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Abstract. Testbeds have become standard tools for performance eval-
uation in wireless networks as they allow for evaluation with realistic
wireless propagation and interference conditions, hardware constraints
and timing requirements. However, in most testbeds, traffic and user
mobility is generated by either using synthetic load generation tools, or
replaying traffic traces. Evaluations using live traffic generated by real
users, possibly moving around the network, are typically not possible.
This is the main motivation of our research: building a wireless research
testbed that enables experimentation with live traffic. In this paper, we
present the design and architecture of a campus-wide wireless network
testbed towards this goal. Our testbed enables both transparent Inter-
net access and seamless mobility to the network users, and supports full
network reconfigurations in the presence of live traffic. The reliability
of user traffic is guaranteed by failure avoidance mechanisms that are
invoked whenever a disruption occurs in the network.
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1 Introduction

Wireless networking research has gained prominence over the years due to its
potential for realizing “anytime, anywhere networking”. However, the transi-
tion from research to production level deployment has been somewhat slow as
many wireless networking ideas do not typically move out of simulation environ-
ments. Therefore, despite the efforts for more realism and accuracy in wireless
simulation [1,2,3], evaluation with testbeds needs to become more prevalent to
understand the impact of realistic wireless propagation and interference condi-
tions, hardware constraints and timing requirements. However, evaluation with
testbeds is extremely tedious: research ideas are throttled by high implementa-
tion barrier, cumbersome and time-consuming experiment set-up and debugging,
and validation challenges. These difficulties preclude testing in real systems and
limit a broader adoption of testbed-based experimentation and evaluation.

To address these difficulties, wireless testbeds such as Orbit [4,5] and Emu-
lab [6] allow for automating network and topology configurations and provide
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better experiment management and repeatability. Although these works ease
deployment (e.g., by providing remote access to nodes and operating system
distributions, tools to automatically script measurements), the implementation
of an idea still remains significantly difficult. For instance, even the reconfigu-
ration of network protocols and parameters need to go through invasive kernel
changes. Therefore, current testbeds need to facilitate both implementation and
deployment. Furthermore, current wireless testbeds do not typically serve live
user traffic. In addition to allowing realistic input for evaluations, serving real
users also urges researchers to build complete systems.

To the best of our knowledge, no testbed exists that provides both real-user
traffic and easy online reconfigurations for wireless networking experimentation.
We believe this limits full evaluation of research proposals; i.e., answering how a
system behaves under different conditions, and finding out the underlying rea-
sons for such behavior and the advantages of a system compared to others. To
this end, a research testbed should allow for reconfiguring the network and run-
ning experiments with live traffic, characterizing the current network, traffic and
mobility conditions, correlating system behavior to these conditions, and repro-
ducing past conditions and system behavior. Bringing all these together presents
a much challenging agenda. However, we assert that it is also much required to
be able to fully evaluate systems. In this paper, we present a first step - the
design, architecture and implementation of a testbed, the Berlin Open Wireless
Lab (BOWL) 1, which reliably supports live traffic in a research network.

The main challenges that we address in this work stem from the conflicts
between the expectations of network users and researchers. Real users expect
reliable network access and privacy. On the contrary, a research network is an
unstable environment with frequent outages due to experimental software and
reconfigurations. These two different viewpoints create the following trade-offs
in a research environment:

– Reliable Internet access for users vs. network programmability
for researchers: Researchers require network programmability to run con-
trolled experiments. In turn, any disruption to the user traffic in the presence
of experiment reconfigurations or an outage caused by experiment failures
should be avoided. Essentially, failure avoidance mechanisms should auto-
matically push the network to a safe state and gracefully recover affected
nodes.

– Privacy for users vs. providing a rich set of measurements for re-
searchers: Since user traffic is not controlled, all the parameters of the un-
derlying layers, e.g., TCP, routing and medium access control (MAC) layers
should be captured for any meaningful measurement study. Furthermore,
application level information might be necessary to reproduce an experi-
ment. However, the measurement and tracing of system information should
be performed without jeopardizing user privacy.

