

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 25, 2022

Design of a Domain-Specific Language for Material Flow Analysis using Microsoft DSL
tools: An Experience Paper

Zarrin, Bahram; Baumeister, Hubert

Published in:
Proceedings of the 14th Workshop on Domain-Specific Modeling (DSM '14)

Link to article, DOI:
10.1145/2688447.2688452

Publication date:
2014

Link back to DTU Orbit

Citation (APA):
Zarrin, B., & Baumeister, H. (2014). Design of a Domain-Specific Language for Material Flow Analysis using
Microsoft DSL tools: An Experience Paper. In Proceedings of the 14th Workshop on Domain-Specific Modeling
(DSM '14) (pp. 23-28) https://doi.org/10.1145/2688447.2688452

https://doi.org/10.1145/2688447.2688452
https://orbit.dtu.dk/en/publications/fb7909ea-353c-4d6e-87a7-42646e32481d
https://doi.org/10.1145/2688447.2688452

Design of a Domain-Specific Language for Material Flow
Analysis using Microsoft DSL tools: An Experience Paper

Bahram Zarrin
Technical University of Denmark

baza@dtu.dk

Hubert Baumeister
Technical University of Denmark

huba@dtu.dk

Abstract
Material Flow Analysis (MFA) is the procedure of measur-
ing and assessing the mass flows of matter (solid waste, wa-
ter, food...) and substances (carbon, phosphorus ...) within a
process or a system for the period of time. In this paper we
propose a Domain-Specific Language (DSL) to model MFA
in a waste management modeling context. The result is that
we integrate the DSL within a waste management modeling
software called EASETECH and we show how the proposed
DSL allows the domain experts to extend the software with-
out involving of software developers.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Specialized application languages

General Terms Languages, Design

Keywords Domain-specific modeling languages, Material
Flow, MS DSL tools

1. Introduction
Domain-Specific Languages (DSLs) are languages which
are specialized for a specific application domain. In recent
years they have become mostly used to improve the produc-
tivity of software developers and the quality of a software.
In this paper we show another application of them which is
to utilize a DSL by domain experts to extend a software in
order to fulfill new requirements.

EASETECH1 is a novel modeling tool for life-cycle as-
sessment (LCA) within the waste-management domain. The
tool analyses waste flows, environmental emissions and re-
source consumption from waste-management systems and

1 http://www.easetech.dk/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DSM ’14, October 21, 2014, Portland, OR, USA..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2156-3/14/10. . . $15.00.
http://dx.doi.org/10.1145/2688447.2688452

delivers a comprehensive impact assessment in relation to
photochemical ozone formation, ozone depletion, potential
global warming, acidification, nutrient enrichment, etc. [2].
The software employs a model consisting of a set of cata-
logs and material processes in order to describe scenarios of
a solid waste system. A material process in EASETECH can
be either a template material process or a composite material
process based on several of these templates. A combination
of these material processes models a waste scenario.

At the moment the template material processes, which
are the basis and fundamental elements in waste scenarios,
have been implemented in C#. This makes it difficult for
the researchers and domain experts to add a new template
material process to the software. One of the objectives of our
research is to design a domain-specific language for waste-
management modeling in order to describe different aspects
of these waste processes and replace the hard-coded library
of EASETECH with the compiler of this DSL. This allows
the domain experts to extend EASETECH without dealing
with any software-development activity.

In this paper we propose a DSL to describe material
flows within a material process and we implement the DSL
based on Microsoft DSL tools. This paper is organized as
follows: first we have a brief introduction to Material-Flow
Analysis in Sect. 2, then we design the proposed DSL and
explain its semantics in Sect. 3. Afterwards we discuss the
implementation of the DSL, related technologies, simulation
and integration of the DSL in EASETECH in Sect. 4. We
consider the related work in Sect. 5 and conclude our work
in Sect. 7.

