectors. Hence, the 

last ones of the batch do not take advantage 

of the weight modifications that would have 

resulted from the first ones. 

3. Learning parameter discretization. In the 

described implementation, all the informa­

tion on the topology of the map is contained 

in a relatively large matrix. This matrix de­

pends on the learning and neighborhood 

coefficients a and A, both evolving with time 

during the learning process. Whereas for 

some shapes of the A function an update of 

the topology matrix inside the array is possi­

ble, the current implementation recomputes 

a new matrix in the SISD module. This im­

plies that, for efficiency purposes, the learn-

ing factors a and A, instead of continuously 

evolving during the learning process, should 

be changed as seldom as possible. HoweveL 

this does not appear as a major obstacle to 

the algorithm convergence. 

4. J1ultiple winners. In traditional implemen­

tations, when multiple neurons have the 

same minimal distance from the input, one 

is arbitrarily selected (e.g., the one with the 

smallest index): on the contrary, in MAJ'\­

TRA I all these neurons get updated. This 

multiple update is similar to the sequential 

presentation of some input vectors, each 

slightly closer to one of the winners. Hence .. 

it represents a small distortion of the proba­

bility distribution and should not hinder the 

convergence of the network. A more severe 

consequence is that. if two or more neurons 

have the same weights and the neighbor­

hood is nulL the neurons can no longer be 

separated, therefore reducing the mapping 

capabilities of the network. The weight reso­

lution of YlAJ'\TRA I is rather high and this 

problem should seldom occur. Additional 

techniques could also be applied to mini­

mize the problem in critical cases. 

3.3 Scheduling the Systolic Array 

Hand-coding programs for YIAJ\TRA I is an ex­

tremely complex task. As shown in Figure 3, a 

single instruction controls all pipeline stages of the 

SIMD module in parallel. This implies that an in­

struction may depend on several activities started 

at different times in the past and sometimes con­

ceptually independent. The complexity and re­

configurability of the pipeline make it difficult to 

mimic its delays in the instruction decodeL How­

ever, it would be desirable to code the whole pro­

cessing of a data set in the same instruction. 

The basic idea that has been implemented is to 

describe complete operations on groups of data 

independently from other concurrent activities 

[5]. Operations include, for im;tance, the com­

plete matrix downloading process or the computa­

tion of a set of distances. 

Each of these algorithm building blocks, called 

microtasks (MT), is similar to a microoperation in 

a microcoded processor, and alleviates the pro­

grammer from dealing with low-level machine de­

tails. In contrast to traditional microoperations, 

MTs extend over many cycles, often in the order of 

twice the number of PEs per side. If no special 

action is taken, executing MTs in sequence causes 
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the parallelism of the machine to be lost. :MTs 

should start as early as the required resources are 

available and, in general, before all phases of the 

previous MT have been completed. This process is 

very similar to issuing instructions in a pipelined 

processor: It requires verifying the availability of 

resources and data and generating ,;tall cycles if 

these conditions are not met. 

In contrast to what happens in pipelined pro­

cessors, here the sections of the pipeline are heav­

ily interdependent and data are synchronously 

transmitted between stages. Therefore, if one 

stage is stalled, the others will be halted as well. 

Hence, hazards must be forecasted and an MT 

can only be started if it can be completely per­

formed. The blocks of microcode are therefore 

treated as rigid entities and the program is com­

pacted by overlapping each YlT with the neigh­

boring ones, provided that no conflict arises. For 

each cvcle. the horizontallv coded MAI\TRA lin-. . 
struction is then determined by the .\1Ts taking 

place in the different parts of the machine. 

As a result of this kind of program optimization .. 

the programmer can describe all activities as if 

completely serialized, including typically concur­

rent tasks such as background weight matrix ex­

changes. Compared to a hypothetical hand-coded 

implementation, the loss in performance observed 

in the implementation of the Kohonen algorithm 

appears negligible [5]. The compaction algorithm 

is also very quick. making it possible to prepare 

the horizontal code just before run-time when the 

problem size is completely defined. 

3.4 High-level Implementation 

Requirements 

The low-level Kohonen procedure does not hide 

all the machine-dependent aspects that should be 

made transparent to the user. A further software 

layer is required with two primary purposes: (1) 

automatic conversion of user's floating-point data 

(weights, input vectors) to and from fixed-point 

representation and (2) discrete variation of all pa­

rameters that should evolve in time during the 

learning process, namely the learning coefficient a 

and the radius of the neighborhood function A.. 

