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ABSTRACT 
Creating a new FPGA is a challenging undertaking because of the 
significant effort that must be spent on circuit design, layout and 
verification.  It currently takes approximately 50 to 200 person 
years from architecture definition to tape-out for a new FPGA 
family.  Such a lengthy development time is necessary because 
the process is primarily done manually.  Simplifying and 
shortening the design process would be advantageous since it 
could reduce the time to market for new FPGAs while also 
enhancing architecture explorations.  One way to accomplish this 
is through automation and, in this paper, we describe our efforts 
to automate the entire process by making use of a previously 
developed set of tools that assist in the creation of the repeatable 
FPGA tile [25].  Our aim is to demonstrate the feasibility of a 
CAD flow that uses an input FPGA architecture description to 
generate a layout that can be sent for fabrication.  We prove the 
feasibility of this proposition by actually designing and 
fabricating a complete FPGA.  Initial functional testing of the 
FPGA appears promising but is inconclusive at this time.  
Through this architecture to layout process, we investigate the 
issues that are faced in the architecture selection, circuit design, 
layout and verification of such an automatically produced FPGA.  
We found that there are significant savings in design time.  As 
well, we demonstrate that we can produce a layout using 
automated tools that is only 36% larger than a commercial FPGA 
device layout.  Given the significant time savings and the 
relatively minor area penalty, we feel that this work demonstrates 
that automated layout of FPGAs is practical and advantageous. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – layout, placement 
and routing, verification B.7.1 [Integrated Circuits]: Types and 
Design Styles – gate arrays 

General Terms 
Design, Verification 

Keywords 
FPGA, PLD, programmable logic, automatic layout. 

1. INTRODUCTION 
The creation of a new FPGA is a complex and daunting task 
because the very reasons that make FPGAs attractive to designers 
present associated challenges to those who produce the FPGAs - 
every pre-fabricated structure must work correctly in every 
conceivable use, and must be implemented as efficiently as 
possible so that the cost of programmability does not outweigh its 
benefits.  The creation of an FPGA requires an increasingly 
complex design process, in which the architecture of the FPGA 
must be determined, appropriate electrical circuits for 
implementing this architecture must be developed, the layout of 
that circuit must be performed and the final design must be 
verified to be correct.  This design process takes approximately 50 
to 200 person years [25].   

The reason this process is extremely time-consuming is that much 
of it is currently performed manually. It is essential that the final 
layout allow the implementation of circuits that are as fast and as 
low power as possible, while occupying the smallest area to 
reduce cost.  For these reasons, FPGA manufacturers have relied 
on manual design since it is believed to deliver higher quality 
layouts than are generated by automated layout tools. 

On the other hand, there are many benefits that could come from 
automation of this design process.  First, automation would 
reduce the time to market for new FPGAs, which currently take at 
least two years from conception to first-silicon availability, of 
which the design portion takes at least one third.  Second, an 
automated design flow could also lower the entry barrier for new 
FPGA manufacturers – instead of requiring a team of hundreds to 
create the design in a reasonable amount of time, a handful of 
engineers could produce a hopefully similar quality design in 
even less time using automated design tools.  Finally, if the layout 
process was quick and automated, FPGA architects would have 
access to more detailed information about the area and speed 
impact of their architectural decisions.  This improved accuracy 
could lead to the development of more efficient architectures.   

Previous researchers [25][27][16] have proposed several ways of 
automating the design process for various kinds and 
circumstances of programmable logic, which we review in 
Section 2.  However, none of this past work fully considered the 
implications of using automated layout tools to fabricate a 
complete FPGA.  In the present work, we employ and enhance 
one of these previous approaches to architect, design, floorplan, 
lay out, verify, and fabricate a complete FPGA.  Our goal is to 
demonstrate that automated design tools can be used successfully 
to create an FPGA, and that it can be done with significantly 
reduced manual labor.  We also compare the area of automatically 
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and manually generated layouts to determine if the savings in 
engineering costs are being offset by increased production costs. 

This paper is organized as follows:  Section 2 describes previous 
work on automated design methodologies for FPGA creation.  In 
Section 3, we describe the development of the architecture to be 
implemented.  In Section 4, we outline the automated process of 
taking that FPGA architecture and producing a layout that can be 
taped out for fabrication.  Before actually taping out the design, 
extensive verification is necessary, which is described in Section 
5.  Section 6 reports on the functionality, required design time and 
area of the FPGA and Section 7 concludes. 

2. Related Work 
There have been a number of prior works concerning the 
automated creation of FPGAs. 

Kafafi et al. propose a new architecture and an implementation 
using standard cells to construct an FPGA from a VHDL input 
description [16].  Their context is the creation of FPGAs 
embedded within a non-programmable ASIC. The layout for this 
logic, called a synthesizable embedded programmable logic core, 
is easily created using commercial synthesis, placement and 
routing tools.  The authors adopted this approach to allow for easy 
integration in system-on-a-chip applications and they target a very 
specific architecture that is suitable only for small embedded 
cores.  Nevertheless, this approach could also simplify the design 
of standalone FPGAs.  The disadvantage of this approach is that, 
as feared, it incurs a significant penalty in terms of area.  In [16], 
the authors estimate that the automatically generated layout is 6.4 
times larger than an equivalent manually created layout.  Wilton 
and Wu report that a core created with this methodology did 
function successfully [35]. 