2. Material-Flow Analysis
The objective of using material-flow analysis (MFA) is to
evaluate the totality and consistency of material flows be-
tween inputs and outputs of a certain system or process.
One of the methods used commonly to do MFA is material-
flow networks (MFNs) which were introduced many years
ago and have been used regularly for Life Cycle Assessment
(LCA)[3]. A material-flow network for a process can be de-
fined as a set of inputs, outputs, transformers and transitions
and it can be modeled as a directed graph such that inputs,

Process Flow

+name: String

MaterialElement

+deg : Double

Operator

Input

Output +value : Double

MaterialFlow

ResiduesFlow

HubDistributor

+sn : String

SubstanceDistributor

+fn : String

FractionDistributor

SubstanceHub

FractionHub

Element

target

source

source

target

hb

hbsd

fd

0..*

0..*

0..*

0..*

0..*

0..*

0..*

1

1

1

1

1

0..1

0..1

Figure 1. Meta Model of the Material Process model.

outputs and transformers are the nodes and transitions are its
edges. Transformers can change the material specifications,
while transitions only transfer a specific amount of a mate-
rial from a source node to a target node.

3. Material Flow DSL
The meta-model of the DSL is presented in Fig. 1. The
model is a composite of one or more elements and each el-
ement is either a material element or a flow. Three kinds of
material elements are defined in the model, i.e. inputs, out-
puts, and operators. The model can have one or more in-
puts/outputs which will be mapped to the inputs/outputs of
the material process. Operators are corresponded to material
transformers in MFNs of which they can change the com-
position of the material. Two operators are defined in the
model. The first one is the Distributor, which can be either
a Fraction Distributor (FD) or a Substance Distributor (SD).
The other one is the Hub which can be either a Fraction Dis-
tributor Hub (FH) or a Substance Distributor Hub (SH).

FD operators are defined to extract a specific material
fraction from the given material, while SD operators are
proposed to extract a specific substance from the material.
FD or SD operators can be directly used in a material-flow
model or they can be hosted within a Hub. Hubs (FHs and
SHs) are defined in the meta-model to be used in the material
process wherever multiple substances or fractions are to be
extracted and distributed from the given material.

Flows in the meta-model are corresponded to the material
transitions in MFNs and they connect two elements in the
model and transfer materials from their source elements
to their target elements. Two different types of flows are
defined in the model, i.e. Material Flow (MF) and Residues
Flow (RF). The first flow operator transfers a portion of the
material in the source element to the target element, while

the other flow operator transfers the remaining material of
the source element to the target element.

3.1 Semantics of the Proposed DSL
In order to define a material, we need to define a material
fraction first. To this end, we define FN and SN as a set of
fraction names and substance names which can be used in
material-process object diagrams (they are called catalogs in
EASETECH). Then, based on these, we present the formal
definition of a material fraction and a material accordingly.

A material fraction is defined as f : SN 7→ R, a partial
function from substance names to its relevant amount of
the substance in a fraction. The set of all material fractions
is presented as F and f ∈ F. The following arithmetic
operators are defined over material fractions:

• The addition (+ : F × F → F) operator, merges two
different material fractions.

• The subtraction (− : F × F → F) operator, subtracts a
material fraction from another material fraction.

• The multiplication (∗ : F × R → F) operator, rescales a
material fraction.

• The filter operator (|: F×SN → F), filters the substances
of a material fraction. The result is a material fraction
with only one substance which has a same name as the
right operand.

Based on the definition, a material is defined as m :
FN 7→ F, a partial function from fraction names to material
fractions. The set of all materials is presented as M and
m ∈ M. The following arithmetic operators are defined on
material objects:

• The addition (+ : M × M → M) and the subtraction
(− : M×M → M) operators are respectively defined over
materials to merge two different materials or subtract a
material from another material. In the same way,

• The multiplication (∗ : M×R→ M) operator overloaded
to allow for rescaling a material.

• The filter operator (|: M × SN → M, |: M × FN → M) is
similarly defined in order to create filters on fractions or
substances of a material. This operator is used to extract
specific substances or specific fractions from a material.

3.1.1 Formal Semantics of Material Process
A formal definition of a material process (P) is presented as
follows:

P = (I,T,E,O) (1)

Where I and O is the set of inputs and the set of outputs.
T is the set of transition elements which can change the
quantity of a material. E is the set of transformer elements
which can change the content of a material.

