
Design of a Context Privacy Service for Mobile Collaboration

Vagner Sacramento, Markus Endler and Fernando Ney Nascimento∗

1Departamento de Inforḿatica, PUC-Rio
R. Marqûes de S̃ao Vicente 225

22453-900, Rio de Janeiro, Brazil

{vagner,endler,ney }@inf.puc-rio.br

Abstract. Privacy related to context information is becoming an increasingly
important issue due to the wide range of new applications using computational,
location and personal context information. In this article, we propose a privacy
service, calledContextPrivacy Service (CoPS), to control how, when and to
whom disclose a user’s context information. In order to identify the end-user
privacy concerns, we carried out a survey where we asked approximately 100
people about their willingness to use context-aware services and to disclose
their context information. Based on the results of this survey and experience
reported by other research groups, we identified the main service requirements
and designedCoPS aiming flexibility, generality, simplicity and fine-grained
privacy control. CoPS is supposed to aid the end-user to define and manage
his privacy policies regarding his context information.

Keywords:
Privacy, Context Service, Context-awareness, Middleware, Collaboration.

Resumo.Privacidade de informaç̃oes de contexto está se tornando cada
vez mais importante diante da grande diversidade de novas aplicações que
utilizam informaç̃oes de contexto pessoal e computacional. Neste artigo,
propomos um serviço de privacidade,ContextPrivacy Service (CoPS), para
controlar como, quando e para quem as informações de contexto do usuário
podem ser compartilhadas. Para identificar as necessidades de privacidade
do usúario realizamos uma pesquisa com aproximadamente 100 pessoas sobre
o interesse em utilizar serviços com percepção de contexto e mecanismos que
controlam como tais informações ser̃ao divulgadas. Com base nos resultados
dessa pesquisa e na experiência relatada por outros grupos identificamos os
principais requisitos do serviço de privacidade e, projetamos oCoPS visando
um serviço flex́ıvel, simples e com controle de privacidade mais preciso. O
serviço proposto tem o objetivo de auxiliar os usuários a definir e administrar
suas poĺıticas de privacidade em relação a suas informaç̃oes de contexto.

Palavras-chave:
Privacidade, Serviço de Contexto, Percepção de Contexto, Middleware,
Colaboraç̃ao.

1. Introduction

For more than a decade, context-provisioning services and middleware have been ex-
tensively investigated and proposed, with the goal to support the development of

∗Partially supported by CNPq research grants no. 552.068/02-0 (Project ESSMA) and no. 55.2028/02-9
(Project IMPAR).

context-aware applications, specially for mobile networks. [Chen and Kotz, 2000,
Dey et al., 2001, Schilit et al., 1994, Schmidt et al., 1999] have proposed two major
groups of context information: physical and human factors. The first group was further
divided into three sub-groups:environment(e.g. light, pressure, temperature, time),com-
putational infra-structure (e.g. resources, communication capabilities, system load), and
location(coordinates, symbolic, absolute, relative, etc.). Human factors were also classi-
fied into sub-groups:personalinformation (e.g. preferences, interests, skills, etc.),social
relationships(groups, family), andactivity (e.g. occupied, travelling, resting, etc.). Of all
these, onlyphysicalcontext can be automatically measured, and in this category,location
has probably been the mostly explored aspect of context, specially forLocation-based
Services[Schiller and Voisard, 2004].

In fact, access to computational context and location information of end-user de-
vices opens a wide range of new possibilities for implementing distributed collabora-
tive applications. For example, location information can be displayed by instant com-
munication services, physical proximity among users can be used to select collaborat-
ing peers, information about the connectivity status can enhance mutual collaboration
awareness. This motivated us to design and implement a service-oriented middleware
architecture calledMobile CollaborationArchitecture- MoCA [Sacramento et al., 2004,
MoCA Team, 2004b] for collecting and processing context data from mobile devices in
802.11 networks, and making it available to applications. We are currently using this mid-
dleware to implement context- and location-aware applications for mobile collaboration.

While some users may want to use such applications to facilitate group coordina-
tion or convey a sense of presence with friends or co-workers, there are also some serious
concerns about the risk of disclosing personal context information. Hence, there is a huge
demand for tools which provide end-users with the ability to define organization- and
person-specific privacy control over context data. But since privacy is a very broad con-
cept that entails very different interpretations and requirements, a context privacy solution
should be flexible and adaptive to the specific needs of individuals, user communities and
applications.

In order to identify the most relevant user needs and privacy concerns, we carried
out a survey with approximately 100 end-users of different background and age. The
results of this survey, as well as experience reported by other groups, helped us to identify
the main system requirements and inspired our design of a flexible, powerful and generic
privacy control mechanism for context information, which we named “Context Privacy
Service” (CoPS). This service allows the end-users to share their context data with the
right people, at the right level and at the right moment through the following features:
group-based access control, hierarchical privacy rules, rule specificity analysis (based on
the requester ID, spacial and temporal precision, and information freshness), optional user
notification, logging and plausible deniability mechanisms.

