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Abstract 
One of the most compelling challenges of the next decade is 

the “last-meter” problem, extending the expanding data network 
into end-user data-collection and monitoring devices. PicoRadio 
supports the assembly of an ad hoc wireless network of self-
contained mesoscale, low-cost, low-energy sensor and monitor 
nodes. While technology advances have made it conceivable to 
deploy wireless networks of heterogeneous nodes, the design of a 
low-power, low-cost, adaptive node in a reduced time to market is 
still a challenge. We present a design methodology for PicoRadio 
Networks, from system conception and optimization to silicon 
platform implementation. For each phase of the design, we 
demonstrate the applicability of our methodology through 
promising experimental results. 

 

1. Introduction 
Current technology allows us to build and deploy dense 

wireless networks of heterogeneous nodes collecting and 
disseminating wide ranges of environmental data. An inspired 
reader can easily imagine a multiplicity of scenarios in which 
these sensor and actuator networks might excel. To just mention a 
few: environmental control in office buildings, robot control and 
guidance in automatic manufacturing environments, warehouse 
inventory, integrated patient monitoring, diagnostics, and drug 
administration in hospitals, interactive toys, the smart home 
providing security, identification, and personalization, and 
interactive museums. The mind-boggling opportunities emerging 
from this technology indeed give rise to new definitions of 
distributed computing and user interface. 

Crucial to the success of these ubiquitous networks is the 
availability of small, lightweight, low-cost network elements, 
which we call PicoNodes. These nodes must be smaller than one 
cubic centimeter, weigh less than 100 grams, and cost 
substantially less than one dollar. Even more important, the nodes 
must use ultra-low power to eliminate frequent battery 
replacement. We envision a power-dissipation level below 100 
microwatts, as this would enable self-powered nodes using energy 
extracted from the environment, an approach called energy 
scavenging or harvesting. 

This paper describes the main challenges and opportunities in 
PicoRadio Networks (Section 2), the system conception and 
optimization phase of the design process (Section 3), and the 
design methodology to develop a silicon platform for a node of 
the network (Section 4). 

2. Challenges and Opportunities 
 To put our power dissipation goals into perspective, we can 

compare it with the state-of-the-art commercial devices available 
today. One of the closest matches is the Bluetooth transceiver [1], 
an emerging standard for short-range wireless communications. 
While meeting the volume requirement, Bluetooth radios cost 
more than 10 dollars and consume more than 100 milliwatts. 
Although Bluetooth’s price point and power consumption will 
inevitably drop with technology scaling, this will by no means 
suffice to address the orders-of-magnitude reductions required for 
sensor network applications. 

To reach these aggressive power dissipation levels, we must 
limit the effective range of each PicoNode to a couple of meters at 
most. Extending the reachable data range requires a scalable 
network infrastructure that allows distant nodes to communicate 
with each other. A self-configuring ad-hoc networking approach 
is key to the deployment of such a network with many hundreds 
of nodes.  

Reducing the PicoNode’s energy dissipation to the sub-
miliwatt level is our focus here. The secret lies in a meticulous 
concern for energy reduction throughout all layers of the system 
design process. The largest opportunity lies in the protocol stack 
where a trade-off between communication and computation, as 
well as elimination of overhead, can lead to a many orders-of-
magnitude energy reduction. An efficient configurable silicon 
platform can also contribute to large power savings. Other 
opportunities lie in the adoption and introduction of novel self-
optimizing radio architectures and opportunities for energy 
scavenging. 

This section presents an application example (Section 2.1), the 
main characteristics of PicoRadio Networks (Section 2.2), an 
introduction to multi-hop networks (Section 2.3), and energy 
scavenging possibilities for PicoRadio (Section 2.4). 

2.1 PicoRadio Application Example 
 As an example application of PicoRadio networks, consider 

the management of environmental control systems in large office 
buildings. Any person who has spent a significant amount of time 
in such an environment is acutely aware of its problems: The 
temperature or the airflow is never right, and there is too little or 
too much light. A distributed building monitor and control 
approach might go a long way in addressing these problems, for 
example, creating local microclimates adapting to an occupant’s 
preferences through distributed air-ducts, might vastly improve 
the living conditions for the building’s population. At the same 
time, such an approach can dramatically reduce the energy budget 
needed to manage the environment. First-order estimations 
indicate that such technology could reduce source energy 



consumption by two-quadrillion BTUs (British Thermal Units) in 
the US alone. This translates to $55 billion per year, and 35 
million metric tons of reduced carbon emissions. 

Wiring the huge number of sensor and actuator nodes needed 
to deploy such a system is impractical and uneconomical. The cost 
of installing wiring for a single sensor in a commercial building 
averages $200 in addition to the cost of the sensor. For low-cost 
devices such as temperature sensors, the cost of the wiring may be 
as much as 90 percent of the installed cost. In these cases, 
eliminating the cost of wire by using a wireless connection could 
reduce the installed cost per sensor by an order of magnitude and 
enable the deployment of ubiquitous sensor networks in contrast 
to the currently used sensor-starved solutions. We can even 
envision a future in which the sensor nodes are prebuilt into 
construction materials such as ceiling and floor tiles. To realize 
this vision, the communication/sensor nodes must be completely 
self-contained for the lifetime of the building. 

2.2 Ultra-Low Energy PicoRadio Networks 
The scenarios detailed above expose both the challenges and 

opportunities that PicoRadio networks offer in terms of energy 
efficiency. A number of prime properties are worth identifying: 
• Sensor data rates are quite low, typically less than one hertz. 
• Sensor nodes don’t need to be awake all the time; in fact, a 

single node’s activity duty cycle is typically less than 1 percent. 
• Sensing data without knowing the sensor’s location is 

meaningless. Localization should therefore be considered as an 
implicit feature of the sensor network. This greatly simplifies 
the network discovery and maintenance effort and leads to 
substantial energy savings. For example, the sensor network 
can prune requests for information and direct them to the 
region of interest. 

• Sensor networks require different addressing techniques than 
traditional data networks. Data requests are typically in the 
style of “Give me the temperature readings in room 30,” 
compared to “Set up a connection between node A and B.” The 
content- and localization-based addressing concepts make the 
overall network discovery and management a lot simpler. 
Based on these specifications and properties, we can develop 

energy-efficient network, transport, media-access, and physical 
layer protocols. These in turn set the constraints and requirements 
for the hardware architecture and components of the transceiver 
nodes, including radio frequency (RF), base-band, and protocol 
processors. A number of innovations at the protocol stack level 
will make the intended energy reductions possible (Section 3). 

