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This study investigates the global output feedback stabilization problem for one type of the nonholonomic system with non-
vanishing external disturbances. An extended state observer (ESO) is constructed in order to estimate the external disturbance and
unmeasurable system states, in which the external disturbance term is seen as a general state. Thus, a new generalized error
dynamic system is obtained. Accordingly, a disturbance rejection controller is designed by making use of the backstepping
technique. A control law is given to ensure that all the signals in the closed-loop system are globally bounded, while the system
states converge to an equilibrium point. The simulation example is proposed to verify that the control algorithm is effective.

1. Introduction

Within recent decades, the control of nonholonomic sys-
tems has always been one of the most popular tasks in
control fields since such systems can be frequently found in
mechanical systems, for example, car-like vehicles, wheeled
mobile robots, knife-edge, and so on. In the theoretical
analysis of the nonholonomic system model, some nonlinear
feedback controllers for these systems were put forward in
the literature to ensure that the systems are asymptotically
stable or exponentially regulatable, for example, the studies
[1-7] and references therein. By using an input/state scaling
technique and switching algorithm, a class of feedback
control law was obtained for nonholonomic chained systems
with uncertainties to realize exponential stabilization [6, 7],
and a switching-based state scaling is designed for pre-
scribed-time stabilization of nonholonomic systems with
actuator dead-zones [8]. In practical applications, especially
in the research of nonholonomic wheeled mobile robot
control, the controller design method to realize the robust
stabilization of the system is given [6, 9, 10]. Considering the
limitations of the hardware and environment of the actual
system, the design method of the controller with saturated
input is given in [11, 12]. In order to overcome the external

disturbances, the robust tracking control for the wheeled
mobile robot is proposed based on the ESO [13, 14].

The measurement of full states is usually difficult and
sometimes impossible. Moreover, in practical applications,
the systems usually contain unknown disturbances, mea-
surement noise, and modeling errors, which are called
nonvanishing total disturbances. These disturbances in re-
ality will influence the performance of closed-loop systems.
Therefore, it is of great significance to study the output
feedback stabilization of nonholonomic systems with non-
linear uncertainties and external disturbances. The output
feedback stabilization for nonholonomic systems is more
complex and difficult than using the general nonlinear state
feedback. The output feedback problem towards asymptotic
stability and exponential stability of nonholonomic systems
has previously been put forward [15, 16]. In [17-20], the
adaptive output feedback global stabilization of a class of
nonholonomic systems with parametric uncertainties and
strong nonlinear drifts are solved. However, none of the
above work considers the existence of disturbance items that
do not disappear from the system even though uncertainties
or nonlinear drifts exist. This means that the proposed
output feedback scheme may be unstable because of the
external disturbances. To reject the external disturbances, an
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output feedback controller has been proposed for non-
holonomic systems with nonlinear uncertainties [21] and
nonvanishing external disturbances [22-24]. In [23], the
external disturbances are considered a generalized system
state, and an ESO was constructed. By utilizing the so-called
ESO, [25] further investigated the output regulation control
problem towards one type of cascade nonlinear systems with
the external disturbance, and the output feedback adaptive
regulation problem was solved by the time-varying Kalman
observer [25]. However, the output regulation controller in
[22, 23, 25] requires that the nonlinear uncertainties in the
systems are only related to the output of the systems.

The ESO in pioneering work [26] is the key creative
advancement towards active disturbance rejection control
(ADRC). The ESO has the capability for state observation
and real-time estimation of generalized disturbances be-
tween the controlled object and the model of the controlled
system [27, 28]. By using the ESO, this study addresses
robust output feedback adaptive control towards one type of
nonholonomic chained form systems that have nonvan-
ishing external disturbances in the input channel and un-
certain nonlinearity drift. Different from references [22, 23],
in the model studied in this study, the upper bound function
of nonlinear uncertainties depend not only on the output
variables but also on the system state variables, in which such
uncertain nonlinearities meet a linearly growing triangular
condition.

The main contribution of this study is that the extended
state observer (ESO) and gain scaling technique [29] are
constructed. In order overcome unknown system states and
the external disturbance, we reconstruct the system state,
and the disturbance is regarded as an extended state. The
ESO with dynamic gain is put forward, and the disturbance
rejection controller based on an observer is developed by
designing a variable observer gain to overcome the uncer-
tainty. The controller design is carried out for one type of the
nonholonomic system with nonvanishing external distur-
bances and uncertain nonlinearities satisfying a linearly
growing triangular condition. This approach allows the
external disturbances to be a larger class of signals.

