
Design Methodology for PicoRadio Networks

J. L. da Silva Jr., J. Shamberger, M. J. Ammer,
 C. Guo, S. Li, R. Shah, T. Tuan, M. Sheets,

J. M. Rabaey, B. Nikolic, A. Sangiovanni-Vincentelli, P. Wright

University of California at Berkeley

Abstract
One of the most compelling challenges of the next decade is

the “last-meter” problem, extending the expanding data network
into end-user data-collection and monitoring devices. PicoRadio
supports the assembly of an ad hoc wireless network of self-
contained mesoscale, low-cost, low-energy sensor and monitor
nodes. While technology advances have made it conceivable to
deploy wireless networks of heterogeneous nodes, the design of a
low-power, low-cost, adaptive node in a reduced time to market is
still a challenge. We present a design methodology for PicoRadio
Networks, from system conception and optimization to silicon
platform implementation. For each phase of the design, we
demonstrate the applicability of our methodology through
promising experimental results.

1. Introduction
Current technology allows us to build and deploy dense

wireless networks of heterogeneous nodes collecting and
disseminating wide ranges of environmental data. An inspired
reader can easily imagine a multiplicity of scenarios in which
these sensor and actuator networks might excel. To just mention a
few: environmental control in office buildings, robot control and
guidance in automatic manufacturing environments, warehouse
inventory, integrated patient monitoring, diagnostics, and drug
administration in hospitals, interactive toys, the smart home
providing security, identification, and personalization, and
interactive museums. The mind-boggling opportunities emerging
from this technology indeed give rise to new definitions of
distributed computing and user interface.

Crucial to the success of these ubiquitous networks is the
availability of small, lightweight, low-cost network elements,
which we call PicoNodes. These nodes must be smaller than one
cubic centimeter, weigh less than 100 grams, and cost
substantially less than one dollar. Even more important, the nodes
must use ultra-low power to eliminate frequent battery
replacement. We envision a power-dissipation level below 100
microwatts, as this would enable self-powered nodes using energy
extracted from the environment, an approach called energy
scavenging or harvesting.

This paper describes the main challenges and opportunities in
PicoRadio Networks (Section 2), the system conception and
optimization phase of the design process (Section 3), and the
design methodology to develop a silicon platform for a node of
the network (Section 4).

2. Challenges and Opportunities
 To put our power dissipation goals into perspective, we can

compare it with the state-of-the-art commercial devices available
today. One of the closest matches is the Bluetooth transceiver [1],
an emerging standard for short-range wireless communications.
While meeting the volume requirement, Bluetooth radios cost
more than 10 dollars and consume more than 100 milliwatts.
Although Bluetooth’s price point and power consumption will
inevitably drop with technology scaling, this will by no means
suffice to address the orders-of-magnitude reductions required for
sensor network applications.

To reach these aggressive power dissipation levels, we must
limit the effective range of each PicoNode to a couple of meters at
most. Extending the reachable data range requires a scalable
network infrastructure that allows distant nodes to communicate
with each other. A self-configuring ad-hoc networking approach
is key to the deployment of such a network with many hundreds
of nodes.

Reducing the PicoNode’s energy dissipation to the sub-
miliwatt level is our focus here. The secret lies in a meticulous
concern for energy reduction throughout all layers of the system
design process. The largest opportunity lies in the protocol stack
where a trade-off between communication and computation, as
well as elimination of overhead, can lead to a many orders-of-
magnitude energy reduction. An efficient configurable silicon
platform can also contribute to large power savings. Other
opportunities lie in the adoption and introduction of novel self-
optimizing radio architectures and opportunities for energy
scavenging.

This section presents an application example (Section 2.1), the
main characteristics of PicoRadio Networks (Section 2.2), an
introduction to multi-hop networks (Section 2.3), and energy
scavenging possibilities for PicoRadio (Section 2.4).

2.1 PicoRadio Application Example
 As an example application of PicoRadio networks, consider

the management of environmental control systems in large office
buildings. Any person who has spent a significant amount of time
in such an environment is acutely aware of its problems: The
temperature or the airflow is never right, and there is too little or
too much light. A distributed building monitor and control
approach might go a long way in addressing these problems, for
example, creating local microclimates adapting to an occupant’s
preferences through distributed air-ducts, might vastly improve
the living conditions for the building’s population. At the same
time, such an approach can dramatically reduce the energy budget
needed to manage the environment. First-order estimations
indicate that such technology could reduce source energy

consumption by two-quadrillion BTUs (British Thermal Units) in
the US alone. This translates to $55 billion per year, and 35
million metric tons of reduced carbon emissions.

Wiring the huge number of sensor and actuator nodes needed
to deploy such a system is impractical and uneconomical. The cost
of installing wiring for a single sensor in a commercial building
averages $200 in addition to the cost of the sensor. For low-cost
devices such as temperature sensors, the cost of the wiring may be
as much as 90 percent of the installed cost. In these cases,
eliminating the cost of wire by using a wireless connection could
reduce the installed cost per sensor by an order of magnitude and
enable the deployment of ubiquitous sensor networks in contrast
to the currently used sensor-starved solutions. We can even
envision a future in which the sensor nodes are prebuilt into
construction materials such as ceiling and floor tiles. To realize
this vision, the communication/sensor nodes must be completely
self-contained for the lifetime of the building.

2.2 Ultra-Low Energy PicoRadio Networks
The scenarios detailed above expose both the challenges and

opportunities that PicoRadio networks offer in terms of energy
efficiency. A number of prime properties are worth identifying:
• Sensor data rates are quite low, typically less than one hertz.
• Sensor nodes don’t need to be awake all the time; in fact, a

single node’s activity duty cycle is typically less than 1 percent.
• Sensing data without knowing the sensor’s location is

meaningless. Localization should therefore be considered as an
implicit feature of the sensor network. This greatly simplifies
the network discovery and maintenance effort and leads to
substantial energy savings. For example, the sensor network
can prune requests for information and direct them to the
region of interest.

• Sensor networks require different addressing techniques than
traditional data networks. Data requests are typically in the
style of “Give me the temperature readings in room 30,”
compared to “Set up a connection between node A and B.” The
content- and localization-based addressing concepts make the
overall network discovery and management a lot simpler.
Based on these specifications and properties, we can develop

energy-efficient network, transport, media-access, and physical
layer protocols. These in turn set the constraints and requirements
for the hardware architecture and components of the transceiver
nodes, including radio frequency (RF), base-band, and protocol
processors. A number of innovations at the protocol stack level
will make the intended energy reductions possible (Section 3).

