
Design, Layout and Verification of an FPGA using
Automated Tools

Ian Kuon, Aaron Egier and Jonathan Rose
Department of Electrical and Computer Engineering,

University of Toronto
Toronto, Ontario, Canada M5S 3G4

{ikuon,aegier,jayar}@eecg.utoronto.ca

ABSTRACT
Creating a new FPGA is a challenging undertaking because of the
significant effort that must be spent on circuit design, layout and
verification. It currently takes approximately 50 to 200 person
years from architecture definition to tape-out for a new FPGA
family. Such a lengthy development time is necessary because
the process is primarily done manually. Simplifying and
shortening the design process would be advantageous since it
could reduce the time to market for new FPGAs while also
enhancing architecture explorations. One way to accomplish this
is through automation and, in this paper, we describe our efforts
to automate the entire process by making use of a previously
developed set of tools that assist in the creation of the repeatable
FPGA tile [25]. Our aim is to demonstrate the feasibility of a
CAD flow that uses an input FPGA architecture description to
generate a layout that can be sent for fabrication. We prove the
feasibility of this proposition by actually designing and
fabricating a complete FPGA. Initial functional testing of the
FPGA appears promising but is inconclusive at this time.
Through this architecture to layout process, we investigate the
issues that are faced in the architecture selection, circuit design,
layout and verification of such an automatically produced FPGA.
We found that there are significant savings in design time. As
well, we demonstrate that we can produce a layout using
automated tools that is only 36% larger than a commercial FPGA
device layout. Given the significant time savings and the
relatively minor area penalty, we feel that this work demonstrates
that automated layout of FPGAs is practical and advantageous.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – layout, placement
and routing, verification B.7.1 [Integrated Circuits]: Types and
Design Styles – gate arrays

General Terms
Design, Verification

Keywords
FPGA, PLD, programmable logic, automatic layout.

1. INTRODUCTION
The creation of a new FPGA is a complex and daunting task
because the very reasons that make FPGAs attractive to designers
present associated challenges to those who produce the FPGAs -
every pre-fabricated structure must work correctly in every
conceivable use, and must be implemented as efficiently as
possible so that the cost of programmability does not outweigh its
benefits. The creation of an FPGA requires an increasingly
complex design process, in which the architecture of the FPGA
must be determined, appropriate electrical circuits for
implementing this architecture must be developed, the layout of
that circuit must be performed and the final design must be
verified to be correct. This design process takes approximately 50
to 200 person years [25].

The reason this process is extremely time-consuming is that much
of it is currently performed manually. It is essential that the final
layout allow the implementation of circuits that are as fast and as
low power as possible, while occupying the smallest area to
reduce cost. For these reasons, FPGA manufacturers have relied
on manual design since it is believed to deliver higher quality
layouts than are generated by automated layout tools.

On the other hand, there are many benefits that could come from
automation of this design process. First, automation would
reduce the time to market for new FPGAs, which currently take at
least two years from conception to first-silicon availability, of
which the design portion takes at least one third. Second, an
automated design flow could also lower the entry barrier for new
FPGA manufacturers – instead of requiring a team of hundreds to
create the design in a reasonable amount of time, a handful of
engineers could produce a hopefully similar quality design in
even less time using automated design tools. Finally, if the layout
process was quick and automated, FPGA architects would have
access to more detailed information about the area and speed
impact of their architectural decisions. This improved accuracy
could lead to the development of more efficient architectures.

Previous researchers [25][27][16] have proposed several ways of
automating the design process for various kinds and
circumstances of programmable logic, which we review in
Section 2. However, none of this past work fully considered the
implications of using automated layout tools to fabricate a
complete FPGA. In the present work, we employ and enhance
one of these previous approaches to architect, design, floorplan,
lay out, verify, and fabricate a complete FPGA. Our goal is to
demonstrate that automated design tools can be used successfully
to create an FPGA, and that it can be done with significantly
reduced manual labor. We also compare the area of automatically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’05, February 20–22, 2005, Monterey, CA, USA.
Copyright 2005 ACM 1-59593-029-9/05/0002 $5.00.

215

and manually generated layouts to determine if the savings in
engineering costs are being offset by increased production costs.

This paper is organized as follows: Section 2 describes previous
work on automated design methodologies for FPGA creation. In
Section 3, we describe the development of the architecture to be
implemented. In Section 4, we outline the automated process of
taking that FPGA architecture and producing a layout that can be
taped out for fabrication. Before actually taping out the design,
extensive verification is necessary, which is described in Section
5. Section 6 reports on the functionality, required design time and
area of the FPGA and Section 7 concludes.

2. Related Work
There have been a number of prior works concerning the
automated creation of FPGAs.

Kafafi et al. propose a new architecture and an implementation
using standard cells to construct an FPGA from a VHDL input
description [16]. Their context is the creation of FPGAs
embedded within a non-programmable ASIC. The layout for this
logic, called a synthesizable embedded programmable logic core,
is easily created using commercial synthesis, placement and
routing tools. The authors adopted this approach to allow for easy
integration in system-on-a-chip applications and they target a very
specific architecture that is suitable only for small embedded
cores. Nevertheless, this approach could also simplify the design
of standalone FPGAs. The disadvantage of this approach is that,
as feared, it incurs a significant penalty in terms of area. In [16],
the authors estimate that the automatically generated layout is 6.4
times larger than an equivalent manually created layout. Wilton
and Wu report that a core created with this methodology did
function successfully [35].

Phillips and Hauck also employed standard cells to implement
programmable logic in [27] and [26]. They focused on the
creation of domain-specific reconfigurable systems in which the
amount of configurability can be reduced for the particular
application domain. The authors do offer a comparison between
unreduced automated and full-custom layouts. Their finding was
that the automated approach yielded a layout that was 42% larger
and 64% slower than a manual design. By reducing functionality
to that required for a specific domain, the authors successfully
demonstrate that smaller and faster layouts can be created
automatically. This flexibility to create varying designs
highlights one of the benefits of automated design that we hope to
achieve as well. Phillips and Hauck do not report any fabricated
chips resulting from this work.

The above works take as their starting point a fairly FPGA
specific architecture. The goal in the present work is to automate
a fairly general class of FPGA architectures. Also, in both cases,
automation clearly simplified the design process but the result
was detrimental in terms of area and speed. These results are
comparable to past research that measured the performance gap
between standard cell and custom designs. In [15], Dally and
Chang find that, depending on the level of automation, automated
layouts are between 64% and 1350% larger than custom layout
areas. The speed of the implementation also suffers although with
only a little manual effort automated tools came within 11% of
the speed performance of a custom layout. Based on these results,

we consider area the most important factor facing automated
design flows.

