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Design Of 2-D Recursive Digital Filters Using
Nonsymmetric Half-Plane Allpass Filters

Yuan-Hau Yang and Ju-Hong Lee

Abstract—A novel structure using recursive nonsymmetric
half-plane (NSHP) digital allpass filters (DAFs) is presented for
designing 2-D recursive digital filters. First, several important
properties of 2-D recursive DAFs with NSHP support regions for
filter coefficients are investigated. The stability of the 2-D recursive
NSHP DAFs is guaranteed by using a spectral factorization-based
algorithm. Then, the important characteristics regarding the
proposed novel structure are discussed. The design problem of
2-D recursive digital filters using the novel structure is considered.
We formulate the problem by forming an objective function
consisting of the weighted sum of magnitude, group delay, and
stability-related errors. A design technique using a trust-region
Newton-conjugate gradient method in conjunction with the ana-
lytic derivatives of the objective function is presented to efficiently
solve the resulting optimization problem. The novelty of the
presented 2-D structure is that it possesses the advantage of better
performance in designing a variety of 2-D recursive digital filters
over existing 2-D filter structures. Finally, several design examples
are provided for conducting illustration and comparison.

Index Terms—Allpass filter, nonsymmetric half-plane (NSHP),
nonlinear optimization, 2-D recursive filter.

I. INTRODUCTION

M
ANY techniques have been presented for the design of

1-D recursive digital filters using the parallel combina-

tion of 1-D allpass sections [1]–[5]. The designed 1-D recur-

sive digital filters structures possess very low passband sensi-

tivity and doubly complementary (DC) properties. The design

of 1-D DC digital filters using two complex allpass sections is

considered in [2] and [3] and using two real allpass sections is

discussed in [4] and [5]. One-dimensional allpass filters are fur-

ther utilized to construct the analysis/synthesis filters of quadra-

ture-mirror filter (QMF) banks. It has been shown in [3]–[5] that

the designed infinite impulse response (IIR) QMF banks provide

approximately linear phase response without magnitude distor-

tion. In [14], 1-D allpass filter structures have been successfully

applied to the design of two-channel nonuniform-division filter

(NDF) banks.
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Recently, the extension of the 1-D allpass structure to the de-
sign of 2-D recursive digital filters has been widely considered
in the literature [6]–[9]. In [6], 2-D recursive circularly sym-
metric lowpass filters with quarter-plane (QP) support region
for filter coefficients are constructed by using a parallel connec-
tion of a 2-D allpass filter and an appropriate delay element in
the form of . However, this structure induces some
undesired passbands so that a noncausal system and a 1-D low-
pass guard filter are required to eliminate the extra spikes and
achieve the circularly symmetric characteristics. To get rid of
the delay elements, a modification to the technique has been re-
ported in [7] by utilizing a parallel connection of two allpass sec-
tions with appropriate filter orders. Nevertheless, causality and
stability of the designed filters are not guaranteed by using these
two techniques. Unlike [6] and [7], the techniques presented in
[8] and [9] employ four allpass building blocks with appropriate
delay elements to achieve arbitrary cut-off boundaries for 2-D
recursive digital filters with QP coefficients. During the design
process, the stability of the 2-D recursive digital filters is guar-
anteed by assigning a two-variable very strictly Hurwitz poly-
nomial to the denominator of a 2-D analog allpass function and
discretizing the analog function through double bilinear trans-
formation. The main limitation of these design techniques is that
none of them possesses the capabilities in designing the most
general 2-D causal recursive digital filter subject to the approx-
imation of frequency response in some optimal sense.