2. Problem Formulation

In this study, we consider the following nonholonomic
system with nonlinear uncertainties and nonvanishing ex-
ternal disturbance:

~ d
Xo =t + X0y (%),

- d
X; = Xyt + @ (U, Xo, %, g (1)), (1)
X, = u+ ¢ (& g, g0 X%, w0, (1)) + w (D),

y=lxpx],

where x, € R, x = [x,,...,x,]" € R" are the system states,
and the initial values are x, (t,), x (t,), with t, as the initial
moment of the system; u = [uy, u]” € R? is the control input,
and y € R? is the system output. The functions ¢7 (-), i=
1,2,...,n are the uncertainties which represent possible
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modeling errors and neglected dynamics; wy (t), w,(¢),
w(t) € R, and w(t) are the uncertainties and bounded,
where w(t) € R is the nonvanishing external disturbance
and satisfies that w(f) € L,. The assumptions and lemmas
used in this article are listed as follows.

Assumption 1. For every 1<i<n, the following inequality
holds:

|¢g (t x0)| < oty (%),

i (2)
|67 (£ 1, %00 %, @0 (D) < & () Y |
=1

where the nonnegative smooth functions «, (x,) and a(x,)
are known.

Lemma 1 (see [30]). For any x,y € R, any scalar k>0, and
any positive definite matrix M € R0 the following
inequality holds:

2"y <k 'x"Mx+ky' My, (3)

Lemma 2 (see [31, 32]). For any u>0, there exist positive
real numbers d, and d,, positive definite matrix P, and
positive constants a;, such that the following inequality is
satisfied:

PA+A"P< -dI,,,,PD+DP>d,I,,,, (4)
where I, is the identity matrix of order i, and A and D are the
(n+1) x (n+ 1) matrices denoted as

-a,

A=| : I

n >

5
Ay 0 -0 0 ®
D = diag{y, 1 + p, ..., n+p}.

3. Controller Design and Stability Analysis

3.1. Output Feedback Controller Design

Lemma 3 (see [33]). For the first subsystem of (1), if the first
control law u, is chosen as

Uy = —Aoxg — X0 (%), Ag > 0, (6)

where (ty,x,(t,)) is regarded as the initial condition,
xo(ty) #0, then as the corresponding  solution,
xo (8,19, %, (ty)) exists and |x, (t, ty, x4 (£,))] >0, 0<¢t, <t. A,
is designed as a positive constant parameter. Furthermore,
|ug (1) > 0.

Proof. Substituting (6) into the first formula of system (1),
we can obtain

Xo = —AgXg — X (%) + xo‘/’g (. xp)- (7)
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Integrating this nonlinear equation, the solution is

t
_ _ 44
xo () = x4 (0)e I o Pt (o (D)= (00 ()T s chows that

Xy (t)#0 at any time if x,(0)#0, and thus, u,(t)+#0.
Choosing V (x,) = (1/2)x§, it can be obtained from (6) that

Vi = —Aox? = x3(ag (%0) = 2 (£, %0)) € ~hox2 <0, (8)

Thus, x,(t) asymptotically approaches zero. For any
bounded x, (¢) because «), gb(”)l are smooth functions, there is
a positive constant M for |xy| <1, |ay| <M, |¢g| <M. This
yields that

Vo ==oxg - xé(“o (%0) - ‘Pg (t, xo))
>-(A+M+M)V,.

9
Integrating both sides of this equation, it can be obtained

that
Vo (£) 2V, (0)e ot2M)t, (10)

This means that x,, (t) converges to zero, but x, (t) # 0 at
any given moment, so that |u, (£)| > 0.
We introduce the following input state scaling:

i=1,...,n (11)

Unknown nonvanishing external disturbance w(t) is
treated as a generalized state. To realize symbol consistency,
it is defined as

Copr = w(t). (12)
In the new state (, system (1) is converted to
zi = (i + @ (8 1g, X, @ (1)),
$o=Cun + b (£ 1> X0, § o (1)) + 14, (13)
i=1,...

Cuar =w(t) =h (1),

,n—1.
O

Lemma 4. For any given u, in (6), there is a known non-
negative smooth function @, (x,), such that |1iy/uy| <@, (x,),
t>0.

