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*Serve as an experimental apparatus for testing large-scale artificial
intelligence systems.

*Explore the feasibility of an architecture based on abstractions, which
serve as natural computational primitives for parallel processing. Such
abstractions should be logically independent of their software and hardware
host implementations.

In this paper we lay out some of the fundamental design issues in parallel
architectures for Artificial Intelligence, delineate limitations of previous
parallel architectures, and outline a new approach that we are pursuing.
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1. Introduction

Large-scale distributed systems are evolving rapidly because of the following developments:

* The burgeoning growth of personal computers:

* The development of local and national electronic networks;

* The widespread requirement of arm's-length (discussed below) transactions among

agencies.

We envision the development of open systems [Hewitt and de Jong 83a, Hewitt and de Jong

83b]with the following properties:

" Continuous change and evolution. Distributed artificial intelligence systems are always

adding new computers. users. and software. As a result, systems must be able to change
as the components and demands placed upon them change. Moreover, they must be
able to evolve new internal components in order to accommodate the shifting work they
perform. Without this capability, every system must reach the point where it can no
longer be expanded to accommodate new users and uses.

" Absence of bottlenecks and decentralized decision-making. A bottleneck is a channel

through which all communications must flow. In the von Neumann architecture. the
single path between processor and memory acts as such a bottleneck. An adequate
architecture for large-scale artificial intelligence systems cannot have such bottlenecks.
A centralized decision-making mechanism would inevitably become a bottleneck;
therefore decision-making must be decentralized.

" Arms-length relationships and decentralized decision-making. In general, the computers,

people, and agencies that make up open systems do not have direct access to one
another's internal information. For example, suppliers and their customers or
competitors must deal with one another at arm's length. Arms-length relationships
imply that the architecture must accommodate multiple computers at different physical
sites that do not have access to each others internal components. They also imply that
the decision making is decentralized.

" Perpetual inconsistency among knowledge bases. Because of privacy and discretionary
concerns. different knowledge bases will contain different perspectives and conflicting
beliefs. Thus all the knowledge bases of a distributed artificial intelligence system taken
together will be perpetually inconsistent. Decentralization also makes it impossible to
update all knowledge bases simultaneously. This implies that it is not even possible to
know what kinds of information are contained in all the local knowledge bases in the
system at any one time. Systems must thus be able to operate in the presence of
inconsistent and incomplete knowledge bases.

* Need for negotiation among system components. In a highly distributed system, no
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system component directly controls the resources of another. The various components
of the system must persuade one another to provide capabilities. A distributed artificial
intelligence system's architecture therefore must support a mechanism for negotiation
among components.

Continuous growth and evolution, absence of bottlenecks. arm's-length relationships,

inconsistency among knowledge bases, decentralized decision making, and the need for negotiation

are interdependent and necessary properties of open systems.

2. Foundational Issues

Open systems raise important foundational issues in Artificial Intelligence including the

following:

* Integration of action. description, and reasoning. Three kinds of computer languages
have been developed: the descriptive, the action-oriented, and the reasoning or
deductive. Descriptive languages represent knowledge using descriptions: languages
that are based broadly on this approach include first order logic, KRL. NETL Omega.
KL-ONE, etc. Action-oriented programming languages such as Fortran, Lisp and Ada
implement processes that change objects. They tend to provide relatively weak
descriptions of objects and the relationships among them. Reasoning languages plan,
solve problems. or prove theorems. Logic programming languages (such as Prolog
[Kowalski 83]) are a subset of the reasoning languages that are limited by cumbersome

description and reasoning capabilities and by having inelegant mechanisms for taking
action [Hewitt 83]. Historically, languages strong in one of these kinds of capacities
have been relatively weak in the others. All three capabilities: action. description, and
reasoning are necessary for large-scale artificial intelligence systems.

" Inadequacy of the closed-world assumption. The closed world assumption is that the
information about the world being modeled is complete in the sense that exactly those
relationships that hold among objects are derivable from the local information
possessed by the system. Systems that make use of the closed world assumption (such
as Planner [Hewitt 69] and Prolog [Kowalski 74]) typically assume that they can find all
existing instances of a concept by searching their local storage. At first glance it might
seem that the closed world assumption. almost universal in the artificial intelligence and
database literature, is smart because it provides a ready default answer for any query.
Unfortunately the default answers provided become less realistic as open systems
increase in size since less of the information is available locally.