The remainder of this paper is structured as follows. Section 2 presents a discus-
sion about some related work. Section 3 shows the results of our survey about require-
ments for privacy control, and Section 4 presents a short overview ofMoCA and the type
of context data that it makes available. Section 5 introducesCoPS’s main features and
describes the typical pattern of interaction amongCoPS, a context service and an ap-
plication. Then, Section 6 presents the main components ofCoPS, giving emphasis on
the structure of the privacy rules, the policy hierarchy, group definitions, the algorithm
for rule specificity analysis, and some concrete scenarios illustrating how the algorithm
works. Finally, in Sections 7 and 8 we discuss future work and give concluding remarks.

2. Related Work

Recently, research about mechanisms for privacy of control of context information has
received increased attention. In the following we discuss the work most related to this
field.

In Confab [Hong and Landay, 2004], people, places, things, and services are as-
signed toinfo-spaces, which are tuple-spaces storing static or dynamic context data about
any of the info-space’s entities. The context data stored ininfo-spacesarecontexts tu-
ples, and are populated by sources of information, such as sensors. Similar to other tuple
spaces, aninfo-spacesupportsin- andout-methods. In-methodsaffect what data is stored
within an info-space, and include add and remove methods.Out-methodsgovern any
data leaving an info-space, and include query, subscribe, unsubscribe, and notify. Privacy
mechanisms are enforced throughinfo-space operators(in- and out-operators), which
govern what data can enter or leave theinfo-space. In-operatorsandout-operatorsare
run on all tuples coming in/out. These operators can apply, for example, the info-space’s
access control policies to ensure that a tuple is allowed to be added/removed, or that this
tuple should be blocked for reading or removal.

Project Aware Home [Covington et al., 2001] focuses only on home environ-
ments, where a variety of data about home residents and their activities is captured (by
sensors), processed and stored. The access control mechanism uses an extension for
Role-based Access Control (RBAC) [Sandhu et al., 1996]. Similar to the subject roles
of RBAC, the authors definedenvironment roles, which can be used to capture security-
relevant aspects of the environment in which an application executes.

In [Smailagic et al., 2001] privacy of location information is described and con-
trolled by simple rules based on set theory. Each rule establishes a list of users who
are allowed (or disallowed) to know the location of a user for a given period. The rule
specifies the authorizations based on one of four visibility modes:Visible to All, Invisible
to Some, Visible to Some, andInvisible to All, and using boolean operatorsAND or OR.
When conflicting rules (e.g. R1 grants but R2 denies access), are combined usingAND,
the location information is not made available, and when usingOR, it is made available
to the requester.

Most of the approaches exclusively focus on location context, and propose specific
mechanisms for controlling access and disclosure of this information. We however, take a
broader approach considering thatanycontext data, specially computational context that
can be automatically collected and which apparently does not reveal relevant information,
should be subject of access control.

Most of the related work adopts a centralized approach for storing and controlling
access to context data, even though this surely gives end-users less control of their context
information. Only [Hong and Landay, 2004] proposes a fully decentralized approach. Al-
though this seems more reasonable from the end-user perspective, which does not have
to trust a centralized context-provisioning infrastructure, it entails some problems when
this context information has to be shared (albeit in a controlled way) among many users.
Due to the huge amount of resources necessary to store, process and distribute this infor-
mation, and the intrinsic limitation of mobile devices, it turns out that, at least with our
current technology, only centralized approaches are feasible from a software engineering
point of view.

Moreover, network use experience of the past decades has shown that despite the
real threats of using unknown and remote services, users have largely trusted network
infra-structures because of the obvious benefits that they gain. In fact, in most of our

daily activities we,de facto, rely on social protocols and law enforcement, and expect that
other people will indeed obey the rules and follow the social norms.

3. End-User Needs

In order to identify the real expectations, concerns and needs of users with respect to
privacy issues, we carried out a survey with people of different age, educational back-
ground, field of work/studies, and different familiarity with information and communi-
cation technology. The survey was based on a questionnaire which initially described,
in non-technical terms, a hypothetical technology supporting the probing, processing and
sharing of data about the computational, environmental and personal context of mobile
users, and would be aimed at enabling new applications and services for spontaneous
communication and collaboration among users. The questions then evaluated following
privacy aspects: the degree of willingness/suspicion in using such technology; the groups
of people with which the person would share its context data; the demand for anonymity;
the desired degree of access control, notification and traceability options, etc. So far, the
questionnaire was answered by more than 100 people from Brazil, Italy and Germany.1

The most relevant results of our survey indicated the following facts (with the
corresponding percentages of votes):

• a cautious attitude toward such technology prevails. For example, 45 % would
check the options to selectively disable monitoring of some data, 26 % are se-
riously concerned about privacy issues. However, only 16 % would refuse the
technology;

• users demand for detailed information about which context data was monitored
(63 %);

• since mutual discovery and communication is mediated through a yet unfamiliar
technology, most users would provide a nickname instead of their real identity (64
%);

• majority of users would only share their context data with people they know, such
as friends, colleagues, relatives, (74 %);

• concerning access control users demand: thata priori all access be denied, and
that they need to explicitly define which access is allowed (76 %),and 66 % want
to be explicitly queried for permission at each access request;

• concerning traceability and notifications, most want to be able to check at any
moment (at a log) who requested the data, when and through which application
(57 %), and some want to be immediately notified at each request (29 %).