2.3 Multihop networks 
A main challenge in the design of an energy-efficient wireless 

network is that sending a bit of information through free space 
directly from node A to node B incurs an energy cost Et, which is 
a strong function of the distance d between the nodes. More 
precisely, Et = β × dγ, with γ > 1 as the path-loss exponent (a 
factor that depends on the RF environment, and is generally 
between 2 and 4 for indoor environments) and β is a 
proportionality constant. Given this greater than linear 
relationship between energy and distance, using several short 
intermediate hops to send a bit is more energy-efficient than using 
one longer hop. For example, assuming γ = 4, which is a common 
case in indoor environments, and β = 0.2 femtojoules/meterγ, one 
hop over 50 meters requires 1.25 nanojoules per bit, whereas five 

hops of 10 meters require only 5 × 2 picojoules per bit. The 
multihop approach in this example reduces transmission energy 
by a factor of 125. This situation is somewhat analogous to the 
problem of sending a bit over a wire on a chip, where the 
introduction of intermediate repeaters can help to increase the 
performance and energy efficiency. 

In its simplest form, multihop network energy analysis argues 
for an infinite number of hops over the smallest possible distance. 
In reality, however, the number of nodes between A and B limits 
the number of intermediate hops. Moreover, we must include not 
only the energy radiated through the antenna, but also the energy 
dissipated in the radio for receiving the bit and readying the bit for 
retransmission. (Given the relative costs of transmission and 
processing, we can compute an optimal number of hops.)  

This leads to some interesting observations: 
• Technology scaling will gradually reduce the cost of 

processing, with transmission cost remaining constant. Thus, 
shorter hops will become more favorable over time. 

• Computation cost is not a constant either. Using compression 
techniques, we can reduce the number of transmitted bits, thus 
reducing the cost of transmission at the expense of more 
computation. This only makes sense if the communication cost 
dominates, as with long distance connections.  
This communication-computation trade-off is one of the core 

ideas behind the low-energy networks we propose. The optimal 
trade-off has to be determined adaptively, based on data 
properties, node densities, and environmental circumstances. This 
dynamic nature has a profound impact on the hardware 
composition and architecture of the network nodes. 

2.4 Energy Scavenging 
Our project’s Holy Grail is for the PicoNodes to be self-

contained and self-powered using energy extracted from the 
environment. Reaching this goal requires new advances both in 
reducing the nodes’ energy consumption and in increasing the 
amount of energy the nodes can extract from the environment.  

Harvesting ambient energy requires compliance with two 
major constraints: applicability within the environments 
envisioned for the PicoNodes (office buildings and homes) and 
the size constraint of the one cubic centimeter chip.  

Although batteries can store harvested energy that can’t be 
used immediately, a continuous source of energy is desirable. 
Solar cells can contribute up to 15 milliwatts per square 
centimeter during direct sunlight hours and up to 0.15 milliwatts 
on cloudy days. Averaging over daylight and nighttime hours, and 
considering nodes in the interior of the building or embedded in 
ceiling tiles, shows that solar cells can just barely serve as the sole 
energy source for PicoNodes, and additional sources of energy 
would be welcome.  

Harvesting energy from vibrations is promising for this 
application. Raised floors and dropped ceilings in most office 
buildings exhibit measurable vibrations (from trucks driving down 
nearby streets and people walking on the raised floors) that can be 
harnessed. Advances in MEMS devices make integrated and tiny 
variable capacitors a reality. These capacitors are used to make 
chip-scale electrostatic vibration generators that will integrate 
well with the other PicoNode components. Power outputs 
between 10-100 microwatts per cubic centimeter are plausible 
from vibrations in a normal office building using existing MEMS 
technology. 



3. System Conception and Optimization 
Traditional efforts in low power design have focused on 

optimizations at the circuit level.  We believe that in order to meet 
the aggressive design goals of the PicoRadio project, it is 
necessary to begin the design at the system level.  Starting at a 
higher level enables us to explore a larger design space, and arrive 
at a more optimal solution.  The goal of this section is to present a 
methodology for identifying and evaluating decisions made in the 
design of the PicoRadio protocol stack.   

Section 3 introduces the design methodology and the use of 
UML for system specification (Section 3.1), the network layer 
design issues, (Section 3.2), and finally discusses the Media 
Access Layer (MAC) design (Section 3.3). 

3.1 Design Methodology Overview 
One of the goals of a design methodology is to orthogonalize 

concerns whenever possible.  This allows for a more efficient 
exploration of the design space, since each orthogonal concern 
can be optimized separately from the others.  Such concerns are 
function/architecture [2] and communication/computation [4], the 
latter being the more novel idea in this design methodology.  The 
essence of the design methodology is to identify the 
computational kernels, or processes, and then implement 
communication between them using a series of adapters.  The 
object of this is to separate the behavior of a component from how 
it interacts with other components or the environment, providing 
location transparency, which in turn promotes component reuse.   

The PicoRadio protocol has been designed using such a 
communication based design methodology.  The first step in this 
design flow is the capture of specifications and functional 
decomposition at the system level.  For this task we have used the 
Unified Modeling Language (UML) [5], which is discussed in the 
following section.  The second step is functional description, 
which has been performed using the Specification and Description 
Language (SDL) [16] and Cadence’s Virtual Component 
Codesign (VCC) tool [3].  This representation of the system can 
be functionally verified in VCC or SDL, but for performance 
measurements the description must be ported to one of several 
different simulation environments, including OpNet [14], MatLab 
[15], or a testbench wireless platform.  When a satisfactory design 
has emerged, the functional description can be implemented.   

Next, we present the work in system specification, functional 
description, and simulation stages followed by a brief review of 
the protocol design for the Smart Building scenario. 
3.1.1 UML for system specification 

The Unified Modeling Language (UML) is used to capture the 
structure of the system at a high level of abstraction.  The UML 
diagrams aid in identifying design decisions and tradeoffs during 
the design process, and serve as a form of documentation for 
components and the interfaces between them in the finished 
design.  Information captured about the application requirements 
is used to drive simulations, which ensures that the system design 
will meet all the performance constraints. 