An alternative to using standard cells and supporting tools is to
use tools created specifically for FPGA design and layout. This
approach was used in [25]. These tools take an FPGA
architectural specification as the primary input and take advantage
of FPGA-specific optimizations during the layout process. As a
result, they produce smaller layouts than would otherwise be
possible. Our work uses these tools in the design of our FPGA.
However, before describing the basic functionality of these tools,
we will review the overall FPGA layout approach that will be
used in this work.

2.1 Tile-based FPGA Layout
We will focus exclusively on island-style FPGAs, as illustrated in
Figure 1. A common (but not universal) approach ([9][22][33]) to
laying out this style of FPGA is to take advantage of regularity of
the array and build a tileable structure that can be replicated. This
is done by grouping the basic logic block and the adjacent routing
resources into a tile as shown in Figure 2. Such an approach does
place some restrictions on the architectures that can be created. A
detailed discussion of these can be found in [24].

Logic Block Logic Block Logic Block Logic Block Logic Block

Logic Block Logic Block Logic Block Logic Block Logic Block

Logic Block Logic Block Logic Block Logic Block Logic Block

Logic Block Logic Block Logic Block Logic Block Logic Block

Logic Block Logic Block Logic Block Logic Block Logic Block

Figure 1 - Island-style FPGA

Logic
Block

Figure 2 - Individual Tile

The tile layouts are connected simply by abutment. While this
approach provides less opportunity for chip-wide optimization,
the layout is much more manageable. We use this tile-based
approach in the present work, as did [25].

216

This tile-based approach also has the advantage that it can be
readily adapted to handle heterogeneous FPGA architectures. In
such architectures, the logic block could simply be replaced by
other features such as multipliers or memory and the layout of
these blocks would be constrained to match the connections of a
normal tile containing a logic block. If necessary, these
heteregenous blocks could occupy the space of multiple logic
block tiles. In this work, we focus on uniform FPGAs consisting
exclusively of logic blocks but, since our tools are already
capable of handling constrained layouts, extending this work to
handle heterogeneity would be straightforward.

2.2 The GILES Layout Tools
While laying out a single tile is easier than laying out the entire
array, it is still a daunting task. Tiles typically contain on the
order of 10,000 transistors [25] and, given that the same layout
will be used repeatedly, obtaining a compact layout area that can
operate at a high speed is essential. The GILES tools described
in [25], [6], [14], and [24] are designed to automate the layout
process of this single tile while maintaining reasonable speed and
area. Our work uses these tools to assist in the process of making
a complete FPGA. The inputs to these tools are an architecture
description and a description of the available cells. These are
used to produce a single tile layout that can be used to create part
of an FPGA. The steps in this process are shown in Figure 3.

GILES Netlist
Generator

GILES Placer

GILES Router

Single Tile
Layout

Architecture
Description

Cell
Descriptions

Figure 3 - GILES Tools Layout Flow

The architecture description is specified using the VPR
Architecture Description Language [2][3]. The VPR Architecture
Generator [2][3] uses that architecture description to produce an
internal data structure defining the FPGA that will be created.
Based on that structure, the GILES Netlist Generator produces a
cell-level netlist describing the circuitry needed to implement that
architecture. It is important to remember that this netlist does not
describe the entire FPGA and, instead, it only describes a single
tile of the FPGA.

To produce the physical layout of the tile, the GILES Placer and
Router are used. The GILES Placer takes the cell-level netlist as
an input. A simulated annealing-based algorithm [17] is then
used to perform simultaneous placement and compaction. This
custom placement approach also allows the use of FPGA-specific
optimizations such as allowing the logical equivalence of
configuration SRAM outputs to be leveraged [25].

Once placement is complete, the GILES router takes the placed
FPGA tile and outputs the mask-level layout for the tile.
Previously, in [25], routing was performed using a custom
detailed router based on a negotiated congestion algorithm [11]
[5]. This router is useful for experimental work since it always
routes a design successfully. When the router fails to find a valid
routing initially, rows and/or columns of space are inserted in the
most congested regions of the design and the routing algorithm is
re-applied. We make use of this router for the results presented in
Section 6. However, this router is not as flexible as most
commercial routers. For example it is unable to handle partial
routing blockages on a layer (it needs the entire layer to be free).
For this reason, the GILES tools were augmented to also function
using the Cadence Chip Assembly router [7][12]. This is the
primary approach we use in this work.

3. ARCHITECTURAL DECISIONS
The first step in creating any FPGA is selecting its architecture.
In this section we describe the architectural choices made, and the
method for making the choices.

One of the first decisions that must be made is to select the silicon
process that will be used for our design. We decided to use a 0.18
µm process from TSMC with 6 metal layers and 1 polysilicon
layer. This mature technology was selected to allow us to focus
on the functionality of our prototype design instead of having to
worry about the increasingly complex design rules and the lower
yields of the latest processes. However, using a less aggressive
process technology does not make our results less relevant since
the automated design tools can be adapted to any process.

The next consideration is to determine the tool flow that will be
used for implementing circuits on the final FPGA. Since the
GILES Layout tools are based on VPR [4], our CAD flow for
using the FPGA will also be VPR-based. The input circuits to this
CAD flow will be BLIF descriptions of circuits that were
synthesized and mapped from the original BLIF descriptions
using SIS with Flowmap [10][28] to the 4-LUTs we use in this
work. T-VPACK [21] will then be used for clustering and VPR
for placement and routing on the FPGA. This choice constrained
the range of architectures that we could consider to basic logic
element-based FPGAs with multiple-driver based routing. It was
beyond the scope of this work to also augment VPR to handle
more recent architectural features such as carry chains and
unidirectional/direct-drive routing [20][38].

There has been a great deal of research aimed at finding efficient
architectures for VPR-style FPGAs [1][5]. For our architecture,
the logic block was selected to be a cluster containing three 4-
input LUTs; this is considered to be reasonably area-efficient and
fast in [1], but creates a small enough tile that a reasonable
number can be replicated in the silicon area available to us. The
number of cluster inputs and the output connection block
flexibility were set based on the conclusions from [5]. These
conclusions called for the number of cluster inputs to be equal to
2N+2 where N is the cluster size. Therefore, for our cluster size
of three, there should be 8 inputs. The authors also recommended
that the flexibility of the connection block is equal to 1/N which
gives a flexibility of 0.333 for our architecture.