Based on the results of this survey, and experience with privacy issues obtained in
related work [Hong and Landay, 2004], we identified the following generic requirements
for a privacy service:

Flexibility users should be able to define their privacy options with different levels of
detail;

Appropriate Control and Feedback users should be notified of, and be able to trace,
any attempt to access their context data;

Plausible Deniability in addition to “Grant” and “Deny”, a third option “Not Available”
should be allowed as a request result. With this, the requested user can deny access
without giving a clue to the requester.

1Actually, it is an ongoing survey, since we have not established a final date for the replies. The interested
reader can answer the questionnaire on-line [MoCA Team, 2004c].

Precision Control the users should be able to adjust the spacial, temporal precision and
the freshness of their context information being disclosed;

Visibility Control at any moment users should be able to block access to any (or all)
context data;

Exceptions for Emergenciesit should be possible to define an exception policy, which
overrides any other privacy policy;

Simplicity users must not be burdened with much work to configure their privacy op-
tions;

Efficiency privacy enforcement should not cause significant overhead to the context-
provisioning services.

4. MoCA’s Context Provisioning Services

The Mobile Collaboration Architecture (MoCA) [Sacramento et al., 2004,
MoCA Team, 2004b] consists of client and server APIs, basic services supporting
context acquisition, storage and processing, and a framework for implementing applica-
tion proxies (ProxyFramework). The APIs and the basic services have been designed to
be generic and flexible, so as to be useful for different types of context-aware collabo-
rative applications, e.g. synchronous or asynchronous interaction, message-oriented or
artifact-sharing-oriented.MoCA is intended for use in an infra-structured wireless LAN
(such as 802.11), and the current version runs on WinXP/CE and is based on TCP/IP.

In MoCA the following are the core services and components responsible for prob-
ing, storing and inferring computational and location context.

Monitor is a daemon executing on each mobile device that is in charge of collecting
data concerning the device’s execution state/connectivity, and sending this data to
theCIS (Context Information Service) executing on one (or more) node(s) of the
wired network. The collected data includes the quality of the wireless connection,
remaining energy, CPU usage, free memory, current Access Point (AP), list of all
APs and their signal strengths that are within the range of the mobile device.

Context Information Service (CIS) is a distributed service where each CIS server re-
ceives and processes devices’ context data, sent by the correspondingMonitors. It
also receives requests for notifications (aka subscriptions) with SQL-like, context-
basedinterest expressionsfrom applications, and delivers notifications to the ap-
plications whenever the corresponding interest expression matches a new state of
the context variables.

Location Inference Service (LIS) infers the approximatesymboliclocation of a device.
It does this by comparing the device’s current pattern of RF signals received from
CIS(from all “audible” 802.11 Access Points) with the signal patterns previously
measured at pre-definedReference Pointsin a Building or Campus. For this, LIS
periodically queriesCIS to update the device’s pattern of RF signals. Since the
RF signal is subject to much variation and interference, the location inference is
only approximate: its precision depends on the number of access points and the
number of the reference points.LIS allows the administrator to define symbolic
regions of arbitrary size and shape, and a hierarchical description of regions with
its nested sub-regions.

So far, we have usedMoCA’s API and services to develop some
context- and location-aware prototypes of collaborative applications, such as NITA
[Gonçalves et al., 2004], WhoAreYou?(WAY), BuddySpaceLive, WirelessMarketingSer-
vice, and others [MoCA Team, 2004a]. When we demonstrated these applications to

Context Variable Privacy Risk

CPU usage (%) gives a clue about the device processing load
Free Memory (in kB) gives a clue whether the user’s device is short of resources
Battery Power (%) gives an estimate for how long the device will be available
IP Addr/Mask network point of attachment, owner’s network access

rights, and rough information about device location
Current AP’s MAC-Addr, RSSI connectivity status and rough information about device lo-

cation
List of all APs in the range gives a clue about device’s approximate location
LIS’ Symbolic location device’s approximate location

Table 1: Context data collected by MoCA

other students and faculty, we realized the importance of privacy issues related to con-
text information, i.e. while context data is useful for implementing adaptable and context-
aware applications, it can also be used to derive information of where and how a user is
using his device. Table 1 shows all computational and location context variables made
available byMoCA’s services, and some privacy risks of disclosing each such informa-
tion.

Although our original goal was to develop a privacy mechanism forMoCA’s
context-provisioning servicesCIS and LIS, we later realized that it would be better to
designCoPS as an independent and generic service that could be easily integrated with
other context-provisioning services.

5. CoPS Overview

CoPS is in charge of controlling when, how and to whom context data will be disclosed.
This service implements an engine that evaluates privacy policies and checks whether
access to context data from onesubject(i.e. user) will be granted to a specificrequester
(i.e. a user or application). A privacy policy is set up by apolicy maker, which may or not
be the subject himself. By using a policy management GUI, the policy maker specifies
the rules that dictates the access restrictions to the subject’s context information.