* Empirical Knowledge. Algorithmic procedures are those about which properties such as
LcInci ,--7- be proved mathematically. e.g. Gaussian Elimination, Quick Sort. etc. In
contrast Artifi,'l Intelligenre is mainly concerned with empirical procedures. In
general empirical prkxedures makL, cs,,,cntial use of empirical knowledge and require
interaction with the physical world in real time. For example a person's procedures for
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driving from Palo Alto to Boston rely on a great deal of empirical knowledge. e.g. the
relationship between a road map and a view from the car of the terrain on the map.
Interaction with the physical world in real time is required at many points. e.g. when a
traffic light turns yellow. Few interesting properties can be mathematically proved
about a person's procedures for driving across the country. Thus driving across the
country provides prime examples of empirical procedures.

Dynamic Allocation. An artificial intelligence architecture needs to dynamically allocate

and re-allocate computational resources as required by ongoing empirical computations.
Empirical computations require dynamic allocation because it is impossible to plan in
advance which procedures will need to be run. Artificial intelligence applications
require that the highest priority be short latency (fast response time) in order to
efficiently dynamically re-allocate resources as needed.

3. Limitations of Previous Architectures for Artificial Intelligence

Von Neumann machines. being sequential, are inadequate vehicles on which to base the

development of large-scale artificial intelligence systems. We need architectures that are inherently

parallel and sufficiently general to meet the requirements of open systems. Existing languages.

which were designed for existing architectures, tend to be similarly inadequate. Languages

designed for von Neumann machines are inherently sequential. Extensions to these languages

unnecessarily restrict the amount of concurrency.

Artificial intelligence systems need to organize information using description lattices that are the

further development of early ideas on "semantic memories" [Quillian 681. The consistency and

completeness properties of first-order description lattice logics have been systematically explored

[Attardi and Simi 81]. One of the most important design criteria for a parallel architecture for

Artificial Intelligence is to be able to store, retrieve, and reason about information in description

lattices in parallel.

Almost all previous non von Neumann architecture projects are based on the unexamined

assumption of linear scaling: their announced goal is to build an architecture in which the speed of

computation will increase in direct proportion to the number of computing elements without any

reprogramming. Almost all non von Neumann architectures have uncritically accepted the

assumption that simple linear scaling is possible as a criterion for succes.

Of course simple linear scaling is theoretically impossible because communication delay increases

as a machine becomes physically larger. As Chuck Seitz has pointed out [Seitz 83]. the cases in
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which linear scaling is almost achieved involve rather special cases of crystalline or systolic

regularity. For open systems, we feel that linear scaling is not directly achievable because increasing

the number of computational elements in a system increases the complexity of the relationships

among them.

Use of the principles by which work is organized in large-scale human organizations is a powerful

tool for making significant progress in architectures for Artificial Intelligence. The issues involved

in the organization of work must be dealt with in the early stages of architectural design because it

can have a significant impact on the kind of architecture that is useful. For example the

architecture must support capabilities like having sponsors for allocating resources [Kornfeld

82. Barber 821.

To deal with this issue, we are working on the development of a computational theory of

organizations and the organization of work [Barber. de Jong, and Hewitt 831. An architecture that is

capable of dynamic growth must be able to undertake major reorganizations of the work of

computations as they grow in size. In order to do this, the system must have an understanding of its

own capabilities and limitations as well as an understanding of the goals and constraints of the

mmnirtion heinz nerformed.

Below we consider particular limitations of previously proposed architectures in the context of

large-scale parallel artificial intelligence applications. Most of the limitations stem from the fact

that previous architectures were not designed for highly parallel artificial intelligence applications in

open systems.

3.1. Applicative, Functional, and Reduction Architectures.

Applicative, functional, and reduction machine organizations are based on the mathematical

theory of functions and function spaces. The absence of assignment commands and state change

facilitates parallelism. Applicative, functional, and reduction architectures are based underlying

mathematical theory of the lambda calculus [Church 41] which provides a very elegant proof theory

(Scott 72] and mathematical model of computation.

An important limitation of the lambda calculus class of languages is that they do not support

large-scale sharing o. objects with . changing local state. Shared objects with a changing local state

are required to support the allocation of resources and the implementation of cooperating and



Design Issues 5 Parallel Architectures

competing subsystems for artificial intelligence applications [Hewitt and de Jong 83b].