1 http://bowl.net.t-labs.tu-berlin.de/
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The main contribution of our research is providing two essential capabilities that
address these trade-offs:

– Automated and online reconfigurations: it includes turning on/off function-
ality of a specific protocol and changing protocols at different network layers
respecting inter-layer dependencies.

– Hosting real user traffic: this requires avoiding disruption to the user traf-
fic during reconfigurations. Failure avoidance mechanisms are triggered to
automatically push the network to a safe state during reconfigurations. The
network comes out of this state once a reconfiguration is complete.

To the best of our knowledge, this is the first wireless testbed of its kind.
The rest of the paper is outlined as follows. In Section 2, we present the im-

plementation of our outdoor wireless testbed, both its network and node design,
as well as the software components. In Section 3, we present an example config-
uration of our network: the mesh network configuration. Section 4 discusses the
related work and we conclude in Section 5 with a summary and future work.

2 The Berlin Open Wireless Lab Network

To create our testbed, we deployed 46 nodes outdoor, on the rooftop of several
buildings in the TU-Berlin campus, covering roughly 40 hectares. The maximum
link distance is one kilometer. In addition, we deployed 12 nodes indoor on two
floors of the Deutsche Telekom Laboratories. In the remainder of this section, we
walk through our network and node design, software architecture and the main
components for reconfigurations with live traffic.

2.1 Network Architecture and Node Design

Our network architecture and the node design are shaped mainly by our design
objectives: to be able to perform remote management as well as failure avoidance
and recovery in the presence of disruptions to the network (e.g., due to failures or
launching new experiments), and to provide a rich set of configuration options.
To achieve high topology configurability, our nodes are deployed densely in the
campus, allowing switching off a significant fraction without losing connectiv-
ity. This enables effective evaluation of power control and interference issues in
dense networks. Additionally, our nodes have several wireless interfaces. Also,
the antenna poles are extensible and can easily host additional hardware.

Our mesh nodes are built around an Avila Gateworks GW2348-4 motherboard
[7]. Each node has an Intel XScale 533 MHz CPU (ARM architecture), 64 Mbyte
of RAM and four wireless interfaces - Wistron CM9 with an Atheros 5213 chipset.
One wireless interface is always operated in the ISM band at 2.4 GHz, running
IEEE 802.11g, where either a 2.4 GHz 12 dBi omnidirectional antenna or a
17 dBi sector antenna is attached. This interface provides an access point (AP)
functionality for users to access the network and the Internet. The three other
wireless interfaces are operated in the UNII 5 GHz band, where a 5 GHz 12 dBi
omnidirectional antenna is attached.
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For most of the rooftop nodes, physical access is severely limited. Therefore,
each node is remotely accessible through a wired, 100 Mbit/s Ethernet, con-
nection. This Ethernet connection plays a critical role for remote management,
failure avoidance and reconfigurations. In practice, the outdoor nodes and the
indoor nodes are on two separate VLANs that connect to a central router. Two
other VLANs are also attached to this central router: one connects to the Inter-
net through the TU-Berlin network and the other one is used for management.
For failure avoidance, additionally, a hardware watchdog daemon automatically
triggers a reboot in case of malfunction or connectivity loss. Finally, a major-
ity of the nodes contain a second independent unit for managing the router in
case of a malfunction or as a passive measurement and monitoring device. This
second unit is built around an Asus WL-500GP router. A custom-built circuit
interfaces the two boards and allow us to remotely power on and off each board
from each other. The nodes are powered by Power over Ethernet (PoE). Hence,
for the rooftop nodes, only one cable per node is necessary. Both units run a cus-
tomized version of the OpenWrt operating system, a GNU/Linux distribution
for embedded devices [8].

2.2 Software Architecture

Building on its hardware and network architecture, BOWL brings together sev-
eral software components to achieve a reconfigurable live network:

– Online reconfigurations provide network, topology, parameter and pro-
tocol reconfigurations.

– Failure avoidance mechanisms switch nodes to a fail-safe state to main-
tain reliability during disruptions.

– Remote management and monitoring remotely and automatically man-
ages nodes as well as checks their status.