Phillips and Hauck also employed standard cells to implement 
programmable logic in [27] and [26].  They focused on the 
creation of domain-specific reconfigurable systems in which the 
amount of configurability can be reduced for the particular 
application domain.  The authors do offer a comparison between 
unreduced automated and full-custom layouts.  Their finding was 
that the automated approach yielded a layout that was 42% larger 
and 64% slower than a manual design.  By reducing functionality 
to that required for a specific domain, the authors successfully 
demonstrate that smaller and faster layouts can be created 
automatically.  This flexibility to create varying designs 
highlights one of the benefits of automated design that we hope to 
achieve as well. Phillips and Hauck do not report any fabricated 
chips resulting from this work. 

The above works take as their starting point a fairly FPGA 
specific architecture.  The goal in the present work is to automate 
a fairly general class of FPGA architectures.  Also, in both cases, 
automation clearly simplified the design process but the result 
was detrimental in terms of area and speed.  These results are 
comparable to past research that measured the performance gap 
between standard cell and custom designs.  In [15], Dally and 
Chang find that, depending on the level of automation, automated 
layouts are between 64% and 1350% larger than custom layout 
areas.  The speed of the implementation also suffers although with 
only a little manual effort automated tools came within 11% of 
the speed performance of a custom layout.  Based on these results, 

we consider area the most important factor facing automated 
design flows. 

An alternative to using standard cells and supporting tools is to 
use tools created specifically for FPGA design and layout.  This 
approach was used in [25].  These tools take an FPGA 
architectural specification as the primary input and take advantage 
of FPGA-specific optimizations during the layout process. As a 
result, they produce smaller layouts than would otherwise be 
possible.  Our work uses these tools in the design of our FPGA.  
However, before describing the basic functionality of these tools, 
we will review the overall FPGA layout approach that will be 
used in this work. 

2.1 Tile-based FPGA Layout 
We will focus exclusively on island-style FPGAs, as illustrated in 
Figure 1.  A common (but not universal) approach ([9][22][33]) to 
laying out this style of FPGA is to take advantage of regularity of 
the array and build a tileable structure that can be replicated.  This 
is done by grouping the basic logic block and the adjacent routing 
resources into a tile as shown in Figure 2.  Such an approach does 
place some restrictions on the architectures that can be created.  A 
detailed discussion of these can be found in [24]. 
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Figure 1 - Island-style FPGA 

Logic
Block

 
Figure 2 - Individual Tile 

The tile layouts are connected simply by abutment.  While this 
approach provides less opportunity for chip-wide optimization, 
the layout is much more manageable.  We use this tile-based 
approach in the present work, as did [25]. 
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This tile-based approach also has the advantage that it can be 
readily adapted to handle heterogeneous FPGA architectures.  In 
such architectures, the logic block could simply be replaced by 
other features such as multipliers or memory and the layout of 
these blocks would be constrained to match the connections of a 
normal tile containing a logic block.  If necessary, these 
heteregenous blocks could occupy the space of multiple logic 
block tiles. In this work, we focus on uniform FPGAs consisting 
exclusively of logic blocks but, since our tools are already 
capable of handling constrained layouts, extending this work to 
handle heterogeneity would be straightforward. 

2.2 The GILES Layout Tools 
While laying out a single tile is easier than laying out the entire 
array, it is still a daunting task.  Tiles typically contain on the 
order of 10,000 transistors [25] and, given that the same layout 
will be used repeatedly, obtaining a compact layout area that can 
operate at a high speed is essential.   The GILES tools described 
in [25], [6], [14], and [24] are designed to automate the layout 
process of this single tile while maintaining reasonable speed and 
area.  Our work uses these tools to assist in the process of making 
a complete FPGA.  The inputs to these tools are an architecture 
description and a description of the available cells.  These are 
used to produce a single tile layout that can be used to create part 
of an FPGA.  The steps in this process are shown in Figure 3. 

GILES Netlist
Generator

GILES Placer

GILES Router

Single Tile
Layout

Architecture
Description

Cell
Descriptions

 
Figure 3 - GILES Tools Layout Flow 

The architecture description is specified using the VPR 
Architecture Description Language [2][3].  The VPR Architecture 
Generator [2][3] uses that architecture description to produce an 
internal data structure defining the FPGA that will be created.  
Based on that structure, the GILES Netlist Generator produces a 
cell-level netlist describing the circuitry needed to implement that 
architecture.  It is important to remember that this netlist does not 
describe the entire FPGA and, instead, it only describes a single 
tile of the FPGA.     

To produce the physical layout of the tile, the GILES Placer and 
Router are used.  The GILES Placer takes the cell-level netlist as 
an input.  A simulated annealing-based algorithm [17] is then 
used to perform simultaneous placement and compaction.  This 
custom placement approach also allows the use of FPGA-specific 
optimizations such as allowing the logical equivalence of 
configuration SRAM outputs to be leveraged [25]. 

Once placement is complete, the GILES router takes the placed 
FPGA tile and outputs the mask-level layout for the tile.  
Previously, in [25], routing was performed using a custom 
detailed router based on a negotiated congestion algorithm [11] 
[5].  This router is useful for experimental work since it always 
routes a design successfully.  When the router fails to find a valid 
routing initially, rows and/or columns of space are inserted in the 
most congested regions of the design and the routing algorithm is 
re-applied.  We make use of this router for the results presented in 
Section 6.  However, this router is not as flexible as most 
commercial routers.  For example it is unable to handle partial 
routing blockages on a layer (it needs the entire layer to be free).  
For this reason, the GILES tools were augmented to also function 
using the Cadence Chip Assembly router [7][12].  This is the 
primary approach we use in this work. 