Proof. The following calculation is completed:

) |_x0()to + 0 (x0) — 00 (8, xo)) 0aq (o)

9%, Ao = ag (%) + ‘/53 (t, %)
(14)

)
Uy | Ao + g (%)
Aox 0oy (x9)\| « =
<Al 1+ 00 002 23, (x,).
0( /‘«0+(X0(.x0) axo q)O( 0)

This completes the proof of the lemma.

i
n—i
0

|$i (t’ u()’ 'xO’ (r w() (t))l <

a(x) Z}:l |xj|

We know from Assumption 1 that there is a nonnegative
smooth function & (x,):

+(n—-i)a, (x0)|(i|

< (n—i)ay (x0)[¢i] + a(x0)<'u;‘)-l||(l| e [ |C,~|) (15)

<a(x,) Zl 1

Considering that ({5, ..., (,,;) are unmeasurable signals
that cannot be used in feedback control, the dynamic ob-
server for (13) is denoted as follows:

21‘ =(in +ai}’i((1 —Zl), i=1,...,n-1,
én =u+ Znﬂ + anyn((1 - 21)) (16)

Zn+l = an+1)’n+l({1 - 21) - ycznﬂ’



where y is the dynamic gain, which will be designed later
according to the requirements. The observer error dynamics
is defined as

ei:Ci_Zi ,n+l). (17)
We can determine from (13), (16), and (17) that
& = ey + i (s 1> X0, § o (1)) = aiyi(cl - 21)’

€, = €py + b, (£ tgs X0, (o (1)) — any"(Cl - 21),

(i=1,...

. 1 P P

buy = h() = a,y" ((1 - Cl) + Y-

(18)
Introducing dynamic gain scaling,
e. . .
Sizﬁ,ziz%, l=1,...,7’l+1, (19)
4 Y

and defining e=[e),.... 6] L2 =[2p. 52l

&, ()/y*1*#, 0], we arrive at

Q) = [¢ Iy,

& = Yei + O; (1 g, xo, (o (1)) = yae; _% (i-1+pe;,

h én = Y& + (Dn (t’ Up> Xp» (’ [2) (t)) - Ya,.& _$ (l’l -1+ [4)8,‘,

10 7
e T (NSl C Ry DUASI ) M
14 Y
(20)
L .
Zj =Yz Y48 —; (i-1+wz,
- 14
1% = n—1+u T VZp T V0,6 — (7’1 -1+ ﬂ)zns (21)
14 14
. ¥
Zpt1 = V1€ _; (n+ Wz, = Y2y
Denoting a=la,.. .,an+1]T, = [0,. ]1Tx(n+1)

F=1[0,...,9Zu |1y (ner) and h(t) = h(t)/y”*l‘, we have
& =yAe+ O (t,uy, xy, { wy (1)) — Y De + bl (t) + F. (22)
Y

Now, using Assumption 1 and (15), it follows that

|D; (2, g, X0, , o (1))| < ocl(alcfz Z |C ' (23)

Choosing V, = ¢’ Pe, it is then obtained that
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€

T
1% =éTPs+eTPé=(yAs+d> st+bh(t)+F)
Y
+sTP(<D +yAs—%Ds+bﬁ(t) +F) = e’ (ATP+PA)e
(DP +PD)e +2¢" Pbh (t) + 2" PF

+2eTPD - XsT

<26" PO - yd, ¢" e+2¢" Pbh(t) +2¢" PF —fdze €.
Y
(24)

Introducing the following transformation,

X, =z,
Xi=zi— o, = —giaXi, i=2...,m (25
Xnsl = Zps>

where g;_; >0 is a constant number that will be given later,
because ¢; = e;/y"'**, and e; = {; - {;, we have
(= YHW (6 +2)= Yl_lw(si +X; - 9:‘—15%'—1) (26)

Now, using Lemma 1, it follows that inequality,

26" PO < 2|[el| 1Pl (x,) (lell +l1z1l)
= 201 () IPlllell® + 2@ (xo) I Pl el o
<@ (xo)llell* + 35 (xo) Iz
91 (xo)llel’” + 95 (x)IXI%,

holds, where ¢, (x,) and ¢, (x,) are the nonnegative smooth
functions. On the other hand, by using Young’s inequality,
one has

2¢TPbh < yL, llel® + yﬁz,
(28)

2¢' PF<y||Pllc, n+1+)/ ||P||||8||

Correspondingly, we can obtain that

V ydls e—;dzs e+7yL, llell® +)/||P||c1 el

1 N -2
+y 1P + 9y (xo)lel” + 5 (xo )11 + yh
1
(29)

Step 1. Choosing V, = 1/22% = 1/256?, we have
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. ¥ Where M >0, 8, = aj/4AM, are the constants. Choosing
Vi= x1<yzz T ya & _V.“Z1) a, =—g,%, = —(n+ p;)x;,0, = y, we then obtain
. 2 2 A y 2
7 V< —ynk, + yM, & + yX, %, — =0, X,. (32)
=y% (2 — g + ay) +yay ke - ;1455121 (30) Y