Transition elements are directed arcs and they connect the
transformers to each other and transfer materials between

them. We identify the two ends of a transition t ∈ T by
writing ↑ t as the source of the transition and ↓ t as the target
of transition, with the understanding that material moves
from ↑ t to ↓ t, ↑ t ∈ I ∪ E, ↓ t ∈ E ∪ O and ↑ t 6=↓ t.

According to the meta-model defined for the DSL, differ-
ent material transformers are defined. Therefore, the set E of
transformers is the disjoint union (denoted]) of four sets:
the set EFD of fraction distributors, the set ESD of substance
distributors, the set EFH of fraction hubs, and the set ESH of
substance hubs:

E = EFH] ESH] EFD] ESD (2)

The following functions are defined in order to assign
different attributes to the different kinds of transformers:
deg : E → R , is a function that assigns a real as degradation
value to e ∈ E.
sn : ESD → SN, is a function that assigns a substance name
to each substance distributor in ESD.
fn : EFD → FN, is a function that assigns a fraction name to
each fraction distributor in EFD.
hb : EFD] ESD 7→ FH] SH, is a partial function which
specifies the hub that uses the given distributor as a port.
sd : ESH → P(ESD), is a function that assigns a set of
substance distributors as ports to each substance hub in ESH.
fd : EFH → P(EFD), is a function that assigns a set of
fraction distributors as ports to each fraction hub in EFH.

According to the meta-model, the set T of transitions is
the disjoint union of two sets: the set TMF of material flows,
and the set TRF of residues flows:

T = TMF] TRF (3)

A function, value : TMF → R, is defined to assign a
real value as the amount to the material flows. This value
specifies the percentage amount of the material which the
flow transfers from its source to its target. This value is
undefined for residues flows.

In order to give semantics to the DSL, the following
semantic functions for each syntactic category in process P
for given material input I0 : I → M are defined as follows:

• J KI : I × (I → M) → M, determines the material value
for an input element.

• J KO : O× (I → M)→ M, determines the material value
for an output element.

• J KE : E × (I → M) → M, calculates the transformed
material by a transformer.

• J KT : T × (I → M) → M, calculates the material value
transferred by a material transition.

Two more semantic functions J KEin and J KEout need to be
defined in order to calculate J KE . The first function evaluates
the total material transferred into a material transformer by
a set of transitions. The second function calculates the total
material transferred out from a transformer through a set of

transitions. Based on these semantic functions, we can define
the semantic equations as follows:

For each input (i ∈ I), the evaluated material is the value
assigned to i in the given material input.

JiKI(I0) = I0(i) (4)

For the material transitions MF, the value is the percent-
age of the transformed material specified by its source ele-
ment, while this value for the residues flows RF is the sub-
traction of the transformed material and the total material
output of its source:

JmfKT (I0) =
value(mf)

100 ∗

{
J↑mfKI(I0), ↑mf ∈ I
J↑mfKE(I0), ↑mf ∈ E

JrfKT (I0) = J↑ rfKE(I0)− J↑ rfKEout(I0)
(5)

The total material input, J KEin, for each material trans-
former, if the transformer is a distributor and it belongs to
a hub, is the material value of its hub J KE , otherwise it is the
sum of all the material transferred to the transformer by the
transitions.

JeKEin(I0) =

Jhb(e)KE(I0), e ∈ EFD ∪ ESD ∧ hb(e) 6= ⊥∑
t∈T∧↓t=e

JtKT (I0), else

(6)
The total material output, J KEout, for each fraction distrib-

utor and substance distributor is defined as follows:

JfdKEout(I0) =
∑

t∈T∧↑t=fd
JtKT (I0)

JsdKEout(I0) =
∑

t∈T∧↑t=sd
JtKT (I0)

(7)

The total material output, J KEout, for each fraction hub
or substance hub is the sum of material outputs of their
distributors;

JfhKEout(I0) =
∑

fd∈fd(fh)
JfdKEout(I0)

JshKEout(I0) =
∑

sd∈sd(sh)
JsdKEout(I0)

(8)