2.3 Multihop networks
A main challenge in the design of an energy-efficient wireless

network is that sending a bit of information through free space
directly from node A to node B incurs an energy cost Et, which is
a strong function of the distance d between the nodes. More
precisely, Et = β × dγ, with γ > 1 as the path-loss exponent (a
factor that depends on the RF environment, and is generally
between 2 and 4 for indoor environments) and β is a
proportionality constant. Given this greater than linear
relationship between energy and distance, using several short
intermediate hops to send a bit is more energy-efficient than using
one longer hop. For example, assuming γ = 4, which is a common
case in indoor environments, and β = 0.2 femtojoules/meterγ, one
hop over 50 meters requires 1.25 nanojoules per bit, whereas five

hops of 10 meters require only 5 × 2 picojoules per bit. The
multihop approach in this example reduces transmission energy
by a factor of 125. This situation is somewhat analogous to the
problem of sending a bit over a wire on a chip, where the
introduction of intermediate repeaters can help to increase the
performance and energy efficiency.

In its simplest form, multihop network energy analysis argues
for an infinite number of hops over the smallest possible distance.
In reality, however, the number of nodes between A and B limits
the number of intermediate hops. Moreover, we must include not
only the energy radiated through the antenna, but also the energy
dissipated in the radio for receiving the bit and readying the bit for
retransmission. (Given the relative costs of transmission and
processing, we can compute an optimal number of hops.)

This leads to some interesting observations:
• Technology scaling will gradually reduce the cost of

processing, with transmission cost remaining constant. Thus,
shorter hops will become more favorable over time.

• Computation cost is not a constant either. Using compression
techniques, we can reduce the number of transmitted bits, thus
reducing the cost of transmission at the expense of more
computation. This only makes sense if the communication cost
dominates, as with long distance connections.
This communication-computation trade-off is one of the core

ideas behind the low-energy networks we propose. The optimal
trade-off has to be determined adaptively, based on data
properties, node densities, and environmental circumstances. This
dynamic nature has a profound impact on the hardware
composition and architecture of the network nodes.

2.4 Energy Scavenging
Our project’s Holy Grail is for the PicoNodes to be self-

contained and self-powered using energy extracted from the
environment. Reaching this goal requires new advances both in
reducing the nodes’ energy consumption and in increasing the
amount of energy the nodes can extract from the environment.

Harvesting ambient energy requires compliance with two
major constraints: applicability within the environments
envisioned for the PicoNodes (office buildings and homes) and
the size constraint of the one cubic centimeter chip.

Although batteries can store harvested energy that can’t be
used immediately, a continuous source of energy is desirable.
Solar cells can contribute up to 15 milliwatts per square
centimeter during direct sunlight hours and up to 0.15 milliwatts
on cloudy days. Averaging over daylight and nighttime hours, and
considering nodes in the interior of the building or embedded in
ceiling tiles, shows that solar cells can just barely serve as the sole
energy source for PicoNodes, and additional sources of energy
would be welcome.

Harvesting energy from vibrations is promising for this
application. Raised floors and dropped ceilings in most office
buildings exhibit measurable vibrations (from trucks driving down
nearby streets and people walking on the raised floors) that can be
harnessed. Advances in MEMS devices make integrated and tiny
variable capacitors a reality. These capacitors are used to make
chip-scale electrostatic vibration generators that will integrate
well with the other PicoNode components. Power outputs
between 10-100 microwatts per cubic centimeter are plausible
from vibrations in a normal office building using existing MEMS
technology.

3. System Conception and Optimization
Traditional efforts in low power design have focused on

optimizations at the circuit level. We believe that in order to meet
the aggressive design goals of the PicoRadio project, it is
necessary to begin the design at the system level. Starting at a
higher level enables us to explore a larger design space, and arrive
at a more optimal solution. The goal of this section is to present a
methodology for identifying and evaluating decisions made in the
design of the PicoRadio protocol stack.

Section 3 introduces the design methodology and the use of
UML for system specification (Section 3.1), the network layer
design issues, (Section 3.2), and finally discusses the Media
Access Layer (MAC) design (Section 3.3).

3.1 Design Methodology Overview
One of the goals of a design methodology is to orthogonalize

concerns whenever possible. This allows for a more efficient
exploration of the design space, since each orthogonal concern
can be optimized separately from the others. Such concerns are
function/architecture [2] and communication/computation [4], the
latter being the more novel idea in this design methodology. The
essence of the design methodology is to identify the
computational kernels, or processes, and then implement
communication between them using a series of adapters. The
object of this is to separate the behavior of a component from how
it interacts with other components or the environment, providing
location transparency, which in turn promotes component reuse.

The PicoRadio protocol has been designed using such a
communication based design methodology. The first step in this
design flow is the capture of specifications and functional
decomposition at the system level. For this task we have used the
Unified Modeling Language (UML) [5], which is discussed in the
following section. The second step is functional description,
which has been performed using the Specification and Description
Language (SDL) [16] and Cadence’s Virtual Component
Codesign (VCC) tool [3]. This representation of the system can
be functionally verified in VCC or SDL, but for performance
measurements the description must be ported to one of several
different simulation environments, including OpNet [14], MatLab
[15], or a testbench wireless platform. When a satisfactory design
has emerged, the functional description can be implemented.

Next, we present the work in system specification, functional
description, and simulation stages followed by a brief review of
the protocol design for the Smart Building scenario.
3.1.1 UML for system specification

The Unified Modeling Language (UML) is used to capture the
structure of the system at a high level of abstraction. The UML
diagrams aid in identifying design decisions and tradeoffs during
the design process, and serve as a form of documentation for
components and the interfaces between them in the finished
design. Information captured about the application requirements
is used to drive simulations, which ensures that the system design
will meet all the performance constraints.

The different diagrams supported in the UML capture different
aspects of the system, and are used at different points in the
design process. The diagrams we use in our modeling are use
case diagrams, class diagrams, state diagrams and sequence
diagrams.

Use cases are the first step, and serve to document the
interactions between the environment and the system, thus

characterizing the requirements the system must meet. Once these
interactions with the are identified, we describe the components
that make up our system. The structure is described using class
diagrams and the behavior using state diagrams.

We have defined primitives to capture particular semantics
specific to our domain, using the stereotyping mechanism
provided in UML. The stereotypes we have defined are process,
channel, and signal. A process represents a reactive component,
which has a set of input and output ports, each of which has a
signal type associated with it. This structural description of a
process is equivalent to a Codesign Finite State Machine (CFSM),
the basic building block in VCC. Channels represent the
communication paths between processes. They are characterized
by the relationship of the output signal to the input signal, which
can be captured with a state diagram for a complex channel.
Signals are the datatypes that are input or output from a process.