The proposed service implements fine-grain control, feedback and logging mecha-
nisms, which give the subject different means of avoiding abuse of his context information
usage. For instance, by setting the notification option in his rules (in addition to the ap-
propriate access control) Bob would probably prevent others, for example his boss, from
trying to periodically query his location. The feedback mechanism may use any appro-
priate form of notification, such as e-mail, SMS, ICQ, etc. In addition, having access to
CoPS’ log, Bob would be able to check who accessed (or could not access) his context
data, when and how many times it occurred, etc. Feedback and logs have also been iden-
tified elsewhere [Hong and Landay, 2004] as a simple, yet effective, means of controlling
access abuse through social visibility. For example, it is less likely that a boss will repeat-
edly query an employee’s location if he knows that the employee gets notified at every
request, and moreover can use the log to prove the abuse, and blame him of this action.

In CoPS, privacy policies are organized in a three-level hierarchy: organization-
specific, individual-specific, and default policies. In this hierarchy, the organization-
specific policy overrides the individual-specific policy, which in turn, overrides the default
one. Hence, for organization-specific policies the policy maker may not be the same as
the subject (e.g. the employee). For example, a policy maker responsible for a university
may define that the location of each member of a department staff must be made available

to the director to facilitate delegation of tasks or finding a nearby member of the network
support team to fix a problem of the secretary’s desktop.

CoPS also supports two general approaches to specify a default access policy, an
optimistic and a pessimistic one. With the pessimistic policy, by default all requests are
denied, except those that match some rule specified by the policy maker; and with the
optimistic approach, by default all requests are granted, except those matching some rule
specified by the policy maker. Thus, using the pessimistic access policy end-users need
only define the rules specifying under which circumstances their personal information
should be disclosed. In contrast, using the optimistic access policy the end-users should
set up rules that explicitly deny access and define side-effect actions (e.g. logging, noti-
fying), related to a specific context variable, (group of) requester, time of the day, etc. For
example, the user may define a rule denying access to his location data to any requester
which is not affiliated with his department. As a general rule, the optimistic approach
is easier to use, because the users can hardly predict all possible scenarios for which he
wants to grant access in the pessimistic default policy.

By supporting these two approaches for default policiesCoPS gives end-
users a convenient, simple and flexible means of defining their rules according to
their individual privacy preferences. Unlike other work, [Hong and Landay, 2004,
Grudin and Horvitz, 2003],CoPS’ dual approach helps to reduce the number of rules
necessary to define a privacy policy. After choosing either the pessimistic or the opti-
mistic approach the policy maker will have only to specify a few rules, each of them
producing the following results: “Grant” or “Deny” (but not both), “Not Available” or
“Ask Me”.

The policy maker may use the “Not Available” result when he wants to take ad-
vantage of plausible deniability (cf. section 3), since this is also the default result for a
request when a context information is in fact not available. Returning “Not Available”
as the result of a request thus enables a subject to make “white lies” where he in fact
denies access, but does not make this explicit to the requester, who will not know whether
the context information could not be obtained due any technical failure, due to access
restriction, or lack of the data.

5.1. Typical Interaction Pattern

The Context Privacy Service comprises a server (CoPS) and a client (CoPS Client API).
It makes available to the application developer two client APIs, one for the Context Ser-
vice, and the other for the application clients (at the subject’s and requester’s side). These
APIs provide methods for authentication and session key generation, communication with
theCoPS server, for checking the consistency of policy rules, for accessing and analyz-
ing the log, and a protocol used by theCoPS server to send notifications and queries to
the subject’s application asking the user for a final decision regarding an access request.

Figure 1 illustrates theCoPS general architecture, and shows how its components
and the context provisioning service (Context Service) interact with each other. In the case
of MoCA, CIS+LIS would be the Context Service, and theMonitor would be executing
on the subject’s device.

Initially, the policy maker (e.g. the subject) has to define the privacy policy to be
applied to a subject’s context data (1): he chooses the default access policy (optimistic
or pessimistic) and uses the policy management GUI to write the corresponding privacy
rules. In parallel, context data from the subject’s device will be periodically received by
the Context Service (2) but will only be disclosed upon evaluation of the appropriate pri-
vacy policy. Before a requester is able to submit an access request, he has to authenticate

CoPS

Context Privacy Service

Context Service

Subject Requester

1

4

5

2

3

CoPS Client API

CoPS Client API

CoPS Client API

Figure 1: CoPS general Architecture

himself with CoPS (3). This authentication will produce a session key which will be
used to create anUser IdentificationToken (UIT) for future requests. The UIT is a ci-
phered challenge text with the user’s session key. The generation and distribution of user
session keys will be done by a protocol similar to WPA [Wi-Fi Alliance, 2004]. When
the access request arrives at the Context Service (4), it will forward the request and the
UIT to CoPS and wait for the result. If the requester is successfully authenticated and
the request is granted (5),CoPS replies with a “Grant”, otherwise with a “Deny” or “Not
Available” result.

