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ABSTRACT  This paper presents an elegant yet straightforward design procedure for a compact rat-race coupler (RRC) with an extended harmonic 
suppression.  The coupler's conventional λ/4 transmission lines (TLs) are replaced by a specialized TL that offers significant size reduction and harmonic 
elimination capabilities in the proposed approach. The design procedure is verified through the theoretical, circuit, and electromagnetic (EM) analyses, 
showing excellent agreement among different analyses and the measured results. The circuit and EM results show that the proposed TL replicates the same 
frequency behaviour of the conventional one at the design frequency of 1.8 GHz while enables harmonic suppression up to the 7 th harmonic and a size 
reduction of 74%. According to the measured results, the RRC has a fractional bandwidth of 20%, with input insertion losses of around 0.2 dB and isolation 
level better than 35 dB. Furthermore, the total footprint of the proposed RRC is only  31.7 mm × 15.9 mm, corresponding to  0.28 λ × 0.14 λ, where λ is the 
guided wavelength at 1.8 GHz. 

INDEX TERMS Transmission line ,rat-race coupler, size reduction, harmonics suppression.      

I. INTRODUCTION 

Microstrip rat-race couplers (RRC), also known as hybrid 
ring couplers, are widely used microwave circuits for 
dividing/combining microwave input power in their four 
ports [1]. Conventional RRCs are composed of six 90˚ 
transmission lines (TLs), making them undesirably large 
components and susceptible to unwanted harmonics. An 
extensive number of attempts have been made to minimize 
the circuit size and attenuate the unwanted harmonics of the 
conventional RRC [2]. Artificial TLs were used to achieve 
64% footprint reduction based on planar circuit lines without 
external lumped components [2].  
In an attempt for size reduction as well as harmonic 
suppression, slow-wave transmission lines are used to 
develop an RRC with the 5th harmonic suppression 
capability [3]. The compact branch-line coupler (BLC) 
application with low pass filter and open stubs was 
demonstrated, resulting in a significant size reduction and 
harmonic suppression [4]. Despite promising results in [3] 

and [4], the former results in a complex design and the latter 
has a high pass-band insertion loss. 
In a different approach, external lumped reactive 
components are introduced in the RCC configuration in [5]-
[8], where a considerable harmonic rejection and 
miniaturization up to 60% compared with the conventional 
RRC are reported. But, the usage of external lumped reactive 
components is not desirable in fabrication processes [8]. 
In [9], a planar discontinuous microstrip lines are used for 
size reduction of the BLC, which more than 60% size 
reduction is achieved compared to the normal coupler. But, 
this circuit does not have harmonics elimination. 
In [10], shorted trans-directional (TRD) coupled lines along 
with T-type transmission have been used to develop an RRC, 
achieving a size reduction of 73% and harmonic suppression 
up to the fifth harmonic. However, several capacitors and 
holes are associated with the TRD that may not be desirable 
for some applications due to the fabrication complexity.  
In [11], compensated spiral compact microstrip resonant 
cells were proposed in the RRC structure for 45% 
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miniaturization and suppressing the third harmonic. 
However, applied resonator cells in this structure lead to high 
passband insertion loss. 
In several studies [12], electromagnetic bandgap and 
defected ground structure techniques have been used for 
harmonics suppression and size reduction. In [12], photonic 
bandgap (PBG) cells have been utilized to design a small 
RRC with 23% size reduction. Apart from RRC, the PBG has 
a wide application in other passive microwave devices, such 
as various types of power dividers, filters, and frequency 
selective surfaces [13-17]. In [18], an RRC was designed 
based on defected ground structure technique, eliminating 
the third harmonic. T-shaped PBG cells were proposed to 
reduce the strip section length for the size reduction of RRCs 
[19]. While an acceptable size reduction has been 
demonstrated based on PBG, its complex manufacturing is 
not suitable for many applications [20]. In [21], a compact 
LC branch line was developed based on miniaturizing 
inductor and two transmission lines for harmonics removal 
and miniaturization.  
Besides, neural networks, which are useful tools in solving 
the engineering problems [22-26] have been recently used to 
model the power dividers and couplers [27]. In [27] a power 
divider is designed and modeled using artificial intelligence, 
however designing of a coupler or divider by neural 
networks is not straightforward and the method is mostly 
suitable for modeling of the device. 
In this work, a highly miniaturized RRC capable of rejecting 
unwanted harmonics up to the 7th harmonic is presented, 
fabricated, and successfully tested. In this design, the 
proposed TL comprises three sections; two high impedance 
lines, loaded by a low-impedance line at the middle, where 
the conventional λ/4 long lines are made redundant. 
 