– Measurements and tracing provide user, system and network
information.

– Visualization and control interface provides both flow and connectivity
based views of the network in real-time.

In the rest of the section, we explain these components in further detail.

Online Reconfigurations
To run experiments in a wireless network, researchers need the capability to
perform automated and online reconfigurations. To this end, the BOWL testbed
can be run in different network configurations for each experiment. We currently
support three basic configurations: an infrastructure network (the default con-
figuration), a mesh network or a mixture of the two.

In each configuration, the 2.4 GHz wireless interface is used as the “client
interface” to provide an AP functionality for Internet access. However, it is up
to the experimenter to use the live traffic or to direct it straight to the Internet
over the wired interface. In the infrastructure configuration, the client interface is
transparent and bridged to the central router. Authentication and access control



Design of a Configurable Wireless Network Testbed with Live Traffic 193

are handled on this central router, as well as DHCP. We provide transparent and
seamless mobility and roaming between the APs. This is achieved by mainly
running the “client interfaces” in promiscuous mode.

Additionally, the BOWL testbed supports configurations for changing the net-
work topology, exploring the parameter space of a given protocol, or comparing
different protocols under similar network conditions. To modify the topology, we
support connecting additional nodes to or disconnecting nodes from the network
remotely. The level of network connectivity can also be modified by changing
the per-node transmission power levels. Going a step further, we also support
modifications to protocol parameters. For instance, we can change a MAC layer
functionality: turn on and off RTS/CTS in IEEE 802.11. We also enable entire
protocol switches at a given layer of the network stack. As a proof of concept,
we currently support routing protocol switches in our mesh configuration. These
examples are explained in more detail in Section 3.

For efficient execution, all these reconfigurations rely on the “remote manage-
ment and monitoring” component, which will be described later in this section.
Furthermore, during all these reconfigurations, user traffic is expected to be
disrupted. How to protect user traffic from such disruptions is discussed next.

Failure Avoidance Mechanisms
The core of our software design consists of providing one stable and safe default
configuration, or “rescue” mode to fall back to during disruptions and a very
flexible “live” mode to facilitate research. This is implemented by installing a so-
called “rescue system” and possibly multiple so-called “guest systems”, each of
which are fully self-contained Linux systems. To this end, we extended OpenWrt
for our purposes. The rescue system is installed on the internal flash memory of
all the nodes and is started by the boot loader. Guest systems are installed on
additional flash memory storage.

The rescue mode boots the rescue system, runs the default infrastructure
configuration (i.e., the user traffic is bridged to the central router over the wired
interface) and provides the functionality to install and launch guest systems.
The live mode boots a guest system and runs a configuration corresponding to
an experiment. Both modes must always implement the AP functionality.

In addition to the rescue and live modes, BOWL supports a “transient” mode,
where the data flows by default through the Ethernet interface and can be repli-
cated over the wireless network for testing (i.e., the duplicate traffic is discarded
at the exit point of the network). Like the AP functionality, the transient mode
must be implemented by any guest system.

Failure avoidance makes nodes to fall back to either rescue or transient modes.
It can be triggered on-demand whenever we expect a major disruption or auto-
matically. If the watchdog triggers a reboot, a node reboots in the rescue system.
The expected delay is in terms of a few seconds. The management of these differ-
ent states are handled by the “remote management and monitoring” component,
which is explained next.

For the implementation of the online reconfiguration and failure avoidance
mechanisms, we make extensive use of the Click modular router [9,10].



194 R. Merz, H. Schiöberg, and C. Sengul

Remote Management and Monitoring
The management architecture was designed using a centralized approach that
contains two parts: (1) A central node manager keeps various pieces of node
state and information in a database and marshals commands and information to
the nodes. (2) A node controller runs on each node and executes commands
initiated by the central node manager, as well as collects state and information,
which, in turn, are sent back to the central node manager.

All software is written in Ruby [11], as it is readily available on several plat-
forms which cuts down development time in case we upgrade or change our hard-
ware. The second reason is the availability of Distributed Ruby (DRb), a remote
method invocation (RMI) implementation. The database uses Postgresql[12].