In this paper, a novel structure, composed of nonsymmetric
half-plane (NSHP) allpass filters, for the design of 2-D recur-
sive filters is presented. It has been shown in [10]–[13] that 2-D
recursive NSHP filters outperform 2-D recursive QP filters in
terms of approximating more general frequency response spec-
ification. We first develop some results of 2-D recursive NSHP
digital allpass filters (DAFs). The stability of the designed 2-D
recursive NSHP DAFs is guaranteed by using a penalty function
involving a stability error computed by using spectral factoriza-
tion-based algorithm [11]. Several important properties of the
developed 2-D recursive NSHP DAFs are investigated. Then,
the 2-D recursive NSHP DAFs are utilized as the fundamental
building blocks to construct 2-D recursive digital filters. By se-
lecting appropriate filter orders and parameters for the 2-D re-
cursive NSHP DAFs, the proposed 2-D recursive NSHP dig-
ital filters possess general approximation capabilities without
requiring additional delay elements for the design specifica-
tions with various cutoff boundaries. We formulate the design
problem of 2-D recursive NSHP digital filters by forming an
objective function consisting of the weighted sum of magni-
tude, group delay, and stability related errors. The derivatives
of the objective function required for performing optimization
are derived analytically. A technique based on a trust-region
Newton-conjugate gradient method [15], [16] is presented to
efficiently solve the resulting nonlinear optimization problem.
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The effectiveness of the research work is shown by several de-

sign examples.

This paper is organized as follows. Section II presents the

theoretical results of 2-D recursive NSHP DAFs. The spectral

factorization-based algorithm for stability is briefly reviewed.

Section III presents the results of 2-D recursive NSHP filters

using the 2-D recursive NSHP DAFs. In Section IV, we for-

mulate the problem for designing 2-D recursive digital filters.

A design technique based on a trust-region Newton-conjugate

gradient method is presented. Section V presents several design

examples for illustration and comparison. Finally, we conclude

the paper in Section VI.

II. TWO-DIMENSIONAL RECURSIVE NSHP

DIGITAL ALLPASS FILTER

A. Conventional 2-D Recursive Digital

Allpass Filters (DAFs)

For a conventional 2-D recursive DAF with order , its

transfer function is given by

(1)

The real coefficient array of has the support

region restricted in the first quadrant plane (QP) of the

plane. The denominator of (1) can be expressed as

(2)

B. Two-Dimensional Recursive NSHP DAFs

Here, we develop a 2-D recursive DAF which possesses a

more general causality than the conventional 2-D recursive

DAFs. Consider a 2-D recursive DAF with order

and the NSHP support region for its real coefficient

array . Fig. 1 depicts the NSHP support region for

with and . Accordingly, the denomi-

nator of is given by

(3)

Fig. 1. NSHP support region of (3) with M = 3 and N = 2.

Fig. 2. Support region of N (z ; z ) in (4) with M = 3 and N = 2.

Replacing the denominator of (1) with (3) gives the transfer

function of a 2-D recursive NSHP DAF with order as

shown in (4), at the bottom of the page, where

denotes the numerator of the 2-D recursive NSHP DAF and has

the support region shown by Fig. 2 for its coefficients. Consid-

ering the frequency points (termed as the crucial points in [8]

and [9]) in the ( , ) plane, as shown by the open circles in

Fig. 3, we investigate the frequency characteristics of the 2-D

recursive DAF and present two important properties as follows,

where denotes the set of the crucial points (CPs).

1) Property 1: The phase response

of is equal to zero

(4)
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Fig. 3. Crucial points (indicated by the open circles) in the (! ; ! ) plane.

TABLE I
FREQUENCY RESPONSE OF A 2-D IIR ALLPASS FILTER AT THE CPS

at the CPs. As a result, the phase response

of is given by

(5)

2) Property 2: The frequency responses of the 2-D recursive

DAF are restricted to be 1 or at the CPs. The

details of this property are listed in Table I.

Therefore, the values of and for the orders of the 2-D

recursive DAF must be appropriately specified to avoid possible

unwanted passbands or stopbands.

C. Stability of 2-D Recursive NSHP DAFs

To ensure the stability of a 2-D recursive NSHP DAF during

the design process, the spectral factorization-based algorithm of

[11] and [12] that constrains stability by use of a penalty func-

tion involving a stability error computed using the cepstral sta-

bility test of [10] is utilized. We briefly review the 2-D stabiliza-

tion scheme based on the spectral factorization-based algorithm.

Consider a 2-D transfer function with two spectral

factors shown as follows:

(6)

where denotes the causal spectral factor with a co-

efficient array of an NSHP support region and

the anti-causal spectral factor with a coefficient

Fig. 4. Systems of the (a) homomorphic transform and (b) inverse homomor-
phic transform.