3.2. Data Flow Architectures.

Historically the term "data flow" is derived from trying to better structure the flow of data and

communication signals between hardware modules. Modeling software in terms of data and

communication between hardware modules has turned out to be limited because of the dynamic

creation of objects that occurs in software. To cope with the limitation. Data Flow machine

organizations are gradually evolving to have much in common with applicative, functional, and

reduction machines.

[)ata Flow architectures exploit the nature of algorithmic procedures to plan and map algorithms

efficiently onto the hardware before computation begins. As a result Data Flow architectures place

highest priority on thruput as a criterion for efficient execution of the planned procedures. They

were developed for running algorithmic rather than empirical procedures. Focusing on algorithmic

procedures, they place great emphasis on being able to plan the resource allocation for a

computation before starting. They are weak in the capabilities for dynamic allocation of

computational resources such as parallel garbage collection [Lieberman and Hewitt 83].

Architectures for Artificiai intelligence require a more dynamic allocation ot resources and greater

emphasis on short latency (fast response time).

3.3. Logic Programming Architectures.

Logic Programming is based on mathematical logic and the quantificational calculus. The

quantificational calculus is a well-defined powerful description language with solid elegant

mathematical foundations. One of the major findings of our research is that Logic Programming

architectures will not be adequate for distributed, parallel, artificial intelligence systems. Logic

Programming is inadequate for dealing reliably with empirical knowledge (Hewitt and de Jong

83a. Hewitt 83]. Current Logic Programming languages such as Prolog [Kowalski 83] are based on

essentially the same technology as Planner-like languages [Hewitt 69, Sussman, Winograd, and

Charniak 70]. Prolog [Kowalski 83] makes use of a flat data base of assertions that does not provide

an adequate organization of the knowledge in the torm of description lattices. Logic Programming

has further problems in that it confounds issues of description and action [Hewitt and de Jong

83b. Hewitt 83].

(- a n a ! I I I I
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3.4. Blackboard Architectures.

The name "blackboard" brings to mind a group of agents communicating with a blackboard.

This does not work work well in practice because the blackboard quickly becomes a bottleneck in

reading and writing information for large scale parallel systems. Introducing multiple blackboards

quickly shifts the emphasis to some other architectural paradigm such as message passing.

3.5. SIMD Architectures.

Arrays of single instruction, multiple data (SIMD) stream computers are important for the early

stages of visual, speech. and tactile processing. Thus an Artificial Intelligence architecture needs to

be able to interface with such arrays on the periphery. SIMI) architectures are designed to perform

one operation at a time on a large array of data. Therefore they are not suitable of doing large-scale

symbolic reasoning which requires that multiple symbolic operations be performed in parallel on

different symbolic structures.

3.6. Global Shared Memory Architectures.

A global shared memory is a single large shared structure which is used for interprocess

communication. Global Shared Memory machine organizations communicate at a very low level

reading and writing individual words of memory. Such architectures are inadequate for physically

distant computers. because the central memory acts as a bottleneck. A global shared memory will

become increasingly less attractive because the ratio of the average latency for accessing the global

shared memory relative to the clock period will gradually increase over the course of time as

communication time becomes a dominant efficiency consideration. Because of the need for

dynamic allocation of resources, parallel artificial intelligence systems require a low relative latency

(fast response time) for effective operation.

4. Actors

Actor theory [Hewitt and Baker 77. Clinger 811 provides a foundation for addressing the

problems of constructing distributed, large-scale artificial intelligence systems. Actor theory treats

issues of scaling information processing systems in an integrated fashion: It applies equally to

large-scale multi-processing machines that reside in a single room, and to those in which the

machines are geog. phically dispersed. Actors are inherently parallel. An actor is defined by its

behavior when it processcs communications. When an actor processes a communication it can

perform the following four kinds of primitive actions concurrently:
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1. Make simple decisions

2. Create more actors

3. Send more communications

4. Specify how it will behave in response to the next message received, thus characterizing
its new local state

Conceptually. there is no a priori limit on the computational power of an actor. e.g. a single actor

can implement a whole microprocessor system. In practice, we make each actor relatively simple in

order to keep systems modular. The power of actor systems stems from the ease with which systems

of n'ore specialized actors can be combined to accomplish large tasks.

In a theoretical sense, actor systems are more powerful than lambda calculus [Church 41] systems.