II. Design Procedure 
 

The design procedure of the proposed RRC  is shown in Fig. 1 
through 6 steps.  In step 1, an LC equivalent circuit of the 

compact TL with the desired response is presented. The 
proposed LC model shows a wide suppression. In step 2, the 
realization of the proposed compact TL is presented in the 
schematic environment of the ADS software as a circuit 
simulation. In step 3, the proposed compact TL is designed in 
the momentum environment of ADS software, showing good 
agreement with the circuit simulation. Subsequently, the 
proposed compact TL is utilized in the conventional RRC to 
make a compact and harmonic-free RRC as shown in step 4. 
Next, the circuit simulation and EM simulation of the 
proposed RRC is performed in steps 4 and 5, respectively. 
Finally, the proposed RRC was fabricated on a RT/Duroid 
substrate and measured as shown in step 6. 
 

 

 
FIGURE 1.  Design Procedure of the proposed RRC. 

 
III. Proposed Compact Transmission Line Design   
 

Fig. 2(a) shows the conventional quarter-wavelength TL with 
a length of λ/4 line (30.3 mm) at 1.8 GHz. The substrate used 
in this design has a permittivity of 2.2, and a thickness of 20 
mil. Fig. 2(b) shows the proposed layout consisting of two 
high impedance lines loaded by a low-impedance line placed 
at the center. According to the fabrication limits, the minimum 
width used is equal to 0.1 mm, corresponding to a 167.5 Ω 
high impedance line. This high impedance line is loaded by a 
low impedance line with 7.7 mm thickness at middle, which 
equals to 14.3 Ω line.   
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FIGURE 2. (a) Conventional λ/4 line with 70.7 Ω characteristic 
impedance, (b) the proposed compact line at 1.8 GHz. The input and 
output ports are considered 50 ohms in simulations for both 
transmission lines. According to the substrate specifications, 50 ohms 
is achieved for 1.56 mm width of the transmission line. 
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Both the conventional λ/4 line and the proposed line have 
input and output ports with  50 ohms impedance . According 
to the substrate specifications, 50 ohms is achieved for 1.56 
mm width of the transmission line. 
The LC equivalent circuit of the proposed compact TL is 
extracted and shown in Fig. 3(a) and (b). The values of the 
lumped inductors and a capacitors are l1 = 8 nH, lS = 0.2 nH 
and CS = 0.9 pF.  The frequency responses of the extracted 
LC equivalent are shown in Fig. 3(c). 
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FIGURE 3.  (a) The extraction process and (b)  extracted LC equivalent 
circuit of the proposed compact TL and (c) frequency response. 

 
To show the theoretical relation of frequency response for 
the presented resonator, the transfer function of this LC 
model is extracted as written in equation (1) as follows: 
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The bode plot for the obtained transfer function is plotted by 
MATLAB software and depicted in Fig.4. There is good 
agreement between the simulation results of the LC model 
frequency response and the Bode plot of the extracted 
transfer function, validating the theoretical analysis. 
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FIGURE 4. The Bode plot of the extracted transfer function. 

 
In this equivalent circuit, CS and lS model the open ended 
stub of the TL, generating a transmission zero at f0S 
calculated by (2) as depicted in Fig. 5. This transmission zero 
would then contribute to largening the suppression band of 
the power divider. Furthermore, the high impedance lines in 
Fig. 3(a) are modeled by two l1 inductors in the LC model, 
acting as a three-pole lowpass filter (LPF) in conjunction 
with CS. The bandwidth of the TL equals the LPF cut-off 
frequency (fC) estimated by (3). In detail, lS has a negligible 
contribution in locating cut-off frequency of the filter; firstly, 
because the capacitive effect is dominant in the open stub, 
and secondly because lS  is considerably smaller than l1. 
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FIGURE 5.  The components of the proposed compact TL resonator. 
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The components of the proposed compact TL resonator are 
graphically explained in Fig. 5.  