Fig. 5. Two-dimensional spectral factorization with NSHP window function
w (m;n).

array of an NSHP support region . These NSHP

spectral factors can be obtained by using the 2-D spectral fac-

torization approach as shown by Fig. 4. The approach performs

an NSHP projection to a factorization involving the region of

homomorphy for (6) as

for (7)

for (8)

and

for (9)

for (10)

As a result, the coefficient array is decomposed into two

factors as follows:

(11)

where “ ” denotes 2-D convolution operation. Moreover, the

factor with support on possesses two analytical

properties: i) is mix-min phase due to (7) and ii)

is 1-D min phase due to (8).

We apply the above theoretical result to stabilize the 2-D re-

cursive NSHP DAF with transfer function given by (4). Fig. 5

shows a spectral factorization of the filter denominator’s square

magnitude, where denotes the denominator’s coeffi-

cient array of (4) and is the causal spectral factor of

. The window function in Fig. 5 is

employed to truncate and smooth the generally infinite-dimen-

sional coefficient array to obtain a finite-order approx-

imation . We adopt the simplest one for performing

simulation examples: for , and for ,

, , and , elsewhere. The trun-

cation-type windowing provides a direct manner of generating a

finite-order factor . The stability of the truncated factor

should be considered during the design process. A sta-

bility error is given by

(12)
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Fig. 6. Block diagram of the proposed structure (13).

According to the 2-D spectral factorization approach illus-

trated in Fig. 5, if the denominator coefficients of a

2-D recursive filter are stable minimum-phase coefficients, the

equals the coefficient for each . Other-

wise, there exists a difference between and .

Therefore, to obtain a stable design, the difference between

and (termed as stability error) can be utilized

as a constraint or a penalty function to penalize the deviation of

from during the design process.

III. TWO-DIMENSIONAL RECURSIVE FILTER STRUCTURE

USING 2-D NSHP DAFS

Here, we develop the results for the structure of a 2-D recur-

sive digital filter using the 2-D recursive NSHP DAFs presented

in Section II. We also demonstrate its applications in designing

several widely used 2-D digital filters.

A. Proposed 2-D Recursive Filter Structure Using 2-D NSHP

DAFs

Using the 2-D recursive NSHP DAF, we construct a 2-D re-

cursive digital filter of Fig. 6 as follows:

(13)

where is the 2-D recursive NSHP DAF with order

and transfer function given by (4) for 1, 2, 3, 4.

The values of , , , and are set to 0 or 1 according to the

filter design specifications. From (13), we consider two filter

subsections as follows:

for

(14)

and

for

(15)

It has been shown in [1] that the structure of two parallel-con-

nected 1-D DAFs provides very low passband sensitivity.

Moreover, its superior roundoff noise performance could make

shorter coefficient wordlengths possible. It would be expected

that the structures of (14) and (15) also enjoy these favorable

properties.

Let the frequency response of the 2-D recursive NSHP DAF

of (4) be expressed by

(16)

where the phase is given by

(17)

and . Substituting (16) into

(14) yields

(18)

Substituting (17) into (18) yields (19), shown at the bottom

of the page. As shown in Property 1 of Section II, the

phase functions have the values and

for . Hence, the fre-

quency response becomes

(20)

(19)

Authorized licensed use limited to: National Taiwan University. Downloaded on March 25, 2009 at 02:40 from IEEE Xplore.  Restrictions apply.



5608 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 12, DECEMBER 2007

TABLE II
RELATIONSHIP BETWEEN jS (e ; e )j FOR (! ; ! ) 2 
 AND THE ORDERS OF ALLPASS FILTERS

TABLE III
RELATIONSHIP BETWEEN jS (e ; e )j FOR (! ; ! ) 2 
 AND THE ORDERS OF ALLPASS FILTERS

for . Equation (20) shows that the frequency re-

sponse is only a function of ,

, , and . Therefore, the orders and

of and should be appro-

priately chosen to approximate the desired filter specifications.