The different diagrams supported in the UML capture different 
aspects of the system, and are used at different points in the 
design process.  The diagrams we use in our modeling are use 
case diagrams, class diagrams, state diagrams and sequence 
diagrams. 

Use cases are the first step, and serve to document the 
interactions between the environment and the system, thus 

characterizing the requirements the system must meet.  Once these 
interactions with the are identified, we describe the components 
that make up our system. The structure is described using class 
diagrams and the behavior using state diagrams.   

We have defined primitives to capture particular semantics 
specific to our domain, using the stereotyping mechanism 
provided in UML. The stereotypes we have defined are process, 
channel, and signal.  A process represents a reactive component, 
which has a set of input and output ports, each of which has a 
signal type associated with it.  This structural description of a 
process is equivalent to a Codesign Finite State Machine (CFSM), 
the basic building block in VCC.  Channels represent the 
communication paths between processes.  They are characterized 
by the relationship of the output signal to the input signal, which 
can be captured with a state diagram for a complex channel.  
Signals are the datatypes that are input or output from a process. 

Using the above stereotypes we can begin to describe the 
functionality of the system.  At the top level, the behavior of the 
system is decomposed into a set of communicating processes, with 
ideal channels providing communication between them.  If the 
behaviors of the processes are incompatible, it is necessary to 
insert behavior adapters.  These incompatibilities arise when a 
sending process produces output signals that are not valid inputs 
of the receiving process.  A behavior adapter must map these 
invalid signals into acceptable signals. 

Once the behaviors are compatible, it is necessary to refine the 
communication medium.  This refinement can be performed in 
multiple steps, and at each step abstractions made in the original 
assumption of an ideal channel are removed.  When an abstraction 
is removed, it is necessary to ensure that communication over the 
refined channel is equivalent to that over the original channel.  If 
this is not the case, it is necessary to insert channel adapters to 
resolve this situation. As an example, consider a system with two 
processes that require lossless communication.  When we first 
define the behavior of the processes, we assume communication 
over an ideal lossless channel.  As a result of mapping to specific 
communication architecture, we have a revised channel that is 
lossy.  Thus we insert channel adapters which implement lossless 
communication over a lossy channel, using a method such as an 
acknowledgement/retransmission scheme or error correcting 
codes.  As long as the resulting communication meets all other 
constraints, such as latency or power consumption, the new 
channel is successfully adapted. 

The final representation captures all the processes and adapters 
in our system, and the interfaces and signals between them.  
However, we have only captured the structure, not the behavior.  
It is now necessary to choose the appropriate Model of 
Computation (MoC) to describe the behavior of each block, both 
processes and adapters and attach a description to the block.  
UML currently only supports state machines as MoC for 
behavioral descriptions. Since the design of the PicoRadio 
protocol will be implemented using CFSMs in VCC, this is a 
perfect match. 

 To further document the interaction between different 
components, sequence diagrams are used.  Sequence diagrams 
capture the exchange of signals between two or more components 
during the transactions identified in the use case diagrams.  These 
traces of signal exchanges can serve as an aid in debugging a 
functional description and ensuring it is performing as intended. 



3.1.2 Smart Building Scenario 
We illustrate the use of our methodology on the Smart 

Building example described in Section 2.1.  There are three 
distinct classes of applications in the network: sensors, actuators, 
and monitors.  Sensors take measurements of some aspect of the 
environment and produce a data value.  Actuators accept a 
command and cause some change to happen in the physical 
surroundings.  Monitors are the controlling applications in the 
system, which can issue requests to sensors, commands to 
actuators, and accept data from sensors.  The monitors could be 
embedded control applications, user-interface nodes that allow the 
users to observe and change their environment, or system 
administration nodes that control system-wide operation, log 
performance data, and allow for system setup and debugging. 

As a result of the decomposition of the system and refinement 
of the communication media, we have identified the layers of the 
protocol, and the design decisions to be made in each of them. 
The layers described below correspond to the adapters introduced 
during the communication refinement process.  

By analyzing the needs of the application, two application-
specific design decisions were identified.  The first is to allow 
monitors to place periodic or threshold based requests, since many 
of the control algorithms require periodic data.  These periodic 
requests reduce the network traffic, and thereby save power.  
Adding this functionality requires a behavior adapter at the sensor 
to match the monitor’s behavior.  This behavior adapter forms an 
application layer, which allows a sensor to be programmed for 
periodic or conditional requests.  The second decision is based on 
the fact that the topology of this system will be fairly static.  Most 
sensor or actuator nodes will be stationary.  Thus we can allow the 
application a mechanism to perform data aggregation.  For 
example, if a user wishes to know the average temperature from a 
region on the other side of the building, the average temperature 
can be computed locally in that region, and only this average 
value is sent back to the user.  This creates less network traffic 
than having the individual data samples sent back to the user, and 
thus is an optimization as long as the cost of computation required 
for the aggregation is less than the cost saved in network traffic.  
In order to provide this service we add an aggregation layer. 

Below the application layer, there are two layers needed to 
support multiple connections on one PicoNode.  The first is an 
addressing layer, which takes the multiple input and output 
streams from the layers above and maps them to one network 
connection.  It also places the data in the correct format for 
network packets.  The second layer is a muxing layer, which 
allows multiple applications to run on one node.  This layer has to 
decide to which applications on a node to deliver incoming 
packets. 

The lowest layers in our protocol are the routing layer, whose 
purpose is to route packets to their destination in a multi-hop 
environment, and the MAC layer, which allocates channels among 
nodes and controls access to the shared medium.  A key point 
guiding the design of these two layers is that the application in our 
scenario generates very low bit-rate data, with a low duty cycle.  
This leads us to design a network layer which routes reactively, 
rather than expending a lot of energy on maintaining routing 
tables.  For the MAC layer, we search for an alternative that will 
allow us to shut off the radios as much as possible to conserve 
power.  In the following sections we present more detail on the 
power optimizing design of these two layers. 