Next, we decided to avoid non-buffered pass-transistor routing
because of the electrical complexity it adds to the design. Instead,

217

a fully buffered bi-directional routing network will be used. For
this case, the results from [5] suggested that routing tracks with
only segments of length 4 would be an appropriate routing
architecture.

The next key question was to determine the number of tracks in
each routing channel, as this has a dramatic effect on the tile area.
We employed an experimental approach to determine a quantity
that would render the resulting FPGA routable. In these
experiments, 117 MCNC benchmark circuits [23], which were
previously mapped to 4-LUTs, were run through the complete T-
VPACK/VPR flow and the number of benchmark circuits that
routed for a range of possible track counts was measured. The
circuits selected were those we approximated would fit in the
silicon area allocated to our project since silicon area limits our
LUT and input/output count.

The results of this experimentation to determine a suitable track
count are shown in Figure 4. Based on these results, we set the
number of tracks per channel to be 20 since it is the minimum
track count that allowed all the benchmark circuits to successfully
route.

The input connection block flexibility was also determined
experimentally. Since it has a less pronounced effect on the tile
area, we selected the minimum flexibility, 0.6, that offered
consistent routability for all the benchmark circuits. Some lower
flexibility values were able to route the circuits; however, it was
necessary to repeatedly run VPR with varying input seeds before
all the designs could be routed.

The complete final parameters that were used for the FPGA are
summarized in Table 1.

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

Number of Tracks per Channel

N
um

be
r o

f S
uc

ce
ss

fu
lly

 R
ou

te
d

C
irc

ui
ts

Figure 4 - Number of Routed Circuits over Varying Track
Count

Table 1 - Architecture Parameters

Parameter Value

LUT Size, k 4
Cluster Size, N 3
Number of Cluster Inputs, I 8
Number of Tracks Per Channel 20
Track Length 4
% Buffered Tracks 100
Fc, input 0.600
Fc, output 0.333
Fc, pad 0.600
Array Size, nx x ny 8 x 8
Pads per row/column 2
Total Number of LUTs 192
Total Number of I/O’s 64

As was mentioned previously, the tile-based layout methodology
restricts the architecture that can be selected. Among the tileable
architectures, there are also limitations in how these architectures
are created by the VPR Architecture Generator. The current
version of VPR produces architectures that are in fact not tileable.
In particular, the connection from the routing tracks to the logic
cluster is not created such that every cluster’s connections match
the physical implementation created when a single tile is
replicated. This is described in detail in [18]. To address this
deficiency in dealing with tile-based layouts, VPR was updated
appropriately.

4. ARCHITECTURE TO LAYOUT –
AUTOMATICALLY
With the architecture defined, the process of creating a complete
FPGA automatically can proceed. The goal was to go from
architecture description to layout with as little manual
intervention as possible.

4.1 Netlist Generation
The first step in the architecture to layout process takes the
architecture description as input and produces a cell-level netlist
of the tile as output. A portion of an example input architecture
description is shown in Figure 5. The processing of this
description is done using the GILES Netlist Generator described
previously in Section 2.

subblocks_per_clb 3
subblock_lut_size 4

#parameters needed only for detailed routing.
switch_block_type subset
Fc_type fractional
Fc_output 0.333333333333333
Fc_input 0.6
Fc_pad 0.6
Uniform channels. Each pin appears on only one side.
io_rat 2 #2 pads per row or column

chan_width_io 1
chan_width_x uniform 1
chan_width_y uniform 1

...

Figure 5 - Architecture Description Excerpt

218

At this point in the process, it was necessary to decide how the
transistors in the design will be grouped into cells. The initial
GILES tools described in [25] selected the grouping into cells
without any consideration of the area impact of this choice. The
work in [12] explored a range of grouping possibilities and this
design makes use of the improved cell groupings discovered in
that work. A key conclusion from that work is that SRAM
configuration cells are most efficiently grouped in a 4x4
configuration of 16 bits. This conclusion depends on the ability
of our layout tools to leverage the functional equivalence of the
configuration bits during placement and compaction. This
conclusion may be relevant to manual layout regimes as well.

4.2 Cell Layout
Once it was known which cells were required for the design, the
cells had to be created. This is the one step in the design process
that must be done manually. However, it is possible that tools
such as Cadabra from Synopsys [30] could be used for this step in
the future. The fifteen cells required for the design are listed in
Table 2. All the cells are relatively small in size ranging from an
inverter with two transistors to a group of SRAM bits requiring
eighty transistors. The 4 word line by 4 bit line array of SRAM
bits is constructed by replicating the layout of a single 5-transistor
SRAM bit and, therefore, is not as complex as might be implied
by the eighty transistors in the cell. Clearly, the effort required to
layout these cells is significantly less than would be needed for a
complete FPGA tile containing thousands of transistors.

Table 2 - Manual Cell Layouts

Cell # of Transistors Size (µm2)
1x Inverter with pullup 3 15.25
2x Inverter 2 13.07
4x Inverter 2 15.68
4x Buffer 4 18.30
4x Buffered Switch 5 18.30
PMOS Pullup 3 13.07
4-LUT 30 86.25
2-input MUX 2 8.71
11-input MUX 20 47.92
12-input MUX 22 52.27
20-input MUX 38 109.77
Flip-flop 15 47.04
Flip-flop with enable 19 54.89
AND gate 6 17.42
4x4 SRAM 80 209.09

4.3 Periphery Tiles
The process above focused on the creation of a single tile
containing a logic block and its adjacent routing. As described
earlier, a layout of the tile can be replicated to form a large array
of logic blocks connected by routing. This, however, is only part
of the typical island-style structure shown in Figure 6.

In particular, there is extra routing required along the left and
bottom edges of the tile array to provide connectivity to those I/O
cells and ease routing congestion. Additional tiles are needed to
provide that routing. In total, eight different tiles are required.
This includes the main tile described above, four edge tiles and
three corner tiles.