5.2. Controllable Properties

According to the results of our survey about requirements for privacy control and related
work (see section 3), most users demand means of interactively deciding when requests
should be granted or not. In other words, in this approach of interaction, called mixed-
initiative, end-users are interrupted and are askedon the flyto decide whether to grant
or deny the request. If the policy maker set up the privacy rule with the result value
“Ask Me”, the CoPS server will forward the request to the subject’s application. The
application may interact with the subject exporting a high level view of the request asking
for the Subject’s decision, such as: “Can requester A using application Y be granted
access to the context information I?”. And the answer options could be, for example,
“Always allow”, “Just this time”, “Only for the next 2 hours”, “Never Allow”, etc. The
CoPS server waits some time for the reply, and if no reply is received,CoPS simply
denies access to the context information returning the default reply value “Not Available”.

CoPS also supports adjusting the precision of the dynamic contextual information
being disclosed. It does so by allowing the policy maker to specify aspatial precision,
temporal restrictionandfreshnessof the contextual information in the privacy rules. For
example, consider a scenario where some service provides location information, Alice is
sharing her location with classmates, but maybe is not feeling comfortable letting them
know precisely where she is. In this case, she would be able to adjust the level of dis-
closure by defining the spatial precision of her location information (e.g. “PUC-Rio” or
“Department of Computer Science Building” instead of “Room 205”). She could also
set some temporal restriction, by defining, for example, the time interval (e.g. “9:00 to
11:30 am AND Monday to Thursday”) when the information should be made available.
Moreover, she could also specify the freshness of the disclosed information, determining
that instead of her current location, only her location 30 minutes ago shall be disclosed.

6. CoPS’s Architecture

The service has been designed to offer fine-grained and flexible control over privacy pol-
icy evaluation, using the following components: the Privacy Policy Engine, the Dynamic
User Management and Access Control (DUMAC), a notification dispatcher and the client
APIs. Figure 2 illustrates the main components of theCoPS architecture.

CoPS - Context Privacy Service

User - Policy GUI Policy
Database

CoPS Client API

 DUMAC

Policy Evaluation

Access

Control

User

Management

Group

Management

Policy

Specificity

Policy Evaluation Engine

Notification

Dispatcher

Policy Set

Selector

Optimistic

Policies

Pessimistic

Policies

Users/Groups
Database

Conflict

Resolution

Context Service

CoPS Client API

Figure 2: CoPS Architecture

As mentioned in Section 5, the client APIs hides from the Context Service and
application developer many details related toCoPS-specific interaction and processing.
By designingCoPS independently from the Context Service, we obtain more flexibility
and reduced complexity. Flexibility, in the sense thatCoPS becomes independent of a
specific Context Service, and that Privacy Management can be incorporated as an optional
and complementary feature of a context provisioning middleware. Thus, the Client API is
very important for enabling a simple and transparent integration ofCoPS with both the
Context Service and the application clients.

In order to provide support to the mixed-initiative interaction, theCoPS server
and the application client API use event-based asynchronous communication. The client
API subscribes itself at theCoPS server informing the address in which it is supposed to
receive requests for the subject’s final decision (Grant or Deny). After receiving a request
from theCoPS server, the client API forwards it to the application client and waits some
time interval to send a reply. If theCoPS server receives a reply from the client API
before the timeout, the subject’s decision is sent to the context service, otherwise, the
default reply (“Not Available”) is dispatched.

The Dynamic User Management and Access Control (DUMAC) component is in
charge of implementing user authentication and management of groups and users. Al-
thoughCoPS offers its own authentication method, in principle it can be integrated with
any other similar authentication system, such as NIS, SAMBA or Windows Domain Con-
troller, facilitating the deployment in different administrative domains.

The Policy Evaluation is the central component within theCoPS server. It pro-
cesses the access request taking into account all privacy policies related to a subject. It
first selects the rules of the default access policy chosen by the policy maker, and then
evaluates policy specificity, by selecting the most specific rules that match a given re-
quest. Based on the set of selected rules, it then checks and resolves possible conflicts in
order to compute the final result (“Not Available”, “Ask Me”,“Grant” or “Deny”). The
result is then returned to the client API at the Context Service.

6.1. Structure of the Privacy Rules

The structure of aCoPS privacy rule is composed of several fields, which are also present
in the requests. Any privacy rule is associated with a default access policy (optimistic or
pessimistic). This must be chosen in beforehand by the policy maker, and it will deter-
mine the basic evaluation algorithm for each request. The proposed rule fields and their
semantics are described as follows.

Policy Maker: Individual who defined/created the privacy rule (may or may not be the
same as the subject).

Subject: User or entity whose context data is controlled by this rule.
Requester: User or software component requesting access the subject’s context data.
Context Variable: The specific type of context data being requested (e.g. location, en-

ergy level, IP address, etc.).
Application: List of application names that can be used by the requester to access the

context variable. The wildcard ‘*’ represents any application.
Precision: Specifies the value precision of the context variable (e.g. for location informa-

tion, this could be the spatial precision like state, city, ZIP code, building, room,
etc.).