3.2 Network Layer Design 
The network layer lies beneath the application and aggregation 

layers, and performs the functions of addressing, multiplexing and 
routing. There are a number of existing routing protocols for ad-
hoc wireless networks such as Destination-Sequenced Distance 
Vector (DSDV) [6], Ad-hoc On Demand Distance Vector 
(AODV) [7], Zone Routing Protocol (ZRP) [8], Link state routing 
[9] and Diffusion based routing [10].  In general, all these 
protocols can be classified as either proactive or reactive. 
Proactive schemes always keep an updated idea of the network 
topology, and maintain routes to all destinations, whereas reactive 
schemes find and maintain routes only on an as-needed basis. 

From the application scenario, we discerned the following 
information that drives the design process: 
• Average bit rate: fairly low, ~10-100 bps 
• Density of nodes: About 0.1-1 node/cu. m. 
• Mobility of nodes: Low mobility, most of the nodes are 

stationary, while some are slow-moving 
• Periodicity of data: Significant portions of the traffic would 

be periodic in nature, such as sensor data 
• Application Data Unit (ADU) sizes: These would be very 

small, ~ few bytes each 
• Reliability of data delivery: Due to the redundancy of sensor 

data, 100% delivery guarantees are not always required 
• Total number of nodes: 100s –1000s of nodes 

Using these specifications, we can evaluate different 
addressing and routing methods. 
3.2.1 Addressing schemes 

Addressing of nodes is an issue where we depart from the 
traditional model.  Trying to maintain unique IDs in an ad-hoc 
network would be expensive in both computation and 
communication.  First, there is the problem of allocating the 
addresses uniquely.  Secondly, with routes to mobile nodes 
continually changing, keeping track of these routes with regard to 
their IDs would be expensive.  

Instead, we propose the use of class-based addressing. Class-
based addresses are composed of one or more fields, and each 
address identifies a class of nodes. Specifically, the PicoRadio 
addresses consist of the triplet <Location, NodeType, DataType>. 
The Location contains the coordinates of the node, NodeType can 
be a sensor, monitor or actuator, and DataType can be 
temperature, humidity, etc. This matches the application 
requirements, since typical sensor queries are of the form: 
“temperature data from sensors in a region.”  Any node that 
satisfies the address requirements can answer such a query, and 
not having to map such requests to unique network IDs is cleaner, 
more scalable, and less costly for the network to handle.  
3.2.2 Routing methodology 

In a wireless network, data can be routed to the destination in 
either a single hop or multiple hops. Single hop requires 
transmitting with enough power to reach the destination, which 
not only causes interference at a large number of other nodes, but 
also wastes energy as explained in Section 2.3. Therefore, routing 
is done in multiple smaller hops to optimize energy. 

Since the bit rate of the network is low, the routing protocol 
has to be lightweight to ensure that most of the energy is spent in 
moving data, rather than wasted in routing updates. We therefore 
concentrate on reactive routing protocols.  The routing tables that 
are maintained at each node should also be small compared to the 



size of the network to avoid requiring large caches.  At the same 
time, the protocol should be tolerant to nodes coming up or down, 
and thus fault tolerance and protection is an integral part of the 
design. 

Two approaches are promising for the network layer of 
PicoRadio networks. First, the directed diffusion paradigm [10], 
which is a reactive scheme where the monitor broadcasts its 
interest in certain data, and the sensors that can provide such data 
reply back, setting up multiple paths to the monitor in the process. 
Due to the multiple paths created, the scheme assures data flow in 
the event of node failure. However, diffusion requires the use of 
fairly large caches at every intermediate hop. Secondly, 
geographical information can also be exploited to route in the 
correct direction towards the destination [11]. We are currently 
developing a protocol based on these schemes that would be 
optimized for PicoRadio and would maximize the survivability of 
such a network. 
3.2.3 Energy vs. latency tradeoff 

One interesting characteristic of the application is that the size 
of each ADU is small, so delivering such small packets 
individually is energy inefficient since a large percentage of 
energy is wasted on overhead.  This overhead is in the form of 
network layer headers enlarging the packet and the MAC layer 
cost of allocating the channel.  However, most of the data is delay 
insensitive, giving us the opportunity to trade-off energy with 
latency.  We can buffer data at a node and then burst it in a 
combined packet, increasing the latency, but reducing the total 
energy consumed. 

3.3 Media Access Layer (MAC) Design 
The main principles guiding low power distributed MAC 

design are the following: 
• Collisions should be avoided since retransmission leads to 

unnecessary energy consumption and possibly unbounded 
delays. At the same time, collision avoidance may result in 
substantial overhead, so a trade-off must be evaluated to 
achieve an optimal solution. 

• Protocol overhead should be reduced as much as possible, 
including packets dedicated for network control and header 
bits for data packets. 

• In typical wireless systems, the receiver has to be powered on 
at all times resulting in significant energy consumption.  The 
more time the radio can be powered off, the greater the 
power savings. 

• For a large-scale system with limited mobility, we need an 
adaptive algorithm to support mobility while avoiding 
unnecessary overhead.  

In this section, we introduce a new class of MAC protocols to 
take advantage of opportunities provided by new radio technology 
and to provide a more flexible interface to higher-level protocols.  
We present a dynamic channel assignment method, a sleep and 
wake-up technique, a mobility adaptive MAC, and the results 
obtained for our MAC design. 
3.3.1 Dynamic channel assignment 

Among MAC protocols currently used, an important subset is 
the one that alleviate media access conflict by using multiple 
channels.  A given bandwidth of wireless media can be divided 
into a number of channels in various domains in different schemes 
such as FDM, CDMA, OFDM or TDMA.  Single channel and 
contention-based protocols attempt to achieve conflict resolution 

in the time domain, but suffer an instability problem as the 
network get denser and traffic increases.  In PicoRadio, a multiple 
channel scheme based on dynamic channel assignment has been 
chosen, and each node is assigned a locally unique channel.  We 
assume that a spread spectrum CDMA scheme will be used in our 
system, although an OFDM solution is also under consideration. 