The semantic equations for the material transformers are
defined as follows:

JfhKE(I0) =
100−deg(fh)

100 JfhKEin(I0)
JfdKE(I0) =

100−deg(fd)
100 JfdKEin(I0) |fn(fd)

JshKE(I0) =
100−deg(sh)

100 JshKEin(I0)
JsdKE(I0) =

100−deg(sd)
100 JsdKEin(I0) |sn(sd)

(9)

The semantic function for output elements is defined as
follows:

JoKO(I0) =
∑

t∈T∧↓t=o

JtKT (I0) (10)

Based on these semantics functions, we can give seman-
tics to a material process P as well. Since the purpose of
the material process is to calculate the outputs of the process
based on given inputs, then the semantic function for a pro-
cess P and given input, I0 : I → M, is defined as follows:

JPK : P× (I → M)→ (O→ M)
JPK(I0) = λo : O.JoKO(I0)

(11)

4. Implementation
The DSL definition diagram for the proposed DSL is pre-
sented in Fig. 2. A domain class Material Process is used as
the root element of the diagram which represents the model.
Two abstract domain classes Element and MaterialElement
derived from Element are used in the model as the base
classes. The Element class is used as the base class for all
of the elements and the MaterialElement class is the base
class for all of the material elements in the model.

An abstract domain class MaterialOperator derived from
MaterialElement is defined as the base class for all of the
operators that can be defined for a material process. Another
abstract domain class FlowOperator is added to the diagram
as the base class for all of the material flow operators that
are dealing with material transformation. This class is de-
rived from MaterialOperator. Two abstract domain classes
Hub and Distributor inherited from MaterialOperator are
defined in the model as the base class for Hub and Distribu-
tor operators.

For each type of the hub and distributor operators, a
related domain class derived from the related abstract class is
defined. Finally, for all of the non-abstract domain classes,
an embedding relationship is defined between the domain
class and MaterialProcess. A shape class is also defined for
each of them and mapped to the domain class to describe the
concrete syntax of the operator.

For material-transformation flow between the material
operators, two reference relationships are defined. The first
is defined between Element and itself, which allows each
element of the diagram to be linked to the other elements.
This reference relationship is called MaterialFlow and is de-
scribed by means of a domain relationship class. The rela-
tionship class has one property called value which speci-
fies the percentage amount of the material that should be
transferred from the source to the target of the relation.
The other reference relationship ResiduesFlow is defined
between FlowOperator and Element, which allows one to
transfer the residues material from a flow operator to any el-
ement in the diagram. To represent the links between the el-
ements in the model diagram, for each reference relationship
in the model a connector shape class is created and mapped
to the relation.

4.1 Semantics of the Proposed DSL
In order to implement the semantics explained in Sect. 3.1,
The generated codes for the proposed DSL are extended. To

achieve this goal, a material property is added to the Ma-
terialElement domain class which is the base class for all
the material elements of the model. This property is defined
as a calculated property for the domain class, which means
that the DSL designer will generate a GetMaterialVlaue in
the generated code for the domain class and expects this
method to be implemented in the related partial class. A par-
tial class is created for each domain class in the DSL def-
inition, and since they are inherited from MaterialElement,
they can override GetMaterialVlaue with their own calcula-
tion according to the semantic functions J KI , J KO and J KE
explained in Sect. 3.1.

4.2 Simulation
To enable the user to generate material in order to simulate
the model, two properties are added to the MaterialInput
domain class. The first property is the amount of the material
that should be generated, and the second property is a list
of the fractions which should be included in the material
composition. On the basis of these properties, a material
will be generated and considered as the process input for the
simulation.

Two different views are created to visualize the material
composition and material generation. Another view called
MaterialView is created, which surrounds the other views
and swaps the views based on the selected element in the
diagram. If the selected element is a material input element,
it shows the material-generation view, otherwise it shows
the material-composition view. In order to show the mate-
rial view for the selected element in Visual Studio, Mate-
rialFlowWindow class is defined. This class creates a tool
window in Visual Studio IDE and shows the MaterialView
whenever a DSL diagram is loaded in Visual Studio.