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

I/O
Block

I/O
Block

I/O
Block

I/O
Block

I/O
Block

I/O
Block

I/O
Block

I/O
Block

Logic
Cluster

I/O
Block

I/O
Block

I/O
Block

I/O
Block

I/O
Block

I/O
Block

I/O
Block

I/O
Block

Figure 6 - Tiled Island-style FPGA

With this tile-based approach, the goal is to connect the tiles by
abutment. To enable such connections, it is necessary to
constrain the placement of the inter-tile connection ports.
Normally, those ports are free to move which allows for improved
routing. Constraining the placement of these ports restricts the
amount of optimization available to the placer and will likely lead
to a less area-efficient design. To minimize the impact of this
effect on the total area of the design, the tiles must be created in a
specific order, allowing the most frequently used tile (the main
tile) the most freedom during its placement by laying it out first.
The next most frequently used tiles are the edge tiles. Each of
these tiles abuts the main tile on one side and it is those
connections to the main tile that must be constrained during
placement of the edge tiles. To accommodate this, the GILES
placer, which normally performs both placement and compaction,
was modified to handle the constrained placement of the inter-tile
connection ports and to compact the tile only in the unconstrained
dimension. Finally, the corner tiles each connect to two of the
periphery tiles and are therefore constrained on both edges.

4.4 Tile Layouts
Each of the eight tiles required for the design was laid out using
the GILES Placer [25] and the Cadence Chip Assembly [7] router.
Without automation this process can take many person-years but
with the automated placer and router the task is completed in less
than half a day.

The power grid was added to each tile placement before routing.
It consists of alternating power (VDD) and ground (VSS) vertical
and horizontal stripes on the top two metal layers. The Cadence
Chip Assembly router automatically connects the power grid to
all the cells in the tile. However, left on its own, the router prefers
to make connections between the cells on the lower metal layers
and brings up only a few thin connections to the power grid. This
will restrict the current and slow down the FPGA. It could also
cause reliability problems due to electromigration. One solution is
to tell the router to create thicker power connections but this

219

would increase congestion. Instead, we force the router to make
more connections up to the power grid by dividing the power grid
into regions with each region having its own logical VDD and
VSS nets. Physically, these logical nets are all connected
electrically. The cells located in each region connect to the VDD
and VSS nets for that region only. The router connects the VDD
and VSS nets in each region and brings up at least one connection
to the power grid per region.

To calculate how many power regions were needed, we
determined the maximum current draw of the main tile is 63.6 mA
if all the cells switch at the same time. Assuming only a quarter of
the cells switch simultaneously, the current draw is 15.9 mA. At
least 57 power connections are needed to supply this current. To
be cautious, we created 80 power regions. These calculations are
sufficient for the purposes of our prototype chip but, in the future,
we would like to simulate the power grid to verify how many
regions are needed. The power grid and its regions are generated
automatically using Cadence’s scripting language, SKILL [8], so
it is easy to change the number of power regions in the future.

Once a tile layout was created, it was checked to ensure it
conforms to the process design rules. Typically, DRC errors can
be introduced by both the placer and the router. In our case, the
placer treats all cells as black boxes. Therefore, to avoid DRC
problems, the cell boundaries were sized such that all placements
without overlapping cell boundaries are DRC clean. This caused
space between cells that would not exist in manually laid out tiles.
However, we eliminated some space by using larger cells [12] and
future work may be able to reduce it further without violating
design rules.

The Cadence Chip Assembly router was configured for our
process’s design rules. However, the final routing output by the
router did not satisfy all these rules when the design was
congested. In our trials, typically a small number (under 20) of
violations would be found. These errors were fixed manually.

4.5 Configuration SRAM Programmer
With the tiles now laid out, the design of the logical functionality
seen by a user of the FPGA is complete. However, before
actually using the FPGA, each SRAM bit in the design must be
programmed to the state required for the circuit being
implemented on the device. This task is performed by a dedicated
configuration SRAM programmer.

As the tiles were being created, the GILES tools connected the
configuration SRAM bits to the necessary programmable
elements and connected all the bits in a tile together to form a
memory array of word and bit lines. There are far too many lines
to connect off chip and for this reason, dedicated on-chip circuitry
is needed to control these connections to the SRAM bits. Modern
FPGAs have many advanced programming features such as the
partial reconfiguration capabilities described in [37] and [38] but
these features are not needed for the test chip we are creating.
Instead, we adopted the simple strategy illustrated in Figure 7.
Here the word and bit lines from all the tiles are connected
together to form one large array. Two shift registers control the
word lines and the bit lines. These shift registers are embedded in
the periphery tiles.

The programmer contains the control logic for these shift
registers. This controller was written in Verilog. The design was

synthesized using Synopsys Design Compiler and it was placed
and routed using Cadence Silicon Ensemble PKS. The standard
cells in the design were from the Diplomat-18 Standard Cell
library from Virtual Silicon Technology [34].

Programming of the device proceeds as follows. First, the
bitstream is sent to the programmer and serially loaded into the bit
line shift register. The programmer configures the word line shift
register to assert one word line when the contents of the bit shift
register are valid. This process repeats until all the word lines
have been programmed.

4.6 Bitstream Generation
The programmer handles the task of configuring the SRAM bits
in the design based on the bitstream supplied to it. However, we
need a way to generate this bitstream. Doing so requires a
complete FPGA CAD flow such as Altera’s Quartus II or Xilinx’s
ISE that can take a description of the circuit to be implemented
and output a programming file for the device. Our solution to this
challenge is based on the VPR toolset [5]; the process we use is
shown in Figure 8.

FPGA
Tile

FPGA
Tile

FPGA
Tile

FPGA
Tile

FPGA
Tile

FPGA
Tile

FPGA
Tile

FPGA
Tile

FPGA
Tile

Shift Register

S
hift R

egister

Word Line Bit Line

SRAM
Programmer

...

Figure 7 - Configuration SRAM Programmer

GILES Tools

Tile Netlists

Architecture
Description

Cell
Descriptions

VPR with
Bitstream
Generator

Bitstream

Circuit to be
implemented

on FPGA

Figure 8 - Bitstream Generation CAD Flow

220

It is interesting to consider an issue that arose due to one of the
features of the GILES tools: its ability to take advantage of
logical equivalencies in the FPGA. The netlist of the tile is first
defined by the FPGA tile netlist generator. However, the placer
alters this netlist to improve the quality of the placement. One
such alteration involves the connections to configuration SRAM
bits, which are logically equivalent under bitstream re-ordering.
Similarly, all the inputs to a multiplexer are logically equivalent
and it is only important that the available connections remain
unchanged. Making such changes during placement is unusual
since with standard cell tools the only changes that would usually
be made during placement and routing are buffer insertions and
logically equivalent swaps of cell inputs whereas the GILES
placer will perform logically equivalent swaps of the cells
themselves. The changes that our placer makes impact the
bitstream that is to be generated and, therefore, a bitstream cannot
be created until after the placement is complete. At that point the
bitstream generator must reconstruct the logical structure of the
FPGA. This is not a trivial task since resources like routing tracks
are all very similar. To ease this process the GILES placer was
updated to maintain information about the logical FPGA
structure. With that information rebuilding the logical structure
from the tile netlists is significantly easier.