For a flexible and scalable mobile multi-hop network, a limited 
number (~30) of channels have to be assigned to an almost 
unlimited number (thousands) of nodes in a distributed and 
dynamic way.  Thus, local uniqueness and global reuse is the key.  
The goal of our code assignment algorithm is to assign different 
codes for all neighbors of a given node. This channel assignment 
problem is equivalent with the two-hop coloring problem in graph 
theory, which is formulated as “Color the nodes of a graph such 
that any pair of nodes one or two hops apart have different 
colors.” The color assignment is a NP complete problem, and we 
use a distributed heuristic solution. The nodes listen to a common 
control channel and periodically broadcast a channel assignment 
packet to their neighbors using the same channel.  Every node 
keeps a channel assignment table to record the channel usage by 
its one-hop and two-hop neighbors, and makes sure its own 
channel is different from all its two-hop neighbors.  Simulation 
shows that the algorithm converges quickly and is robust to 
topology change.  
3.3.2 Sleep and wake-up scheme  

It is observed that in a typical Smart Building scenario, where 
nodes spend only 1% of time doing data transmission, more than 
90% of the energy is spent on channel monitoring when nothing is 
happening.  This is because existing radio system designs use the 
same hardware to do data transmission and channel monitoring. 
By using a separate super-low-power radio (wake-up radio), we 
can power down the normal data radio when it is neither 
transmitting nor receiving any data, while at the same time the 
wakeup radio monitors a wake-up channel.  If the node wishes to 
transmit a packet, it wakes its own radio, then sends a short wake-
up beacon to the recipient using the wake-up radio channel.  
Upon reception of this beacon, the receiver’s wake-up radio will 
trigger the power up the normal radio up to be ready for the 
reception. 

Preliminary research shows that the wake-up receiver radio 
operation may only take around 1µW, compared to 10mW for a 
CDMA radio in monitoring mode. In our targeted traffic scenario, 
the energy for channel monitoring is almost negligible.  
3.3.3 Mobility adaptive MAC 

We integrate the multi-channel scheme and wake-up radio to 
create a low power distributed MAC protocol for mobile nodes in 
an ad-hoc radio network.  The fact that nodes may be mobile 
means that channel allocation does not occur solely in a startup 
phase.  It is necessary for nodes to periodically exchange channel 
assignment packets containing information on neighboring nodes.  
The problem is that once a node goes to sleep it can no longer 
keep track of the dynamic neighborhood information.  However, 
in a sensor network such as the Smart Building scenario, only a 
small number of nodes in the network are mobile, and with 
limited speed.  Thus, we propose an adaptive scheme with the 
notion of mobility aware nodes.  We assume that each node is 
aware of its mobility, either by an embedded sensor or instruction 
from upper layer applications. These mobile nodes will 
periodically broadcast a beacon using the wakeup channel to keep 



its neighbors awake, thus maintaining a dynamic active zone 
within two hops.  Static nodes in the active zone will remain 
awake until the beacon has not been received for a predefined 
period, then go back to sleep again.  A mobile node can also go to 
sleep to save power, provided that it has no interest in its dynamic 
neighborhood information, and has no wish to be found in the 
near future. 
3.3.4 Results 

Simulation has been performed for a regular network of 100 
nodes where each node has 6 neighbors.  A pool of 32 channels is 
available to be assigned to the nodes using the coloring algorithm 
described above.  Power performance is evaluated after the 
channel assignment algorithm converged and no further topology 
changed.  Only data transmission related traffic is evaluated at this 
time.  We compare the Energy Per useful Bit (EPB) of the 
proposed protocols under conditions when a wake-up radio is 
used and when a traditional signaling channel is used. 

Simulation results show the proposed protocol provides a 
varying degree of power savings depending on the traffic. In 
typical PicoRadio applications, we achieved an EPB of 
2.5~4.0µJ/bit for MAC payload data.  The results show at low 
network traffic, the EPB of the new protocol is mainly a function 
of data packet length. EPB decreases, as the packets get longer. 
This is understandable since for longer packets, the fixed 
overhead signaling will take a smaller part of the overall energy 
consumption. In low traffic zones, the EPB of the proposed 
protocol is relatively stable, but the EPB of the traditional radio 
protocols will increase dramatically as traffic decrease. This 
proves the efficiency of our protocol for a low traffic distributed 
sensor network. 

In Figure 1, the top curve represents a traditional radio, the 
bottom curve represents the proposed new protocol and the 
middle curve represents a fictional system where monitoring 
power consumption is lower than the existing system but higher 
than PicoRadio. 

4. Designing Low-power Silicon Platforms  
Crucial to the success of PicoRadio networks is the availability 

of small, lightweight, low-cost network elements, which we call 
PicoNodes. These nodes must use ultra-low power to eliminate 
frequent battery replacement. We envision a power-dissipation 
level below 100 microwatts, as this would enable self-powered 
nodes using energy extracted from the environment. These nodes 

must also be able to adapt themselves to changing conditions of 
the network, requirements of different data types to be 
transmitted, and the distance this data will travel. For instance, a 
PicoNode should compress more data that is going to travel 
farther distances, and just send plain data for short distance 
communications. 

While technology advances have made it conceivable to build 
and deploy dense wireless networks of heterogeneous nodes, the 
design of a low-power, low-cost, adaptive PicoNode in a reduced 
time to market is still a challenge. Progress in wireless design 
development is limited by the lack of adequate design 
methodologies and tools.  

The goal of this section is to address a design methodology to 
implement a silicon platform for PicoRadio networks. A design 
methodology for PicoNodes should address the mapping of the 
PicoNode functionality into an efficient silicon platform. 
Moreover, this platform should be flexible to enable dynamic 
adaptation for different working scenarios.  

A wireless sensor is a complex system that implements a 
variety of functions: protocols, signal processing, position 
location, A/D converters, RF transceivers. Traditionally, wireless 
transceivers were almost completely implemented using RF and 
analog circuit modules. A mostly digital approach is currently 
coming into vogue. This trend is inspired by the observation that 
digital circuitry improves exponentially with the scaling of 
technology, while analog circuits get linearly worse, mostly due to 
reduction of the supply voltage. Hence, the PicoNode 
implementation relies on a small noncritical analog front-end and 
use digital back-end processing to correct for the nonidealities. 
Therefore in this section we mainly focus on the problem of 
designing the protocol and signal processing part of these sensors. 

Protocol specifications are heterogeneous in the sense that they 
include both control and data processing functions, but 
significantly more control functions. Data processing, (e.g. in 
encryption, error correction) is typically applied at regular time 
intervals to streams of incoming data and is often subject to tight 
timing constraints. Control functions are of two types: real-time, if 
data processing is enabled by the occurrence of external (e.g. user 
request) or internal (e.g. timers) events, data-dependent, if some 
action is taken as a consequence of a data value (e.g. depending 
on the CRC result a packet is discarded). 