3. ARCHITECTURAL DECISIONS 
The first step in creating any FPGA is selecting its architecture.  
In this section we describe the architectural choices made, and the 
method for making the choices. 

One of the first decisions that must be made is to select the silicon 
process that will be used for our design.  We decided to use a 0.18 
µm process from TSMC with 6 metal layers and 1 polysilicon 
layer.  This mature technology was selected to allow us to focus 
on the functionality of our prototype design instead of having to 
worry about the increasingly complex design rules and the lower 
yields of the latest processes.  However, using a less aggressive 
process technology does not make our results less relevant since 
the automated design tools can be adapted to any process. 

The next consideration is to determine the tool flow that will be 
used for implementing circuits on the final FPGA.  Since the 
GILES Layout tools are based on VPR [4], our CAD flow for 
using the FPGA will also be VPR-based. The input circuits to this 
CAD flow will be BLIF descriptions of circuits that were 
synthesized and mapped from the original BLIF descriptions 
using SIS with Flowmap [10][28] to the 4-LUTs we use in this 
work.  T-VPACK [21] will then be used for clustering and VPR 
for placement and routing on the FPGA.  This choice constrained 
the range of architectures that we could consider to basic logic 
element-based FPGAs with multiple-driver based routing.  It was 
beyond the scope of this work to also augment VPR to handle 
more recent architectural features such as carry chains and 
unidirectional/direct-drive routing [20][38]. 

There has been a great deal of research aimed at finding efficient 
architectures for VPR-style FPGAs [1][5].    For our architecture, 
the logic block was selected to be a cluster containing three 4-
input LUTs; this is considered to be reasonably area-efficient and 
fast in [1], but creates a small enough tile that a reasonable 
number can be replicated in the silicon area available to us.  The 
number of cluster inputs and the output connection block 
flexibility were set based on the conclusions from [5].  These 
conclusions called for the number of cluster inputs to be equal to 
2N+2 where N is the cluster size.  Therefore, for our cluster size 
of three, there should be 8 inputs.  The authors also recommended 
that the flexibility of the connection block is equal to 1/N which 
gives a flexibility of 0.333 for our architecture.   

Next, we decided to avoid non-buffered pass-transistor routing 
because of the electrical complexity it adds to the design.  Instead, 
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a fully buffered bi-directional routing network will be used.  For 
this case, the results from [5] suggested that routing tracks with 
only segments of length 4 would be an appropriate routing 
architecture. 

The next key question was to determine the number of tracks in 
each routing channel, as this has a dramatic effect on the tile area.  
We employed an experimental approach to determine a quantity 
that would render the resulting FPGA routable. In these 
experiments, 117 MCNC benchmark circuits [23], which were 
previously mapped to 4-LUTs, were run through the complete T-
VPACK/VPR flow and the number of benchmark circuits that 
routed for a range of possible track counts was measured.  The 
circuits selected were those we approximated would fit in the 
silicon area allocated to our project since silicon area limits our 
LUT and input/output count. 

The results of this experimentation to determine a suitable track 
count are shown in Figure 4.  Based on these results, we set the 
number of tracks per channel to be 20 since it is the minimum 
track count that allowed all the benchmark circuits to successfully 
route.   

The input connection block flexibility was also determined 
experimentally.  Since it has a less pronounced effect on the tile 
area, we selected the minimum flexibility, 0.6, that offered 
consistent routability for all the benchmark circuits.  Some lower 
flexibility values were able to route the circuits; however, it was 
necessary to repeatedly run VPR with varying input seeds before 
all the designs could be routed. 

The complete final parameters that were used for the FPGA are 
summarized in Table 1. 
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Figure 4 - Number of Routed Circuits over Varying Track 
Count 
 

Table 1 - Architecture Parameters 

Parameter Value 

LUT Size, k 4 
Cluster Size, N 3 
Number of Cluster Inputs, I 8 
Number of Tracks Per Channel 20 
Track Length 4 
% Buffered Tracks 100 
Fc, input 0.600 
Fc, output 0.333 
Fc, pad 0.600 
Array Size, nx x ny 8 x 8 
Pads per row/column 2 
Total Number of LUTs 192 
Total Number of I/O’s 64 
 
As was mentioned previously, the tile-based layout methodology 
restricts the architecture that can be selected.  Among the tileable 
architectures, there are also limitations in how these architectures 
are created by the VPR Architecture Generator.  The current 
version of VPR produces architectures that are in fact not tileable.  
In particular, the connection from the routing tracks to the logic 
cluster is not created such that every cluster’s connections match 
the physical implementation created when a single tile is 
replicated.  This is described in detail in [18].  To address this 
deficiency in dealing with tile-based layouts, VPR was updated 
appropriately.   

4. ARCHITECTURE TO LAYOUT – 
AUTOMATICALLY 
With the architecture defined, the process of creating a complete 
FPGA automatically can proceed.  The goal was to go from 
architecture description to layout with as little manual 
intervention as possible. 