Once the logical structure information is reconstructed, generating
the bitstream is straightforward using a modified version of VPR.
Placement and routing are first done normally using VPR. The
output from the router is a set of routing resource graph edges that
were used by the circuit. The bitstream generator configures the
bitstream such that the programmable elements corresponding to
those edges are turned on. Note also, that all the basic logic
elements in the logic cluster are equivalent and that the router
determines which specific logic element is used. Therefore, the
bitstream generator only configures the logic elements after the
routing information is processed. All the other programmable
elements in the design are left in a default safe state for the
bitstream. In this state, all unused input and output pads are
configured as inputs and unused routing track drivers are disabled
to avoid contention.

4.7 Arrays, Clock and Power-Up Signals
The work described in the previous sections provided all the
necessary pieces required for the FPGA that was created. The
floorplan shown in Figure 11 illustrates how the tile layouts and
the programmer connect together. The input/output pads for the
design are also from a Virtual Silicon Technology library [34].
These pad cells were manually laid out to form the pad frame for
our FPGA. The array of the eight different FPGA tiles was
constructed automatically by abutting the tiles to form the
structure shown in the figure. This was done using Cadence’s
scripting language, SKILL [8]. As described earlier, the layout of
the programmer was generated automatically using commercial
place and route tools. The connections between the FPGA array,
the programmer and the pad frame were done by the Cadence
Chip Assembly Router with two exceptions: the clock and a
global programming signal. We discuss both of these signals
now.

The tile-based approach works well for most of the features in the
FPGA. However, clocks must be treated differently if the design
is to function quickly and reliably. With clock signals, it is
important to create a low-skew network. A frequently used

structure for ensuring this is known as an H-tree. With this
structure, the distance (and therefore delay) to all end points
(registers) is the same but implementing this structure as shown in
Figure 9 requires that the clock enter each tile from alternating
sides of the tile. Instead of creating two types of tile we decided
to create a single tile with a small horizontal channel reserved for
the clock routing. After the tile layouts are arrayed, the clock
routing is created by a SKILL script and the appropriate side of
the tile is used.

One potentially problematic area with FPGAs is that their
programmability introduces the possibility of contention. In our
architecture, all the routing tracks can be driven by many different
drivers. A valid programming bitstream ensures that only one of
these drivers is on but when the device is powered up the
programmable SRAM bits initialize to an undetermined state. As
a result, it is possible to have a case as shown in Figure 10(a)
where multiple drivers are driving a routing track with different
values. The drivers would then require large supply currents. To
avoid having to design our power grid to handle such large
currents, we instead opted to prevent this contention. All drivers
where contention is possible can be disabled by a global
programming signal as shown in Figure 10(b). This signal is set
to 0V until a valid programming bitstream is loaded into the
design. For normal operation of the design, the signal is then set
to VDD. This signal must be distributed throughout the tile array.
We automatically route the signal again using a SKILL script. In
this routing we take advantage of the routing channel that was left
for the clock. Since the clock only enters on one side of the tile,
the other side remains available and this global programming
protection signal connects through this channel.

Figure 9 - Clock H-Tree

221

SRAM
bit

SRAM
bit

0?1

1 1

(a) Possible Contention prior to Configuration

SRAM
bit

SRAM
bit

??

? ?

Protection
Line

(b) Approach used to prevent contention

Figure 10 - Power On Circuitry
One final concern after routing is antenna rules [29][13]. These
rules ensure that during manufacturing the routing in the design
does not accumulate a charge large enough to damage the gates of
transistors connected to that routing. The charge accumulates
during processing steps involving ion etching and it depends on
the area of the metal or polysilicon connected to a transistor gate.
Any antenna violations are corrected by connecting reverse-
biased diodes to the substrate since these allow the routing to be
discharged. This check could not be meaningfully performed on
the single tile since connections to other neighboring tiles can
vary the amount of diffusion area relative to the metal/polysilicon
area, which can either resolve or introduce antenna errors.
Therefore, only once the array of tiles was created were the
antenna rules checked. On the order of two hundred errors were
observed initially but with the manual addition of only eleven
diodes in the replicated tiles all the errors were corrected.

With all these steps complete, a final layout for the device was
generated. A SPICE-style netlist of the complete design that
others may find useful is available at:

http://www.eecg.toronto.edu/~jayar/pubs/ATL/powell.html.
However, cells taken from our standard cell library are not
included to satisfy our non-disclosure agreements.

Bottom
Left
Tile

Top
Left
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Main
Tile

Right
Tile

Right
Tile

Right
Tile

Right
Tile

Right
Tile

Right
Tile

Right
Tile

Right
Tile

Left
Tile
Left
Tile
Left
Tile
Left
Tile
Left
Tile
Left
Tile
Left
Tile
Left
Tile

Top
Tile

Top
Tile

Top
Tile

Top
Tile

Top
Tile

Top
Tile

Top
Tile

Top
Tile

Bottom

Tile
Bottom

Tile
Bottom

Tile
Bottom

Tile
Bottom

Tile
Bottom

Tile
Bottom

Tile
Bottom

Tile

I/O
Pad
I/O
Pad
I/O
Pad
I/O
Pad
I/O
Pad
I/O
Pad
I/O
Pad
I/O
Pad

I/O
Pad
I/O
Pad
I/O
Pad
I/O
Pad
I/O
Pad
I/O
Pad
I/O
Pad
I/O
Pad

I/O
Pad

I/O
Pad

I/O
Pad

I/O
Pad

I/O
Pad

I/O
Pad

I/O
Pad

I/O
Pad

Programmer

Bottom
Right
Tile

Input
Pads

I/O
Pad

I/O
Pad

I/O
Pad

I/O
Pad

I/O
Pad

I/O
Pad

I/O
Pad

Figure 11 - Complete FPGA Floorplan

5. VERIFICATION
Prior to taping out this design, thorough verification was essential
and we now describe these verification efforts. With over
300,000 transistors in the design, verification is not a trivial task.
To simplify the problem, verification was done at several levels.