Step 2. Choosing V, = p,V, + 1/25c§, where p, is a

2 designed positive constant,

. A N . Y .
=YX X, T YX Q) +ya X & _;Auxl'

By using Young’s inequality, we have
2

) ) a; 2 ) 2
ya;x,& <yMiel + i 1\/11 X, = yM,& +yp,x;,  (31)
1

. 2 A y .2 . .
V, Sp1<—ynx1 + VMlsf +YXx; _%‘Slxl) +%,(2, - &)

2 o Ve W2 . y . o« .
= P1<_Y”x1 + VMIS% TYX Xy — %51’%) T X [VZ3 +Ya,& _% (I+wz, | - xza_zlz1
1 (33)
L2 2 .Y .2 P N
= —ypinx, + ypiM €]+ ypiXix; — ;P161x1 T YXX3 +YX0;
R Y R . oa, .
+ ya,x,€, —% (1+wx,z, - xZa—ZIzl.
From Lemma 1, we can derive the following inequalities:
A A Y. .2 P12 Y. .2 2
YP1%1%;, Sgplxl + 3)’lez = §P1x1 + P X,
a 2 2
N 2 N 2 .
Ya,%,8 < Y0y € + ijz =70,1€] + YPrnX,s
21
-% (1+ )iz, = —% (1 + Wiy (%, - 1%,
) ) (34)
2 N N
=7 (1+wx, +Z (L+wx, - g1%
Y 14
pl+pu2 yl+u ,.2
< —; 5 x2+; 2 gfx1
yl+u2 y 2
= _; ?Xz + ;Nl (L, 91)%,>
X L0y, Oy y 3
where B, =3p,/4,l, =u, L, =1+u, N, (l,, g,) =1,/2g7, _xzazl = _xzaizl Yz, +ya £ _;#21 . (35)

6,, >0, B,, = a3/46,, are the constants. Using the relations
o, = —g, X%, and 2z, = yz, + ya, &, — y/yuz,, we have Defining X, = 0, g, = 1, it is derived that



Yz %1121 = Y(&z -

X = g1561) - %11(561 - 90550)

S)’<|5€2| +|91”5‘1|l> +%ll(|5€l‘ +|90||’Aco|'>
SA(go’gl)[Y("%z' +|5C1|> +%11<'5‘1| +|5Co'>])

(36)

where A(gy,g;) = max{1,l|gyl,1g,l}. Since |0a,/0z,|< g,
this implies that
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2
2

2
L oa, <z <v0.. &+ 914
xza Ya1€ S |X2|91YA18 S Y0UnE T 9 X
21 40,,

B 2
= y0¢] + YPasxy

. O } .
: <sz - %llzl> < |x2|g1A(g0,g1)
1

[ )« 2] )|
@)

Letting B,, = g, A(go» g1), it can be concluded that

V'552|91A(90»91)(|5C2| +'5c1|> = YBZI;CE + YBZI"ACZH%'

|x2|321 R :|x2|szlle|xl|

where 6, >0,By; = giai/40,,, Py, = By, +3B3,/4p;, B, =
B3,1, are the constants. Furthermore, we have

. 2y 2 2y 2
Vo< —ypinx, - %Plélxl + §P1x1 + %Nl (1, 91)%,
&+ YMyE

Yy .2y, .2
+§p1x1 +;Bzx1 +yp M

N 2 2 2 2
+ Mgl + Yo Xy + Y0, + YPasX, + VPruX,

y 1+ l
‘% ) ﬂxz Z sz +yX, X5 + yX, 0.
(39)
Let us denote
= +B,, + B + Bous
{ﬂz Bar + Baz + Pz + Pas (40)
M, = pyM, + 6, + 0y,
i1
Vl S —y(m—i+2)p,..., Py

j=1

3B, .2
_plxl +9| By + ap, X,
y 2 2
= gplxl +YBrXys
(38)

VllA
—-X
b ¥ T i

gty
y

b yl .
sz 1 ixz’

thus, it is obtained that

—y(n- l)Plzx +YM2£1+ (N (12’91)‘*3)
j=1

o . ) 2yl 2 2
TYXpX3 +PXo0 ‘%Pl‘sl’ﬁ _;szz +y (B, +(n=1)py)X,.
(41)