Consider the problem of when given a formula in formal system (which may or may not be

derivable), either deriving the formula or giving up and reporting failure. For any given lambda

calculus program, there exists a bound on how deep the search will proceed. However, we can

easily construct an actor system which will always prove the formula or report failure but for which

there is no bound as to how deeply it will search. The actor system can be constructed with two

actors which we will call the Sponsor and the Searcher. The Searcher commences a search for a

derivation of the formula which is potentially nonterminating. The Sponsor counts up to some

fixed number and then sends a stop message to the Searcher. However since the stop message

might be arbitrarily delayed. there is no bound on how deep the search might proceed. The above

example illustrates a qualitative difference between the lambda calculus class of systems and actor

systems. It is similar to the kind of qualitative difference that exists between finite and infinite state

machines. Such qualitative differences have important effects on the style of development of

artificial intelligent applications.

The utility and versatility of actors stem from the following properties:

" Actor systems are inherently paralleL Because each actor responds to messages
independently of other actors, systems of actors inherently have a high degree of
parallelism. Different actors can be processing sub-tasks simultaneously, coordinating
their activities by passing messages among themselves.

* Actors have hardware generality. Since actors are virtual computational units, their
implementation is not dependent upon particular hardware configurations such as
machine boundaries, the number of processors, or the physical location of machines.
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An actor can be implemented in hardware, in micro-code, or in software. Actors are
organized by load-balancing to spread processing load and communication delays, by
migration to relieve overcrowding, and by efficient. real-time. distributed garbage
collection to improve locality of communication and to recover the use of storage
occupied by inaccessible actors.

Actors have software generality, Being defined mathematically [Clinger 81], actors are

independent of any programming language. Actors are very general with respect to the
languages and language features they can support In particular. they provide a uniform
basis for description. action. and reasoning [Barber. de Jong, and Hewitt 83]. Actors
support the parallel processing of lattice networks of descriptions (e.g. semantic
networks), pattern-directed rules for reasoning. as well as procedures for taking action.

5. The Apiary Approach

We are developing an experimental machine architecture. called the Apiary. based on

theory [Hewitt 801. The goal is to create an integrated, parallel hardware-software system th 7

the generality required for large-scale artificial intelligence systems. To date, much o1 _,e

implementation work on the Apiary has centered around simulating the Apiary on a network of

current-generation sequential computers [Lieberman 83].

Muist mL uifuifum s i'u nw machines perfoi in at the level of instruction sets or virtual machines. Tine

simulator implements a sequential interpreter for the instruction set in the host language, and

programs written using the new machine's instruction set can be tested. Compilers translate higher-

level languages into the instruction set. Instruction sets for conventional machines usually specify

operations like loading and storing registers with fixed length bit strings. The instruction set level

has the advantage that it is high enough to be convenient as the target for problem-solving

languages, yet low enough to experiment with the algorithms which will be needed to realize the

computational model in hardware.

Instead. we model the Apiary as a set of workers, each worker being analogous to a single

computer executing instructions serially, together with its own memory, and the ability to

communicate with other workers. The Apiary simulator must bridge the gap between

programming sequential processors with modifiable state and a multi-processor system with no

globil state

The primitive oper.fioacs of the Apian are not like those of conventional machines. Whereas

instructions in Von Neumann machines manipulate the contents of registers. the Apiary must deal
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solelk with actors and their responses to messages. Although an Apiary may be implementedl at the

lowest hardware level with transistors and wires, this must be hidden from Apiary applications. The

four primitive capabilities mentioned earlier (creating actors, sending messages. making decisions.

and changing behavior) form the backbone of a virtual machine for an Apiary worker, together with

operations on primitive data types such as addition of numbers.

We have not yet taken the Apiary simulator down to the level of coding instructions as bit strings.

defining memory formats. and specifying register sets. Though this will eventually be necessary for

hardware implementation. the details will depend heavily on the particulars of implementation

technology.

The Apiary is a parallel problem solving system, where users write programs whose computations

may range over many processors. Artificial intelligence applications are characterized by their

unpredictable nature. One cannot predict in advance how many concurrent activities will be

necessary or desirable for solving a problem, how much memory will be needed. or how to best

divide work among available processors. It follows that a parallel system for Artificial Intelligence

must dynamically allocate all processor, communication, and memory resources in the system,

wirhoiit evnlicif intervention hy applicat ions programs.