5.1 Logical Functionality
The first verification step taken was to confirm the correct logical
behavior of the design. This is an important step because neither
the tools that create the FPGA nor the CAD flow to use the FPGA
had ever been tested for the correct logical functionality. The first
test involved checking that all the logical connections expected by
a user of the FPGA are present. This was done by comparing the
routing resource graph in VPR with the tile netlists. Each edge in
the graph is a programmable element that must be present in the
design and, therefore, we confirmed that there was a
programmable device in the netlists corresponding to each routing
resource edge.

Once we fixed gross errors of missing programmable elements,
we proceeded to simulate the logical behavior of the design. This
is necessary to confirm that we are generating correct bitstreams
for the device. For this test, we created a Verilog description of
the entire design. To generate bitstreams, we started from a BLIF
description of the circuit mapped to 4-LUTs. T-VPACK and the
modified version of VPR were then used for clustering,
placement, routing and bitstream generation. In the Cadence NC-
Sim simulator, we simulated the programming of the design.
Once programming was complete we applied random stimulus to
the design and observed the output from the FPGA to compare it
to our expectations for each test circuit. Through this testing, we
were able to uncover logical problems with the generated
bitstream. For example, an improper initialization of default
states for unused components led to the inadvertent creation of
ring oscillators throughout the design. Once we corrected these
problems, we were satisfied that the bitstream generator
functioned correctly and the logical behavior of the design was
correct.

5.2 Electrical Functionality
Verifying the logical behavior of our FPGA is not sufficient since
the design is actually being sent for fabrication in silicon. We
must ensure that the design is electrically sound. First, each cell
was simulated in HSPICE to ensure that it functioned. Such
testing alone might be adequate for a simple digital design but the
complexity of our design requires larger-scale simulations. In
particular, due to the exclusive use of NMOS pass transistors trees
for multiplexers and tri-state drivers, signal voltages are degraded
below the full VDD level. (The use of NMOS-based multiplexers
as opposed to transmission gates is standard in FPGAs to reduce
area and capacitive loading.)

To confirm proper electrical functionality in the face of these
varied voltages, simulation is required. Simulating a single tile is
not useful since the electrical interaction with neighboring tiles
must be considered. Instead, the safest approach is to simulate the
entire FPGA in the same manner that it will be used in silicon.
The standard tool for electrical simulations is HSPICE but with
358,374 transistors in this design the capabilities of HSPICE are
far exceeded [31]. Instead, Synopsys Nanosim [32] was used.
This is a SPICE-like simulator that can handle millions of

222

http://www.eecg.toronto.edu/~jayar/pubs/ATL/powell.html

transistors while maintaining accuracy within a few percent of
HSPICE [32].

The simulation process was similar to that used for verifying the
logical functionality since we expect the same behavior from the
transistor-level implementation of the design. The configuration
bitstream was first applied and then the output from random input
stimulus was compared to expectations.

It is interesting to describe the problems uncovered by these
simulations. One problematic area, as expected, resulted from the
degradation in voltage seen when passing through an NMOS pass
transistor tree. If the voltages were left below the VDD rail then
static power would become a concern since downstream PMOS
transistors would not be turned off completely. To avoid such
problems, PMOS pull-up transistors were used as level restorers
to raise the voltage back to VDD. The sizing of those pull-ups is
a delicate task since the transistors must be weak enough to allow
the node to be pulled down but not be so weak that they waste
area and slow down the device. The simulations uncovered cases
where the pull-ups were in fact too strong and pulling down the
node was not possible. As a result, the pull-up transistors were
resized and the design was re-simulated. Once issues such as
these were resolved the complete design was found to be
functional and ready to be taped out.

6. RESULTS
Before describing the results, we first revisit the goals for this
work. The primary aim was to demonstrate the viability of
automated FPGA design. Clearly, the most important
consideration is functionality since if automated FPGA design is
to be feasible it must maintain the same level of functionality as
manually generated designs. Once functionality has been assured
then the feasibility of automated design rests on the cost savings it
can introduce. We will look at the savings in engineering time
since this translates to a reduction in non-recurring engineering
expenses. Past automation efforts have failed because of a feared
increase in area. Increased area translates into increased
production costs and therefore we also examine the area impact of
this design methodology.

6.1 Functionality
We believe the successful simulation of the entire design
accomplished the goal of demonstrating that a complete FPGA
can be created using automated tools. The complete layout of our
design is shown in Figure 12. The core of the chip consisting of
an 8 x 8 array of clusters with three 4-input LUTs occupies an
area of 1041 µm by 1225 µm. The total die area is 5.634 mm2. A
photo of the fabricated die is shown in Figure 13.

The fabricated chip has been successfully powered-up. The
current drawn after power-up is 17 mA which is close to our
expectations and the programmer responds correctly during
programming. Unfortunately, after programming, the chip draws
more current than was anticipated and the test circuit does not
function as expected. We believe the chip is being configured
improperly but we have not yet determined whether the problem
is with the chip or the test procedure. Testing is ongoing to

determine the nature of the problem and we remain optimistic that
it can be resolved.1

Figure 12 – Complete FPGA Layout

Figure 13 – Die Photo

6.2 Cost Savings
6.2.1 Design Time
The primary goal in automating the FPGA design process was to
reduce the design time from the over 50 person years that are
currently required to create an FPGA. To determine if we
succeeded in this goal, we tracked the time spent constructing our
FPGA. The time required for each stage from conception to tape-
out is summarized in Table 3.

1 Once testing is complete, the full test report will be posted at

http://www.eecg.toronto.edu/~jayar/pubs/ATL/powell.html.

223

http://www.eecg.toronto.edu/~jayar/pubs/ATL/powell.html

Table 3 – Time Required for FPGA Design

Step Time Required
(person-weeks)

Architecture Exploration 2
Circuit Design and Optimization 8
Cell Layout 6
Tile Layout 0.5
Programmer Synthesis, Placement and
Routing

2

Power Planning 1
Clock Network Simulation 1
DRC/Antenna Fixing 0.5
Pad Frame Layout and Connections 1
Verification 12
Total 34

These times are in part estimates because at the same time the
FPGA was being created the automated layout tools were also
being enhanced. These enhancements would not be necessary for
any future designs.