Temporal Restriction: Date and time interval restrictions for disclosing the context in-
formation (e.g., weekdays, from 9 am to 6 pm).

Freshness:Specifies the freshness (in milliseconds) of the disclosed context information
(e.g. location 15 minutes ago, or current location). The default value is 0 ms.

Policy Level: Hierarchy level of this rule. Initially,CoPS will support only following
three possible values “organization”, “individual” or “default”.

Result: Outcome of applying this rule to a request. Possible values: “Not Available”,
“Ask Me”, “Grant” and “Deny”.

Notify Me: If the policy maker wants to be notified when the rule is applied. The options
available are “NoNotification”, “E-Mail”, “ICQ”, “MSN” or “SMS”.

6.2. Group Definitions

Groups provide an additional facility for the management of privacy rules and also de-
crease the processing effort during evaluation of the requests. TheSubjector Requester
field of a privacy rule can be either individual users or groups.

There are two general categories of groups:administrator and user-defined
groups. The first ones are structured hierarchically to reflect the organizational structure,
and define the corresponding user roles, similar to RBAC [Sandhu et al., 1996]. Groups
in a higher level of the hierarchy include all of its descendant groups at a lower level,
e.g. the group “puc.employee” comprises the group “puc.employee.prof”, which in turn
comprises the group “puc.employee.prof.cs”.User-definedgroups, are not hierarchical
for the sake of efficient evaluation and maintenance.

Initially, all users inCoPS belong to group “Anonymous”, which facilitates the
specification of access rules for unknown users, i.e. the policy maker is able to set up a
privacy policy for unknown (“Anonymous”) requesters. Moreover, this group can also be
used for anonymity, i.e. users can send a request as an “anonymous user” if they want to
hide their real identity.

6.3. Policy specificity

During the evaluation process, more than one rule may match the request, for many rea-
sons. For instance, when the requester belongs to several groups mentioned in field “Re-
quester” in some rules (e.g. “Alice” belongs to groups “MyCo-worker” and “MyFriend”),
then all these rules match the request.CoPS’s specificity algorithm aims to determine
themost specificprivacy rule that applies to a request and, if necessary, resolve possible
conflicts among the rules.

The specificity algorithm works as follows: Given a set of rules previously se-
lected (by the engine) to evaluate a request, the algorithm identifies the most specific rule
of the set by comparing their structure fields in the following order of priority:Subject,
Requester, Application, Temporal Restriction, Precisionand Result. When comparing
rules with respect to a field, only the ones with the most specific value in this field are
selected for the further specificity analysis, while all other rules are not considered for

selection. This way, even if two or more rules have different relative specificity (i.e. they
differ in two or more fields) the algorithm can identify the most specific rule analyzing
these fields according to their priorities. For all fields, wildcard “*” means least specific.

For the specificity of theSubjectandRequesterfields, privacy rules mentioning
an individual user (e.g. “Alice”) are more specific than rules containing a user-defined
group (e.g. “MyFriend”), which in turn is more specific than the ones mentioning an
administrator-defined group. The administrator-defined group specificity follows the
usual interpretation of a hierarchy: groups at a lower hierarchy level are more specific
than groups at a higher level (e.g. “puc.employee.prof.cs” is more specific than group
“puc.employee.prof”). With regard to fieldApplication, specificity has only two possible
levels: any application (represented by “*”) and a list of applications.

The same hierarchy-induced specificity applied to the administrator-defined group
is used also for thePrecisionfield2. For example, when comparing rules concerning
location information, the most specific ones are those where fieldPrecisionmentions the
lowest level in the location-hierarchy, e.g. “country.state.city.zip” (level 4) is more specific
than “country.state.city” (level 3). Two or more privacy rules can be at the highest level
of specificity with regard to theirPrecisionfield if they have the most specific value, and
are at the same level in the hierarchy. When this happens, the next field (according to the
priority) of these rules is compared to identify the most specific rule. In order to allow
for such specificity analysis the developer of the Context Service has to define the syntax
(e.g. campus.building.floor.room) of the name hierarchy for this specific field. It will be
a configuration parameter ofCoPS.

The fieldTemporal Restrictionrepresents the time interval and date at which the
requester is granted or denied access to the context information, depending on the access
policy approach used (optimistic or pessimistic). This field is very useful when the user
wants to restrict the access in some special situations (e.g. at lunchtime or at working
hours). Even though the policy maker specifies a time interval (e.g. “9:00am-11:30am”),
CoPS represents it in seconds, to allow for an accurate rule selection. The specificity for
this field is evaluated in three phases: (1) select the rule(s) that match the time and date
of the request; (2) identify the rule with the largest time interval and check whether the
time interval of the other rules are its proper subsets (e.g. Temporal Restriction “Feb 5,
10:30am-2:00pm” is a proper subset of restriction “Feb 5, 10:00am-6:00pm”). Rules are
considered to be at the same level of specificity either if they have identical time intervals,
or if the time interval is not a proper subset of the largest time interval; (3) select the rule
with the smallest time interval, when they are not at the same level of specificity.