Using the above stereotypes we can begin to describe the
functionality of the system. At the top level, the behavior of the
system is decomposed into a set of communicating processes, with
ideal channels providing communication between them. If the
behaviors of the processes are incompatible, it is necessary to
insert behavior adapters. These incompatibilities arise when a
sending process produces output signals that are not valid inputs
of the receiving process. A behavior adapter must map these
invalid signals into acceptable signals.

Once the behaviors are compatible, it is necessary to refine the
communication medium. This refinement can be performed in
multiple steps, and at each step abstractions made in the original
assumption of an ideal channel are removed. When an abstraction
is removed, it is necessary to ensure that communication over the
refined channel is equivalent to that over the original channel. If
this is not the case, it is necessary to insert channel adapters to
resolve this situation. As an example, consider a system with two
processes that require lossless communication. When we first
define the behavior of the processes, we assume communication
over an ideal lossless channel. As a result of mapping to specific
communication architecture, we have a revised channel that is
lossy. Thus we insert channel adapters which implement lossless
communication over a lossy channel, using a method such as an
acknowledgement/retransmission scheme or error correcting
codes. As long as the resulting communication meets all other
constraints, such as latency or power consumption, the new
channel is successfully adapted.

The final representation captures all the processes and adapters
in our system, and the interfaces and signals between them.
However, we have only captured the structure, not the behavior.
It is now necessary to choose the appropriate Model of
Computation (MoC) to describe the behavior of each block, both
processes and adapters and attach a description to the block.
UML currently only supports state machines as MoC for
behavioral descriptions. Since the design of the PicoRadio
protocol will be implemented using CFSMs in VCC, this is a
perfect match.

 To further document the interaction between different
components, sequence diagrams are used. Sequence diagrams
capture the exchange of signals between two or more components
during the transactions identified in the use case diagrams. These
traces of signal exchanges can serve as an aid in debugging a
functional description and ensuring it is performing as intended.

3.1.2 Smart Building Scenario
We illustrate the use of our methodology on the Smart

Building example described in Section 2.1. There are three
distinct classes of applications in the network: sensors, actuators,
and monitors. Sensors take measurements of some aspect of the
environment and produce a data value. Actuators accept a
command and cause some change to happen in the physical
surroundings. Monitors are the controlling applications in the
system, which can issue requests to sensors, commands to
actuators, and accept data from sensors. The monitors could be
embedded control applications, user-interface nodes that allow the
users to observe and change their environment, or system
administration nodes that control system-wide operation, log
performance data, and allow for system setup and debugging.

As a result of the decomposition of the system and refinement
of the communication media, we have identified the layers of the
protocol, and the design decisions to be made in each of them.
The layers described below correspond to the adapters introduced
during the communication refinement process.

By analyzing the needs of the application, two application-
specific design decisions were identified. The first is to allow
monitors to place periodic or threshold based requests, since many
of the control algorithms require periodic data. These periodic
requests reduce the network traffic, and thereby save power.
Adding this functionality requires a behavior adapter at the sensor
to match the monitor’s behavior. This behavior adapter forms an
application layer, which allows a sensor to be programmed for
periodic or conditional requests. The second decision is based on
the fact that the topology of this system will be fairly static. Most
sensor or actuator nodes will be stationary. Thus we can allow the
application a mechanism to perform data aggregation. For
example, if a user wishes to know the average temperature from a
region on the other side of the building, the average temperature
can be computed locally in that region, and only this average
value is sent back to the user. This creates less network traffic
than having the individual data samples sent back to the user, and
thus is an optimization as long as the cost of computation required
for the aggregation is less than the cost saved in network traffic.
In order to provide this service we add an aggregation layer.

Below the application layer, there are two layers needed to
support multiple connections on one PicoNode. The first is an
addressing layer, which takes the multiple input and output
streams from the layers above and maps them to one network
connection. It also places the data in the correct format for
network packets. The second layer is a muxing layer, which
allows multiple applications to run on one node. This layer has to
decide to which applications on a node to deliver incoming
packets.

The lowest layers in our protocol are the routing layer, whose
purpose is to route packets to their destination in a multi-hop
environment, and the MAC layer, which allocates channels among
nodes and controls access to the shared medium. A key point
guiding the design of these two layers is that the application in our
scenario generates very low bit-rate data, with a low duty cycle.
This leads us to design a network layer which routes reactively,
rather than expending a lot of energy on maintaining routing
tables. For the MAC layer, we search for an alternative that will
allow us to shut off the radios as much as possible to conserve
power. In the following sections we present more detail on the
power optimizing design of these two layers.

3.2 Network Layer Design
The network layer lies beneath the application and aggregation

layers, and performs the functions of addressing, multiplexing and
routing. There are a number of existing routing protocols for ad-
hoc wireless networks such as Destination-Sequenced Distance
Vector (DSDV) [6], Ad-hoc On Demand Distance Vector
(AODV) [7], Zone Routing Protocol (ZRP) [8], Link state routing
[9] and Diffusion based routing [10]. In general, all these
protocols can be classified as either proactive or reactive.
Proactive schemes always keep an updated idea of the network
topology, and maintain routes to all destinations, whereas reactive
schemes find and maintain routes only on an as-needed basis.

From the application scenario, we discerned the following
information that drives the design process:
• Average bit rate: fairly low, ~10-100 bps
• Density of nodes: About 0.1-1 node/cu. m.
• Mobility of nodes: Low mobility, most of the nodes are

stationary, while some are slow-moving
• Periodicity of data: Significant portions of the traffic would

be periodic in nature, such as sensor data
• Application Data Unit (ADU) sizes: These would be very

small, ~ few bytes each
• Reliability of data delivery: Due to the redundancy of sensor

data, 100% delivery guarantees are not always required
• Total number of nodes: 100s –1000s of nodes

Using these specifications, we can evaluate different
addressing and routing methods.
3.2.1 Addressing schemes

Addressing of nodes is an issue where we depart from the
traditional model. Trying to maintain unique IDs in an ad-hoc
network would be expensive in both computation and
communication. First, there is the problem of allocating the
addresses uniquely. Secondly, with routes to mobile nodes
continually changing, keeping track of these routes with regard to
their IDs would be expensive.

