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Abstract 

A design for a 90” bend for the TEsr mode in over- 
moded circular waveguide is presented. A pair of septa, 
symmetrically placed perpendicular to the plane of the 
bend, are adiabatically introduced into the waveguide be- 
fore the bend and removed after it. Introduction of the 

curvature excites five propagating modes in the curved sec- 
tion. The finite element field solver YAP is used to calcu- 
late the propagation constants of these modes in the bend, 
and the guide diameter, septum depth, septum thickness, 
and bend radius are set so that the phase advances of all 
five modes through the bend are equal modulo 2~. To a 
good approximation these modes are expected to recom- 
bine to form a pure mode at the end of the bend. 

I. INTRODUCTION 
Some designs for the Next Linear Collider[l] (NLC) 

tr-ansmit power from the source (a klystron or the output 
of a pulse compressor) to the accelerator structure in the 
TEei mode of overmoded circular waveguide in order to 

. have small transmission loss. The waveguide run from the 
_ ._ -source to the accelerator includes some 90” bends. Ideally 

these bends would be loss-less. 
Two algorithms and some results are presented for 

the design of one type of overmoded waveguide bend. A 
curved section of waveguide connects two straight sections 
as shown in Figure la. The curvature in the bend is con- 
stant so the waveguide follows a 90“ arc with radius of 
curvature pe between the two straight sections. The cross- 

section of the waveguide is uniform throughout the curved 
section, but the cross-section is not simply a circle. The 
cross-section and radius of curvature pe will be chosen so 
that the incoming wave propagates through the curved sec- 
tion with negligible mode conversion. This is the principal 

form of loss considered here. Reflection and wall losses 
are only considered heuristically. The straight sections are 
adiabatic tapers from and to circular waveguide. 

II. TELEGRAPHIST’S EQUATION 
Curvature in overmoded waveguide causes coupling 

between the straight guide modes. Such coupling is af- 
forded by the generalized telegraphist’s equations[2], which 
have been applied to curved circular guide[3]. In terms of 
the forward and .backward wave amplitudes, a$, these are 

da* 
2 = F:i C (C&a: + Cz,a,) , 
dz ” 

(1) 
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Figure 1. Outer geometry (a) and cross-section (b) of the 
bend. The cross-section’s dashed line is a symmetry plane. 

where C,,,, = Pm are the propagation constants and the 

other C,,,, involve inner products of the transverse fields. 

The power transfer between two modes in a curved 
section is limited by the difference in their propagation 
constants. The TEsl-TM11 degeneracy presents a prob- 
lem, so the degeneracy is split by introducing partial septa 
perpendicular to the bend plane as shown in Figure lb. 
The modes can no longer be found analytically, but the Pm 
can be computed using SUPERFISH[I]. 

If pc ) d/2 then the coupling is weak and the TEer- 
like mode amplitude varies little along the bend. A small 
amount of power will beat in and out of the nth coupled 
mode in an arc length lb 1: 27r/]/?,, - /&I, where o indicates 

the TEsl-like mode. The interaction with each mode can- 
cels when the relative phase advance is a multiple of 27r. 

By adjusting the cross-section and p. the p’s are manipu- 
lated so that the three propagating modes coupled to first 
order all beat out at the end of the 90’ bend. 

This is the approach first taken. However, a compact 

bend which cannot rely on the above assumption is de- 
sired. As the coupling coefficients become comparable to 

the mode spacings, the beat lengths are altered, and modes 
coupled to second order may be important. The coupling 

coefficients C,, are required to verify parasitic mode sup- 

pression at the end of the bend. Since the C,,,, are not 
easily obtained from the field solver, a different approach 

was taken. 

III. MODES IN CURVED GUIDE 

A curved guide can be treated as a portion of a cylin- 
drically symmetric structure. For the 90” bend the struc- 
ture starts at 4 = 0 and ends at 4 = x/2. The fields 
in the waveguide can be decomposed into modes with az- 
imuthal dependence eim+. In the axisymmetric waveg- 

uide paradigm the waves propagate along 4 with propa- 
gation constant tn. Compare this with the phase eia* for 

waves propagating along z with propagation constant p in 
straight waveguides. The curved guide does not close on 
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itself so there is no requirement that m be an integer. 