fC = BW = 1/π√2𝑙1𝐶𝑆                            (2) 

f0S = 1/2π√𝑙𝑆𝐶𝑆                                      (3) 
For the designed compact TL resonator, the values of the 
lumped inductors and the capacitor are selected as l1 = 8 nH, 
lS = 0.2 nH and CS = 0.9 pF. So, according to equations (2) 
and (3) the calculated bandwidth (BW) and transmission 
zero (f0S) are 2.7 GHz and 11.9 GHz, respectively, which are 
very close to the simulation results of BW = 2.8 GHz and 
f0S = 11.9 GHz, verifying the accuracy of the circuit 
modeling. 
The scattering parameters of the conventional λ/4 line and 
the proposed compact TL are illustrated in Fig. 6. 
As results in Fig. 6 show, the phase and magnitude of the 
proposed transmission line and the conventional λ/4 line 
have the same values at the operating frequency of 1.8 GHz. 
The magnitude of the S11 of the conventional λ/4  and the 
proposed lines are depicted in Fig. 6(a), which have the same 
values of -9.8 dB at 1.8 GHz. Similarly, the magnitude of the 
S12 of the conventional λ/4  and the proposed TL are depicted 
in Fig. 6(b), having the same value of -0.2 dB at 1.8 GHz.  
The same can be said for the S12  phase curves shown in Fig. 
6(c), where both lines have the same value of -89.8 degrees 
at 1.8 GHz.  
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FIGURE 6.  Scattering parameters of the conventional λ/4 line and the 

proposed compact TL. (a) The magnitude of S11, (b) magnitude of  S12, 
and (c) phase of S12. As seen in this figure, the phase and magnitude 
of the proposed transmission line and the conventional λ/4 line have 

the same values at the operating frequency of 1.8 GHz. 

 

To summary, it is confirmed that the proposed TL line 
replicates the same frequency behavior of the conventional 
lines at the operating frequency of 1.8 GHz. Additionally, it 
has an additive advantage of harmonic elimination over the 
frequency window of 5.6 GHz up to 14.6 GHz with high 
attenuation level (more than 20 dB), as depicted in Fig. 6.  

 
IV. Conventional Rat Race Coupler Design   

 
The structure of the conventional RRC, designed at 1.8 GHz 
is illustrated in Fig. 7. This coupler consists of six quarter-
wavelength conventional TLs with √2 Z0 (70.7 Ω) 
characteristic impedance.  
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FIGURE 7. The structure of the conventional RRC. 

 
In this conventional design, we use the same RT/Duroid 
substrate with a thickness of 20 mil, where the λ/4 line has a 
physical length of 30.3 mm at 1.8 GHz with a 70.7 Ω 
characteristic impedance, corresponding to 0.89 mm width. 
The overall size of the conventional RRC is 61.8 mm × 31.3 
mm (0.50 λ × 0.25λ). 
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FIGURE 8.  The scattering parameters of the conventional RRC. In the 
operating bandwidth, the insertion losses (S12 and S13) are less than 
0.3 dB while S11 and S14 are considered less than -20 dB, which the 
operating bandwidth is highlighted with a blue box in this figure. The 
FBW is calculated  22% for the conventional RRC. 

 
 The scattering parameters of the conventional RRC is 
illustrated in Fig. 8. As can be seen from this figure, the 
coupler operates at 1.8 GHz, where the input return loss and 
the ports isolation are better than 48 dB and 65 dB, 
respectively. The insertion losses of other ports are in a very 
good range dB (S12 = S13 = -3.1 dB).  
As highlight .ed in Fig7 the ,insertion losses (S12 and S13) of 
the conventional RRC are less than 0.3 dB throug  hout the

offractional bandwidth  22  ,%extending from 1.6 GHz to 2 
 GHz withS11 and S14  better than 20 dB.   
 
V. Design Of The Proposed Rat Race Coupler  

 

In order to reduce the size of the conventional RRC designed 
in the last section and to eliminate the unwanted higher-order 
harmonics, the conventional long λ/4 lines are replaced by 
the proposed compact TLs. The schematic diagram of the 
proposed RRC is illustrated in Fig. 9. 
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FIGURE 9. The schematic diagram of the proposed RRC. 

The proposed coupler only occupies 31.7 mm × 15.9 mm 
(0.28 λ × 0.14 λ, where λ is the guided wavelength at 1.8 
GHz). Thus, compared to the conventional one, the proposed 
device has a 74% size reduction. The scattering parameters 
of the proposed RRC are illustrated in Fig. 10. 