4.3 Code Generation
In order to make the generated code simple and reusable,
some base classes are defined in a new assembly called
EASETECH.DSL.Lib. These classes are TCMaterialPro-
cessTemplate, MaterialProcessTemplate and MaterialOut-
putTemplate, and are derived from the related classes in
EASETECH. They are implementing some basic functional-
ities required by the generated classes. To generate a material
process template, two T4 templates are defined on the basis
of an instance of the proposed model. One of them, called
TCTableCodeGenrator, is used to generate a class based on
TCMaterialProcessTemplate that is responsible for mate-
rial calculation of the material-process outputs. The other
template, which is called MaterialProcessCodeGenerator,
is used to generate a material-process class based on Ma-
terialProcessTemplate. Whenever an instance of the DSL
is compiled, an assembly will be generated to be used in
EASETECH.

In order to generate material-calculation code, a T4 tem-
plate is defined for each domain class in the DSL defini-
tion. The template generates a class for each element in the

FlowConnector
Connector

EASETECHDiagram
Diagram

MaterialInputShape
GeometryShape

MaterialOutputShape
GeometryShape

FractionHubShape
GeometryShape

SubstanceHubShape
GeometryShape

FractionDistributorPort
Port

SubstanceDistributorPort
Port

ResiduesFlowConnector
Connector

FractionDistributorShape
GeometryShape

SubstanceDistributorShape
GeometryShape

ElementShape
GeometryShape

Domain Properties

DecoratorsDomainRelationship

MaterialProcessHasMaterialInputs

DomainRelationship

MaterialProcessHasMaterialOutputs

DomainRelationship

FractionHubHasFractionDistributors

DomainRelationship

SubstanceHubHasSubstanceDistributors

DomainRelationship

MaterialProcessHasFractionHubs

DomainRelationship

MaterialProcessHasSubstanceHubs

DomainRelationship

MaterialFlow

DomainRelationship

ResiduesFlow

DomainRelationship

MaterialProcessHasFractionDistributors

DomainRelationship

MaterialProcessHasSubstanceDistributors

MaterialInput
DomainClass

MaterialOutput
DomainClass

FractionDistributor
DomainClass

SubstanceDistributor
DomainClass

MaterialInput
DomainClass

MaterialOutput
DomainClass

FractionDistributor
DomainClass

SubstanceDistributor
DomainClass

FractionHub
DomainClass

SubstanceHub
DomainClass

Element
DomainClass

Element
DomainClass

FractionDistributor
DomainClass

SubstanceDistributor
DomainClass

MaterialProcess
DomainClass

MaterialElement
DomainClass

MaterialOperator
DomainClass

Hub
DomainClass

Distributor
DomainClass

FractionHub
DomainClass

SubstanceHub
DomainClass

Element
DomainClass

FlowOperator
DomainClass

MaterialProcess

0..1

SubstanceDis…

0..*

MaterialProcess

0..1

FractionDistri…

0..*

FlowOperators

0..*

Element

0..1

SourceElements

0..*

TargetElements

0..*

MaterialProcess

1..1

SubstanceHubs

0..*

MaterialProcess

1..1

FractionHubs

0..*

SubstanceHub

0..1

SubstanceDis…

0..*

FractionHub

0..1

FractionDistri…

0..*

MaterialProcess

0..1

MaterialOutp…

0..*

MaterialProcess

0..1

MaterialInputs

0..*

Figure 2. Meta Model of the Material Process model. This diagram is modified in order to fit in one page.

model which has the same type as the domain class of the
T4 template. The template also adds the following func-
tions to the classes; GetMaterialInputs, GetMaterialValue,
GetResiduesMaterial and GetMaterialOutputs. The imple-
mentation and availability of these functions are generated
according to the type of the element and the semantic of the
element, which is explained in Sect. 3.1.