For simplicity, let p;= p;6; -B,>0 and

8, = min{l,/4, pi}, &y = —g,%, = —(B, + (n—1)p,)X,; then,

2

2, o A2
-y(n-1)p, ij +yM28f+yx2x3 —f(SZZx]

j=1 j=1
(42)

Step i (2<i<n—1). Assume that in Step i — 1, we have

i-1

Y 2
;81-_1 ij

=

2 2 N N
Xj+yM_j&] + yXiX; — (43)
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Lettlng the ith candidate Lyapunov function be

Vi=p Vi + 1/2x and defining %; = z; — «;_;, where
P2 -» Piy are the designed positive constants,

i-1

. i-1
. . . 1. . . V. L w0 .
Vi=piaVia + xi<zi ~2 ;'121') =piaVig+ xi[)’zm +va; _; (i-1+wz; | - X Z azl llzj
j=1 J j=r 77
i-1 2 5 ,)'/ i-1 2
S -y(n-i+2)pp...s piy Z X+ ypii M€~ ;pi—16i—l Z Xj (44)
=1 =1

aoc, 1

+YPi1 X1 X + VX240 + ya;XE — xz Z—;(l—1+//t)xz

By applying Young’s inequality, one has

Pia 22

~ oY ~2 )4 22 2
YPi1%Xi1%; 551’1’ oo Pi Xy + 3y ap, » zxz = gpi—lxi—l +YBaX;
s P

2
A 2 a; .
yax;e; SyM; € +y X;
4M;,

207, N
= YMﬂff +yPnx; —% (i-1+pxz;

=Ll 14 w5 - g%)

r . (45)
=Y (i-1+ ﬂ)&f +Y (i -1+ p)x; - gigXi

14

pi-l+p.2 y1—1+y2 .
< -1 —F55 44 pE
y 2 y 91 1
Vl, LY 2
:___ Nl ll’gl Xi 1>
e 1 (> gi1)%i4

where B, =3p; /4py,.. 5Py i=i—-1+u, N (1,
gi1) =1:/2g%,, M;; >0, B, = a?/AM;, are the constants.
Using the relations

@iy = ~gi1%Xi-1 = _gi—l(zi—l + gf—zxi—z)

i1 -1 i1 (46)
9.z = (l_[ gs>

j=1s=j j=1

and z; = yz;,; +ya;e —yly(j— 1 +p)z;, it follows that

—

i-1

Y

j=1 j j=1

(YZ]+1+Y‘1 51‘_(J 1+u)z; ) (47)

Z
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VZjn~ =y(%1-9;%) - ;‘zf

y( 1=757) 251 g1511)
i
<A(g;- 1%)[ (%

(48)

+’9JH"1|> j<|’%j'+|gf—1||’%j—l'>
+|fcj|)+§zj<uf«j|+|fcj|>]-

IN

X

]+1

Since [0a;_1/0z;|< g, ..., g;;, this implies that

i1 i1 i-1 2

. 09 | 2 zJ’=1(gj """ giflaj) .2
_xiz yae < |xi| Zgj ----- 9174 SyMpe) +y X
o 0z s 4M;,

i
2 2
= VM12£1 + Yﬁﬁx

i-1 .
x Zaa, 1<YZ]+1 1] ]>_|x|Zg] ,,,,, gi- lA(g] It g] |: <|5Cj|+|56j+1|>+$lj<'5€j' +|5Cj+1|):|.

(49)
Defining B;; = g;,. .., 9i1A(Gj-1,9))
i-1 i-1 i-1
y[5)| ZBij<|&j+1| +|5€j’> =[] 3 Byl + o[%] Y ByJx)
=1 j=1 =1
. .
= VBi,i—lfciz + Y'&il IZ Bi,j—llfcj‘ + Vl’ACi| IZ Bij"%j|
= =
L -
< VBi,i_lfc,-z + V|5€,~| Z Bij |x]' + V|5€i| Z Bij"%i|
=1 =
5 i-1 .
= yBiik; +y[%| Y Byjl%)|
=1
3Zi:11§z‘2‘ 2 i1 (50)
< y(Bi,,._l + ﬁ)& *3P1 - Pin 4 X;
i~1
= yﬁi45cf + %pl ..... Di1 IZ &j
j=1
i-1 y Y i—-1 y i-1
ol 3. e+l | =2 > sl Dl L3
Z
. i-1 .
y|x|23u"“ |<Vll IZB’J Xj XTI i _%B";&jﬁL%%&?’
where Bj; =B+ B, ,, B;; = Byjl; + By jljy, M >0, R SR S .
Bs=Y" l(g] ..... g, 4 ) [4Myy, iy = By + 33 B, /4 {fw zﬁ;t/jjt/isz\zlﬁi " (51)

Pir--osPio> Bi =1 12; 11B are the constants.