As shown in Fig . 9  , scattering paramethe ters of the new 
RRC with the proposed TL are very similar to the 
conventional coupler over its operating frequency band, with 
insertion losses and isolation better than 0.3 dB and 20 dB, 
respectively. The new coupler has a 20% fractional 
bandwidth, extending from 1.62 GHz -1.98 GHz. 
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FIGURE 10. The scattering parameters of the proposed RRC in the 
vicinity of the operational frequency band. The insertion losses (S12 
and S13) are less than 0.3 dB, and the S11 and S14 are better less than 
-20 dB, over the operating frequency band of  20%. 

           
The circuit electromagnetic (EM) simulated results of the 
proposed RRC are illustrated in Fig. 11.   
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FIGURE 11. The scattering parameters of the proposed RRC. (a) S11 
(b) S12 (c) S13 (d) S14 . 

 

It can be seen from Fig. 12 that the proposed RRC 
demonstrates excellent performance at the design frequency 
of 1.8 GHz. In detail, it has an input return loss (S11) of 
around 35 dB, a small insertion loss (better than 0.2 dB) 
between ports 1 and 2, and ports 1 and 3, and excellent 
isolation (S14) of around 55 dB at 1.8 GHz. It should be noted 
that some interblock coupling effects are neglected in the 
circuit  simulation, resulting in some minor out-of-band 
discrepancies between the EM and circuit simulations.  
The proposed coupler has a significant harmonic suppression 
capability, as demonstrated in Fig. 12. In detail, the 2nd 
harmonic to the 7ths harmonics are suppressed by  16 dB, 
19 dB, 24 dB, 29 dB, 32 dB, and the 38 dB, respectively, 
where the lowest attenuation levels of S31 and S21 are used. 
Table I shows the performance summary of the proposed 
RRC at its operating frequency. 

 
The dimensions of the  proposed compact TL not only 
determine the  stop-band bandwidth, but also has a direct 
effects on the oprating bandwidth.   
 

To demonstarte this, the relationship between the FBW and 
Cs, ls values  (extracted lumped component) are depicted in 
the Figure 12. 
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FIGURE 12. The effects of Cs and ls values on the FBW of the designed 
RRC. In this Figure, the values Cs and ls in three different conditions are 
investigated, which these conditions are 1st condition: CS =1.2 pF, lS =0.2 
nH, 2nd condition: CS =1 pF, lS = 2 nH, and 3rd condition CS =0.7 pF, lS 
=5 nH. The obtained FBW for three conditions are respectively, FBW1 = 
17.4% FBW2 = 10.5%, FBW3=6.7%. In the calculation of the FBW, the 
insertion losses (S12 and S13) are less than 0.3 dB, while S11 and S14 are 
considered less than -20 dB, which the operating bandwidths are 
highlighted with colored boxes in the figure. 

 
Table. II, shows the size reduction and harmonics 
suppression of the proposed RRC compared to the normal 
coupler. 
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FIGURE 13. Size comparison of the proposed RRC and conventional 
one. 

 

Table I 
Performance summary of the proposed RRC at the design frequency 
 

 f  
(GHz) 

S11 
(dB) 

S12 
(dB) 

S13 
(dB) 

S14 
(dB) 

Proposed 
RRC 

1.8 -35 
 

 -3.06   -3.07 -60 

 

Table II 
The performance summary of the proposed RRC. 

 
Type of 
Coupler 

f 
(GHz) 

Size 
reduction 

Harmonics Suppression 
2nd 3rd 4th 5th 6th 7th 

Proposed 
RRC  

1.8 74 % 16 
dB 

19 
dB 

24 
dB 

29 
dB 

32 
dB 

38 
dB 

Conventional  
RRC 

1.8 - - 
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The proposed RRC has a significantly smaller size than the 
conventional RRC. The layout of the proposed RRC and 
normal RRC at 1.8 GHz with the same substrate are shown 
in Fig. 13. The proposed RRC only occupies 26% of the size 
of the conventional RRC, which offers 74% size reduction, 
while it has the additive advantage of harmonic suppression. 
The output phase difference of the conventional and 
proposed RRC are depicted in Fig.14. The results show that 
the phase differences between output ports of the 
conventional and proposed coupler at the design frequency 
of 1.8 GHz are 1.6˚ and 0.8˚, respectively, showing an 
improvement of this parameter by the proposed coupler. 
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FIGURE 14. The phase difference between output ports for the 
conventional coupler the proposed coupler. In this Figure, the dashed 
line plot shows the phase difference of the conventional RRC while the 
solid line plot shows the phase difference of the proposed RRC. 
Besides, as shown in the zoomed scale plot of the phase, the values 
of the phase difference for the conventional and proposed RRC are 
0.8º and 1.6º respectively, in the operating frequency. 