The details regarding the relationship between

for and the orders , are

listed in Table II. Similarly, the frequency response of (15) is

given as follows:

(21)

According to Property 1, becomes

(22)

Again, (22) shows that the frequency response

is only a function of ,

, , and . Table III lists the relationship between

for and the orders

, . Table IV summarizes the frequency

characteristics of the 2-D recursive filter structure shown by

(13). The transfer function of (13) does not involve the filter

subsections for the cases with

. We do not have to consider the values for , ,

and as denoted by “ ” in Table IV.

B. Application Examples of Proposed Structure

1) Fan Filters: The fan filters are widely used in geophysical

and seismic signal processing due to their ability to discriminate

certain directional information in 2-D signals [17]. Recently,

Authorized licensed use limited to: National Taiwan University. Downloaded on March 25, 2009 at 02:40 from IEEE Xplore.  Restrictions apply.
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TABLE IV
PARAMETERS OF (13) FOR VARIOUS SPECIFICATIONS

they have been employed for broadband beamforming in array

signal processing [18]–[22] because an ideal fan filter with

its wedged-shape frequency response is a kind of broadband

beamformer.

Fan Filters: The ideal magnitude response of a fan

filter is given by

for

otherwise
(23)
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Fig. 7. Specification of the �� fan filter.

Fig. 8. Specification of the 30 fan filter (40 –70 ).

where . Fig. 7 shows the ideal specification where

and are included in the passband if is smaller than

45 . The value of (13) equals 1 for

and . According to Table IV, the values of

, , and of (13) must be set to 0. Hence, the appropriate filter

structure required for the fan filter has the transfer function

given by

(24)

where and are 2-D recursive NSHP DAFs

with orders and , respectively. Moreover, the

integers and must be even and odd,

respectively.

30 Fan Filters: Fig. 8 depicts the magnitude specification

for a 30 fan filter with passband extending from 40 to 70 .

For applications, it can overcome a limitation of the fan

filter because the fan filter cannot discriminate based on

velocity but only on speed, and, hence, one cannot distinguish

two waves arriving at the array from opposite directions by using

a fan filter. In contrast, the 30 filter would be appropriate for

passing plane-wave signals arriving from one side of the array

while attenuating these signals outside this angular (velocity)

passband.

Due to the periodic nature of the frequency response of 2-D

discrete-time systems, the added transition bands are necessary

near the Nyquist frequency edges of the unit cell. From Fig. 8,

we note that only is included in the passband of the desired

magnitude response. Therefore, the magnitude response of (13)

is equal to 1 for only. From Table IV, we note

that the filter structure appropriate for the 30 fan filter has the

transfer function given as follows:

(25)

where , 1, 2, 3, 4, are transfer functions of the re-

quired 2-D recursive NSHP DAFs with the orders listed

in the corresponding row in Table IV. From (19), it is noted that

(25) is the product of two responses shown by (19). If the design

specifications include the constant group delay response for the

30 fan filters, such as Example 2 presented in Section V, the

ideal group delays along the and axes, respectively, are

given by

(26)

and

(27)

2) Circularly Symmetric Lowpass Filters: The ideal fre-

quency response of a circularly symmetric lowpass filter can

be characterized by

for

for

(28)

where the passband and stopband edges are and , re-

spectively. Moreover, and are given by (26) and (27).

Equation (28) shows that only is included in the passband

region. The filter structure shown by (25) is also

appropriate to meet the desired low-pass characteristics.

3) Diamond-Shaped Lowpass Filters: The ideal frequency

response of a diamond-shaped lowpass filter is given by

for

for
(29)

It is widely used for processing image and video signals. From

the above discussions regarding 2-D recursive lowpass filters,

we note that the transfer function of (25) is suitable for the di-

amond-shaped lowpass filters since it is general for all kinds of

2-D recursive lowpass filters and not tied to any symmetric as-

sumptions on the ideal magnitude function.
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IV. DESIGN TECHNIQUE

A. Formulation of the Design Problem

The magnitude error between the magnitude response of (13)

and the ideal magnitude response is given by

(30)

where is a preset magnitude weighting function

and 1 or 2 depends on whether a causal or two-pass zero-

phase filter is to be designed. If constant group delay charac-

teristic is considered in the design, we define the group delay

errors as follows:

(31)

and

(32)

where and are the group delays of along

and axes, respectively. In addition, we calculate a stability

error in the spatial domain from a spectral factoriza-

tion of the filter denominator’s square magnitude. It is given by

(33)

where denotes the causal spectral factor of

for 1, 2, 3, 4. Accordingly, we for-

mulate the objective function as follows:

(34)

where denotes the squared norm of . The parameters ,

, , , , , and represent the relative weights

between the squared error terms.