The central node manager is a process that uses a database back end to main-
tain information about each node controller. Communication is marshaled to the
nodes using DRb, which allows for both state and code distribution. In addi-
tion, the central node manager implements an event-based callback framework.
Finally, the node manager supports exporting data to other components (e.g., a
visualization component) out of the database. To support privacy, sensitive data
is mangled: for example, the MAC addresses are anonymized.

Each node runs an instance of the node controller to communicate with the
central node manager. The node controller implements two main concepts: so-
called adaptors and an event framework. An adaptor maintains a particular
functionality on the node (e.g., DHCP), control various daemons and relay infor-
mation to the node controller itself. Each adaptor runs in its own thread within
the controller process. In the default configuration, the default adaptor is the
association adaptor, which maintains information about the associated clients.
The central node manager learns about new clients through this adaptor.

The event framework allows the controller to react to changes in the envi-
ronment and the state of its adaptors. The typical communication flow between
a node controller and central node manager is as follows: (1) Changes in an
adaptor may result in an event. (2) This is relayed by the node controller to the
central node manager. (3) Next, this may lead to the execution of callbacks. (4)
The callbacks, in turn, may be dispatched back to the node in question.

Measurement and Tracing
Measurements typically consist of data points, collected by the nodes and trans-
ferred into the measurement database for further processing (e.g, for visualiza-
tion). Measurement and tracing processes currently run separately from the node
controllers. However, like any other program, these processes are also generally
configured and started through the node controllers. To collect measurements
from the nodes to a central location, we extensively use the Orbit measure-
ment framework and library (OML), which comprises a measurement library
and server developed in the context of the Orbit testbed [13]. We currently
support two ways of collecting data. Connectivity measurements collect signal
strength information by monitoring IEEE 802.11 beacons or other traffic, and
traffic measurements collect data regarding the existing flows in the network.
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Visualization and Control Interface. We implemented a live testbed map,
which displays the current situation in the network (e.g., existing real user con-
nections, current node configurations and protocol parameters). Using this map,
changes like new nodes or disruptions can be easily displayed. The data to the
network visualization component is acquired from two different interfaces: (1)
the database of central node manager, which maintains different node states
and (2) the measurement component, which, for instance, provides connectivity
strength among different nodes and flow information.

The network is also remotely configurable through either a command line in-
terface or a “Control” frame embedded in the map, which can interface to the
node manager. In the next section, we give examples of currently possible recon-
figurations and implemented controls based on the mesh network configuration.

3 A Configuration Example: The Mesh Experiment

In this section, we show how the BOWL testbed can be configured as a wireless
mesh network [14]. In the current implementation, any node can act as an AP
and one node acts as the gateway. Figure 1 depicts a snapshot of the network
in this configuration on 27 October, 2009. In the mesh configuration, the mesh
network is transparent to the clients and is seen as a regular layer 2 network. The
mesh interfaces use a different IP address range than the clients and the central
router. In the mesh, IP packets are encapsulated using IP in IP tunneling and
sent towards the mesh gateway. They are decapsulated at the gateway before
being delivered to the central router. The exterior IP addresses of the tunnel
belong to the mesh IP address range. The AP nodes use ARP spoofing to answer
ARP requests from the clients to obtain the hardware address of the first hop.
Also, the gateway uses the same technique to answer ARP requests from the
first central router for the hardware addresses of the clients.

This tunnel setup also enables seamless mobility. At an AP node, a so-called
location table indicates which node is the current gateway of the network2. The
destination IP address of the tunnel is then set to the mesh IP address of the
gateway. At the gateway, the location table indicates to which AP node is a client
currently attached. Hence, the destination IP address of the tunnel is set to the
mesh IP address of this AP node. These location tables need to be maintained
only on nodes that function as an AP or a gateway. The location tables are
currently updated centrally by using the Ethernet interface.