4.1 Netlist Generation 
The first step in the architecture to layout process takes the 
architecture description as input and produces a cell-level netlist 
of the tile as output.  A portion of an example input architecture 
description is shown in Figure 5.  The processing of this 
description is done using the GILES Netlist Generator described 
previously in Section 2.   

subblocks_per_clb 3
subblock_lut_size 4

#parameters needed only for detailed routing.
switch_block_type subset
Fc_type fractional
Fc_output 0.333333333333333
Fc_input 0.6
Fc_pad 0.6
# Uniform channels. Each pin appears on only one side.
io_rat 2         #2 pads per row or column

chan_width_io 1
chan_width_x uniform 1
chan_width_y uniform 1

...
 

Figure 5 - Architecture Description Excerpt 
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At this point in the process, it was necessary to decide how the 
transistors in the design will be grouped into cells.  The initial 
GILES tools described in [25] selected the grouping into cells 
without any consideration of the area impact of this choice. The 
work in [12] explored a range of grouping possibilities and this 
design makes use of the improved cell groupings discovered in 
that work.  A key conclusion from that work is that SRAM 
configuration cells are most efficiently grouped in a 4x4 
configuration of 16 bits.  This conclusion depends on the ability 
of our layout tools to leverage the functional equivalence of the 
configuration bits during placement and compaction.  This 
conclusion may be relevant to manual layout regimes as well. 

4.2 Cell Layout 
Once it was known which cells were required for the design, the 
cells had to be created.  This is the one step in the design process 
that must be done manually. However, it is possible that tools 
such as Cadabra from Synopsys [30] could be used for this step in 
the future.  The fifteen cells required for the design are listed in 
Table 2.  All the cells are relatively small in size ranging from an 
inverter with two transistors to a group of SRAM bits requiring 
eighty transistors.  The 4 word line by 4 bit line array of SRAM 
bits is constructed by replicating the layout of a single 5-transistor 
SRAM bit and, therefore, is not as complex as might be implied 
by the eighty transistors in the cell.  Clearly, the effort required to 
layout these cells is significantly less than would be needed for a 
complete FPGA tile containing thousands of transistors. 

Table 2 - Manual Cell Layouts 

Cell # of Transistors Size (µm2) 
1x Inverter with pullup 3 15.25 
2x Inverter 2 13.07 
4x Inverter 2 15.68 
4x Buffer 4 18.30 
4x Buffered Switch 5 18.30 
PMOS Pullup 3 13.07 
4-LUT 30 86.25 
2-input MUX 2 8.71 
11-input MUX 20 47.92 
12-input MUX 22 52.27 
20-input MUX 38 109.77 
Flip-flop 15 47.04 
Flip-flop with enable 19 54.89 
AND gate 6 17.42 
4x4 SRAM  80 209.09 
 

4.3 Periphery Tiles 
The process above focused on the creation of a single tile 
containing a logic block and its adjacent routing.  As described 
earlier, a layout of the tile can be replicated to form a large array 
of logic blocks connected by routing.  This, however, is only part 
of the typical island-style structure shown in Figure 6.   

In particular, there is extra routing required along the left and 
bottom edges of the tile array to provide connectivity to those I/O 
cells and ease routing congestion.  Additional tiles are needed to 
provide that routing.  In total, eight different tiles are required.  
This includes the main tile described above, four edge tiles and 
three corner tiles. 
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Figure 6 - Tiled Island-style FPGA 

With this tile-based approach, the goal is to connect the tiles by 
abutment.  To enable such connections, it is necessary to 
constrain the placement of the inter-tile connection ports.  
Normally, those ports are free to move which allows for improved 
routing.  Constraining the placement of these ports restricts the 
amount of optimization available to the placer and will likely lead 
to a less area-efficient design.  To minimize the impact of this 
effect on the total area of the design, the tiles must be created in a 
specific order, allowing the most frequently used tile (the main 
tile) the most freedom during its placement by laying it out first.  
The next most frequently used tiles are the edge tiles.  Each of 
these tiles abuts the main tile on one side and it is those 
connections to the main tile that must be constrained during 
placement of the edge tiles.  To accommodate this, the GILES 
placer, which normally performs both placement and compaction, 
was modified to handle the constrained placement of the inter-tile 
connection ports and to compact the tile only in the unconstrained 
dimension.  Finally, the corner tiles each connect to two of the 
periphery tiles and are therefore constrained on both edges. 

4.4 Tile Layouts 
Each of the eight tiles required for the design was laid out using 
the GILES Placer [25] and the Cadence Chip Assembly [7] router.  
Without automation this process can take many person-years but 
with the automated placer and router the task is completed in less 
than half a day.  

The power grid was added to each tile placement before routing. 
It consists of alternating power (VDD) and ground (VSS) vertical 
and horizontal stripes on the top two metal layers. The Cadence 
Chip Assembly router automatically connects the power grid to 
all the cells in the tile. However, left on its own, the router prefers 
to make connections between the cells on the lower metal layers 
and brings up only a few thin connections to the power grid. This 
will restrict the current and slow down the FPGA. It could also 
cause reliability problems due to electromigration. One solution is 
to tell the router to create thicker power connections but this 
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would increase congestion. Instead, we force the router to make 
more connections up to the power grid by dividing the power grid 
into regions with each region having its own logical VDD and 
VSS nets.  Physically, these logical nets are all connected 
electrically.  The cells located in each region connect to the VDD 
and VSS nets for that region only. The router connects the VDD 
and VSS nets in each region and brings up at least one connection 
to the power grid per region.  