A few steps in the process are particularly interesting.
Architecture exploration involved the investigation to determine
what specific architecture would be used. For a commercial
design, this step is extremely important and greater time would be
allocated for this study. Similarly, the circuitry for the FPGA was
not optimized to the same extent commercial designs are
optimized. However, our automation efforts were not focused on
either of these stages. Instead, the automated tools simplified the
cell layout and the tile layout steps. For a commercial design
many person years might be spent on these two steps alone while
thanks to automation we spent only 6.5 person weeks completing
this portion of the design. The significant time savings at this
stage in the process demonstrates the success of our automated
tools in reducing the design time. In total, the entire process took
approximately 8 person months. Much of this work is
parallelizable and two graduate students were able to complete the
work over a period of 4 months.

It is important to note that modern commercial FPGAs have
evolved to include more advanced logic blocks and features in
addition to the basic logic block. The basic logic element now
only constitutes 31% of the silicon area in a typical commercial
device [19]. Our design consists solely of basic logic element
clusters and simple input and output connections. Therefore, the
8 person months required for our design cannot be directly
compared to the 50 to 200 person years of effort needed for a new
commercial FPGA. Nevertheless, we believe the layout of the
logic elements constitutes a significant portion of a typical design
cycle given their importance. With our automated design tools,
this time will be significantly reduced.

6.2.2 Area
The past efforts at automated layout of programmable devices in
[26] and [16] both indicated a significant area penalty was
incurred due to the automated layout methodology. For the
GILES tools, the work in [25] attempted to address these concerns
by obtaining an approximate comparison to commercial devices.
They found that their automated layouts were 47% and 97%
larger than comparable manually laid out Xilinx Virtex-E and

Altera Apex 20K400E devices respectively. However, this
comparison, by the authors’ own admission, was very
approximate. To address this concern, we revisit the question of
automated versus manual layout area.

The layout area of the device created for this work does not offer
a useful point of comparison since there are no manual layouts
with a comparable architecture and process technology.
Generating our own manual layout would be exceedingly time
consuming – avoiding such arduous work is one of the goals of
the project. It would also not offer a convincing comparison point
since the layout capabilities of the authors certainly do not match
those available in industry where many person years of work are
dedicated to the task.

Instead, for fair comparison, we chose to compare the layout area
to that of a commercial device, the Xilinx Virtex-E [38]. For this
comparison we accurately captured the architecture of the Virtex-
E using Xilinx FPGA Editor [36]. It was necessary to make some
assumptions about the structure of the features in the architecture.
The assumptions that were made were based on patents filed by
Xilinx and standard design practices. One factor that significantly
impacts area is buffer sizing. To improve the accuracy of our
comparison, we simulated our version of the routing resources in
HSPICE and selected buffer sizes that minimized the area delay
product for those resources. We call our representation of
Xilinx’s design, the Virtex-E capture. A more detailed
description of the process used to generate the capture can be
found in [18].

Our capture of the Virtex-E is very similar to the actual device.
The sum of the cell areas in our capture gives the total active area
in our design. If we assume that the tile area of the actual Virtex-
E is equal to its active area, we find that the active area of our
capture is 11% larger than the actual Virtex-E’s active area. (This
assumption is reasonable is reasonable based on [5]) The number
of configuration SRAM bits in our capture was within 3% of the
number of configuration SRAM bits in the actual device. Given
this similarity, it is fair to compare the final layout area of the two
designs.

For the layout produced automatically, the GILES layout tools are
used. Instead of the Cadence Chip Assembly router used for
fabricating the chip, we used a custom router that is part of the
GILES tools since it is better able to handle high congestion
designs. The results from this comparison are summarized in
Table 4. It is clear the layout produced manually by Xilinx is the
densest but it is very encouraging that the area used by the
automated layout tools is only 36% larger than Xilinx’s design.
This is an improvement over the initial result with the automated
layout tools which yielded a layout that was 198% larger [18].
The improved area resulted from more efficient use of metal
layers and better grouping of transistors into cells. This result is
also an improvement over the prior results obtained in [16] and
[26]. This clearly demonstrates that there is promise to this
automated FPGA design process at least in some market segments
since the increase in production costs due to area can be offset by
savings in design time. Furthermore, with a concerted industrial
effort we believe that achieving an automated layout that is on par
with a manual layout is possible.

224

Table 4 - Virtex-E Layout Area Comparison

 Area % increase relative to
the Xilinx Virtex-E

Actual 0.18 µm
Virtex-E Tile

35,462 µm2 -

0.18 µm Virtex-E
Tile created with
GILES layout tools

48,282 µm2 +36%

7. SUMMARY
We have described a complete automated CAD flow for creating
new FPGAs, and used it to design and tape-out a complete FPGA.
We have shown that this automation significantly reduces the
design time of an FPGA and only suffers from a moderate
increase in silicon area. We believe that, with additional effort,
the area penalty of automated design can be reduced. Our
experience leads us to speculate that it may be possible to achieve
better-than-human layouts (because the tools can be given
exposure to a broader optimization space than humans can deal
with) that will also be fast and power-efficient.

In the future, we plan to explore the impact of this automated
methodology on circuit speed and power. This current work
focused on functionality and neither speed nor power were
optimized. Future work will address this issue by automatically
evaluating the impact of transistor sizing.

8. ACKNOWLEDGMENTS
The authors would like to thank Ketan Padalia, Ryan Fung and
Mark Bourgeault for their initial work on the GILES layout tools.
We are also grateful for the technology and silicon access that
was provided by the Canadian Microelectronics Corporation
(CMC) for this project. The authors also appreciate Jaro
Pristupa’s assistance in ensuring easy access to the technology
kits and tools we used in this work. Finally, we would like to
thank NSERC and Altera for their generous funding of this
project.

9. REFERENCES
[1] E. Ahmed and J. Rose. The effect of LUT and cluster size on

deep submicron FPGA performance and density. In
Proceedings of the 2000 ACM/SIGDA eighth international
symposium on Field programmable gate arrays, pages 3–12.
ACM Press, 2000.

[2] V. Betz and J. Rose. Automatic generation of FPGA routing
architectures from high-level descriptions. In Proceedings of
the 2000 ACM/SIGDA eighth international symposium on
Field programmable gate arrays, pages 175–184. ACM
Press, 2000.

[3] V. Betz and J. Rose. Automatic generation of programmable
logic device architectures, October 2003. US Patent
6,631,510.

[4] V. Betz and J. Rose, VPR: A New Packing, Placement and
Routing Tool for FPGA Research. In Int. Workshop on Field
Programmable Logic and Applications, 1997, pp. 213 - 222.

[5] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD
for Deep-Submicron FPGAs. Kluwer Academic Publishers,
1999.