Constraints Imposed by the Hardware 

The hardware architecture imposes a few con­

straints in order to get the best performance from 

the MANTRA I machine. First, the optimal epoch 

should be at least 2N, where N is the number of 

PEs per side in the bidimensional systolic array. 

This is because 2N is also approximately the 

depth of the pipeline realized by the systolic ma­

chine. In the current configuration, N = 20 so that 

the optimal epoch is T = 40 (larger values do not 

improve the parallelization but make the algo­

rithm even more different from the sequential ver­

sion). The number of input vectors passed to one 

call of the low-level procedure should be a multi­

ple of the chosen epoch, also for performance 

considerations. 

Another set of constraints concerns the number 

of input vectors and the epoch. Each time that one 

of these is changed, the microcode for the sy,;tolic 

unit is prepared and recompacted internally in the 

low-level Kohonen procedure (Section 3.:3). This 

process causes an overhead in the computation 

that should be avoided as far as possible. There­

fore, the value of the epoch and of the number of 

input vectors should be kept constant in the multi­

ple calls to the low-level procedure that will occur 

during a learning process. if at all possible. 

Implementation 

The MAI\TRA I machine communicates with user 

processes, running on the Cnix front-end com­

puter, in a client/ server fashion. 1'\io more than 

one user process at a tirne may be connected to 

the machine. A user process issues remote proce­

dure calls executed by the server program running 

on the .\1ANTRA I control processor. The pot en­

tial parallelism between the front-end workstation 

and the MAI\TRA I SISD component has not been 

exploited so far: For the sake of software simplic­

ity, processes on the Cnix system wait idle until 

the end of the remote procedure call. 

The software upper layer is implemented in thP 

server program on the .\1Al\TRA 1 DSP. The pro­

cedure provided to the end user implements a 

complete Kohonen algorithm. 1t is included in a 

library that users can link to their own programs 

running on the workstation. Thus, the .\IA~TRA I 

machine operates as an accelerator for the work­

station. 

The user has to provide the high-level proce­

dure with the neural-network size, floating-point 

input data, a function au(t) describing the evolu­

tion of the adaptation gain during learning, and a 

two-dimensional function "-u(d, t) describing the 

evolution of the neighborhood function A.(d). Fi­

nally, the desired number of learning iterations 

sho~ld be provided. The procedure returns the 

weight matrix after training. If desired, the weights 
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may also be extracted at intermediate points dur­

ing learning, in order to monitor the training pro­

cess. 

The software upper layer first searches the 

training set for the maximum and minimum val­

ues for each parameter of the input vectors. Each 

input component x, in the interval [x 111 ;n, Xrnax] is 

then mapped to the interval [ -2 14
, 214 

- 1]: the 

weights are initialized with small random values. 

The Kohonen update rule then ensures that no 

overflow in the fixed -point computation will ever 

occur during learning. 

The number of iterations required by the user is 

divided into a number of intervals of equal length 

l. This length is, if possible, a multiple of the re­

quired epoch length. For each of these intervals. 

the low-level Kohonen procedure will be called 

with l input vectors, randomly chosen in the train­

ing set, and with constant values for a and for the 

function A.(d), computed by discretizing the origi­

nal au(t) and A.,Jd, t) functions provided by the 

user. 

4 PERFORMANCE ASSESSMENT 

The performance of the machine is conditioned by 

the efficiency of the different levels that build up 

the user library. The first component is the effi­

ciency of the low-level routines used to access the 

systolic hardware. To that, one should add the 

effects of the algorithmic modifications outlined in 

Sections 3.2 and 3.4 ("Constraints Imposed by 

the Hardware"). This section presents perfor­

mance measurements of the low-level routines 

and discusses the impact of the key modifications 

on the connectionist performance. For the later 

purpose, a general framework to judge the perfor­

mance of hardware dedicated to neural networks 

is introduced. 

