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We present an approach for constructing LDPC codes without cycles of length 4 and 6. Firstly, we design 3 submatrices with
different shifting functions given by the proposed schemes, then combine them into the matrix specified by the proposed approach,
and, finally, expand the matrix into a desired parity-check matrix using identity matrices and cyclic shift matrices of the identity
matrices. The simulation result in AWGN channel verifies that the BER of the proposed code is close to those of Mackay’s random
codes and Tanner’s QC codes, and the good BER performance of the proposed can remain at high code rates.
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1. Introduction

LDPC codes can be described by a bipartite graph called
Tanner graph [1], and the girth of a Tanner graph is the
length of the shortest cycle in the graph. Girths in the Tanner
graphs of LDPC codes prevent the sum-product algorithm
from converging [2–10]. Further, cycles, especially short
cycles, degrade the performance of LDPC decoders, because
they affect the independence of the extrinsic information
exchanged in the iterative decoding [2, 3]. Hence, LDPC
codes with large girth are desired. Most methods for
designing LDPC codes are based on random construction
techniques, the lack of structure implied by this randomness
presents serious disadvantages in terms of storing and
accessing a large parity-check matrix, encoding data, and
analyzing code performance (e.g., determining a code’s
distance properties). Recent research results [4–10] about
LDPC codes with large girths show that there are many
possible ways to construct the LDPC codes with large girths.
However, some of the code constructions [4–10] are not
satisfied for application due to the complicated constraints
for the structures of parity-check matrices. To solve the
problem, this letter provides a different construction of
LDPC codes with large girth. The column weight of our
codes is 3 and the row weight is v (v > 3). The BER
performance of the proposed codes is near to those of
Mackay’s random codes and Tanner’s QC codes.

This letter is structured as follows. In Section 2, we
analyze the figures of 4-cycles and 6-cycles in the parity-
check matrix.

Section 3 presents the design algorithm of the parity-
check matrix. Section 4 provides three lemmas show that
the proposed codes do not contain 4-cycles and 6-cycles.
Section 5 evaluates the BER performance of the proposed
codes for AWGN channels via computer simulations. Finally,
In Section 6 we make some conclusions.

2. Definitions of the Cycles

An (n, j, k) LDPC code has the parity-check matrix H of
n columns, where H has j ones in each column, k ones in
each row, and zeros elsewhere, then the (n, j, k) parity-check
matrix has m = n j/k rows [1, 2]. A bipartite graph with m
check nodes and n−m bit nodes can be created with the edges
between the bit and check nodes if there are corresponding
1s in the parity-check matrix H . Such a graph is frequently
called a Tanner graph [1, 11]. A cycle in a Tanner graph refers
to a finite set of connected edges, the edge starts and ends at
the same node, and it satisfies the condition that no node
(except the initial and final node) appears more than once
[4–10, 12]. The length of a cycle is simply the number of
edges of the cycle.

A cycle also can be shown in a tree. Figure 1 shows a 4-
cycle in a tree, and Figure 2 shows a 6-cycle in a tree. Figures 1
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Figure 1: A 4-cycle in tree.
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Figure 2: A 6-cycle in tree.

and 2 are not general descriptions for a 4-cycle and 6-cycle in
a tree. It is also possible that a 4-cycle or a 6-cycle starts from
a variable (bit) node, similar to the trees in Figures 1 and 2.
In a tree, check nodes represent rows in parity-check matrix,
and variable (bit) nodes represent columns. We try to design
a parity-check matrix without 4-cycles and 6-cycles.

2.1. Figures of 4-Cycles in Parity-Check Matrix

In Figure 1, two 1s (we mark them as m1 and m2) in row
a belong to column b and c, respectively, two 1s (we mark
them as m3 and m4) in row d belong to column b and c,
respectively, so the figure of the 4-cycle in the parity-check
matrix as shown in Figure 3. If there is no figure as shown
in Figure 3 in parity-check matrix, there is no 4-cycle in the
LDPC code. We denote 4-cycles as G4(m1,m2,m3,m4).