Instead, we propose the use of class-based addressing. Class-
based addresses are composed of one or more fields, and each
address identifies a class of nodes. Specifically, the PicoRadio
addresses consist of the triplet <Location, NodeType, DataType>.
The Location contains the coordinates of the node, NodeType can
be a sensor, monitor or actuator, and DataType can be
temperature, humidity, etc. This matches the application
requirements, since typical sensor queries are of the form:
“temperature data from sensors in a region.” Any node that
satisfies the address requirements can answer such a query, and
not having to map such requests to unique network IDs is cleaner,
more scalable, and less costly for the network to handle.
3.2.2 Routing methodology

In a wireless network, data can be routed to the destination in
either a single hop or multiple hops. Single hop requires
transmitting with enough power to reach the destination, which
not only causes interference at a large number of other nodes, but
also wastes energy as explained in Section 2.3. Therefore, routing
is done in multiple smaller hops to optimize energy.

Since the bit rate of the network is low, the routing protocol
has to be lightweight to ensure that most of the energy is spent in
moving data, rather than wasted in routing updates. We therefore
concentrate on reactive routing protocols. The routing tables that
are maintained at each node should also be small compared to the

size of the network to avoid requiring large caches. At the same
time, the protocol should be tolerant to nodes coming up or down,
and thus fault tolerance and protection is an integral part of the
design.

Two approaches are promising for the network layer of
PicoRadio networks. First, the directed diffusion paradigm [10],
which is a reactive scheme where the monitor broadcasts its
interest in certain data, and the sensors that can provide such data
reply back, setting up multiple paths to the monitor in the process.
Due to the multiple paths created, the scheme assures data flow in
the event of node failure. However, diffusion requires the use of
fairly large caches at every intermediate hop. Secondly,
geographical information can also be exploited to route in the
correct direction towards the destination [11]. We are currently
developing a protocol based on these schemes that would be
optimized for PicoRadio and would maximize the survivability of
such a network.
3.2.3 Energy vs. latency tradeoff

One interesting characteristic of the application is that the size
of each ADU is small, so delivering such small packets
individually is energy inefficient since a large percentage of
energy is wasted on overhead. This overhead is in the form of
network layer headers enlarging the packet and the MAC layer
cost of allocating the channel. However, most of the data is delay
insensitive, giving us the opportunity to trade-off energy with
latency. We can buffer data at a node and then burst it in a
combined packet, increasing the latency, but reducing the total
energy consumed.

3.3 Media Access Layer (MAC) Design
The main principles guiding low power distributed MAC

design are the following:
• Collisions should be avoided since retransmission leads to

unnecessary energy consumption and possibly unbounded
delays. At the same time, collision avoidance may result in
substantial overhead, so a trade-off must be evaluated to
achieve an optimal solution.

• Protocol overhead should be reduced as much as possible,
including packets dedicated for network control and header
bits for data packets.

• In typical wireless systems, the receiver has to be powered on
at all times resulting in significant energy consumption. The
more time the radio can be powered off, the greater the
power savings.

• For a large-scale system with limited mobility, we need an
adaptive algorithm to support mobility while avoiding
unnecessary overhead.

In this section, we introduce a new class of MAC protocols to
take advantage of opportunities provided by new radio technology
and to provide a more flexible interface to higher-level protocols.
We present a dynamic channel assignment method, a sleep and
wake-up technique, a mobility adaptive MAC, and the results
obtained for our MAC design.
3.3.1 Dynamic channel assignment

Among MAC protocols currently used, an important subset is
the one that alleviate media access conflict by using multiple
channels. A given bandwidth of wireless media can be divided
into a number of channels in various domains in different schemes
such as FDM, CDMA, OFDM or TDMA. Single channel and
contention-based protocols attempt to achieve conflict resolution

in the time domain, but suffer an instability problem as the
network get denser and traffic increases. In PicoRadio, a multiple
channel scheme based on dynamic channel assignment has been
chosen, and each node is assigned a locally unique channel. We
assume that a spread spectrum CDMA scheme will be used in our
system, although an OFDM solution is also under consideration.

For a flexible and scalable mobile multi-hop network, a limited
number (~30) of channels have to be assigned to an almost
unlimited number (thousands) of nodes in a distributed and
dynamic way. Thus, local uniqueness and global reuse is the key.
The goal of our code assignment algorithm is to assign different
codes for all neighbors of a given node. This channel assignment
problem is equivalent with the two-hop coloring problem in graph
theory, which is formulated as “Color the nodes of a graph such
that any pair of nodes one or two hops apart have different
colors.” The color assignment is a NP complete problem, and we
use a distributed heuristic solution. The nodes listen to a common
control channel and periodically broadcast a channel assignment
packet to their neighbors using the same channel. Every node
keeps a channel assignment table to record the channel usage by
its one-hop and two-hop neighbors, and makes sure its own
channel is different from all its two-hop neighbors. Simulation
shows that the algorithm converges quickly and is robust to
topology change.
3.3.2 Sleep and wake-up scheme

It is observed that in a typical Smart Building scenario, where
nodes spend only 1% of time doing data transmission, more than
90% of the energy is spent on channel monitoring when nothing is
happening. This is because existing radio system designs use the
same hardware to do data transmission and channel monitoring.
By using a separate super-low-power radio (wake-up radio), we
can power down the normal data radio when it is neither
transmitting nor receiving any data, while at the same time the
wakeup radio monitors a wake-up channel. If the node wishes to
transmit a packet, it wakes its own radio, then sends a short wake-
up beacon to the recipient using the wake-up radio channel.
Upon reception of this beacon, the receiver’s wake-up radio will
trigger the power up the normal radio up to be ready for the
reception.

Preliminary research shows that the wake-up receiver radio
operation may only take around 1µW, compared to 10mW for a
CDMA radio in monitoring mode. In our targeted traffic scenario,
the energy for channel monitoring is almost negligible.
3.3.3 Mobility adaptive MAC

We integrate the multi-channel scheme and wake-up radio to
create a low power distributed MAC protocol for mobile nodes in
an ad-hoc radio network. The fact that nodes may be mobile
means that channel allocation does not occur solely in a startup
phase. It is necessary for nodes to periodically exchange channel
assignment packets containing information on neighboring nodes.
The problem is that once a node goes to sleep it can no longer
keep track of the dynamic neighborhood information. However,
in a sensor network such as the Smart Building scenario, only a
small number of nodes in the network are mobile, and with
limited speed. Thus, we propose an adaptive scheme with the
notion of mobility aware nodes. We assume that each node is
aware of its mobility, either by an embedded sensor or instruction
from upper layer applications. These mobile nodes will
periodically broadcast a beacon using the wakeup channel to keep

its neighbors awake, thus maintaining a dynamic active zone
within two hops. Static nodes in the active zone will remain
awake until the beacon has not been received for a predefined
period, then go back to sleep again. A mobile node can also go to
sleep to save power, provided that it has no interest in its dynamic
neighborhood information, and has no wish to be found in the
near future.
3.3.4 Results

Simulation has been performed for a regular network of 100
nodes where each node has 6 neighbors. A pool of 32 channels is
available to be assigned to the nodes using the coloring algorithm
described above. Power performance is evaluated after the
channel assignment algorithm converged and no further topology
changed. Only data transmission related traffic is evaluated at this
time. We compare the Energy Per useful Bit (EPB) of the
proposed protocols under conditions when a wake-up radio is
used and when a traditional signaling channel is used.