4.1 Performance of the Low-level 
Subroutine 

The peak performance in connection updates per 

second (CUPS) for single-layer networks can be 

roughly computed as: 

(4) 

where N 2 is the total number of PEs, f is the clock 

frequency, Nps = 40 is the number of clock cycles 

per operation (bit-serial communication). and U is 

the utilization rate. The constant nop evaluates the 

number of operations required to update a con­

nection; for instance, in a Kohonen network with 

the same number of inputs and neurons, nop = 4 

(euclidean, min, mprod, and kohonen). Con­

sidering the largest possible configuration of the 

MAl\TRA I system (40 X 40 PEs) running at a 

dock frequency off = 8 ~1Hz, the peak perfor­

mance ( U = 100%) of the system is 80 ~1CCPS for 

the Kohonen network. Equation 4 gives the per­

formance for single layers: otherwise the global 

performance is given by a weighted harmonic 

mean of the individual layer performances. For 

instance, a back-propagation network with one 

hidden layer and the same number of inputs and 

neurons on both layers would have a peak perfor­

mance of 128 MCCPS. 

In practice, the performance degrades from the 

ideal value because of several components. 

~amely. the utilization rate C is the product of 

three independent element,.;: 

1. A spatial utilization rate, expressing the 

fact that, depending on the size of the map, 

some PEs may be left idle during some 

phases of the computation. 

2. A temporal utilization rate. indicating the 

ratio of active instructions (array instruc­

tions other than no operation) over the com­

plete microprogram. 

3. A dynamic utilization rate, which is the ra­

tio of clock cvdes when the SI~1D module is 

active over the total. It models situations 

when the control DSP is delaying the paral­

lel module because of unavailability of data 

or instructions. 

The performance P has been measured on the 

current configuration of the ~1ANTRA I prototype 

(8 MHz, 20 X 20 PEs). The results are shown in 

Figure 7. In the most favorable conditions. a frac­

tion slightly below 70% of the ideal performance 

has been measured. 

4.2 Neural-Network Performance on 
Dedicated Hardware 

In addition to the MANTRA I machine, other pro­

grammable machines.. based on custom digital 

chips and aimed at running neural algorithms, 

have been described in the literature (see [ 6] for a 

review). Among the most interesting, in terms of 

advertised performance and versatility, one can 

mention the CNAPS machine from Adaptive Solu-
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FIGURE 6 Kohonen feature map arranged on a two­

dimensional grid. 

tion [3], the MY-NEUPOWER machine from Hi­

tachi [15] and the SYNAPSE machine from 

Siemens [ 14]. All these machines are essentially 

based on SI~1D parallel architectures and some­

how modify the alrogithms to make them more 

suitable to the hardware [ 1]. 

The kind of modifications listed in Section 3.2 

is far from being peculiar to .\1ANTRA 1: For in­

stance, almost all of the machines dedicated to 

neural networks implement fixed-point arithmetic 

because it is one of the fundamental sources of 

simplification of the hardware. Similarly, batch 

processing is a typical requirement of pipelined 

machines or of systems that associate a heavy cost 

to partitioning large networks on smaller hard­

ware. In the latter case, it is sensible to average 

this cost over a batch of input vectors. 

At the same time, these problems are not spe­

cific to Kohonen maps but, in different ways .. af­

fect most algorithms. Concerning batch update, 

although some connectionist models have an in­

trinsically batch nature (such as conjugate-gradi­

ent optimization techniques), others are originally 

designed to perform a weight update after each 

vector is presented (e.g., stochastic back-propa­

gation or Kohonen self-organizing maps) and may 

suffer from an injudicious conversion to batch up­

date. The problem of incorporating these effects 

in a fair assessment of the achieved speed-up is 

addressed in the next section. 

Speed-Up Revisited 

Performance of neurocomputers is traditionallv 

measured in CUPS, from which the time neces­

sary for one training iteration can be derived. A 

fair performance metric should rather depend on 

the time taken during training to reach a predeter-

mined output error, and not on the time taken to 

execute a predetermined number of learning iter­

ations. Let E be the training error of the neural­

network model J1 implemented. For supervised 

neural networks, E can be the output error while 

for unsupervised models such as the Kohonen 

modeL one may choose the quantization error. 