2.2. Figures of 6-Cycles in Parity-Check Matrix

Figure 4 shows that m1 and m2 in row a belong to column
b and c, respectively, m3 in column b belongs to row d, m4

in column c belongs to row e, m5 in row d and m6 in row e
belong to column f , where m1, m2, m3, m4, m5, m6 represent
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d

m1 m2

m3 m4

Figure 3: A 4-cycle in a parity-check matrix.

six 1s in 6-cycle, as shown in Figure 4. We denote 6-cycles as
G6(m1,m2,m3,m4,m5,m6).

From Figure 4 we know that six 1s in a 6-cycle belong to
3 rows and 3 columns equally, so we can get the number of
6-cycles with different figures to be 6 from Figure 5.

Figure 5 shows six different kinds of figures of 6-cycles.
If there is no figure as shown in Figure 5 in the parity-check
matrix, there is no 6-cycle in the LDPC code.

3. Design Algorithm of Parity-Check Matrix

If there is a parity-check matrix H , row weight is v (v > 3),
column weight is 3. We design three submatrices D, E, F,
combine them into matrix H1, H1 = [D E F], transpose H1

into H2, expand H2 into desired parity-check matrix H using
identity matrices and cyclic shift matrices of the identity
matrix randomly.

3.1. Design Algorithm of Submatrix D

The design algorithm of D is as following.

(1) Design a matrix D0 with the dimension v × v2.
D0(1, 1) = D0(2, 1) = D0(3, 1) = · · · = D0(v, 1) = 1,
other elements are “0”

D0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 · · · 0

1 0
...

...
...

...
...

...
...

...
...

...
...

...

1 0 0 0 0 · · · 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

v×v2

. (1)

(2) Let D1 = D1
0 , D2 = D2

0 , D3 = D3
0 , . . . , Dv2−1 = Dv2−1

0 ,
where Dk

0 represents circularly shift D0 in (1) for k
right-shifting steps circularly.

(3) Let D = [D0,D1,D2, . . . ,Dv2−1]T and its dimension is
v3 × v2.
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Figure 4: A 6-cycle in a parity-check matrix.

3.2. Design Algorithm of Submatrix E

The design algorithm of E is as following.

(1) Design a matrix E0 with the dimension v × v2.
E0(1, 1) = E0(2, 2) = E0(3, 3) = · · · = E0(v, v) = 1,
other elements are 0s

E0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0 0 · · · 0

0 1
. . .

...
...

...
...

...
. . .

. . . 0
...

...
...

0 · · · 0 1 0 · · · 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

v×v2

. (2)

(2) Let E1 = [E0,E0, . . . ,E0]T , the number of E0 included
in E1 is v.

(3) Let E2 = Ev
1, E3 = E2v

1 , . . . ,Ev = E
(v−1)v
1 , where Ek

1

represents circularly right-shifting E1 for k steps.

(4) Let E = [E1,E2, . . . ,Ev]T with the dimension v3 × v2.

3.3. Design Algorithm of Submatrix F

The design algorithm of F is as following.

(1) Designing a matrix F0 with dimension v × v2.
F0(1, 1) = F0(2, v + 1) = F0(3, 2v + 1) = · · · =

F0(v, v2− v+ 1) = 1, other elements are “0.” For v = 4,
we can get F0 by the following way:

F0=

⎡

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

⎤

⎥

⎥

⎥

⎦

v×v2

.

(3)

(2) Let F1 = F1
0 , F2 = F2

0 , F3 = F3
0 , . . . ,Fv−1 = Fv−1

0 , where
Fk

0 represents F0 with circularly right-shifting k steps.

(3) Let Fv = [F0,F1, . . . ,Fv−1]T .

(4) Let F = [Fv,Fv, . . . ,Fv]T , there are v copies of Fv in F,
so the dimension of F is v3 × v2.