Simulation results show the proposed protocol provides a
varying degree of power savings depending on the traffic. In
typical PicoRadio applications, we achieved an EPB of
2.5~4.0µJ/bit for MAC payload data. The results show at low
network traffic, the EPB of the new protocol is mainly a function
of data packet length. EPB decreases, as the packets get longer.
This is understandable since for longer packets, the fixed
overhead signaling will take a smaller part of the overall energy
consumption. In low traffic zones, the EPB of the proposed
protocol is relatively stable, but the EPB of the traditional radio
protocols will increase dramatically as traffic decrease. This
proves the efficiency of our protocol for a low traffic distributed
sensor network.

In Figure 1, the top curve represents a traditional radio, the
bottom curve represents the proposed new protocol and the
middle curve represents a fictional system where monitoring
power consumption is lower than the existing system but higher
than PicoRadio.

4. Designing Low-power Silicon Platforms
Crucial to the success of PicoRadio networks is the availability

of small, lightweight, low-cost network elements, which we call
PicoNodes. These nodes must use ultra-low power to eliminate
frequent battery replacement. We envision a power-dissipation
level below 100 microwatts, as this would enable self-powered
nodes using energy extracted from the environment. These nodes

must also be able to adapt themselves to changing conditions of
the network, requirements of different data types to be
transmitted, and the distance this data will travel. For instance, a
PicoNode should compress more data that is going to travel
farther distances, and just send plain data for short distance
communications.

While technology advances have made it conceivable to build
and deploy dense wireless networks of heterogeneous nodes, the
design of a low-power, low-cost, adaptive PicoNode in a reduced
time to market is still a challenge. Progress in wireless design
development is limited by the lack of adequate design
methodologies and tools.

The goal of this section is to address a design methodology to
implement a silicon platform for PicoRadio networks. A design
methodology for PicoNodes should address the mapping of the
PicoNode functionality into an efficient silicon platform.
Moreover, this platform should be flexible to enable dynamic
adaptation for different working scenarios.

A wireless sensor is a complex system that implements a
variety of functions: protocols, signal processing, position
location, A/D converters, RF transceivers. Traditionally, wireless
transceivers were almost completely implemented using RF and
analog circuit modules. A mostly digital approach is currently
coming into vogue. This trend is inspired by the observation that
digital circuitry improves exponentially with the scaling of
technology, while analog circuits get linearly worse, mostly due to
reduction of the supply voltage. Hence, the PicoNode
implementation relies on a small noncritical analog front-end and
use digital back-end processing to correct for the nonidealities.
Therefore in this section we mainly focus on the problem of
designing the protocol and signal processing part of these sensors.

Protocol specifications are heterogeneous in the sense that they
include both control and data processing functions, but
significantly more control functions. Data processing, (e.g. in
encryption, error correction) is typically applied at regular time
intervals to streams of incoming data and is often subject to tight
timing constraints. Control functions are of two types: real-time, if
data processing is enabled by the occurrence of external (e.g. user
request) or internal (e.g. timers) events, data-dependent, if some
action is taken as a consequence of a data value (e.g. depending
on the CRC result a packet is discarded).

Signal processing blocks, like protocols, are also
heterogeneous including both data and control functions, but are
heavily weighted towards the data processing functions. Data
processing is typically in the form of datapath blocks were semi-
infinite data streams are processed. Control processing is typically
in the form of “steering” the data through datapath blocks, and
less often in the form of real-time when responding to a request
from the protocol.

While the layered heterogeneous protocol specifications are
usually implemented by mapping them into a heterogeneous
architecture including custom logic, programmable logic and an
embedded processor, the signal processing part is mapped almost
exclusively to custom logic.

Due to their differences in specification and target architecture,
protocols are designed independently of the signal processing part
of the wireless sensor. Section 2.2 presents a design methodology
for protocols and Section 2.3 focuses on a design methodology for
the signal processing part.

0 0.05 0.1 0.15 0.2 0.25 0.3

100

10
1

102

Ps=1uW
Ps=100uW
Ps=1mW

 Figure 1: Energy per Bit as a function of traffic per node

(from 50bits/second ~ 3000bits/second)

4.1 Protocol Processor Design Methodology
To meet the ambitious constraints in a short period of time, the

design process must make efficient utilization of highly reusable
architectures. To do so, we must look to a new approach to system
design that facilitates design reuse. Our protocol processor design
methodology is based on the concepts of platform-based design
[12]. This methodology is demonstrated by describing its
application in the early stage design of the next-generation
PicoNode.

Platform-based design achieves design reuse by abstracting
hardware to a higher level (platforms) that is visible to the
application software. The system platform comprises a family of
parameterizable architectures that adequately supports the
functions in the application space. Upon identifying a system
platform, the final system design involves programming a set of
architectural modules using the programmer’s model.

We have defined a three-phase approach to the design
protocols. In phase I, the system platform is conceived through
consideration of the application domain and available
architectural modules. Phase II performs the design exploration
to find a suitable set of architectural modules for specific
applications and constraints. Lastly, phase III completes the final
implementation (hardware and software synthesis) of a specific
application onto the platform instance.
4.1.1 Platform Conception (Phase I)

A typical platform for wireless systems consists of
programmable processors, reconfigurable logic, dedicated logic,
memories, and peripherals. Constructing the system platform is a
two-fold problem: We need to (1) identify the key functions and
their constraints, (2) explore the available architecture modules
and their performance behavior. The former is achieved through
functional profiling of a suite of candidate applications. The latter
requires architecture exploration of various means of
implementation.

The concept of functional profiling is to gain an in-depth
understanding of the application space by extracting a set of key
operations (kernels) common to these applications. An efficient
implementation could only be realized if the performance-critical
operations are classified and specially targeted. The important
issues in functional profiling are profiling granularity,
classification, and interpretation of the collected data. If the
granularity is either too coarse or too fine, regularity and
commonality may not be fully exposed. It is often necessary to
reorganize the application code (e.g. insert wrapper functions) to
reach optimal granularity. Proper classification and interpretation
of the profiling data require some insight into the class of
application algorithms. Particular care should be paid to the
separation of application code from the simulator kernel to ensure
that only meaningful data is collected.