(The quantization error is the sum of the Euclid­

ean distances between each vector and the weight 

vector of the corresponding winner. It essentially 

measures the quadratic error incurred by repre­

senting the input data by the closest neurons in 

the map.) The speed-up achieved by a neurocom­

puter compared to a reference machine, should be 

defined by 

S (
E ) _ l,T(Eo) 

~~ ~o - l (E ) ' 
hw 0 

(5) 

where Eo is some predetermined value of the con­

vergence metric, and th" (Eo) and lc,.(Eo) are, re­

spectively, the times necessary for the neurocom­

puter and for a reference computer (for instance, a 

conventional workstation using double-precision 

floating- point variables) to reach the de:oired con­

vergence value Eo (Fig. 8). 

To link this new definition of speed-up to the 

traditional CCPS ratings, a measure of the quality 

of convergence of the algorithms may be intro­

duced: The algorithmic efficiency of a neurocom­

puter implementation ()f model ivf can be defined 

as follows: 

14 

12 

10 

kcc(Eo) 

khw(Eo). 
(6) 

Performance (m MCUPS) vs. Number of Prototypes 
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FIGURE 7 Performance of the system in millions of 

connections updated per second. 
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FIGURE 8 Convergence speed of a neurocomputer 

compared to a conventional computer as a function of 

time. 

where k,n,(Eo) and kcc(Eo) are, respectively .. the 

number of iterations necessarv for the neurocom­

puter and for a reference computer to reach the 

same £ 0 (Fig. 9). The efficiency, always positive, 

will be typically below unity, showing the losses 

introduced bv the hardware constraints. 

The definition (Equation S) of speed-up and 

(Equation 6) of algorithmic efficiency then yields 

(7) 

where 7hw and Tee are the tirnes necessary to pro­

cess one learning iteration on the neurocomputer 

and on the reference computer, respectively. The 

ratio Tee! 7hw expresses the traditional notion of 

hardware performance measured as the ratio of 

the CUPS on the special-purpose hardware and 

on the reference svstem. 

Equation 7 weighs the hardware speed-up with 

the algorithmic efficiency of the implementation. 

A good implementation should have an efficiency 

as close as possible to unity. The more the algo­

rithm has to be tuned to fit the hardware con­

straints, the smaller the resulting efficiency. 

This suggests that there may be a trade off be­

tween improving the parallelization efficiency in a 

neurocomputer implementation and preserving 

an acceptable algorithmic efficiency. A compro­

mise might lead to the optimum global speed-up. 

4.3 Effects of the Hardware Constraints 

The implementation constraints on MANTRA I 

induce important modifications of the Kohonen 

algorithm as described in Section 3, "Constraints 

Imposed by the Hardware." These may lead to a 

poor algorithmic efficiency or even prevent the 

convergence. The two most important ones are the 

quantization on a finite number of bits of the in­

put signals and synaptic weights and the batch 

updating of the weights. 

Quantization EHects 

Contrarv to other neural networks. the Kohonen 

algorithm with quantized weights and inputs has 

received little attention so far. Three factors influ­

encing its correct convergence can be put in evi­

dence [17]. Clearly, there is a minimal number of 

bits required to encode the weights. depending on 

the input distribution and dimension, as well as 

the number of neurons. Second, the adaptation 

gain a must decrease slowly enough, or have an 

initially large value, because otherwise the weight 

updates get rounded to zero before the algorithm 

has converged. Finally. the neighborhood func­

tion should decrease with the distance from the 

winner neuron, especially if the input dimension is 

low. These qualitative results were confirmed by a 

mathematical analvsis based on the .Ylarkovian 

formulation of the algorithm [ 161. giving the nec­

essary and sufficient conditions for the self-orga­

nization of the map in the case where the input 

and weight spaces are one dimensional. Roughly 

speaking. the results proven for the continuous 

case [2] also apply in the quantized case if the 

number of bits is large enough. 