S1 S2 S3
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Figure 5: Six kinds of 6-cycles with different figures.

We can get H1 by the following way:

H1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

D0 E0 F0

...
...

...
Dv−1 E0 Fv−1

Dv E2 F0

...
...

...
Dv2−1 Ev Fv−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

v3×3v2

. (4)

Let H2 = HT
1 , then the dimension of H2 is 3v2 × v3.

3.4. Expansion of H2

The expansion algorithm is as follows.

(1) Select an identity matrix I with dimension p × p,

I =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 · · · 1

⎤

⎥

⎥

⎥

⎥

⎦

p×p

. (5)

(2) Let I1 = I1, I2 = I2, . . . , Ip−1 = I p−1, where Ik

represents the matrix I with circularly right-shifting k
steps.

(3) Exchanging the 1s in H2 by the elements in the matrix
set {I , I1, I2, . . . , Ip−1} randomly and exchanging 0s by
null matrices with the same dimension as I , then we
get the parity-check matrix H , whose dimension is
3pv2 × pv3.

From the structure of the parity-check matrix H , we can
see that the proposed code is a deterministic LDPC code, so
the proposed code has the advantage for encoding. To get the
LDPC code with the large length (3pv2), we can expand the
H by selecting the desired dimension p of the identity matrix
I in (5) with stochastically shifting.

4. The Demonstration of the Code with Girth 8

In Section 3, we present a method for constructing parity-
check matrix H with girth 8 based on the submatrices’
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shifting. In this section, we add three lemmas with theoretic
proofs showing that the parity-check matrix H does not
contain 4-cycles and 6-cycles.

Lemma 1. If a matrix H1 is constructed by (4), there is no 4-
cycle in H1.

Proof. We can know from Figure 3 that if there are 4-cycles
in the matrix H1 in (4), the edges connecting {m1,m3} and
{m2,m4} must be in two different submatrices of D, E, F,
because m1 and m2 are in the same row. The following
formula must be true:

L
(

m1,m3

)

= L
(

m2,m4

)

. (6)

In the submatrix D, the lengths L(m1,m3) and L(m2,m4)
could be 1, 2, . . . , v − 1. In the submatrix E, the lengths
L(m1,m3) and L(m2,m4) could be v, 2v, . . . , (v − 1) × v.
In the submatrix F, the lengths L(m1,m3) and L(m2,m4)
could be v2, 2v2, . . . , (v − 1) × v2. We can easily know that
L(m1,m3) /= L(m2,m4), so there is no 4-cycle in the matrix
H1.

Lemma 2. If a matrix H1 is constructed by (4), there is no 6-
cycle in H1.

Proof. As shown in Figure 4, if there are 6-cycles in the
matrix H1, the edges connecting {m1,m3}, {m2,m4}, and
{m5,m6} must be in D, E, and F, respectively. Without loss
of generality, we assume that L(m2,m4) is the longest length
among the three lengths. The following formula must be
true:

L
(

m1,m3

)

+ L
(

m5,m6

)

= L
(

m2,m4

)

. (7)

In the submatrix D, the lengths L(m1,m3), L(m5,m6)
and L(m2,m4) could be 1, 2, . . . , v − 1. In the submatrix
E, the length of L(m1,m3), L(m5,m6), and L(m2,m4)
could be v, 2v, . . . , (v − 1) × v. In the submatrix F, the
lengths L(m1,m3), L(m5,m6), and L(m2,m4) could be
v2, 2v2, . . . , (v − 1) × v2. We can know that the edge of
L(m2,m4) must be in F, or else

L
(

m1,m3

)

+ L
(

m5,m6

)

> L
(

m2,m4

)

. (8)

We know that

1 + v ≤ L
(

m1,m3

)

+ L
(

m5,m6

)

≤ (v − 1)(v + 1), (9)

and L(m2,m4) ≥ v2, so

L
(

m1,m3

)

+ L
(

m5,m6

)

< L
(

m2,m4

)

. (10)

Thus there is no 6-cycle in the matrix H1, which means H to
be free from 6-cycles.