B. Iterative Procedure

Here, we present a design technique based on the spectral

factorization method of [11] in conjunction with the trust-re-

gion Newton-conjugate gradient method [15], [16] for solving

the nonlinear minimization problem of (34). The main idea of a

trust-region Newton-conjugate gradient method is to define a re-

gion around the current iterate within which they trust the model

function to be an adequate reflection of the behavior of

an objective function around , and then choose the step

to be the approximate minimizer of the model in this trust

region. The trust region is adjusted from iteration to iteration.

If the model function is considered to be a good approxi-

mation to the objective function , the trust region is safe to be

expanded for the next iteration. Otherwise, the region should be

reduced. Compared with the conventional line search algorithms

like the Levenberg–Marquardt algorithm used in [11] and [12], a

trust-region method does not require additional step size calcu-

lation. Importantly, when is far from the solution, a negative

curvature is often encountered. The trust-region Newton-con-

jugate gradient method will perform a long step and move

away rapidly from nonminimizing stationary points. In contrast,

other gradient-based algorithms will slow down dramatically. It

is noted that derivatives are needed to solve the step within

the trust region. Generally, if analytic derivatives are not pro-

vided, the conventional approximation techniques compute the

derivatives numerically. Hence, they would increase the com-

putational cost and would be very sensitive to numerical error.

Therefore, we provide the analytic derivatives in the Appendix

to avoid computing the derivatives numerically.

The iterative design technique is summarized step by step as

follows.

Step 1) Specify the ideal magnitude , the size

of discrete-time Fourier transform (DFT) ,

magnitude weighting , group delay

weighting , relative weights , ,

, , , , , and filter orders .

Step 2) At the initial stage, we set

which is the unit impulse function, and the iteration

number .

Step 3) At the th iteration, we compute the mag-

nitude response , group

delay responses and

.

Step 4) Compute the difference between

and over

a finite set of discrete frequencies , the

difference between and

the desired group delay , and the difference

between and the desired

group delay , respectively.

Step 5) Compute the spectral factor of

and the difference between

and over a finite index

set .

Step 6) Form the objective function according to (34) by

stacking the scaled magnitude, group delay, and sta-

bility errors.

Step 7) Utilize the trust-region Newton-conjugate gradient

optimization method with the function lsqnonlin()

provided by Matlab Optimization Toolbox and the

analytic derivatives provided in the Appendix to

update .

Step 8) If , where is a preset maximum

number of iterations, then the design process is ter-

minated. Otherwise, set and go to Step 3.

Here, we explain the reasons why the unit impulse function

is used as the initial guess in Step 2) as follows. a) Some ex-

isting techniques create the initial guess by performing SVD

or inverse Fourier transform on the desired frequency response

. However, several DAFs are involved in the

proposed structure given by (13) and their respective desired

responses are required when applying the above initialization

methods. It is appropriate to use the unit impulse function as

Authorized licensed use limited to: National Taiwan University. Downloaded on March 25, 2009 at 02:40 from IEEE Xplore.  Restrictions apply.
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TABLE V
DESIGN PARAMETERS

the initial guess for each denominator ; hence,

only the desired response is required. b)

For stabilization, it is noted that the transfer function of

is and its stability

is, thus, guaranteed. c) If a linear phase or constant group delay

design is considered. The initial response of is given

by for all . It

approximates the specified frequency response in the passband.

V. SIMULATION RESULTS

The design examples were performed on a PC with

Pentium-IV CPU using MATLAB programming language.

For comparison, some significant design results are defined as

follows.

Passband magnitude mean-squared errors (PMSE)

number of grid points in the passband

where is the set of grid points in the passband.

Stopband magnitude mean-squared errors (SMSE)

number of grid points in the stopband

where is the set of grid points in the stopband.