Batch Updating 

As explained in Section 3.2. the Kohonen algo­

rithm is implemented in a modified batch version 

on MAJ\"TRA I. The batch mode is fundamental to 

exploit the parallelism of the systolic array [8]. Cp 

to now, the differences between the batch and the 

classical online versions have not been studied in 

the literature for this particular model. The .YIAN­

TRA I version is not purely batch, because the 

winner neuron is computed with the value of the 

weights at the beginning of the epoch but the 

weight update is an online operation. This imple­

mentation proved to be the most economic in 

terms of hardware complexity. In fact, although 

more counterintuitive, the convergence of the im­

plemented algorithm has been proven in the case 

of scalar inputs and time invariant parameters, 

whereas the pure batch algorithm convergence 

can only be proven with more restrictive assump­

tions on the parameters [7]. In the one-dimen­

sional case, it has been proved, using Markov 

chains' properties, that when the neighborhood 
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function is rectangularly shaped and time invari­

ant, and the adaptation gain is also time invariant. 

the weights self-organize with probability 1. When 

the adaptation gain decreases to zero, it has then 

also to be proved, using the ordinary differential 

equation (ODE) method [11], that the weights 

converge with probability 1 to the same asymp­

totic values as the ones reached by the originaL 

unmodified algorithm. 

Comparative simulations for a wide range of 

learning parameters have been performed to sup­

port the theoretical results. On a real-size bench­

mark (speech codebook classification .. 10 X 10 

neurons, 12 inputs), the quadratic quantization 

error has been measured as a performance indica­

tion of the self-organizing map (£). Figure 10 

shows the evolution of the convergence metric for 

the three versions of the algorithm. Already after 

the 8th epoch, the original algorithm is within 

20% of the best result, assessed after 200 epochs. 

The fully batch version is distinctly slower during 

the whole convergence and needs 28 epochs to fall 

below the same threshold. Thus, the algorithmic 

efficiency of the batch version compared to the 

reference algorithm io; only A\1 = 8/28 = 0.29. For 

lower values of E0 , the efficiency will become even 

lower and eventually reach 0, because the asymp­

totic minimum error reached is larger in the 

neurocomputer than in the reference algorithm. 

However, the best final error achieved by the 

MAl\TRA I algorithm with batches of ;)0 vectors is 

within a few ppm from the result of the standard 

version. .\1oreover, the algorithmic efficiency at 

the same £ 0 is 0.57 and for lower values of Eo it 

becomes close to 1. These results indicate that the 

batch nature of the ~IAl\TRA I algorithm does not 

E 

conventional computer 

EO 

/ialized hardware 

k (iterations) 

FIGURE 9 Convergence speed of a neurocomputer 

compared to a conventional computer as a function of 

algorithm iterations. 

severely hinder the convergence speed of the 

modeL 

5 POWER-SYSTEM APPLICATION 

Putting the .\1Al'\TRA I machine to work on a real 

application was one of the main objectives of the 

project. A target application in the field of power­

system security assessment has been chosen for its 

heavy computational requirements. Section 5.1 

briefly describes the application. Section 5.2 gives 

an estimate of the computational power required. 

Finally, Section 5.3 gives an overview of the con­

vergence quality and of the performance currently 

reached on the prototype for this application. 

5.1 Application to Power-System 
Security Assessment 

The application ofKohonen SOFY'is to power-sys­

tem security was first developed and implemented 

on a conventional workstation [ 13]. The purpose 

of this application is to predict whether the power 

flows in the branches (lines and transformers) and 

the bus voltages of a system wilL after an unfore­

seen outage, exceed the supported limit of the cor­

responding components or not. 

Power flows in a power system may be com­

puted by solving a set of nonlinear equations using 

an iterative method, for instance 1\ewton­

Raphson's. Given a current operating poinL clas­

sical static security analysis considers every poo;o;i­

ble combination of outages and iteratively 

computes a power flow for each. This heavy com­

putational burden prevents real-time computa­

tion on sequential hardware. Y1oreover .. conven­

tional simulation provides only quantitative 

results, leaving the interpretation of the current 

system state and its potential stochastic evolution 

to the power-system operators. Because decisions 

in power transmission system control centers often 

have to be taken under time pressure and stress. a 

fast, concise, and synthetic representation of se­

curity assessment results is essential. 

ln. this approach, the operational points of the 

multidimensional power-system state space are 

mapped onto a two-dimensional Kohonen net­

work by dividing the security space into catego­

ries. The centers of each class are the neurons 

located at the coordinates defined by the weight 

vectors. The two-dimensional picture of the net­

work gives a quite accurate interpretation of the 

situation. 
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5.2 Computational Requirements 