To calculate how many power regions were needed, we 
determined the maximum current draw of the main tile is 63.6 mA 
if all the cells switch at the same time. Assuming only a quarter of 
the cells switch simultaneously, the current draw is 15.9 mA. At 
least 57 power connections are needed to supply this current. To 
be cautious, we created 80 power regions. These calculations are 
sufficient for the purposes of our prototype chip but, in the future, 
we would like to simulate the power grid to verify how many 
regions are needed. The power grid and its regions are generated 
automatically using Cadence’s scripting language, SKILL [8], so 
it is easy to change the number of power regions in the future. 

Once a tile layout was created, it was checked to ensure it 
conforms to the process design rules.  Typically, DRC errors can 
be introduced by both the placer and the router.  In our case, the 
placer treats all cells as black boxes.  Therefore, to avoid DRC 
problems, the cell boundaries were sized such that all placements 
without overlapping cell boundaries are DRC clean.  This caused 
space between cells that would not exist in manually laid out tiles. 
However, we eliminated some space by using larger cells [12] and 
future work may be able to reduce it further without violating 
design rules. 

The Cadence Chip Assembly router was configured for our 
process’s design rules.  However, the final routing output by the 
router did not satisfy all these rules when the design was 
congested.  In our trials, typically a small number (under 20) of 
violations would be found.  These errors were fixed manually.   

4.5 Configuration SRAM Programmer 
With the tiles now laid out, the design of the logical functionality 
seen by a user of the FPGA is complete.  However, before 
actually using the FPGA, each SRAM bit in the design must be 
programmed to the state required for the circuit being 
implemented on the device.  This task is performed by a dedicated 
configuration SRAM programmer. 

As the tiles were being created, the GILES tools connected the 
configuration SRAM bits to the necessary programmable 
elements and connected all the bits in a tile together to form a 
memory array of word and bit lines.  There are far too many lines 
to connect off chip and for this reason, dedicated on-chip circuitry 
is needed to control these connections to the SRAM bits.  Modern 
FPGAs have many advanced programming features such as the 
partial reconfiguration capabilities described in [37] and [38] but 
these features are not needed for the test chip we are creating.  
Instead, we adopted the simple strategy illustrated in Figure 7. 
Here the word and bit lines from all the tiles are connected 
together to form one large array.  Two shift registers control the 
word lines and the bit lines.  These shift registers are embedded in 
the periphery tiles.   

The programmer contains the control logic for these shift 
registers.  This controller was written in Verilog.  The design was 

synthesized using Synopsys Design Compiler and it was placed 
and routed using Cadence Silicon Ensemble PKS.  The standard 
cells in the design were from the Diplomat-18 Standard Cell 
library from Virtual Silicon Technology [34]. 

Programming of the device proceeds as follows.  First, the 
bitstream is sent to the programmer and serially loaded into the bit 
line shift register.  The programmer configures the word line shift 
register to assert one word line when the contents of the bit shift 
register are valid.  This process repeats until all the word lines 
have been programmed. 

4.6 Bitstream Generation 
The programmer handles the task of configuring the SRAM bits 
in the design based on the bitstream supplied to it.  However, we 
need a way to generate this bitstream.  Doing so requires a 
complete FPGA CAD flow such as Altera’s Quartus II or Xilinx’s 
ISE that can take a description of the circuit to be implemented 
and output a programming file for the device.  Our solution to this 
challenge is based on the VPR toolset [5]; the process we use is 
shown in Figure 8. 
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It is interesting to consider an issue that arose due to one of the 
features of the GILES tools:  its ability to take advantage of 
logical equivalencies in the FPGA.  The netlist of the tile is first 
defined by the FPGA tile netlist generator.  However, the placer 
alters this netlist to improve the quality of the placement.  One 
such alteration involves the connections to configuration SRAM 
bits, which are logically equivalent under bitstream re-ordering.  
Similarly, all the inputs to a multiplexer are logically equivalent 
and it is only important that the available connections remain 
unchanged.  Making such changes during placement is unusual 
since with standard cell tools the only changes that would usually 
be made during placement and routing are buffer insertions and 
logically equivalent swaps of cell inputs whereas the GILES 
placer will perform logically equivalent swaps of the cells 
themselves.  The changes that our placer makes impact the 
bitstream that is to be generated and, therefore, a bitstream cannot 
be created until after the placement is complete.  At that point the 
bitstream generator must reconstruct the logical structure of the 
FPGA.  This is not a trivial task since resources like routing tracks 
are all very similar.  To ease this process the GILES placer was 
updated to maintain information about the logical FPGA 
structure.  With that information rebuilding the logical structure 
from the tile netlists is significantly easier.  

Once the logical structure information is reconstructed, generating 
the bitstream is straightforward using a modified version of VPR.  
Placement and routing are first done normally using VPR.  The 
output from the router is a set of routing resource graph edges that 
were used by the circuit.  The bitstream generator configures the 
bitstream such that the programmable elements corresponding to 
those edges are turned on.  Note also, that all the basic logic 
elements in the logic cluster are equivalent and that the router 
determines which specific logic element is used.  Therefore, the 
bitstream generator only configures the logic elements after the 
routing information is processed.  All the other programmable 
elements in the design are left in a default safe state for the 
bitstream.  In this state, all unused input and output pads are 
configured as inputs and unused routing track drivers are disabled 
to avoid contention.    