Passband phase mean-squared errors (PPMSE)

number of grid points in the passband

where denotes the phase response of .

Peak stability error (PSE) of

for

Passband ripple (dB)

Stopband attenuation (dB)

Peak relative group delays

1) Example 1: A Fan Filter: The fan filter is

specified by letting in (23). To achieve a zero phase

design, we set in (30). The orders of two recursive NSHP

DAFs are and , respectively.

The magnitude weighting function is set to the

equation shown at the bottom of the page.

The other design parameters required are shown in Table V.

The resulting magnitude-squared response for this design is

plotted in Fig. 9. For comparison, the same fan filter based on

the conventional 2-D IIR NSHP filter of [11] is also designed by

using the trust-region Newton-conjugate gradient method. The

size of 2-D DFT used is 32 32 and the number of iterations

is 25 for both designs. The significant design results, namely

PMSE, SMSE, and are shown in Table VI. We note

that the proposed technique provides very satisfactory design

results.

and

and

and
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TABLE VI
SIGNIFICANT DESIGN RESULTS FOR EXAMPLE 1

TABLE VII
FILTER COEFFICIENTS OF THE 30 FAN FILTER. (a) COEFFICIENTS OF A (z ; z ). (b) COEFFICIENTS

OF A (z ; z ). (c) COEFFICIENTS OF A (z ; z ). (d) COEFFICIENTS OF A (z ; z )

Fig. 9. Magnitude-squared response of the designed filter for Example 1.

2) Example 2: A 30 Fan Filter: Here, the 30 fan filter

with design specification is shown in Fig. 8. The orders of four

NSHP DAFs are set to ,

, , and , re-

spectively. According to (26) and (27), the ideal group delays

are set to and , respectively. The mag-

nitude weighting function is chosen as follows:

in the passband, in the

stopband, and in the transition band. We set

the group delay weighting function only in

the passband. Table V lists the parameters required for this de-

sign. Table VII lists the filter coefficients obtained by using the

proposed technique. The largest is 3.099 . Fig. 10

depicts the magnitude response of the designed 2-D recursive

filter. Table VIII presents the comparison between the signif-

icant design results by using the proposed technique and the

method of [12]. The size of 2-D DFT used is 32 32 and the

number of iterations is 10 for both designs.

3) Example 3: A Circularly Symmetric Lowpass Filter: Here,

we consider the same design case as that given by [24] and

[25]. The desired frequency response is given by (28), where

the passband and stopband edges are and

Authorized licensed use limited to: National Taiwan University. Downloaded on March 25, 2009 at 02:40 from IEEE Xplore.  Restrictions apply.
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TABLE VIII
SIGNIFICANT DESIGN RESULTS FOR EXAMPLE 2

TABLE IX
SIGNIFICANT DESIGN RESULTS FOR EXAMPLE 4

Fig. 10. Magnitude response of the designed filter for Example 2.

, respectively. The required design parameters are listed

in Table V. The magnitude weighting function is

chosen as follows: in the passband and stop-

band, in the transition band. We set the group

delay weighting function only in the passband.

For comparison, the structure given by (25) is adapted to approx-

imate the desired lowpass characteristics and the orders of four

NSHP DAFs are set to , ,

, and , respectively. Ac-

cordingly, the ideal group delay responses are and

, respectively. The group delay may have an arbi-

trary value in [24] and [25]. The number of independent co-

efficients is 100 for our design and it is 99 for the designs of

[24] and [25]. The size of 2-D DFT used in computing the sta-

bility errors is 32 32. The plane is uniformly sampled

with a 46 46 grid density, and, therefore, 907 grid points are

used in the passband and stopband; 45 iterations are taken by

the proposed technique to achieve the design result shown in

Fig. 11. The proposed technique shows satisfactory design ca-

pability as compared with the technique of [25]: 43.6- versus

Fig. 11. Magnitude response of the designed filter for Example 3.

42.5-dB stopband attenuation; 0.0046 versus 0.0074 maximum

magnitude deviation in the passband; 0.567 versus 0.526 max-

imum group delay error in the passband. Some additional sig-

nificant results obtained using the proposed technique are given

as follows: , ,

and the largest is 4.715 .