In the proposed application, a new security analy­

sis and a new learning process are to be performed 

every day to account for the daily changing oper­

ating conditions. A utility, even if it controls only a 

small part of the system, should take a major part 

of the network into account to yield accurate 

results. The Swiss high-voltage transmission net­

work, for instance, consists of roughly l.SO busses 

and 250 lines. The learning phase requires the 

processing of input vectors composed of 300 ele­

ments. The number of neurons in the feature map 

may not realistically be much more than 1.000, 

because for each of them an expensive power-flow 

computation has to be performed after the neural­

network training to interpret the results. Consider­

ing the 1 0 5 iterations is an ordinary training length 

for a large Kohonen network. the number of con­

nection updates necessary for a real-world power 

system may be roughly evaluated to a minimum of 

300 X 1000 X 10:; = 3 · 1010 connection updates 

for a daily training. Such an amount of computa­

tion takes more than 8 h on a conventional work­

station (approximately 1 million of connection up­

dates performed per second), which is too slow to 

be used in daily operation. An increase in compu­

tational power of one to two orders of magnitude is 

required. Accelerators such as the one proposed 

in this article could drastically reduce the learning 

time for larger power systems down to acceptable 

levels. 

5.3 MANTRA I Performance on the 
Power-System Application 

As described in Section 4, the performance of the 

system has been addressed by attempting to sepa­

rate the hardware speed-up from the algorithmic 

effects. The test experiments are described in the 

next sections. 

Quality of Convergence 

Figure 11 shows the evolution of the quantization 

error for one run of the power system application 

on the MAl\TRA I machine compared with a run 

of the original algorithm. The training set has been 

generated using the IEEE 24-bus 38-line power 

system, one of the smaller standard test systems 

developed for benchmark studies of power-system 

software. With a dimension of 76 for the input 

vectors, this power system was well suited for the 

test of the MAl\TRA I and could fit into the DSP 

dynamic RAM of the prototype. The same set of 

Algorithm Convergsnce-Spsed Companson 
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FIGURE 10 Comparison, on floating-point simula­

tions, of the convergence speed of the Kohonen .VIA.'\­

TRA 1 batch implementation with that of the pure batch 

algorithm and with the original online algorithm. The 

graph measures the quantization error of the network 

after every learning step composed of T = 50 vectors. 

learning parameters has been used for the original 

algorithm and for the MANTRA I. Figure 11 al­

lows a rough evaluation of the algorithmic effi­

ciency of MAJ\TRA I in this application. Each unit 

on the X-axis corresponds to 120 training itera­

tions. 

It should be noticed that because of a com­

bined effect of integer arithmetic. batch imple­

mentation, and multiple winners, YIANTRA 1 con­

verges with a slightly higher final error than the 

sequentially implemented floating-point version 

of the Kohonen algorithm. On a target error rate of 

50% more than the minimum error of the original 

algorithm, the latter and the MA:\'TRA 1 imple­

mentation need. respectively. 12 X 120 and 

16 X 120 iterations to reach the desired error 

rates. This vields an algorithmic efficiency of 

12/16 = 75%. 

To confirm that the algorithmic efficiency on 

MAJ\TRA I is high and not very far from unity, it 

was tested with additional data from other appli­

cations. Test runs confirmed that the discrepan­

cies between the MAl\TRA I version and the origi­

nal version of the Kohonen algorithm are smaller 

than the standard deviation of the original algo­

rithm itself. For instance, averaging ten runs for 

each of several sets of learning parameters in the 

speech codebook classification problem, MAK­

TRA I actually performed better in approximately 

50% of the cases. 

Like most neural-network algorithms, the per­

formance of the Kohonen algorithm, including the 
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Quantisation error vs. iteration coont 
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FIGURE 11 .\1easurement on the power-system ap­

plication of the convergence speed of the Kohonen 

~ANTRA I implementation compared to a floating­

point implementation. 

version running on ::VIANTRA I. is quite sensitive 

to an inappropriate choice of the training parame­

ters. Because the Kohonen algorithm converges 

stochastically toward an equilibrium point. differ­

ent random initializations of the weight vectors 

coupled with a nonideal choice of training param­

eters can result in different error rates. Experi­

ments with comparatively small sets of training 

data (for instance, 1,562 vectors in the case of the 

power system data, each presented several times 

chosen at random) indicated that for several run::; 

differences in the final quantization error were 

higher than expected and the reasons for this be­

havior have to be investigated further. ~Whether 

the ideal learning parameters are identical for the 

original and the MA!'\TRA I version of the Ko­

honen algorithm is also an open question at 

present time. Even though no evidence of a strong 

change in robustness has been found, more ex­

tensive experiments should be conducted to pro­

duce statistically significant observations. 