Architecture exploration has a couple of purposes. First, it
identifies a family of computational and interconnect architectures
that can efficiently support the key operations in the application
domain. This may involve surveying existing architectures, or
seeking new and creative ways to implement the functions. Failing
to use the right architecture to implement a particular function can
have detrimental effects on the performance of the resulting
design. Second, it should provide first-order performance and cost
models for these architectures. Having numerical models can
greatly simplify and expedite the process of design exploration in

the latter phases of the methodology. Lastly, it should provide
software means for programming the functions onto the
architectures. This makes up the application programming
interface (API) for the system platform.
4.1.2 Platform Instantiation (Phase II)

In this phase we explore within the system platform to find a
particular platform instance that is suitable for a specific set of
applications. The classic Y-chart approach [13] is used: A
platform instance is identified by choosing the appropriate
parameterized architectural modules as well as interconnect model
from the library obtained in phase I. The functional specification
of the application is then mapped onto the platform instance. The
quality of the resulting mapping, given by the performance and
cost models, is evaluated under the given set of functional
constraints. If the constraints are not met, the process is iterated
by either instantiating a different platform or modifying the
functional specification or both. By examining multiple platforms
with varying performance, we can quickly converge to an efficient
platform that is best suited for our applications.
4.1.3 Implementation (Phase III)

Once we have a platform instance that meets the design
constraints, mapping any specific application onto hardware
becomes a software issue. Through the software API, the
hardware platform can be programmed or configured to perform
the desired functionality. Remaining issues include generation and
compilation of application code, real-time operating system
(RTOS), and any necessary design synthesis.

By thinking at a platform level, we are able to produce a
solution that allows fast design time through extensive software
and hardware reuse. To effectively use platform-based design
methodology, it is imperative to have a good system platform in
place before proceeding further in the design flow.

4.1.4 Case Study: PicoRadio
In designing the PicoRadio protocol processor, we use the

design methodology described in the previous section to devise an
architecture that is optimized for size, cost, and most importantly,
energy. This section presents our current efforts in the PicoRadio
protocol processor design as a case study of the design
methodology. The project is currently in phase I of the
methodology, which consists of functional profiling and
architecture exploration.
Functional Profiling

To study the PicoRadio application space, we have collected a
benchmark suite with a wide range of mobile wireless
applications. Preliminary results have been obtained from our first
benchmark application, a mobile ad hoc network that supports
different protocols. The application program is written in
OpNet/Radio Modeler from Millennium 3 Technologies [14].

In this experiment, four different scenarios are studied with
two different routing protocols and two types of node
distributions. The first protocol is the Ad-hoc On-Demand
Distance Vector Routing (AODV) [7], a reactive protocol. The
second is the Dynamic Destination-Sequenced Distance-Vector
Routing (DSDV) [6], a proactive protocol. The first type of
network distribution is a uniform grid of nodes in which the
neighbors can hear each other. The second is a randomly
generated distribution. The nodes have fewer neighbors on
average in the random distribution case and generate less network
traffic.

Opnet only produces profiling information at the level of the
leaf funtions. The generated fine grained profiling data are
grouped and classified. The results are presented in Figure 2.
Searching consumes 20%-45% of the total time and packet
manipulation (parsing, modification, re-assembly etc) consumes
18%-28% of the total time. Clearly this suggests that the
implementation of dedicated packet processing and table
searching engines may greatly improve the overall system
performance. Furthermore, since searching is mostly routing and
forwarding table lookups, a protocol that does not involve the
maintenance of large tables should lead to a cheaper
implementation.

Architecture Exploration
The enable hardware reuse and exploration of different

protocols in various network scenarios, PicoRadio protocol
processor must provide some degree of flexibility. While
microprocessor provides the most flexibility, they fail to meet the
tight energy requirements of wireless applications. In contrast,
reconfigurable fabrics, such as field-programmable gate array
(FPGA) and programmable logic device (PLD) are more
promising options.

The traditional FPGA and PLD architectures differ
significantly in the granularity. The FPGA comprises an array of
thousands of configurable blocks, each implemented with lookup
tables, which can each implement any arbitrary N-input logic
(typically N<5). Since the lookup tables are easily chained
together to implement more multilevel logic, this type of
architecture is very well suited for complex operations such as
arithmetic and signal processing. On the other hand, the PLD uses
a small number of (typically <32) programmable array logic
(PAL) blocks that can each implement sum-of-product logic of
many inputs but limited output. This makes the PLD structure
suitable for control FSMs. Figure 3 shows experimental results
that support these claims.

For PicoRadio, the low-level (MAC and physical layers)
protocols take the form of extended FSMs, which include both
datapath and control elements. Consequently, we are constructing
a hybrid, reconfigurable architecture, using PAL and LUT blocks
for control and datapath respective. The architecture uses hybrid
cells, each consisting of a small PAL block for control, and a
small array of LUTs and flip-flops for data processing. Each
hybrid cell is effectively a small protocol FSM; an array of these
hybrid cells will be suitable for implementing complex,
interacting FSMs. In order to keep the hybrid cells small, it is

necessary to partition large FSMs. It will also be possible to
perform power management on the hybrid cells to turn off
inactive FSMs to conserve energy.

4.2 Scaleable Low-energy Signal Processing
Design Methodology

Scaleable signal processing systems can operate over a range
of quality of service requirements trading energy efficiency for
performance. Low energy and energy scaleable signal processing
is a critical component of a PicoNode. First, scaleable signal
processing algorithms must be designed at the conceptual level,
and then implemented in the most energy efficient way to offer the
most energy efficient solution for a wide range of operation
modes. Scalability and energy efficiency cannot be implemented
blindly; behavioral level designers must be able to evaluate the
lower level implications of their decisions. We use a unified
design environment for signal processing that allows all levels of
the design to be completed within a single simulation environment
for both datapath and control operations.

The unified design environment is based on in house tools in
conjunction with the Simulink language from the MathWorks.
The integrated design environment allows inter-level design
decisions to be evaluated and implemented. The unified
description environment makes resolving conflicts between levels
straightforward and deterministic [17]. Analog or other peripheral
blocks can be described in Simulink and can be incorporated with
the structural level design description in a unified simulation.
This allows the system level simulation to include the interaction
of realistic phenomena such as analog and RF impairments with
structural level decisions such as bit-width scaling.

Within our design environment, we use a four-phase design
process: decisions are made at behavioral, functional, structural,
and physical levels. Behavioral descriptions capture the
algorithmic behavior. Functional descriptions capture the cycle-
by-cycle behavior of the system, describing details such as
parallelism and required throughput per unit. Structural
descriptions include implementation details such as fixed-point
types, pipeline depth, and adder and multiplier types. Decisions
made at the physical level capture synthesis, placement and
routing information.