The finite element field solver YAP[5] is capable of 
computing the frequencies of the modes of axisymmetric 
structures for any real m. Non-integral m is allowed. YAP 
was used to compute dispersion diagrams for curved guide 
with various cross-sections. One such dispersion diagram is 
shown in Figure 2. A dispersion diagram for curved guide 
looks similar to dispersion diagrams for straight guide. 

However, the simple dispersion formula w2/c2 =  kz +p2 for 
a straight waveguide containing no media does not apply 
to curved guide. This can be seen best in figure 2, where 
the dispersion curves are not parallel lines. A power series 

of the form 

w2 
-=k,2+al(32+a2(34+... C2 

approximates the dispersion curves well. The cutoff k,”  and 
the coefficients oi depend on pC and on the cross-section R 
of the guide. When pC is large then cxi Cy 1 and the cut- 
offs kz are approximately the same between straight and 
curved guide with the same cross-section. In the large pC 
limit the two approaches described in this paper are equiv- 
alent. 
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Figure 2. Dispersion diagram of the curved guide for the 
first design listed in Table 1. The dashed line is the drive 

frequency 11.424 GHz. The dotted line corresponds to the 
speed of light along the center of the guide. 

IV.- SCATTERING AT THE INTERFACE 

There is potentially some reflection at the interface be- 
tween the straight waveguide and the curved waveguide. A 
general ized scattering matrix Si for the propagating modes 
in the straight and curved guides can be constructed. 

The scattering matrix Sb for a bend over angle C$b 
can be easily computed given Si for the straight-to-curved 
interface and the propagation constants ml and m2 for the 
two propagating modes in the curved guide. The example 
above has ml =  22.85 and m2 =  16.18. The next mode is 

evanescent with ms =  i11.38. The transmission coefficient 
for the (straight guide) fundamental mode for various bend 
angles 46 was computed. At & =  2?r/(ml - m2) =  0.941 

the transmission is nearly perfect. At this bend angle the 
two propagating waves in the curved guide arrive at the 
output end of the bend with the same relative phases they 
had at the input end of the bend. The propagating field 
at the output is the same as at the input except for an 
overall phase, so waves are faithfully transmitted through 
the bend with no mode conversion. 

As an example, the scattering matrix for the straight- The evanescent waves at the interfaces have decayed 

to-curved interface in an overmoded rectangular H-plane sufficiently in the curved guide so that they can be ne- 

waveguide bend was computed using a mode-matching glected in the transmission calculations for & =  0.941. 

method. Only TE,e modes were considered so the fields This example leads to the principal design criterion for 
are uniform vertically. In the straight guide propagating this type of overmoded waveguide bend: the phases e”‘ i+b 
along y the modes are E, cc sin(27rnzltu) where 0 5 x 5 w must be identical for all modes propagating in the curved 
is the horizontal domain of the waveguide. In the curved guide. In addition, evanescent modes should be sufficiently 
guide the modes involve Bessel functions. They are E, cc above cutoff so that they decay well over the length of the 

AJm(kp) +  BY,,,(b) where pc - w/2 L p 5 pc +  w/2 bend, and thus can be neglected. 

a 

and k =  w/c is the drive frequency. Note that m is real for 
propagating modes and imaginary for evanescent modes. 

The boundary conditions E, =  0 at p =  pC f w/2 
yield a characteristic equation for the propagation con- 
stants m. Solutions were obtained by numerically inte- 
grating Bessel’ s equations and using a shooting method to 
match the boundary conditions. This yielded numerical 
values for m2 for both propagating (m2 >  0) and evanes- 
cent (m2 <  0) modes. The field E, for each mode was 

obtained similarly. 