We know that H2 = HT
1 , so the matrix H2 is also free of

4-cycles and 6-cycles.

Lemma 3. If there is no 4-cycle and 6-cycle in the matrix H2,
there is no 4-cycle and 6-cycle in the parity-check matrix H .

Table 1: Parameters of example codes with rate-1/2.

k j N R g

New · 1080 · 540 6 3 1080 1/2 8

Mac · 1074 · 537 6 3 1008 1/2 6

QC · 1074 · 537 6 3 1002 1/2 8

Table 2: Parameters of our codes with high-rate.

k j N R g

New · 5103 · 1701 9 3 5103 0.67 8

New · 5000 · 1500 10 3 5000 0.7 8

New · 5184 · 1296 12 3 5184 0.75 8

Proof. If there is a 4-cycle G4(m1,m2,m3,m4) in the parity-
check matrix H , from Figure 3 we can know that m1, m2, m3,
and m4 must be in four different identity matrices or cyclic
shift matrices of identity matrices. Since an identity matrix
I and a cyclic shift matrix of the I in H means a “1” in H2,
there is a 4-cycle in H2. However, we know that there is no 4-
cycle in H2, so there is no 4-cycle in the parity-check matrix
H . Using the same method, we can know that there is no 6-
cycle G6(m1,m2,m3,m4,m5,m6) in the parity-check matrix
H .

5. Performance Evaluation

To demonstrate the error-correcting performance, we con-
structed two rate-1/2 LDPC codes by the proposed method.
For the purpose of comparison, we also construct two classes
of Tanner’s QC codes and Mackay’s random codes [10, 11,
13]. We get Mackay’s random codes from [13]. Tanner’s QC
codes are constructed by the method introduced in Tanner’s
paper [10, 11]. Both Mackay’s random codes and constructed
Tanner’s QC codes for the comparison are good codes. The
selected codes’ parameters are given in Table 1.

Table 1 lists the typical values of the row weight k, the
column weight j, the code length N , the code rate R, and the
girth g for the three codes. The girths of the LDPC codes in
Table 1 are tested by the approach of [12]. Table 2 lists the
typical values of the proposed codes for different high code
and code lengths. In Tables 1 and 2, the New · n · m means
the proposed code with the code length n and m parity check
bits, so do the Mac · n ·m and Qc · n ·m.

We simulate the proposed code’s error-correcting perfor-
mance with the assumption that each code is modulated by
BPSK and transmitted over additive white Gaussian noise
(AWGN) channel. All the codes are decoded with the sum-
product algorithm [2, 3]. Figure 6 shows the simulated BER
versus signal-to-noise ratio (Eb/N0). As shown in Figure 6.
The BER performance of the proposed codes is very close
to MacKay’s random codes and Tanner’s QC codes. From
Figure 7, it can be seen that the proposed codes also have
a good BER performance at high code rates 0.67, 0.7, and
0.75. The BER curves of the two codes of at high code rates
0.67, 0.7 are close since two LDPC codes with different code
lengths may have approximate minimum weights [10]. In the
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Figure 6: BER performance comparison of our code, Mackay’s
random code and Tanner’s QC code.
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Figure 7: BER performance of our codes at high code rate.

expansion algorithm of the proposed code, we replace “1” in
H2 by the elements in the set {I , I1, I2, . . . , Ip−1} randomly,
which will lead to the minimum weights of the obtained
codes to be different, the shorter codes may have larger
minimum weights.

6. Conclusions

In this paper, we proposed a QC LDPC code without girth-
4 and girth-6, three lemmas are provided to prove the short
girths’ properties of the proposed codes. Simulation verified
the good error-correcting performance of the proposed code,
whose BER performance is near to those of Tanner’s QC
codes and MacKay’s random codes [10, 11, 13]. The good
BER performance can remain at high code rates.
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