Denotmg we have
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. i A2 2 N “
Vi< =2ypys -5 Picy Z Xj +yMel + yXiXi +yX
=
v SPEND AURULINE Mot (52)
—~Pi16iy Z Xj+ N X +7B; Z Xj
4 j=1 14 Y j=1
pl 2 2
_; 2N +Y (B +2p1s s P )X
Choosing Pioy = pi10iiy = N,y — B;>0,8; = min This is similar to step i, in that
{1./4, pi_;} and using the formula
. . . ¢ % <y %2 _ P 2
O =—giX; =B +(n—i+ 1)pp,....pi1)%;> (53) VProt¥not X = 5P Pt Xt * 3))4171’ . ,Pn—zxn
we again obtain
y .2 2
i = 2Pu1Xy VB X,
; . 22 2 3
Vi< —ym—i+1)p,...,pis ij + yM;e;
=1
| (54) Ya e SYMel + Y K,
PPN Y =2 nl
+ yX; X ——0; Z X;.
voA 2 2y
= yMnlsl + )//3"256” - (7’1 -1+ [")&nzn
Step n: for , the last step, we choose Y
V, = pu1V, + 12X, +1/22%,,, where p,_; is a designed .
positive constant, and by using (30), (32), and (43), we have _7 (n—1+ #)&n(kn B gn—1kn—1>
n-1 Y
. . . oa,_; .
Vn = Pn—lvn—l T X\ % Z; . .
< ~ 0z; ’> y 2y X N
Y =—=m-1+wWx,+-(n-1+Wx, g, 1%,
) Y Y
+ Zn+1<yan+lsl - X (H + ."l)znﬂ - yCZnH) vn—14u2 vn—-1+ 2
Y < - X ‘“&n + X ygi—l&n—l
Yy o2 y o2
n-1 2
S—Zypl,...,pnflzxj )‘/lnAZ y K
=t =Xt _Nn—l (ln’ gn—l)xn—l’
yzo oy
(56)

. n-1
A oA 22 o
T YPn-1Xn-1%n %pn—ISn—l Z Xj T ya,x,& (55)
j=1

Y . .
o (n—1+wx,z, + X~

Y
+ Zn+1(yan+1£1 - ; (}’l + nu)ZnJrl ~YCZp11
n-1
_ _&-n
=1

oa,,_
0z f

1.
Z]-.

where B, =3p,_1/4p1>-- s Ppz Ly=n—-1+p, N,_, (1,
) =1,/292 |, M, >0, B,, = a2/4M,, are the constants.
According to the relations

%1 = “Gn-1%n-1 = ~YGn-1 (Zn—l + gn—an—Z)

n-1n-1 i-1 [ n-1 (57)
~-5Tae-- 3T )5
j=1 s=j j=1\ s=j

and z; = yz;,; +ya;e —y/y(j—1+p)z;, we have
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— Oa,
- xn az yzj+1+ya sl——(] 1+y)zj
j=1 =1
Yo %lj 2=y (%50 - 95%;) - %lfzj
V. R
= (JH g;* J) ;ljxj_gj—lqu (58)

<y(I%ja1+19;1%;)) +§zj(|5cj| +1g;alx;1)

SA(gjpgj)[y(lfcjﬂl + 1%l +%lj(|5cj| Flxial) |

Because |0a,,_1/0z;|<g;, ..., Jn1> it is obtained

n-l1 n-1
b aan—l < |
T L5, YAELS X In-1Y8;€
j=1 J j=1
n-1 2
2 Zj=1(gj ’’’’’ gn—laj) 2
SYMp€ +y M X,
n2