4.2.1 Low-energy Direct-Mapped Data-path Design
Behavioral level decisions are based on algorithm exploration

in Matlab or Simulink. Functional level design specifies Simulink
implementations of the behavioral models. For instance, rotation
of a complex vector through by an angle can be done with a
complex multiply or a CORDIC. At the structural level, bit

0
5

10
15
20
25
30
35
40
45
50

Search Memory
Mgmt

Packet
Proc

Others MAC

%

aodv_random45
dsdv_random35
aodv_uniform40
dsdv_uniform40

Figure 2: Profiling results of an ad hoc wireless network

0

0.2

0.4

0.6

0.8

1

1.2

PhysSend (FSM) Remote (FSM) GenSync (Data) MergeInteger
(Data)

U
til

iz
at

io
n

(N
or

m
al

iz
ed

)

FPGA

PLD

Figure 3: Implementation results of wireless protocol blocks.

widths are determined, and micro-architectural decisions are
made, such as types of adders and multipliers to be used, the use
of carry save arithmetic, direct or transpose filter implementations,
etc. Another type of structural optimization is in the use of
multiple clock domains. The design flow recognizes the Simulink
enable block as a gated clock specification and builds a clock tree
automatically. Gated clocks are the basis for creating energy
scaleable datapaths where unused blocks are shut off and hence
do not consume energy.

The design flow assumes that each structural block
corresponds to a unit of layout (called a “hard macro”), which has
been extracted and characterized for power, area, and delay. The
hard macros are created from soft macros, by fixing parameters
such as bit width, adder type, and micro-architecture. Creation of
a hard macro from a soft macro or a composition of macros is a
process called “hardening” and is a heavily automated part of the
design flow. Designers have the ability to create their own
macros and integrate them into the flow through a well-defined
process described below. Once the entire design is hardened, the
chip is ready to be fabricated as all further steps (power routing,
clock tree generation, LVS and DRC, etc) are automatically
completed by the flow.

4.2.2 Control Design
Scaleable datapath blocks must be tightly integrated with

control functions that manage the flow of data through the blocks,
deciding the minimum amount of computation required and
shutting off blocks that are not needed. It is thus desirable to
implement both datapath and control in the same environment.
Within the Simulink environment is Stateflow, a graphical
language for describing control flow using state machines. An in-
house tool translates Stateflow diagrams to VHDL, which can
then be synthesized and included in the functional level
description as a macro. Using the data-path and control
primitives provided with Simulink, it is possible to create a
discrete-time simulation with completely specifies the behavior of
a system and therefore find the most energy efficient solution for a
range of situations.
4.2.3 Module Generation

This design flow is based on intensive reuse of parameterized
soft macros. When a macro is needed that doesn’t already exist,
there is a well-defined process for creating one and incorporating
it into the flow. Since a macro corresponds to a piece of layout,
several options are available for creating new macros. They can
be composed of existing macros within Simulink, synthesized
using a high-level description language, or built on tiled standard
cells. The requirement is that the designer creates a functionally
equivalent Simulink model to be used within the flow. Synopsys’
Module Compiler is especially oriented towards creating large
datapath modules allowing designers to easily explore different
micro architectures for area, power and speed tradeoffs, and to
create parameterized modules to expose these design choices to
the module user. The use of Module Compiler modules is
integrated into the flow such that parameters specified in Simulink
are passed to Module Compiler and used to automatically create
the desired hard macro.

4.2.4 Baseband Signal Processing Design Example
A 1.6Mbps DSSS Digital Baseband timing recovery unit

(Figure 4) is used to demonstrate our flow. This system provides
coherent timing recovery and code acquisition for a stream of soft

symbols. The system receives a direct sequence spread spectrum
(DSSS) QPSK modulated signal and recovers the intended bits.
The spreading code consists of 31 chips per symbol. Chips are
sent at a rate of 25MHz giving a symbol rate of 806.4KHz. The
QPSK modulation sends two bits per symbol yielding a data rate
of 1.6Mb/s. Analog signals from the front end are over sampled
by a factor of 8 according to a free-running 200MHz
(200MHz=8*25MHz) clock and converted to digital samples.
The coarse-timing block performs code acquisition using a
matched filter, and estimates the correct sample time within 3/8
chips (3/8*40ns=15ns). The fine timing block (using a synch
word sent by the transmitter) estimates the frequency offset
between the transmitter and receiver and refines the timing
estimate to within 1/8 chips (1/8*40ns=5ns). The digital PLL
correlates the data, corrects the phase offset, and tracks any
residual frequency offset producing a coherent stream of soft
symbols. These soft symbols can be sent to a simple slicer, or
through a more elaborate decision device like a Viterbi decoder.

As a concrete example in the use of the flow, we will discuss
the progression of the fine timing block through the four levels of
design. The inputs to the fine timing block are the oversampled
data from the converter and the coarse-timing estimate. The
outputs are the fine timing, and the frequency offset estimate. The
frequency estimation algorithm is based on the data aided
algorithm described in [18].

The most interesting functional level decision is in determining
how to compute a composite operation of angle finding
(determine the phase difference between symbol N and symbol
N+1) and averaging (average phase difference between successive
symbols over several symbol periods). It is determined through
simulation and analysis that a complex multiply accumulate
(CMAC) block can be used.

A large number of structural level decisions center on the
CMAC. The input bit width and the accumulator bit width are
parameters. In addition, our soft macro offers 4 micro-
architectures to choose from shown in Figure 5. The
characterization data provided by the flow shows that architecture
2 is the most energy efficient for the 6-bit input and a 16-bit
accumulator length required in this design.

The fine timing block has three major sub-blocks that can be
composed by the designer in two ways. Since all three of these
blocks are implemented as Module Compiler macros, it is possible
to compose them into one block within Module Compiler and
then incorporate the composition into the flow in Simulink.
Alternatively, the designer could compose the blocks in Simulink
and use the flow to harden them into a composite block. Either
choice produces nearly identical results as far as power, area and
speed. However, by composing the blocks within Simulink, the

ADC

1 stream
@200MHz

Coarse Timing
and

Code Acquisition
Symbol

Start

Carrier
Detect

Fine Timing
and

Freq. Offset
Estimator

PLL w/
correlator

and
slicerFreq.

Offset

Soft
Symbols

Coarse
Timing Fine

Timing

ADC

1 stream
@200MHz

Coarse Timing
and

Code Acquisition
Symbol

Start

Carrier
Detect

Fine Timing
and

Freq. Offset
Estimator

PLL w/
correlator

and
slicerFreq.