Finally, if all previously considered fields are at the same level of specificity, the
Resultfield is the one used to select the most specific rule to evaluate the request. The
possible values for this field are: “Not Available”, “Ask Me” and “Grant” (or “Deny”).
The “Not Available” result has precedence over “Ask Me”, which in turn has precedence
over the others (i.e. result “Not Available” is more specific than “Ask Me”, which in turn
is more specific than “Grant” and “Deny”). The reason is that “Not Available” implicitly
means “Deny”and “don’t let requester know it”, while “Ask Me” may be interpreted as
“Deny” or “Grant”, depending on my mood. A conflict is detected when there is more
than one rule with a result “Not Available” or “Ask Me”, or when all rules have either a
“Grant” or “Deny” result. In this case, the last rule with greatest specificity created by the
policy maker will be selected. It is necessary to define a deterministic choice for these
situations because the conflicting rules may have different notification methods and only

2Although a hierarchy-induced notion of precision is more easily understood in terms of location infor-
mation, it can be applied also to other context information, such as sub-domains of an IP address.

R
ul

es

S
ub

je
ct

R
eq

ue
st

er

A
pp

lic
at

io
n

Te
m

po
ra

l
R

es
tr

ic
tio

n

P
re

ci
si

on

R
es

ul
t

C
on

te
xt

Va
ria

bl
e

F
re

sh
ne

ss

P
ol

ic
y

Le
ve

l

N
ot

ify
M

e

R1 Puc. Student Puc.Manager Ap1 * puc G Location 0 O e-mail
R2 Bob Puc.Student * 9:00am to 6:00pm * G Energy 5 U ICQ
R3 Bob MyFriend * 9:30am to 12:30am * G Energy 0 U ICQ
R4 Bob Coworker * 12:00am to 2:00pm * NA Energy 0 U NoNotify
R5 Bob Coworker * 9:00am to 12:00am * G Location 0 U NoNotify
R6 Bob Alice * 9:00am to 11:00am campus.

building
G Location 0 U MSN

R7 Bob Alice * 10:00am to 4:00pm campus.
building.
floor.room

G Location 15 U e-mail

Table 2: Example rules.

Assumptions
Group Members

user-defined Bob.MyFriend Bob, Alice, John
Bob.Coworker Alice, Jane, John

administrator-defined Puc.Student Bob, Alice, Jane, John
Puc.Manager Jane, Paul

Table 3: Assumptions about User Groups

a single rule must be chosen to evaluate the request.

6.4. Privacy Policy Evaluation Example

In this section, we show an example of possible privacy rules for user Bob, assuming that
the pessimistic default policy has been chosen, i.e. whenever a request does not match
any rule, it will be denied. These rules (shown in Table 2) determine how and when Bob’s
location and energy context variable will be disclosed. In this example, we also assume
the existence of someuser-andadministrator-definedgroups (Bob’s and PUC’s groups
are shown in Table 3), which are mentioned in some of the rules.

Through some scenarios, we will now explain how the privacy rules are selected
and used to evaluate a request, using the algorithm explained in Section 6.3.

As already mentioned, the rule to be applied to the request is always the most
specific one, and comparison of the rule’s specificity takes into account fieldsSubject,
Requester, Application, Temporal Restriction, PrecisionandResult, in this order. Thus,
intuitively, the algorithm compares the values in the corresponding columns (from left
to right), and as soon as one (or several) rules have a more specific value in one of the
columns, they are candidate for further comparison.

Scenario1: If Jane makes a request for Bob’s location, both R1 and R5 would
apply. However, the request would be granted by R1, because this rule belongs to a
higher level than rule R5 and, consequently, the first rule overrides the others.

Scenario2:Consider a request from John to get the energy level of Bob’s device.
In this case, R2, R3 and R4 are the related rules. But among those, rules R3 and R4
are selected because the user-defined groups mentioned in these rules are more specific
than the administrator-defined group of R2. Finally, the request will be evaluated by R4
because, despite their fieldsRequester, Application, Temporal RestrictionandPrecision
having the same level of specificity, theirResultvalue differs, and “Not Available” has
precedence over “Granted”.

Scenario3:For Alice’s request to get Bob’s location rules R5, R6 and R7 should
be examined. Among those, R6 and R7 take precedence over R5 because they apply to an
individual user, “Alice”, rather than to a group, as specified by R5. Although the R6 and

R7 are at the same level of specificity in theApplicationandTemporal Restrictionfields,
R7 is more specific than R6 in thePrecisionfield, and therefore will be applied to grant
the request.

7. Future Work

We intend to extendCoPS’s engine to handle context-dependent privacy policies, allow-
ing the policy maker to set privacy rules which depend on dynamic context data. For
example, a policy could specify that access to some context data is granted only when the
requester is within the university campus, or even in a specific building. In addition, we
plan to develop a privacy policy management GUI, which supports end-users to define
their privacy rules. This GUI ought to be simple and effective to motivate end-user to
adoptCoPS.