4) Example 4: A Diamond-Shaped Lowpass Filter: This ex-

ample is the same as that given by [23]. The desired frequency

response of the diamond-shaped lowpass filter is shown by (29)

with the passband and stopband edge frequencies

and , respectively. The magnitude weighting function

is chosen as follows: in the

passband and stopband, in the transition band.

We set the group delay weighting function

only in the passband. The structure given by (25) is adapted to

approximate the desired lowpass characteristics and the orders

of four NSHP DAFs are set to ,

, , and , respectively.

Accordingly, the ideal group delay responses are

and , respectively. The group delay may have an arbi-

trary value in [23]. The size of 2-D DFT used in computing the

stability errors is 32 32. The plane is uniformly sam-

pled with a 48 48 grid density, and, therefore, 1008 grid points
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TABLE X
FILTER COEFFICIENTS OF THE DIAMOND-SHAPED LOWPASS FILTER. (a) COEFFICIENTS OF A (z ; z ).
(b) COEFFICIENTS OF A (z ; z ). (c) COEFFICIENTS OF A (z ; z ). (d) COEFFICIENTS OF A (z ; z ).

Fig. 12. Magnitude response of the designed filter for Example 4.

are used in the passband and stopband. The significant design re-

sults and the iteration number required by using the technique of

[23] and the proposed technique are shown in Table IX for com-

parison. Table X lists the filter coefficients obtained by using the

proposed technique. The largest is 3.582 . Fig. 12

shows the magnitude response of the designed diamond-shaped

lowpass filter. The proposed technique performs significantly

better than the technique of [23]. Some additional significant

results obtained using the proposed technique are given as fol-

lows: , .
In (34), there are two major aspects, approximation and sta-

bilization, woven into the optimization process simultaneously.
In order to ensure the stability of designed filters, should be
selected large enough to keep . The weights and

would be increased to obtain better magnitude and group delay
approximation results. On the other hand, the ratio / is
highly dependent on the desired group delay and it should be
larger when designing 2-D recursive filters with smaller group
delay responses. The weights listed in Table V are the experi-
mental results and they provide a satisfactory approximation to
the desired specifications, i.e., the performances between mag-
nitude responses and phase/group delay responses are balanced.

VI. CONCLUSION

This paper has presented the theoretical work on the design
of 2-D recursive digital filters using 2-D recursive DAFs with
NSHP coefficient support. The 2-D recursive NSHP DAFs are
used as the building blocks to construct 2-D recursive digital
filters. The resulting 2-D recursive NSHP digital filters pos-
sess general approximation capabilities. As to the problem for
designing 2-D stable recursive NSHP digital filters, an objec-
tive function consists of the weighted sum of magnitude, group
delay, and stability errors has been formulated. Accordingly, the
derivatives of the objective function required for solving the de-
sign problem can be computed analytically. The novelty of the
research work has been shown by several design examples.

APPENDIX

Here, we derive the analytic derivatives for each error term in
the objective function of (34). Let the vector
contain the filter coefficients. For , the magnitude error is
given by

(A1)
where is the frequency response of (24).
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The analytic derivatives of magnitude error with respect to
the filter coefficients are given by

(A2)
where

(A3)
Thus, see equation (A4), shown at the bottom of the page. For

, the magnitude error is given by

(A5)

where is the frequency response of (25).
This expression is differentiable except at points for which

. With the exception of these points

(A6)

From (A3), we have (A7), shown at the bottom of the page.
Similarly, see (A8), shown at the bottom of the page.

The second and third terms in the objective function are the
group delay errors along and axes, respectively. The
derivatives of the group delay errors are derived as follows.
The phase response of in Examples 2, 3, and 4

is given by

(A9)

Thus, the group delay of along axis is given
by

(A10)

(A4)

for

(A7)

for

(A8)
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(A13)

The corresponding group delay error along axis is given by

(A11)

where

(A12)

Thus, see (A13), shown at the top of the page. Following the
similar procedure, we can also derive the derivatives of group
delay error along axis.

Finally, we derive the derivatives of stability errors for the
designs with and 2 as follows:

(A14)
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