Offset

Soft
Symbols

Coarse
Timing Fine

Timing

Figure 4 – Timing Recovery Block Diagram

designer can specify different gated clocks to each block so that
they could be shut off when not in use to save energy, while gated
clocks cannot be implemented in Module Compiler. So, the most
energy scaleable design is reached by composing the blocks in
Simulink.

A module for the CMAC has been created for this design using
Module compiler. Bit widths of the inputs and accumulator were
parameterized and exposed to the module user, and four different
micro-architectures were implemented. A parameterized,
functionally equivalent model was created in Simulink for
inclusion into the flow.

5. Conclusions
In our vision of distributed computing, thousands of tiny nodes

scattered throughout the daily living environment gather, process,
and communicate information in a self-organizing fashion. The
major challenge in the implementation of these wireless ad-hoc
sensor, monitor, and actuator networks is minimizing energy-
consumption. We believe that the two key enablers for PicoRadio
networks are the energy-conscious system-design and
implementation methodology and a configurable architecture that
permits these opportunities to be efficiently realized in silicon
leading in the future to radio nodes that are two orders of
magnitude more efficient than existing solutions.

A system conception and optimization methodology that
allows efficient design exploration has been presented. Using this
methodology, we have designed the protocol stack for the Smart
Building application in UML with attached semantics. As a result
we constrained each layer of the protocol. To further illustrate the
methodology we presented the low-energy network and MAC
layers for PicoRadio networks under development. Simulations
have shown that the MAC layer proposed is 100 times more
energy efficient than traditional ones. The network layer is
combines the advantages of geographical routing and directed
diffusion algorithms.

A protocol processor design methodology has been presented.
It allows efficient creation of reusable silicon platforms. As part of
this methodology, functional profiling and architecture
exploration have been illustrated. Functional profiling has been
applied to different network layer algorithms to identify the most
costly operations. Architecture exploration has identified the best-
suited type of fabrics for different blocks of a MAC and physical

layer protocols. Based on these experiments, a new hybrid
architecture is being designed.

A unified design environment for signal processing has been
presented. It allows energy efficient and scaleable solutions to be
realized and immediately reflects the impact of high-level
decisions in the lower levels of the design. To illustrate this
methodology, we presented a fine timing unit design. It took
approximately one week to create the fully parameterized
functionally equivalent soft macro blocks (correlator, complex
MAC, and magnitude unit) in Simulink and Module Compiler. It
took less than one day to compose them into a single Simulink
simulation, and less than half a day to completely harden this
subsystem including placement and routing. This block was
implemented in a 0.25um process, had 37,000 transistors, an area
of 0.22mm2, a critical path delay of 5.2ns, and power
consumption of 5.2mW.

References
[1] The official Bluetooth Website. http://www.bluetooth.com/
[2] A. Sangiovanni-Vincentelli, M. Sgroi, L. Lavagno. Formal

Models for Embedded System Design. IEEE Design & Test
of Computers, pp. 14-27, 2000.

[3] Cierto Virtual Component Codesign (VCC). Cadence.
http://www.cadence.com/technology/hwsw/ciertovcc/

[4] A. Sangiovanni-Vincentelli, et. al. Formal Models for
Communication-based Design, Proceedings of CONCUR
'00, Aug. 2000.

[5] J. Rumbaugh, et. al., The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

[6] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-
Sequenced Distance-Vector Routing for Mobile Computers”,
Comp. Comm. Rev., pp. 234-244, Oct. 1994.

[7] C. E. Perkins and E. M. Royer, “Ad-hoc On-demand
Distance Vector Routing”, Proc. 2nd IEEE Wksp. Mobile
Comp. Sys. and Apps., pp. 90-100, Feb. 1999.

[8] Z. J. Haas and M. R. Pearlman, “The Zone Routing Protocol
(ZRP) for Ad-hoc Networks”, Internet Draft, June 1999.

[9] P. Jacquet et. al., “Optimized Link State Routing Protocol”,
Internet Draft, Nov. 2000.

[10] C. Intanagonwiwat, R. Govindan and D. Estrin, “Directed
Diffusion: A Scalable and Robust Communication Paradigm
for Sensor Networks”, Proc. Mobicom 2000.

[11] Y. Ko and N. H. Vaidya, “Location-Aided Routing in
Mobile Ad-hoc Networks”, Proc. Mobicom 1998.

[12] A. Ferrari and A. Sangiovanni-Vincentelli, System Design:
Traditional Concepts and New Paradigms, Proceedings of
the 1999 Int. Conf. On Comp. Des., Austin, Oct. 1999.

[13] B. Kienhuis et al, An Approach for Quantitative Analysis of
Application-specific Dataflow Architectures, Proceedings of
Int. Conf. of Application-specific Systems, Architectures and
Processors, pp. 338-349, Zurich, Switzerland 1997

[14] Opnet Radio Modeler, Millenium 3. http://www.mil3.com
[15] The MathWorks, Inc. http://www.mathworks.com/
[16] The SDL Forum Society. http://www.sdl-forum.org/
[17] W. R. Davis, et al. “A Design Environment for High

Throughput, Low Power Dedicated Signal Processing
Systems”, submitted to CICC, San Diego, CA, May, 2001.

[18] H. Meyr, et. al., Digital Communication Receivers, John
Wiley and Sons, New York, 1998.

*

*

*

*

A

C

D

B

B

C

A

D

R e a l

Im a g

R E G

R E G

+

+-

+

+

*

*

*

M U L T P
+ 1

A

C

D

B

B

C

A

D

R e a l

Im a g

R E G

R E G

+

+

*

*
A

C

D

B

B

C

A

D

Im a g

R E G+

R E G+

R e a l+

*

*
R E G+

R E G+

-

*

M U L T P
+ 1

A

C

D

B

B

C

A

D

R e a l

Im a g

R E G

R E G+

+

+

*
+

A rc h ite c tu re 1 A rc h ite c tu re 2

A rc h ite c tu re 3 A rc h ite c tu re 4

*

*

*

*

A

C

D

B

B

C

A

D

R e a l

Im a g

R E G

R E G

+

+-

+

+

*

*

*

M U L T P
+ 1

A

C

D

B

B

C

A

D

R e a l

Im a g

R E G

R E G

+

+

*

*
A

C

D

B

B

C

A

D

Im a g

R E G+

R E G+

R e a l+

*

*
R E G+

R E G+

-

*

M U L T P
+ 1

A

C

D

B

B

C

A

D

R e a l

Im a g

R E G

R E G+

+

+

*
+

A rc h ite c tu re 1 A rc h ite c tu re 2

A rc h ite c tu re 3 A rc h ite c tu re 4

Figure 5: CMAC architectures