Signal processing blocks, like protocols, are also 
heterogeneous including both data and control functions, but are 
heavily weighted towards the data processing functions.  Data 
processing is typically in the form of datapath blocks were semi-
infinite data streams are processed. Control processing is typically 
in the form of “steering” the data through datapath blocks, and 
less often in the form of real-time when responding to a request 
from the protocol. 

While the layered heterogeneous protocol specifications are 
usually implemented by mapping them into a heterogeneous 
architecture including custom logic, programmable logic and an 
embedded processor, the signal processing part is mapped almost 
exclusively to custom logic.   

Due to their differences in specification and target architecture, 
protocols are designed independently of the signal processing part 
of the wireless sensor. Section 2.2 presents a design methodology 
for protocols and Section 2.3 focuses on a design methodology for 
the signal processing part. 
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4.1 Protocol Processor Design Methodology 
To meet the ambitious constraints in a short period of time, the 

design process must make efficient utilization of highly reusable 
architectures. To do so, we must look to a new approach to system 
design that facilitates design reuse. Our protocol processor design 
methodology is based on the concepts of platform-based design 
[12]. This methodology is demonstrated by describing its 
application in the early stage design of the next-generation 
PicoNode. 

Platform-based design achieves design reuse by abstracting 
hardware to a higher level (platforms) that is visible to the 
application software. The system platform comprises a family of 
parameterizable architectures that adequately supports the 
functions in the application space. Upon identifying a system 
platform, the final system design involves programming a set of 
architectural modules using the programmer’s model. 

We have defined a three-phase approach to the design 
protocols. In phase I, the system platform is conceived through 
consideration of the application domain and available 
architectural modules. Phase II performs the design exploration 
to find a suitable set of architectural modules for specific 
applications and constraints. Lastly, phase III completes the final 
implementation (hardware and software synthesis) of a specific 
application onto the platform instance.  
4.1.1 Platform Conception (Phase I) 

A typical platform for wireless systems consists of 
programmable processors, reconfigurable logic, dedicated logic, 
memories, and peripherals. Constructing the system platform is a 
two-fold problem: We need to (1) identify the key functions and 
their constraints, (2) explore the available architecture modules 
and their performance behavior. The former is achieved through 
functional profiling of a suite of candidate applications. The latter 
requires architecture exploration of various means of 
implementation. 

The concept of functional profiling is to gain an in-depth 
understanding of the application space by extracting a set of key 
operations (kernels) common to these applications. An efficient 
implementation could only be realized if the performance-critical 
operations are classified and specially targeted. The important 
issues in functional profiling are profiling granularity, 
classification, and interpretation of the collected data. If the 
granularity is either too coarse or too fine, regularity and 
commonality may not be fully exposed. It is often necessary to 
reorganize the application code (e.g. insert wrapper functions) to 
reach optimal granularity. Proper classification and interpretation 
of the profiling data require some insight into the class of 
application algorithms. Particular care should be paid to the 
separation of application code from the simulator kernel to ensure 
that only meaningful data is collected. 

Architecture exploration has a couple of purposes. First, it 
identifies a family of computational and interconnect architectures 
that can efficiently support the key operations in the application 
domain. This may involve surveying existing architectures, or 
seeking new and creative ways to implement the functions. Failing 
to use the right architecture to implement a particular function can 
have detrimental effects on the performance of the resulting 
design. Second, it should provide first-order performance and cost 
models for these architectures. Having numerical models can 
greatly simplify and expedite the process of design exploration in 

the latter phases of the methodology. Lastly, it should provide 
software means for programming the functions onto the 
architectures. This makes up the application programming 
interface (API) for the system platform. 
4.1.2 Platform Instantiation (Phase II) 

In this phase we explore within the system platform to find a 
particular platform instance that is suitable for a specific set of 
applications. The classic Y-chart approach [13] is used: A 
platform instance is identified by choosing the appropriate 
parameterized architectural modules as well as interconnect model 
from the library obtained in phase I. The functional specification 
of the application is then mapped onto the platform instance. The 
quality of the resulting mapping, given by the performance and 
cost models, is evaluated under the given set of functional 
constraints. If the constraints are not met, the process is iterated 
by either instantiating a different platform or modifying the 
functional specification or both. By examining multiple platforms 
with varying performance, we can quickly converge to an efficient 
platform that is best suited for our applications. 
4.1.3 Implementation (Phase III) 

Once we have a platform instance that meets the design 
constraints, mapping any specific application onto hardware 
becomes a software issue. Through the software API, the 
hardware platform can be programmed or configured to perform 
the desired functionality. Remaining issues include generation and 
compilation of application code, real-time operating system 
(RTOS), and any necessary design synthesis. 

By thinking at a platform level, we are able to produce a 
solution that allows fast design time through extensive software 
and hardware reuse. To effectively use platform-based design 
methodology, it is imperative to have a good system platform in 
place before proceeding further in the design flow.  

4.1.4 Case Study: PicoRadio 
In designing the PicoRadio protocol processor, we use the 

design methodology described in the previous section to devise an 
architecture that is optimized for size, cost, and most importantly, 
energy. This section presents our current efforts in the PicoRadio 
protocol processor design as a case study of the design 
methodology. The project is currently in phase I of the 
methodology, which consists of functional profiling and 
architecture exploration. 
Functional Profiling 

To study the PicoRadio application space, we have collected a 
benchmark suite with a wide range of mobile wireless 
applications. Preliminary results have been obtained from our first 
benchmark application, a mobile ad hoc network that supports 
different protocols. The application program is written in 
OpNet/Radio Modeler from Millennium 3 Technologies [14].   

In this experiment, four different scenarios are studied with 
two different routing protocols and two types of node 
distributions.  The first protocol is the Ad-hoc On-Demand 
Distance Vector Routing (AODV) [7], a reactive protocol.  The 
second is the Dynamic Destination-Sequenced Distance-Vector 
Routing (DSDV) [6], a proactive protocol. The first type of 
network distribution is a uniform grid of nodes in which the 
neighbors can hear each other.  The second is a randomly 
generated distribution. The nodes have fewer neighbors on 
average in the random distribution case and generate less network 
traffic. 