4.7 Arrays, Clock and Power-Up Signals 
The work described in the previous sections provided all the 
necessary pieces required for the FPGA that was created.  The 
floorplan shown in Figure 11 illustrates how the tile layouts and 
the programmer connect together.  The input/output pads for the 
design are also from a Virtual Silicon Technology library [34].  
These pad cells were manually laid out to form the pad frame for 
our FPGA.  The array of the eight different FPGA tiles was 
constructed automatically by abutting the tiles to form the 
structure shown in the figure.  This was done using Cadence’s 
scripting language, SKILL [8].  As described earlier, the layout of 
the programmer was generated automatically using commercial 
place and route tools.  The connections between the FPGA array, 
the programmer and the pad frame were done by the Cadence 
Chip Assembly Router with two exceptions: the clock and a 
global programming signal.  We discuss both of these signals 
now. 

The tile-based approach works well for most of the features in the 
FPGA.  However, clocks must be treated differently if the design 
is to function quickly and reliably.  With clock signals, it is 
important to create a low-skew network.  A frequently used 

structure for ensuring this is known as an H-tree.  With this 
structure, the distance (and therefore delay) to all end points 
(registers) is the same but implementing this structure as shown in 
Figure 9 requires that the clock enter each tile from alternating 
sides of the tile.  Instead of creating two types of tile we decided 
to create a single tile with a small horizontal channel reserved for 
the clock routing.  After the tile layouts are arrayed, the clock 
routing is created by a SKILL script and the appropriate side of 
the tile is used.  

One potentially problematic area with FPGAs is that their 
programmability introduces the possibility of contention.  In our 
architecture, all the routing tracks can be driven by many different 
drivers.  A valid programming bitstream ensures that only one of 
these drivers is on but when the device is powered up the 
programmable SRAM bits initialize to an undetermined state.  As 
a result, it is possible to have a case as shown in Figure 10(a) 
where multiple drivers are driving a routing track with different 
values.  The drivers would then require large supply currents.  To 
avoid having to design our power grid to handle such large 
currents, we instead opted to prevent this contention.  All drivers 
where contention is possible can be disabled by a global 
programming signal as shown in Figure 10(b).  This signal is set 
to 0V until a valid programming bitstream is loaded into the 
design.  For normal operation of the design, the signal is then set 
to VDD.  This signal must be distributed throughout the tile array.  
We automatically route the signal again using a SKILL script.  In 
this routing we take advantage of the routing channel that was left 
for the clock.  Since the clock only enters on one side of the tile, 
the other side remains available and this global programming 
protection signal connects through this channel. 

 

 
Figure 9 - Clock H-Tree 
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Figure 10 - Power On Circuitry 
One final concern after routing is antenna rules [29][13].  These 
rules ensure that during manufacturing the routing in the design 
does not accumulate a charge large enough to damage the gates of 
transistors connected to that routing.  The charge accumulates 
during processing steps involving ion etching and it depends on 
the area of the metal or polysilicon connected to a transistor gate.  
Any antenna violations are corrected by connecting reverse-
biased diodes to the substrate since these allow the routing to be 
discharged.  This check could not be meaningfully performed on 
the single tile since connections to other neighboring tiles can 
vary the amount of diffusion area relative to the metal/polysilicon 
area, which can either resolve or introduce antenna errors.  
Therefore, only once the array of tiles was created were the 
antenna rules checked.  On the order of two hundred errors were 
observed initially but with the manual addition of only eleven 
diodes in the replicated tiles all the errors were corrected. 

With all these steps complete, a final layout for the device was 
generated.  A SPICE-style netlist of the complete design that 
others may find useful is available at:  

http://www.eecg.toronto.edu/~jayar/pubs/ATL/powell.html. 
However, cells taken from our standard cell library are not 
included to satisfy our non-disclosure agreements. 
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Figure 11 - Complete FPGA Floorplan 

5. VERIFICATION 
Prior to taping out this design, thorough verification was essential 
and we now describe these verification efforts.  With over 
300,000 transistors in the design, verification is not a trivial task.  
To simplify the problem, verification was done at several levels.   

5.1 Logical Functionality 
The first verification step taken was to confirm the correct logical 
behavior of the design.  This is an important step because neither 
the tools that create the FPGA nor the CAD flow to use the FPGA 
had ever been tested for the correct logical functionality.  The first 
test involved checking that all the logical connections expected by 
a user of the FPGA are present.  This was done by comparing the 
routing resource graph in VPR with the tile netlists.  Each edge in 
the graph is a programmable element that must be present in the 
design and, therefore, we confirmed that there was a 
programmable device in the netlists corresponding to each routing 
resource edge. 

Once we fixed gross errors of missing programmable elements, 
we proceeded to simulate the logical behavior of the design.  This 
is necessary to confirm that we are generating correct bitstreams 
for the device.  For this test, we created a Verilog description of 
the entire design.  To generate bitstreams, we started from a BLIF 
description of the circuit mapped to 4-LUTs.  T-VPACK and the 
modified version of VPR were then used for clustering, 
placement, routing and bitstream generation.  In the Cadence NC-
Sim simulator, we simulated the programming of the design.  
Once programming was complete we applied random stimulus to 
the design and observed the output from the FPGA to compare it 
to our expectations for each test circuit.  Through this testing, we 
were able to uncover logical problems with the generated 
bitstream.  For example, an improper initialization of default 
states for unused components led to the inadvertent creation of 
ring oscillators throughout the design.  Once we corrected these 
problems, we were satisfied that the bitstream generator 
functioned correctly and the logical behavior of the design was 
correct. 