[6] M. Bourgeault, J. Slavkin, and C. Sun. Automatic transistor-
level design and layout of FPGAs. Bachelor’s thesis,
University of Toronto, 2002. Available online at:
http://www.eecg.toronto.edu/~jayar/pubs/ATL/Bourgeault_S
lavkin_Sun_2002_Project.pdf.

[7] Cadence, Virtuoso Chip Assembly Router. Datasheet
available online at: http://www.cadence.com/datasheets/
4886_virtuosoCAR_DSfnl.pdf.

[8] Cadence. SKILL Programming Language,
http://www.cadence.com

[9] P. Chow, S. Ong Seo, J. Rose, K. Chung, G. Paéz-Monzón,
and I. Rahardja. The design of a SRAM-based field
programmable gate array-part ii: Circuit design and layout.
IEEE Trans. on VLSI Systems, 7(3):321–330, Sept 1999.

[10] J. Cong and Y. Ding, FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-Table
Based FPGA Designs. IEEE Trans. On CAD. pp. 1-12, Jan.
1994.

[11] C. Ebeling, L. McMurchie, S. A. Hauck and S. Burns,
Placement and Routing Tools for the Triptych FPGA, IEEE
Trans. on VLSI, 4(3):473-482, Dec. 1995.

[12] A. Egier. Enhancing and Using an Automatic Design System
for Creating FPGAs. Master’s thesis, University of Toronto,
2005.

[13] J. Ferguson and A. J. Moore, “Solutions for maximizing die
yield at 0.13 µm,” Solid State Technology, vol. 45, July
2002.

[14] R. Fung. Optimization of transistor-level floorplans for field-
programmable gate arrays. Bachelor’s thesis, University of
Toronto, 2002. Available online at: http://www.eecg.
toronto.edu/~jayar/pubs/ATL/ryan_fung_2002_thesis.pdf.

[15] W. J. Dally and A. Chang. The role of custom design in
ASIC chips. In Proceedings of the 37th Design Automation
Conference, pages 643–647. ACM Press, 2000.

[16] N. Kafafi, K. Bozman, and S. J. E. Wilton. Architectures and
algorithms for synthesizable embedded programmable logic
cores. In Proceedings of the 2003 ACM/SIGDA eleventh
international symposium on Field programmable gate
arrays, pages 3–11. ACM Press, 2003.

[17] S. Kirkpatrick, C. Gelatt and M. Vecchi, “Optimization by
Simulated Annealing,” Science, May 13, 1983, pp. 671 –680.

[18] I. Kuon. Automated FPGA Design, Verification and Layout,
Master’s thesis, University of Toronto, 2004. Available
online at: http://www.eecg.toronto.edu/~jayar/pubs/theses/
Kuon/IanKuon.pdf.

[19] P. Leventis, et al. Cyclone: a low-cost, high-performance
FPGA. In Proceedings of the IEEE 2003 CICC, pages 49–
52, September 2003.

[20] D. Lewis, et al. The StratixTM routing and logic architecture.
In Proceedings of the 2003 ACM/SIGDA eleventh
international symposium on Field programmable gate
arrays, pages 12–20. ACM Press, 2003.

225

[21] A. Marquardt, V. Betz and J. Rose. Timing-Driven
Placement for FPGAs. In Proceedings of the 2003
ACM/SIGDA eleventh international symposium on Field
Programmable gate arrays, pages 37-46.

[22] B. Nguyen, O. P. Agrawal, B. A. Sharpe-Giesler, J. T.
Wong, H. M Chang, and G. H. Tran. Tileable and compact
layout for super variable grain blocks within FPGA device,
November 2000. US Patent 6,154,051.

[23] LGSynth93 MCNC Benchmarks. Obtained from
http://www.eecg.toronto.edu/~lemieux/sega/ccts_blif.tar.gz.

[24] K. Padalia. Automatic transistor-level design and layout
placement of FPGA logic and routing from an architectural
specification. Bachelor’s thesis, University of Toronto, 2001.
Available online at: http://www.eecg.toronto.edu/~jayar/
pubs/ATL/ketan_padalia_2001_thesis.pdf.

[25] K. Padalia, R. Fung, M. Bourgeault, A. Egier, and J. Rose.
Automatic transistor and physical design of FPGA tiles from
an architectural specification. In Proceedings of the 2003
ACM/SIGDA eleventh international symposium on Field
programmable gate arrays, pp. 164–172. ACM Press, 2003.

[26] S. Phillips, Automatic Layout of Domain-Specific
Reconfigurable Subsystems for System-on-a-Chip. Master’s
Thesis, Northwestern University, 2001.

[27] S. Phillips and S. Hauck. Automatic layout of domain-
specific reconfigurable subsystems for system-on-a-chip. In
Proceedings of the 2002 ACM/SIGDA tenth international
symposium on Field-programmable gate arrays, pages 165–
173. ACM Press, 2002.

[28] E. M. Sentovich et al. SIS: A System for Sequential Circuit
Analysis, Tech. Report No. UCB/ERL M92/41, University
of California, Berkeley, 1990.

[29] H. Shin, C. Hu. “Plasma-etching induced damage in thin
oxide.” In IEEE/SEMI Advanced Semiconductor
Manufacturing Conference and Workshop, pp 79-83, 1992.

[30] Synopsys Cadabra. Product description available at:
http://www.synopsys.com/products/ntimrg/cadabra_ds.html.

[31] Synopsys. HSPICE frequently asked questions.
http://www.synopsys.com/products/mixedsignal/hspice/hspic
e_faqs.html.

[32] Synopsys. Nanosim. Product Description available at:
http://www.synopsys.com/products/mixedsignal/nanosim/na
nosim.html.

[33] D. Tavana, W. K. Yee, and V. A. Holen. FPGA architecture
with repeatable tiles including routing matrices and logic
matrices, October 1997. US Patent 5,682,107.

[34] Virtual Silicon Technology. Diplomat-18 standard cell
library, 2003. http://www.virtual-silicon.com/.

[35] S. Wilton and J. Wu, Private Communication
[36] Xilinx. FPGA Editor, http://toolbox.xilinx.com/

docsan/xilinx5/help/fpga_editor/fpga_editor.htm.
[37] Xilinx. Virtex series configuration architecture user guide,

September 2000. XAPP151 (v1.5).
[38] Xilinx. Virtex-E 1.8v field programmable gate arrays

production product specification, July 2002. DS022-1 (v2.3).

226