Opnet only produces profiling information at the level of the 
leaf funtions. The generated fine grained profiling data are 
grouped and classified. The results are presented in Figure 2. 
Searching consumes 20%-45% of the total time and packet 
manipulation (parsing, modification, re-assembly etc) consumes 
18%-28% of the total time. Clearly this suggests that the 
implementation of dedicated packet processing and table 
searching engines may greatly improve the overall system 
performance. Furthermore, since searching is mostly routing and 
forwarding table lookups, a protocol that does not involve the 
maintenance of large tables should lead to a cheaper 
implementation. 

Architecture Exploration 
The enable hardware reuse and exploration of different 

protocols in various network scenarios, PicoRadio protocol 
processor must provide some degree of flexibility. While 
microprocessor provides the most flexibility, they fail to meet the 
tight energy requirements of wireless applications. In contrast, 
reconfigurable fabrics, such as field-programmable gate array 
(FPGA) and programmable logic device (PLD) are more 
promising options. 

The traditional FPGA and PLD architectures differ 
significantly in the granularity. The FPGA comprises an array of 
thousands of configurable blocks, each implemented with lookup 
tables, which can each implement any arbitrary N-input logic 
(typically N<5). Since the lookup tables are easily chained 
together to implement more multilevel logic, this type of 
architecture is very well suited for complex operations such as 
arithmetic and signal processing. On the other hand, the PLD uses 
a small number of (typically <32) programmable array logic 
(PAL) blocks that can each implement sum-of-product logic of 
many inputs but limited output. This makes the PLD structure 
suitable for control FSMs. Figure 3 shows experimental results 
that support these claims. 

For PicoRadio, the low-level (MAC and physical layers) 
protocols take the form of extended FSMs, which include both 
datapath and control elements. Consequently, we are constructing 
a hybrid, reconfigurable architecture, using PAL and LUT blocks 
for control and datapath respective. The architecture uses hybrid 
cells, each consisting of a small PAL block for control, and a 
small array of LUTs and flip-flops for data processing. Each 
hybrid cell is effectively a small protocol FSM; an array of these 
hybrid cells will be suitable for implementing complex, 
interacting FSMs. In order to keep the hybrid cells small, it is 

necessary to partition large FSMs. It will also be possible to 
perform power management on the hybrid cells to turn off 
inactive FSMs to conserve energy. 

4.2 Scaleable Low-energy Signal Processing 
Design Methodology 

Scaleable signal processing systems can operate over a range 
of quality of service requirements trading energy efficiency for 
performance.  Low energy and energy scaleable signal processing 
is a critical component of a PicoNode.  First, scaleable signal 
processing algorithms must be designed at the conceptual level, 
and then implemented in the most energy efficient way to offer the 
most energy efficient solution for a wide range of operation 
modes.  Scalability and energy efficiency cannot be implemented 
blindly; behavioral level designers must be able to evaluate the 
lower level implications of their decisions.  We use a unified 
design environment for signal processing that allows all levels of 
the design to be completed within a single simulation environment 
for both datapath and control operations.     

The unified design environment is based on in house tools in 
conjunction with the Simulink language from the MathWorks.  
The integrated design environment allows inter-level design 
decisions to be evaluated and implemented.  The unified 
description environment makes resolving conflicts between levels 
straightforward and deterministic [17]. Analog or other peripheral 
blocks can be described in Simulink and can be incorporated with 
the structural level design description in a unified simulation.  
This allows the system level simulation to include the interaction 
of realistic phenomena such as analog and RF impairments with 
structural level decisions such as bit-width scaling.   

Within our design environment, we use a four-phase design 
process: decisions are made at behavioral, functional, structural, 
and physical levels.  Behavioral descriptions capture the 
algorithmic behavior.  Functional descriptions capture the cycle-
by-cycle behavior of the system, describing details such as 
parallelism and required throughput per unit.  Structural 
descriptions include implementation details such as fixed-point 
types, pipeline depth, and adder and multiplier types.  Decisions 
made at the physical level capture synthesis, placement and 
routing information. 

4.2.1 Low-energy Direct-Mapped Data-path Design 
Behavioral level decisions are based on  algorithm exploration 

in Matlab or Simulink. Functional level design specifies Simulink 
implementations of  the behavioral models.  For instance, rotation 
of a complex vector through by an angle can be done with a 
complex multiply or a CORDIC.  At the structural level,  bit 
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Figure 2: Profiling results of an ad hoc wireless network 
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Figure 3: Implementation results of wireless protocol blocks. 



widths are determined, and micro-architectural decisions are 
made, such as types of adders and multipliers to be used, the use 
of carry save arithmetic, direct or transpose filter implementations, 
etc.   Another type of structural optimization is in the use of 
multiple clock domains.  The design flow recognizes the Simulink 
enable block as a gated clock specification and builds a clock tree 
automatically.  Gated clocks are the basis for creating energy 
scaleable datapaths where unused blocks are shut off and hence 
do not consume energy.  

The design flow assumes that each structural block 
corresponds to a unit of layout (called a “hard macro”), which has 
been extracted and characterized for power, area, and delay.  The 
hard macros are created from soft macros, by fixing parameters 
such as bit width, adder type, and micro-architecture.  Creation of 
a hard macro from a soft macro or a composition of macros is a 
process called “hardening” and is a heavily automated part of the 
design flow.  Designers have the ability to create their own 
macros and integrate them into the flow through a well-defined 
process described below.  Once the entire design is hardened, the 
chip is ready to be fabricated as all further steps (power routing, 
clock tree generation, LVS and DRC, etc) are automatically 
completed by the flow. 

4.2.2 Control Design 
Scaleable datapath blocks must be tightly integrated with 

control functions that manage the flow of data through the blocks, 
deciding the minimum amount of computation required and 
shutting off blocks that are not needed.  It is thus desirable to 
implement both datapath and control in the same environment.  
Within the Simulink environment is Stateflow, a graphical 
language for describing control flow using state machines.  An in-
house tool translates Stateflow diagrams to VHDL, which can 
then be synthesized and included in the functional level 
description as a macro.  Using the data-path and control 
primitives provided with Simulink, it is possible to create a 
discrete-time simulation with completely specifies the behavior of 
a system and therefore find the most energy efficient solution for a 
range of situations.     
4.2.3 Module Generation 

This design flow is based on intensive reuse of parameterized 
soft macros.  When a macro is needed that doesn’t already exist, 
there is a well-defined process for creating one and incorporating 
it into the flow.  Since a macro corresponds to a piece of layout, 
several options are available for creating new macros.  They can 
be composed of existing macros within Simulink, synthesized 
using a high-level description language, or built on tiled standard 
cells.  The requirement is that the designer creates a functionally 
equivalent Simulink model to be used within the flow.  Synopsys’ 
Module Compiler is especially oriented towards creating large 
datapath modules allowing designers to easily explore different 
micro architectures for area, power and speed tradeoffs, and to 
create parameterized modules to expose these design choices to 
the module user.  The use of Module Compiler modules is 
integrated into the flow such that parameters specified in Simulink 
are passed to Module Compiler and used to automatically create 
the desired hard macro.   