5.2 Electrical Functionality 
Verifying the logical behavior of our FPGA is not sufficient since 
the design is actually being sent for fabrication in silicon.  We 
must ensure that the design is electrically sound.  First, each cell 
was simulated in HSPICE to ensure that it functioned.  Such 
testing alone might be adequate for a simple digital design but the 
complexity of our design requires larger-scale simulations.  In 
particular, due to the exclusive use of NMOS pass transistors trees 
for multiplexers and tri-state drivers, signal voltages are degraded 
below the full VDD level.  (The use of NMOS-based multiplexers 
as opposed to transmission gates is standard in FPGAs to reduce 
area and capacitive loading.)   

To confirm proper electrical functionality in the face of these 
varied voltages, simulation is required.  Simulating a single tile is 
not useful since the electrical interaction with neighboring tiles 
must be considered.  Instead, the safest approach is to simulate the 
entire FPGA in the same manner that it will be used in silicon.  
The standard tool for electrical simulations is HSPICE but with 
358,374 transistors in this design the capabilities of HSPICE are 
far exceeded [31].  Instead, Synopsys Nanosim [32] was used.  
This is a SPICE-like simulator that can handle millions of 
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transistors while maintaining accuracy within a few percent of 
HSPICE [32]. 

The simulation process was similar to that used for verifying the 
logical functionality since we expect the same behavior from the 
transistor-level implementation of the design.  The configuration 
bitstream was first applied and then the output from random input 
stimulus was compared to expectations.   

It is interesting to describe the problems uncovered by these 
simulations.  One problematic area, as expected, resulted from the 
degradation in voltage seen when passing through an NMOS pass 
transistor tree.  If the voltages were left below the VDD rail then 
static power would become a concern since downstream PMOS 
transistors would not be turned off completely.  To avoid such 
problems, PMOS pull-up transistors were used as level restorers 
to raise the voltage back to VDD.  The sizing of those pull-ups is 
a delicate task since the transistors must be weak enough to allow 
the node to be pulled down but not be so weak that they waste 
area and slow down the device.  The simulations uncovered cases 
where the pull-ups were in fact too strong and pulling down the 
node was not possible.  As a result, the pull-up transistors were 
resized and the design was re-simulated.  Once issues such as 
these were resolved the complete design was found to be 
functional and ready to be taped out. 

6. RESULTS 
Before describing the results, we first revisit the goals for this 
work.  The primary aim was to demonstrate the viability of 
automated FPGA design.  Clearly, the most important 
consideration is functionality since if automated FPGA design is 
to be feasible it must maintain the same level of functionality as 
manually generated designs.  Once functionality has been assured 
then the feasibility of automated design rests on the cost savings it 
can introduce.  We will look at the savings in engineering time 
since this translates to a reduction in non-recurring engineering 
expenses.  Past automation efforts have failed because of a feared 
increase in area.  Increased area translates into increased 
production costs and therefore we also examine the area impact of 
this design methodology. 

6.1 Functionality 
We believe the successful simulation of the entire design 
accomplished the goal of demonstrating that a complete FPGA 
can be created using automated tools.  The complete layout of our 
design is shown in Figure 12.  The core of the chip consisting of 
an 8 x 8 array of clusters with three 4-input LUTs occupies an 
area of 1041 µm by 1225 µm.  The total die area is 5.634 mm2.  A 
photo of the fabricated die is shown in Figure 13. 

The fabricated chip has been successfully powered-up.  The 
current drawn after power-up is 17 mA which is close to our 
expectations and the programmer responds correctly during 
programming.  Unfortunately, after programming, the chip draws 
more current than was anticipated and the test circuit does not 
function as expected.  We believe the chip is being configured 
improperly but we have not yet determined whether the problem 
is with the chip or the test procedure.  Testing is ongoing to 

determine the nature of the problem and we remain optimistic that 
it can be resolved.1

 
Figure 12 – Complete FPGA Layout 

 
Figure 13 – Die Photo 

6.2 Cost Savings 
6.2.1 Design Time 
The primary goal in automating the FPGA design process was to 
reduce the design time from the over 50 person years that are 
currently required to create an FPGA.  To determine if we 
succeeded in this goal, we tracked the time spent constructing our 
FPGA.  The time required for each stage from conception to tape-
out is summarized in Table 3.  

                                                                 
1 Once testing is complete, the full test report will be posted at 

http://www.eecg.toronto.edu/~jayar/pubs/ATL/powell.html. 
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Table 3 – Time Required for FPGA Design 

Step Time Required 
(person-weeks) 

Architecture Exploration 2 
Circuit Design and Optimization 8 
Cell Layout 6 
Tile Layout 0.5 
Programmer Synthesis, Placement and 
Routing 

2 

Power Planning 1 
Clock Network Simulation 1 
DRC/Antenna Fixing 0.5 
Pad Frame Layout and Connections 1 
Verification 12 
Total 34 
 

These times are in part estimates because at the same time the 
FPGA was being created the automated layout tools were also 
being enhanced.  These enhancements would not be necessary for 
any future designs.   