The Apiary architecture accommodates two broad classes of machines: core machines and

periphery machines. The core consists of high performance processors connected with high

bandwidth, low latency communication links. The periphery consists of less powerful processors

that are portable and do not require air conditioning. The hardare will be composed of a

changing number of physical processors, executing specific programs, each with its own local

memory, yet we do not want programs to depend on the specifics of the hardware configuration.

Our goal is to create an illusion of flexible parallel computation given inflexible serial hardware.

Most of the work involved is the responsibility of a set of housekeeping algorithms, and much of

the challenge of the implementation of the Apiary will lie in the creation of simple and efficient

algorithms for tasks of real-time such as the following:

Real-time efficient garbage collection. Like traditional systems that support dynamic
allocation of storage, the Apiary will require real-time garbage collection that is
efficient. Our preliminary thoughts on this important issue are spelled out in more
detail in Il.ieberman and Hewitt, CACM 1983]. Efficiency of storage recovery is
measured by storage latency (the average time which elapses between when an actor
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becomes inaccessible and when its storage is recovered) and the processing required
(the average processing cost in recovering the storage of an inaccessible actor).

Balancing. The Apiary supports activities and actors at multiple sites. Without
corrective action it could easily get out of balance with some of the sites having
insufficient storage. communications, and/or processing power. We are designing
mechanisms that will promote balance and tend to restore the Apiary to balance.

Locality Achieving locality of communication is fundamental to the efficiency of the
Apiary. We conjecture that communication bandwidth between two points in the
Apiary needs to fall off exponentially with their distance.

6. Apiary Software Foundations

Developing a new architecture for large-scale artificial intelligence systems is largely a software

problem. Prelude is the name of the software system we are developing as the foundation for the

Apiary. The goal is for Prelude to support unified description, action, and reasoning systems that

can exploit the large-scale parallelism made possible by VLSI.

We have developed a number of experimental software systems dealing with different aspects of

the design of high-level actor-based language systems. First a basic actor programming language

[Lieberman 81] was developed for sending communications, creating actors, and making local state

changes. Next a description language that incorporates the descriptive capabilities of logic in the in

the context of lattices of descriptions [Hewitt, Attardi, and Simi 80] and a reasoning system that

provides for reasoning about beliefs and goals in parallel was developed [Kornfeld and Hewitt

81, Kornfeld 82]. The description system was characterized axiomatically [Attardi and Simi 81].

Then the reasoning system was re-implemented to incorporate the use of the description system

[Barber 82]. These languages and systems were independently implemented in somewhat

incompatible ways. We plan to integrate their capabilities using Act2 [Theriault 83]. Currently

Act2 integrates communication and local change capabilities with the lowest level descriptions in

the description system. Being inherently parallel and having no assignment commands, it has

proven to be well suited for the implementation of asynchronous concurrent systems.

The generality of Act2 has been demonstrated by a metacircular description of Act2 in Act2

[Thenault 83]. r.."t of the demonstration consisted of constructing parallel applicative interpreters

directly, such as one lr Pure Lisp with parallel argument evaluation. This cannot be done using

the lambda calculus [Church 41] class of interpreters themselves, for they lack the ability to express
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the required local state changes. Thus, we discovered, through a concrete example. that Act2 is

more powerful than the lambda calculus class of languages. More generally, Act2 provides good

support for control-driven, data-driven, and demand-driven styles of computation.

In a related development, investigation of a shared financial account example confirmed the

expectation that Act2 is more suitable than the lambda calculus class of languages for dealing with

computational problems involving shared actors with changing local states. While working with the

shared financial account example. we implemented a new approach to actor state changes [Hewitt.

Attardi. and Lieberman 79. Hewitt and de Jong 83b]. From the perspective of this new approach.

actors change state by transforming themselves into other actors.

Work is proceeding on the development of a source language debugging system for parallel

systems called Time Traveler. The Time 'fraveler system builds on previous work on debugging

hardware [Giaimo 75], debugging sequential programs [Balzer 69]. and parallel simulation

[Jefferson and Sowizral 82].

7. Conclusion
In .his paper we have explored some of the fundamental design issues in pa!!el architectures for

Artificial Intelligence, explained limitations of previous parallel architectures, and outlined the

Apiary architecture that we are pursuing. The Apiary architecture has proven to be an excellent

vehicle for exploring the ideas and theories presented in this paper. Demonstration of the practical

importance of the Apiary awaits the allocation of suitable resources for realistic testing and for the

development of applications.
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