Furthermore, we are studying the “Platform for Privacy Preferences (P3P)” spec-
ification [Cranor et al., 2002] with the purposes of using it to represent the privacy policy
structure. P3P supports the encoding of privacy policies into machine-readable XML,
making it easier to interpret these policies and execute the corresponding actions.

We also intend to develop a trust model [Wagealla et al., 2003] for context-aware
computing, exploring some properties of trust evaluation (e.g. diversity, transitivity, and
combination), in order to facilitate the definition of privacy policies. For example, assum-
ing the transitive property of trust we could have the following scenario “if Alice trusts
Bob who trusts Jane, then Alice will also trust Jane”. This way, Alice would not need to
explicitly set up privacy rules to handle Jane’s request. Instead, the system could be able
to infer the Alice’s risk level of disclosing her information to Jane, and it would be able
to apply the appropriate privacy policy.

8. Conclusion

Since context-awareness has been recognized as a key element for the development of
adaptive applications in mobile environments, many efforts have been made to design
and implement context-provisioning middleware infrastructures. We have implemented
such a middleware, calledMoCA which we are now using to implement context- and
location-aware applications for mobile and spontaneous collaboration.

Results of a recent end-user survey, where we assessed the acceptance of such ap-
plications and privacy concerns, helped us to identify the main requirements for a context
privacy service. We then designed the Context Privacy Service (CoPS), trying to address
all these requirements.

CoPS is intended as an optional, generic service to enforce the controlled access
to context information. Prior to releasing any context information requested by a user or
application,CoPS would be queried to decide if access to a subject’s context is granted
or denied. One of the most interesting feature of this service is its support for a rich set of
options for privacy policies, such as user and organization-level rules, both optimistic and
pessimistic default privacy rules, group-based rules and group management, specificity
analysis considering the subject, the requester, spatial and temporal restrictions, informa-
tion freshness, as well as the allowed applications. We have implemented a first prototype
of CoPS which we make available (as an optional service) inMoCA.

References
Chen, G. and Kotz, D. (2000). A survey of context-aware mobile computing research.

Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College.

Covington, M. J., Long, W., Srinivasan, S., Dev, A. K., Ahamad, M., and Abowd, G. D.
(2001). Securing context-aware applications using environment roles. InSACMAT ’01:
Proceedings of the sixth ACM symposium on Access control models and technologies,
pages 10–20. ACM Press.

Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., and Reagle, J. (2002).
Platform for privacy preferences 1.0 (p3p) specification. W3C Recomendation, HTML
version at http://www.w3.org/TR/P3P/ (Last visited December 2004).

Dey, A., Salber, D., and Abowd, G. (2001). A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications.

Gonçalves, K., Rubinsztejn, H., Endler, M., Santana, B., and Barbosa, S. (2004). Um
aplicativo para comunicacão baseada em localização. InVI Workshop de Comunicação
sem Fio e Computação Móvel, pages 224–231.

Grudin, J. and Horvitz, E. (2003). Presenting choices in context: approaches to informa-
tion sharing. InWorkshop on Ubicomp communities: Privacy as Boundary Negotia-
tion.

Hong, J. I. and Landay, J. A. (2004). An architecture for privacy-sensitive ubiquitous
computing. InMobiSYS ’04: Proceedings of the 2nd international conference on Mo-
bile systems, applications, and services, pages 177–189. ACM Press.

MoCA Team (2004a). Moca applications home page. http://www.lac.inf.puc-
rio.br/moca/applications.html (Last visited December 2004).

MoCA Team (2004b). Moca home page. http://www.lac.inf.puc-rio.br/moca (Last visited
December 2004).

MoCA Team (2004c). Questionnaire about privacy and spontaneous collaboration.
http://cis.lac.inf.puc-rio.br:8080/lac/questionnaire.jsp (Last visited December 2004).

Sacramento, V., Endler, M., Rubinsztejn, H. K., Lima, L. S., Goncalves, K., Nascimento,
F. N., and Bueno, G. A. (2004). Moca: A middleware for developing collaborative
applications for mobile users.IEEE Distributed Systems Online, 5(10):2.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996). Role-based
access control models.IEEE Computer, 29(2):38–47.

Schilit, B., Adams, N., and Want, R. (1994). Context-aware computing applications. In
IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, US.

Schiller, J. and Voisard, A. (2004).Location-Based Services. Morgan Kaufmann.

Schmidt, A., Beigl, M., and Gellersen, H.-W. (1999). There is more to context than
location.Computers and Graphics, 23(6):893–901.

Smailagic, A., Siewiorek, D. P., Anhalt, J., Kogan, D., and Wang, Y. (2001). Location
sensing and privacy in a context aware computing environment. InPervasive Comput-
ing.

Wagealla, W., Terzis, S., and English, C. (2003). Trust-based model for privacy control
in context aware systems. InSecond Workshop on Security in Ubiquitous Computing
at the Fifth Annual Conference on Ubiquitous Computing (UbiComp2003).

Wi-Fi Alliance (2004). Wi-Fi protected access web page. http://www.wi-
fi.org/OpenSection/protectedaccessarchive.asp (Last visited December 2004).