A few steps in the process are particularly interesting.  
Architecture exploration involved the investigation to determine 
what specific architecture would be used.  For a commercial 
design, this step is extremely important and greater time would be 
allocated for this study.  Similarly, the circuitry for the FPGA was 
not optimized to the same extent commercial designs are 
optimized.  However, our automation efforts were not focused on 
either of these stages.  Instead, the automated tools simplified the 
cell layout and the tile layout steps.  For a commercial design 
many person years might be spent on these two steps alone while 
thanks to automation we spent only 6.5 person weeks completing 
this portion of the design.  The significant time savings at this 
stage in the process demonstrates the success of our automated 
tools in reducing the design time.  In total, the entire process took 
approximately 8 person months.  Much of this work is 
parallelizable and two graduate students were able to complete the 
work over a period of 4 months. 

It is important to note that modern commercial FPGAs have 
evolved to include more advanced logic blocks and features in 
addition to the basic logic block.  The basic logic element now 
only constitutes 31% of the silicon area in a typical commercial 
device [19].  Our design consists solely of basic logic element 
clusters and simple input and output connections.  Therefore, the 
8 person months required for our design cannot be directly 
compared to the 50 to 200 person years of effort needed for a new 
commercial FPGA.  Nevertheless, we believe the layout of the 
logic elements constitutes a significant portion of a typical design 
cycle given their importance.  With our automated design tools, 
this time will be significantly reduced. 

6.2.2 Area 
The past efforts at automated layout of programmable devices in 
[26] and [16] both indicated a significant area penalty was 
incurred due to the automated layout methodology.  For the 
GILES tools, the work in [25] attempted to address these concerns 
by obtaining an approximate comparison to commercial devices.  
They found that their automated layouts were 47% and 97% 
larger than comparable manually laid out Xilinx Virtex-E and 

Altera Apex 20K400E devices respectively.  However, this 
comparison, by the authors’ own admission, was very 
approximate.  To address this concern, we revisit the question of 
automated versus manual layout area. 

The layout area of the device created for this work does not offer 
a useful point of comparison since there are no manual layouts 
with a comparable architecture and process technology.  
Generating our own manual layout would be exceedingly time 
consuming – avoiding such arduous work is one of the goals of 
the project.  It would also not offer a convincing comparison point 
since the layout capabilities of the authors certainly do not match 
those available in industry where many person years of work are 
dedicated to the task. 

Instead, for fair comparison, we chose to compare the layout area 
to that of a commercial device, the Xilinx Virtex-E [38].  For this 
comparison we accurately captured the architecture of the Virtex-
E using Xilinx FPGA Editor [36].  It was necessary to make some 
assumptions about the structure of the features in the architecture.  
The assumptions that were made were based on patents filed by 
Xilinx and standard design practices.  One factor that significantly 
impacts area is buffer sizing.  To improve the accuracy of our 
comparison, we simulated our version of the routing resources in 
HSPICE and selected buffer sizes that minimized the area delay 
product for those resources.  We call our representation of 
Xilinx’s design, the Virtex-E capture.  A more detailed 
description of the process used to generate the capture can be 
found in [18]. 

Our capture of the Virtex-E is very similar to the actual device.  
The sum of the cell areas in our capture gives the total active area 
in our design.  If we assume that the tile area of the actual Virtex-
E is equal to its active area, we find that the active area of our 
capture is 11% larger than the actual Virtex-E’s active area.  (This 
assumption is reasonable is reasonable based on [5])  The number 
of configuration SRAM bits in our capture was within 3% of the 
number of configuration SRAM bits in the actual device.  Given 
this similarity, it is fair to compare the final layout area of the two 
designs. 

For the layout produced automatically, the GILES layout tools are 
used.  Instead of the Cadence Chip Assembly router used for 
fabricating the chip, we used a custom router that is part of the 
GILES tools since it is better able to handle high congestion 
designs. The results from this comparison are summarized in 
Table 4.  It is clear the layout produced manually by Xilinx is the 
densest but it is very encouraging that the area used by the 
automated layout tools is only 36% larger than Xilinx’s design.  
This is an improvement over the initial result with the automated 
layout tools which yielded a layout that was 198% larger [18].  
The improved area resulted from more efficient use of metal 
layers and better grouping of transistors into cells.  This result is 
also an improvement over the prior results obtained in [16] and 
[26].  This clearly demonstrates that there is promise to this 
automated FPGA design process at least in some market segments 
since the increase in production costs due to area can be offset by 
savings in design time.  Furthermore, with a concerted industrial 
effort we believe that achieving an automated layout that is on par 
with a manual layout is possible. 
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Table 4 - Virtex-E Layout Area Comparison 

 Area % increase relative to 
the Xilinx Virtex-E 

Actual 0.18 µm 
Virtex-E Tile 

35,462 µm2 - 

0.18 µm Virtex-E 
Tile created with 
GILES layout tools 

48,282 µm2 +36% 

7. SUMMARY 
We have described a complete automated CAD flow for creating 
new FPGAs, and used it to design and tape-out a complete FPGA.  
We have shown that this automation significantly reduces the 
design time of an FPGA and only suffers from a moderate 
increase in silicon area.  We believe that, with additional effort, 
the area penalty of automated design can be reduced.  Our 
experience leads us to speculate that it may be possible to achieve 
better-than-human layouts (because the tools can be given 
exposure to a broader optimization space than humans can deal 
with) that will also be fast and power-efficient. 

In the future, we plan to explore the impact of this automated 
methodology on circuit speed and power.  This current work 
focused on functionality and neither speed nor power were 
optimized.  Future work will address this issue by automatically 
evaluating the impact of transistor sizing.  
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