The normalized general ized scattering matrix Si was 
computed for an example with w/X =  1.36 and pc/X =  

3.87, where X is the free space wavelength. There are two 
propagating modes in the guides. Using 14 modes for the 
field expansion on each side of the interface, the computed 
scattering matrix for the interface is 

[ 

4.10-y=@  8.1O-*B 0.982 0.190 
s,= 8.10-'. 8.10-'/-122D -0.190 0.982 

8 0.982 -0.190 3.10-y& 8.10~'& 

0.190 0.982 1 (3) 
8.10-"/--4o &lo-&@  

where [a,~, usz, a,l, a,#’  is the incoming wave vector. The 
wave amplitudes as,, and acn are for the modes in the 
straight and curved guides, respectively. 

Notice that the reflection amplitude is less than 10m3. 
If one assumes the reflections are similar for bends with dif- 
ferent cross-sections but similar curvature, then reflection 
at the straight-to-curved interface can be neglected. The 
reflected power will be negligible as long as resonances are 
avoided. The principal concern, then, is mode conversion. 

V. AROUND THE BEND 
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Table 1 
90” Overmoded Waveguide Bends 

d(cm) 1 (cm) w (cm) pc (cm) ml m2 m3 m4 m5 fc6 (GHz) 

4.372 0.986 0.465 31.786 72.873 60.873 56.873 52.873 28.874 11.536 

4.275 0.971 0.611 36.655 83.867 67.867 63.867 59.867 23.868 11.819 

4.358 1.054 0.593 38.754 89.034 73.034 69.034 65.034 25.033 11.579 

3.940 0.765 0.476 23.891 53.870 41.870 37.870 33.870 9.871 12.726 

4.157 0.904 0.622 33.894 77.212 61.212 57.212 53.212 17.213 12.163 

Mode 1 (“TErr”) Mode 2 (“TEsi”) Mode 3 (“TEsr”) Mode 4 (“TEer”) Mode 5 (“TMir”) 

Figure 3. Electric field patterns for the five propagating modes of the first design in Table 1. 
_. .-- 

VI. 90” -BEND DESIGN 

Designs for a 90” bend with a cross-section as shown in 
Figure lb .w.e.r’e computed. The phases emin/z for the five 
lowest propagating modes excited by the incoming wave 
can be fixed relative to each other by adjusting the four 
parameters: d, pC, 1 and w. Propagating modes not excited 
by the incoming wave (due to symmetry) are neglected. 
Dispersion diagrams were computed using YAP and the 

bend parameters were adjusted so that the phases were the 
same. This corresponds to the propagation constants mi 
differing from one another by multiples of 4. The cutoff 
(m = 0) frequency of higher order modes were computed in 
order to discard designs with more than five propagating 

modes at 11.424GHz. Table 1 lists the parameters for 
five solutions. It also lists the propagation constants for 
the five lowest modes and the cutoff frequency fcs for the 
sixth lowest mode. 

The cross-section in Figure 1 and the dispersion dia- 

grams in Figure 2 correspond to the first design in Table 1. 
The field patterns for the propagating modes are shown in 
Figure 3. At cutoff the field patterns for the modes in 
curved guide are similar to the corresponding modes in 
straight guide, but for large m the second and third modes 

are mixed. This is evident in the field plots and in the 

dispersion diagram, where it appears that the second and 

third curves are repelling each other. These modes arise, 
with the introduction of the septa, from the TEz1 and TEsr 

modes of circular guide. The incoming wave is similar to 
the fourth mode, which is a TEeI-like mode. 

The cutoff frequency for the sixth mode of the first 
design appears close to cutoff. The estimated propagation 
constant using the straight guide formula is me 2 i10.7 

and the decay amplitude over the length of the waveguide 
is eimsa/2 = 5 x 10-8. 

VII. FURTHER WORK 

Further designs can be found, perhaps with smaller 
radii of curvature and shorter septa so that the bend will 
have smaller wall losses and be easier to manufacture. 

A variation of the YAP field solver will compute the 
evanescent mode8 in curved guide. With these modes a 
mode-matching algorithm can be employed to calculate the 
scattering matrix Si for the straight-to-curved guide inter- 
face, and then verify that reflections are negligible and that 
the design criterion is appropriate. 

Calculation of the wall losses through the bend and 

mode-conversion losses (due to manufacturing errors) also 
requires knowledge of Si in order to obtain the mode am- 
plitudes in the bend as well as the evanescent fields near 
the interface. 
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