In conclusion, the final rate reached by MAl'\­

TRA I appears acceptable for the power-system 

application and the number of iterations required 

is approximately equivalent to that needed by a 

traditional floating-point version of the Kohonen 

algorithm. 

Hardware Speed-Up 

Table 2 shows the actual .YICUPS performance 

reached by the current machine with the Kohonen 

algorithm on the power-system application, for 

different problem sizes. For efficiency reasons, the 

number of neurons is chosen as a multiple of the 

number of PEs per side of the array (20 in the 

current machine), so that as few processors as 

possible remain idle. The actual performance de­

pends heavily on the problem size: the machine 

performs badly on small problems, where conven­

tional workstations could be sufficient. However. 

for larger problems, up to 14 ~1CCPS have been 

reached for the Kohonen algorithm, whereas a 

conventional platform performs around 1 MCLPS 

on the same algorithm [ 1 j. 

6 CONCLUSION 

The .\1ANTRA I machine has been designed, real­

ized, and tested. This article concentrated on the 

phases beyond hardware development, toward 

practical applications and real use. Topics such 

as programming and practical performance seem 

unfortunately seldom described in literature [ 6] 

and appear to be often disregarded as secondary 

to the hardware design itself. The MAl\TRA I ex­

perience shows that a number of key problems 

arise only when one tries to put the hardware to 

work and abandon toy problems to tackle real 

ones. 

First, a crucial issue is the complexity of low­

level programming of this type of dedicated ma­

chines, which may lead either to an overwhelming 

programming complexity or to poor hardware uti­

lization and performance. The difficulties arise 

because of the many independent execution units 

(e.g., systolic arrays, look-up tables) exposed to 

the programmer view and because of long pipe­

lines. Techniques to preserve the hardware effi­

ciency and at the same time to structure the code 

have been presented. 

On the other hand, neural networks are not so 

insensitive to algorithmic modifications and to re­

duced precision as often supposed, especially by 

hardware designers. For instance, the .YIA!'\TRA I 

svstem has to use a counterintuitive version of the 

Table 2. Implementation of the Kohonen 

Algorithm: Measured Sustained Performance for 

Different Problem Sizes 

Neurons Inputs Iterations .\1CLPS 

6 X 10 76 1,200 0.8 

12,000 5.4 

60,000 12.2 

100,000 13.9 
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Kohonen algorithm for which convergence prop­

erties similar to those of the original algorithm 

have been proved. Simulations are also presented 

to confirm the theoretical results. 

Finally, other problems had to be taken into 

account when interfacing the dedicated hardware 

itself with a conventional computational server 

and designing an efficient programming environ­

ment. 

Despite the many difficulties, the .VlAl\TRA I 

prototype, with one fourth of the supported PEs, 

displays a performance about one order of magni­

tude above that of a conventional workstation. 

Still, to provide users with dedicated machines 

with performances on neural networks close to 

those of supercomputers but at desktop prices, 

larger machines should be built with more sophis­

ticated technologies (e.g., custom layout instead 

of standard cells, higher integration, and clock 

rate). Also, more advanced packaging technology 

would also be required to solve severe reliability 

problems that have been experienced on the cur­

rent prototype. 

On the grounds of the gained experience, future 

research should address the following critical di­

rections: (1) Find more flexible and powerful pro­

gramming models to facilitate the low-level pro­

gramming of novel neural-network models by 

trained users and thus offer the flexibility that us­

ers require. (2) Find techniques to perform the 

microcode compaction online in hardware to 

avoid an overhead that may become impractical 

for algorithms whose control flow is heavily data 

dependent. These include emerging connectionist 

models such as evolutive networks. (3) Improve 

the generality of the basic PE architecture to sup­

port this broadening of the algorithmic target. 

Only addressing the above problems as a whole 

and not restricting oneself to the latter, dedicated 

systems for neural networks may become attrac­

tive for potential users and competitive with large 

and expensive computational servers. 
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