 
VI. Fabrication and Measurement  

 
One prototype of the RRC on RT/Duroid substrate (εr = 2.2 
and H= 20 mil) was fabricated and shown in Fig. 15. 
The S-parameters of the prototype are measured by a two-
ports HP 8720D network analyzer, shown in Fig.16. 
 

 

 
FIGURE 15. A photo of the proposed coupler 
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FIGURE 16. (a) The proposed device under test. Measuring the (b) 
S12, (c) S13, and (d) S14  parameters . 
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 The measured scattering parameters of the proposed RRC 
are demonstrated in Fig.17. A comparison among circuit 
simulation, EM simulation, and the measurements are shown 
in Fig. 18.  It can be seen from this figure that there is 
excellent agreement between measured and simulated results 
over the frequency band; however, some insignificant 
discrepancies appeared in the higher out-of-band. The results 
demonstrate that the proposed RRC operates at 1.8 GHz and 
suppresses harmonics from 2nd up to 7th  with good 
suppression levels.  
 

 
 

(a) 

 
(b) 

 
(c) 

FIGURE 17. The photos of the utilized network analyzer screen during 
the measurement process of (a) S11 and S12, (b) S11 and S13, and (c) 
S11, and S14 parameters. 
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(d) 

FIGURE 18. The measured and simulated S-parameters of the 
proposed RRC. (a) S11 (b) S12 (c) S13 (d) S14 . 
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As measured results show, the prototype RRC has output 
insertion losses below 0.2 dB (S12 = S13 = -3.2 dB) and input 
return loss and ports isolation better than  35 dB at the design 
frequency of 1.8 GHz. 
The proposed RRC exhibits superior performance as 
compared with other related works. In Table III, some 
microstrip branch-line couplers (BLCs), rat-race couplers 
(RRCs), Wilkinson power dividers  (WPDs), and Gysel 
power dividers  (GPDs) with harmonics suppression and size 
reduction are listed. As results show, the proposed RRC 
offers the smallest size and provides wide stop-band 
bandwidth, eliminating seven unwanted harmonics. 
 

Table III 
 The Performance Comparison. 

 
 

Ref Device 
Type 

Size 
Reduction 

Harmonic 
Suppression 

Applied 
Technique 

[28] BLC 39% - DGS and PBG 
[29] BLC 40% - strip interdigital  
[30] BLC 46% - distributed lines 
[31] BLC - 2nd-4th Non uniform lines 

[32] BLC 63% 2nd , 3rd Open stubs 
[33] RRC 54% 3rd DGS 
[34] RRC 55% 2nd , 3rd Resonators 
[35] BLC 64% 3rd, 5th Resonators   
[36] WPD - 3rd, 5th Open stubs 
[37] WPD 29% 3rd-6th Resonators   
[38] RRC - 2nd , 3rd Open stubs 
[39]  WPD - 2nd SIW 
[40]  WPD - 2nd RLC isolation  
[41]  WPD 23% 2nd Parallel capacitors 

[42]  WPD 60% 2nd-6th Coupled lines 
[43]  GPD - 2nd Open stubs 
[44] WPD 55% 2nd-4th Resonators 
[45] GPD 66% 2nd-7th Resonators 
[46] WPD 45% 2nd-5th Resonators 
This 
work 

RRC 74% 2nd-7th Proposed TL 

 
VII. Conclusion    

In this paper, a compact RRC capable of harmonic suppression 
is presented. In this design, the conventional TLs of  RRC are 
replaced by compact and efficient TL to operate at 1.8 GHz. 
The proposed RRC was fabricated and tested, showing a good 
performances compared to the other related works. The 
insertion losses for two output ports are better than 0.2 dB, 
while an excellent input return loss and port isolation are 
obtained for the proposed RRC (better than 35 dB).  In the 
proposed RRC six compact proposed TLs are used, which 
shows more than 74% size reduction and suppresses 2nd-7th 
harmonics. 
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