2 A2
= yMnZsl + Yﬁn?vxn

”*16 n-1
_&"Zh j& <%, Zg]. ..... G146, (59)
j=1 j=1
n—-1 2
<YM, 6 +y ]_l(gjlﬁgzgn_la]) :
= YM 8 + VB,
S o, % = A
R ) DT (SR R A (S R )
j= p=
Defining B,=gj---> gn—lA(gj—l’gj),
n-1
R Zan]( X +|5cj'>=yxn e i 5(],|
j= =
n-1
= VB, il
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A2
= Yﬁn4xn +§pl’ et

n-1 .
ol 2 nj[:lj<|5€j|+|5cj1|>]
-1 n—

LY s X
il Ty Pl £ Eni [l
n-1
Vs = |=
S; X, Z B,; x]-|
. a1
BN Sy
j= v o4
C e .
Y 22 Y ln—lA2
y ey 4 o (©0)
where Fnj =B, + B, 1 B =B,l; + Bn] i M, >0, where M, >0, B, = a2, /AM,,, are the constants. Now,
B = 27;11 (gj>--- ,gn 14; )? /4Mn2, Bu =B, 1+ 32” lB let us choose the final control signal as
[Ap1s- s P> By = 11 2 1B are the constants. u=—y" B+ Prsees Put)Xn =V 20
Denoting pr R (64)
- (ﬁn+P1""’Pn—1)xn_Cn+l'
{ﬁn:ﬁnl+ﬁn2+ﬁn3+ﬁn4’ (61) inallv. it is derived th
Mn = pn—an—l + Mnl + MnZ: Fina Y) 1t1s derive tnat 5
. 2
we have = _VP1’~"Pn—1ij+Y(Mn+Mn+1)51
=1
n-1
2 65
—_ypl""’pnlzx +YM£I+YxZn+1 ;an . n ( )
2
= (Z n+1> ( C+ﬂn+l)zn+1‘
. n-1 . . n-1 =1
Y 2 VN a2 LY ~ 2
~ P10 Z Xj+-N, X, ,+_B, Z X; -
Y j=1 4 Y j=1

.2 N u
+ yﬂnxn + xnyn_ T+u + yan+lzn+1£1

3.2. Stability Analysis. ChoosingV =V, +V,, we can obtain

that
7 . n ~
=5 (n+ @)Zh ~VZpy). V< —9yppse-s Puy Z xj +p(M, + M,,,)es + th
=1
(62 ’
For  simplicity, we define p, |=p, 16,1- Y 5 N ( + ) + N
N,_, - B,>0,8, =min{l,/4, p,_|,n+ u}, and then, y ; % Gt ) ¥ (e + B2

J

" (66)
V,< —yp p chz-+yM£2+yfcz
n= 12> Pn b= j n®1 n<n+l _'})dls 5—_d2€ £+'}/L ”8” +Y||P||Clzn+1
Y(S o o2 2 s u 1 2 2 2
-y nj_le,- +Y (Bt Pro-- s Puc) X, + o +y—IPHel’ + g, (xo)llell” + @, (x0) %1%
= 1
v e 7 1+ ) — e Select parameters
n+1<~n+1¢1 y n+l n+l1 —C+/))n+1 +"P||C1 < _Ca,
2
2 an+1 2 (67)
VAi1Zp4181 S YM,ppp €7 + Y4Mn+lzn+1 —d, + (M, + M,,,) + ||p|| +L < —Cp,
2 2
= YM1 € + VP Zpin where C,>0,C,>0 denote Pis--vsPuq =D,
(63)  4,,, =minD,$,,C,,C,, such that
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. " 2 7 n
V< —yDZx -C, Zn+1 YCyllell ——8n<z n+1>
j=1 Y =1
Vd e+ gy (xo)lell” + 9, (xo)I%1 +
< = Dy(yI&l + plel?) - L ,mn I? V%ueuz
2 ~[2 72
+ ¢y (%) llell” + @, (o )I%1° + yh
D . 1) X
< =20y (131? +1elP) + 4 —DO(Z 7192 o))
Y Dy D,
. y 6, X .
I%* - DO<%+ Y Onn1 _M)"x”Z_
Y Dy D,
(68)
Denoting  w(x,) > 1/Dy max{g, (x,), ¢, (xo)}  and
y = max{(—=y*/2 + w(x,))d,.,1/Dy, 0}, then
. D, , . _
V< =2 y(Ial +lel’) + i (69)

Defining yﬁz <D =p,,..., p,;» we can obtain that

; Dy riop2 2
V< = 2y(IXI +lell®) + D. (70)
X, € are bounded. Now, we shall prove by contradiction
that p(¢) is bounded. Assume y (f) is unbounded in [¢,,t 7).
We notice that p(¢)>0, so lim,__, y(t) = +co, and thus,
there exists a finite time T, € [t,, tf), such that V¢t € [T, tf),
and we have

2 2
i T Ons1
( 5 +w(x0)) De s( 5 +w(x0)) Do’

(71)

Integrating both sides of the top equation, when
y = (=y*2 + w(x))d,,,,/Dy> we can obtain

t 2 B
J;l(—%+w(x0))l”)—+oldr
t,
= JTf y(1)dr = y(tf) -y(T,) = +00

s y2 8n+1 s Dé 6n+1
JTl(—2+w(x0))DOdT < J'T1 —7+w(x0) D, dr.