4.2.4 Baseband Signal Processing Design Example 
A 1.6Mbps DSSS Digital Baseband timing recovery unit 

(Figure 4) is used to demonstrate our flow. This system provides 
coherent timing recovery and code acquisition for a stream of soft 

symbols.  The system receives a direct sequence spread spectrum 
(DSSS) QPSK modulated signal and recovers the intended bits.  
The spreading code consists of 31 chips per symbol.  Chips are 
sent at a rate of 25MHz giving a symbol rate of 806.4KHz.  The 
QPSK modulation sends two bits per symbol yielding a data rate 
of 1.6Mb/s. Analog signals from the front end are over sampled 
by a factor of 8 according to a free-running 200MHz 
(200MHz=8*25MHz) clock and converted to digital samples.  
The coarse-timing block performs code acquisition using a 
matched filter, and estimates the correct sample time within 3/8 
chips (3/8*40ns=15ns).  The fine timing block (using a synch 
word sent by the transmitter) estimates the frequency offset 
between the transmitter and receiver and refines the timing 
estimate to within 1/8 chips (1/8*40ns=5ns).  The digital PLL 
correlates the data, corrects the phase offset, and tracks any 
residual frequency offset producing a coherent stream of soft 
symbols.  These soft symbols can be sent to a simple slicer, or 
through a more elaborate decision device like a Viterbi decoder. 

As a concrete example in the use of the flow, we will discuss 
the progression of the fine timing block through the four levels of 
design.  The inputs to the fine timing block are the oversampled 
data from the converter and the coarse-timing estimate.  The 
outputs are the fine timing, and the frequency offset estimate.  The 
frequency estimation algorithm is based on the data aided 
algorithm described in [18]. 

The most interesting functional level decision is in determining 
how to compute a composite operation of angle finding 
(determine the phase difference between symbol N and symbol 
N+1) and averaging (average phase difference between successive 
symbols over several symbol periods).  It is determined through 
simulation and analysis that a complex multiply accumulate 
(CMAC) block can be used.   

A large number of structural level decisions center on the 
CMAC.  The input bit width and the accumulator bit width are 
parameters.  In addition, our soft macro offers 4 micro-
architectures to choose from shown in Figure 5. The 
characterization data provided by the flow shows that architecture 
2 is the most energy efficient for the 6-bit input and a 16-bit 
accumulator length required in this design. 

The fine timing block has three major sub-blocks that can be 
composed by the designer in two ways.  Since all three of these 
blocks are implemented as Module Compiler macros, it is possible 
to compose them into one block within Module Compiler and 
then incorporate the composition into the flow in Simulink.  
Alternatively, the designer could compose the blocks in Simulink 
and use the flow to harden them into a composite block.  Either 
choice produces nearly identical results as far as power, area and 
speed.  However, by composing the blocks within Simulink, the 
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Figure 4 – Timing Recovery Block Diagram



designer can specify different gated clocks to each block so that 
they could be shut off when not in use to save energy, while gated 
clocks cannot be implemented in Module Compiler.  So, the most 
energy scaleable design is reached by composing the blocks in 
Simulink. 

A module for the CMAC has been created for this design using 
Module compiler.  Bit widths of the inputs and accumulator were 
parameterized and exposed to the module user, and four different 
micro-architectures were implemented.  A parameterized, 
functionally equivalent model was created in Simulink for 
inclusion into the flow.    

5. Conclusions 
In our vision of distributed computing, thousands of tiny nodes 

scattered throughout the daily living environment gather, process, 
and communicate information in a self-organizing fashion. The 
major challenge in the implementation of these wireless ad-hoc 
sensor, monitor, and actuator networks is minimizing energy-
consumption. We believe that the two key enablers for PicoRadio 
networks are the energy-conscious system-design and 
implementation methodology and a configurable architecture that 
permits these opportunities to be efficiently realized in silicon 
leading in the future to radio nodes that are two orders of 
magnitude more efficient than existing solutions. 

A system conception and optimization methodology that 
allows efficient design exploration has been presented. Using this 
methodology, we have designed the protocol stack for the Smart 
Building application in UML with attached semantics. As a result 
we constrained each layer of the protocol. To further illustrate the 
methodology we presented the low-energy network and MAC 
layers for PicoRadio networks under development. Simulations 
have shown that the MAC layer proposed is 100 times more 
energy efficient than traditional ones. The network layer is 
combines the advantages of geographical routing and directed 
diffusion algorithms.  

A protocol processor design methodology has been presented. 
It allows efficient creation of reusable silicon platforms. As part of 
this methodology, functional profiling and architecture 
exploration have been illustrated. Functional profiling has been 
applied to different network layer algorithms to identify the most 
costly operations. Architecture exploration has identified the best-
suited type of fabrics for different blocks of a MAC and physical 

layer protocols. Based on these experiments, a new hybrid 
architecture is being designed. 

A unified design environment for signal processing has been 
presented. It allows energy efficient and scaleable solutions to be 
realized and immediately reflects the impact of high-level 
decisions in the lower levels of the design. To illustrate this 
methodology, we presented a fine timing unit design. It took 
approximately one week to create the fully parameterized 
functionally equivalent soft macro blocks (correlator, complex 
MAC, and magnitude unit) in Simulink and Module Compiler.  It 
took less than one day to compose them into a single Simulink 
simulation, and less than half a day to completely harden this 
subsystem including placement and routing.  This block was 
implemented in a 0.25um process, had 37,000 transistors, an area 
of 0.22mm2, a critical path delay of 5.2ns, and power 
consumption of 5.2mW.       
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Figure 5: CMAC architectures 