In this mesh configuration, we support several challenging reconfiguration
scenarios, e.g., a routing protocol switch from OLSR to DSR and vice versa.
In DSR, a route is discovered only when a new flow is initiated. Therefore,
additional steps need to be taken to first find routes for flows that exists in the
network during reconfiguration. In this case, the transient mode is a perfect fit
as it redirects the client traffic through the wired interface but also duplicates it
on the active wireless interfaces. When switching between DSR and OLSR, the
transient mode is activated right before starting the routing protocol switch. This
2 This setup is straightforward to extend to multiple gateways.
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Fig. 1. Snapshot of the network in the mesh network configuration. The green nodes
are online APs; the red nodes are unreachable as they are newly deployed, or not
configured. The red dots are the clients attached to the access points. The map depicts
the flow view, where each flow is is shown with a different color line. The control frame
on the left enables transmit power control, gateway change, and both wired-only and
wireless-only communication through “start and stop mesh routing”.

duplicated traffic bootstraps DSR and fills route caches on the nodes. Similarly,
transient mode is used when the gateway functionality is assigned to another
node, or when the transmission power is modified. In both cases, the connectivity
to the gateway might be impaired and hence, requires client traffic to be safely
delivered over the wired interface until connectivity to the gateway is restored.

4 Related Work

The existing work aiming at evaluating wireless research can be roughly cate-
gorized between simulators, emulation testbeds and testbed deployments. Sim-
ulators are typical tools of choice [3] in wireless research due to their relative
ease-of-use. However, a recent survey also shows that simulations may have sev-
eral pitfalls due to faulty practices, but more importantly, due to abstracting
details, especially at the physical layer.

Some of the limitations facing wireless scientific research and some sugges-
tions to overcome these are presented in [15]. The closest to our work in essence
are PlanetLab in the wired world and TFA [16], the Netbed/Emulab [6] and
Orbit [4,17,13,18,5] in the wireless world. PlanetLab [19] also tries to bring to-
gether researchers that develop and test services, and clients that want to use
these services. The TFA network [16] covers residential users with the goal of
providing reliable connectivity to low-income households, whereas our goal is
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to enable evaluation and comparison of real systems in an open experimental
environment. Netbed/Emulab provides a test-bed management framework with
a Web-based front end used to create and manage experiments. Note that Em-
ulab is an indoor network, which allows testing protocols with artificial traffic.
Despite these differences, Emulab provides a very mature service interface for
distributing code, controlling applications and gathering log files, which can be
extended to match our requirements.

To compensate for the lack of realistic network conditions in Emulab, FlexLab
[20] proposes to loosely couple Emulab with PlanetLab. This can only cap-
ture limited aspects of user behavior, namely traffic characteristics but not
mobility. Another effort is presented in [21]. However, the goal is limited to
re-introducing “laboratory notebooks” to the networking community and au-
tomating re-running recorded experiments or their variations.

The Orbit testbed [4,5] is an indoor two-dimensional grid of 400 IEEE 802.11
radios. Nodes can dynamically form specified topologies with reproducible wire-
less channel models. However, Orbit does not support real users. Similarly, the
Hydra testbed [22] is a purely research testbed with no support for real users. To
the best of our knowledge, no experimental research environment exists, which
can meet all three design goals (1) supporting real users, (2) enabling to build
real systems and (3) facilitating real system evaluation.

5 Conclusion and Future Work

This works presents the Berlin Open Wireless Lab (BOWL) network, a con-
figurable testbed with support for live traffic. The current network deployment
comprises 46 multi-radio IEEE 802.11 nodes deployed outdoor on the rooftops
of the TU-Berlin campus. The live traffic is generated by TU-Berlin students
and staff using the network for Internet access. Thanks to its unique software
architecture, the network allows researchers to reliably and remotely reconfigure
the network and run experiments with live traffic.

Currently the following reconfiguration scenarios that can be remotely acti-
vated in the BOWL network include a mesh network configuration with a single
gateway, gateway activation and gateway location update, and switching pro-
tocols and updating protocol parameters. This work is a first step towards an
experimental research environment with real user traffic. For future work, we
plan to extend the software architecture to better support the collection of mea-
surements, validation of configurations and experiment results.
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