(72)

Since x, is bounded in [t,,¢t f) w(x,) is bounded,
( Y212 + w(x4))9,,,1/DydT < + 00, which is a contradic-
t10n Thus, y () is bounded in [¢,,t f) When y = 0, one has

Mathematical Problems in Engineering

t
JTI p(r)dr = y(tf) -y(T,) = +oo0,

. (73)
J b (2)dr = 0.

T,

These two equations contradict each other. Thus, y () is
bounded in [to-tf).  Integrating V< —Dgy/2y
=2
(%1 + lel? )+yh, we have

D, (! . b
V() -V (0)< —70 Joy(uxu2 +lell*)dr + JO yh' dr,
(74)

namely,

t t
V() <V (0) - % JO y(1%1 +llell?)dr + JO yh'dr. (75)

Because h(t) = w(t)/y™* € L,, I; yﬁ(r)2d1< + 00, Vt
> 0. Because ¢, X € L,, it can be obtained from (19) and (20)
that X,e is bounded. According to Barbalat’s lemma,
lim, , e=0, and lim,_, X% =0.

4. Simulation Results

In this section, we consider a simulation example to prove
that the controller design in this study is effective. Consider
the following three-dimensional uncertain nonholonomic
system with nonvanishing external disturbance:

Xo = Uy + XoXo»
: 2 2
Xy = XUy + Xg|x;|cos” (uy), (76)

X, =u+001x0<= 1}+| 2|> Sm(i)ﬂ.
0

This example shows that the nonlinear uncertainty in
third equation is related to the unknown system state x,, so
that the assumption condition in [23] is not satisfied, and
thus, the given method in that of article is not available to
deal with this model. However, this example satisfies the
given Assumption 1. By designing the controller, execution
simulation algorithm, and choosing parameters u,
=—AoXg =% (g+1),  uy=-29° ~ Yz =p
=0.01,a, =a, =a; = 2,9, =10, ¢ = 100,k = 0.01, we have

9(1 + xo)

( >
3+ 1

zl =0+ xécosz (”o)lC1| -

Oy =u + 0.01x§(|(1| +|(2|> e

cos(t)_ sin (t)
t+1  (t+1)%

ész

21 = Zz+2)’((1 _Z)x
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FIGURE 1: State response curve of the system.
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— Uy (1)
T T T T T T T
L 1 1 1 1 1 1 1 -
0 5 10 15 20 25 30 35 40
T (sec)
— uy (1)

FIGURE 2: Input response curve of the system.
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G=u + 2)’2((1 - 2) + 237
& =2y°(¢ - {) - 100ys,

2, =z, +29°%(¢, - ) - 0.01 %zl,

2, = yz;+29°°(, - ) - 101 %zz -

Lor
Y

. 2)}0.99((1 - () - 2,01%3 - 100yz;,

X5 = 2, (77)

where the initial states are x,=1,x, =2,x,=7,(; =
-1,0,=7,(3=0,{;, =1,{, =1, {3=52,=1,2, =10,24
1,%, =1,%,=10,%; =1, and y = 15, and dynamic gain is
selected as y = —y?/2 + 20x3 (I(;] + |{,]). In Figure 1, the
simulation results are shown. This study presents an output
feedback control scheme that realizes stability control, and
the control inputs u, and u are bounded, as shown in
Figure 2.

5. Conclusion

This study solves the problems of output feedback control
for one type of the nonholonomic system with nonvanishing
external disturbances and nonlinear uncertainties for which
the strong uncertainties are restricted by a generalized lower
triangular linearly growing condition. The system is
reconstructed by introducing a new extended state observer.
The external disturbance is viewed as a general state. An
adjustable varying gain scaling transformation and the ex-
tended state observer are used to carry out output feedback
control and overcome the uncertainties and disturbances.
The output of the system and states of the system go to zero,
and all signals of the closed-loop system are guaranteed to be
bounded. Simulation examples show that the control al-
gorithm is effective. How to reduce the uncertainty and
external disturbance assumptions of the model (1) and make
the types of the models more extensive will be further
considered.
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