5. Related Work
In recent years, material-flow networks [5] have been known
as one of the appropriate methods of doing MFAs [4]. Differ-
ent tools and approaches have been proposed to model and
simulate MFA within different contexts, and the most rele-
vant of these are mentioned in this section. Umberto was de-
veloped in 1997 as an initial material-flow analysis tool[6].
This tool is one of the powerful material-flow analysis tools
and it provides interfaces to other programs. In 2006, the
Vienna University of Technology developed a freeware soft-
ware for MFA called STAN (short for subSTance flow ANal-
ysis), which supports MFA according to the Austrian Stan-
dard ONORM S 2096 and allows consideration of data un-
certainties [1]. Unlike the mentioned tools, a component-
based approach to MFA is presented in [7] which integrates
material-flow analysis and discrete event simulation into a
component-based framework to ease both model develop-
ment and maintenance.

In comparison of our work with the related work, most of
these approaches offer a generic tool for material-flow anal-
ysis, which has been developed based on non-model-driven
approaches. In contrast, we propose a specific material-flow
analysis tool in the context of waste-management, and we
use a model-driven and language-oriented approach to ad-
dress the problem.

6. Results and Discussions
On the basis of this experience, we found that DSL tools are
mature enough to develop a complete DSL project. VMSDK
provides a special editor to describe a meta-model together
with a graphical notation for a DSL. It generates a strongly
typed implementation of the domain classes for the model,
which runs in a transaction-based store, a model explorer
and a diagram editor, serialization objects which store the
models in XML format, and mechanisms for generating code
or other artifacts from the model by using text templates.

One of the drawbacks of implementing DSLs based on
this framework is the lack of support to formalize the seman-
tic of the DSL, which led us to implement the DSL semantic
in an informal way twice for simulation and code-generation
purposes. This made the semantic verification and mainte-
nance of the DSL more difficult.

The other problem we found in this experience is the vi-
sualization of the meta-model for a DSL which is presented
in Fig. 2. Although the mapping between the abstract syn-
tax and concrete syntax of the DSL is presented well here,

understanding the meta-model of the DSL in this diagram,
compared to the meta-model diagram in EMF (Fig. 1), is
more difficult, especially when the DSL definition is more
complex.

While in other frameworks, like EMF, the meta-model of
a DSL can be reused to design different types of DSL (such
as textual or graphical languages), DSL tools can only be
used to develop graphical languages, and the DSL definition
cannot be reused to develop textual languages.

7. Conclusions
In this work we proposed a Domain-Specific Language for
Material-Flow Analysis with a stand-alone tool support. This
DSL can help researchers to model and simulate material
flows of a material process. We also shared our experience
in developing DSLs with Microsoft DSL tools.

In addition, in this paper we showed that, thanks to DSL
technologies, a software like EASETECH can be extended
with new requirements directly by the domain experts. Be-
fore this, the environmental scientists had to ask the develop-
ers of EASETECH to add new contributions or requirements
to the software. Now, by using this DSL, they will be able to
do it themselves.

References
[1] O. Cencic and H. Rechberger. Material flow analysis with

software STAN. In M. S. E. Andreas Moeller, Bernd Page,
editor, Shaker Verlag, pages 440–447. Shaker Verlag, 2008.

[2] T. Christensen, G. Bhander, H. Lindvall, A. Larsen, T. Fruer-
gaard, A. Damgaard, S. Manfredi, A. Boldrin, C. Riber, and
M. Hauschild. Experience with the use of LCA-modelling
(EASEWASTE) in waste management. Waste Management
and Research, 25:257–262, 2007.

[3] H. Lambrecht and M. Schmidt. Material flow networks as a
means of optimizing production systems. Chemical Engineer-
ing and Technology, 33(Issue 4):610–617, 2010.

[4] H. Lambrecht and M. Zimmermann. Combination of optimiza-
tion methods and material flow analysis for improvement of
operational material use (KOMSA): Concept and its implemen-
tation. In M. S. E. Andreas Moeller, Bernd Page, editor, Shaker
Verlag, pages 310–318. Shaker Verlag, 2008.

[5] L. e. a. Möller A., Stoffstromnetze. In Hilty. Material flow net-
works as a means of optimizing production systems. Informatik
und Umweltschutz, 33(Band 2):610–617, 1994.

[6] H. Schmidt, Möller and Beilschmidt. Environmental mate-
rial flow analysis by network approach. In 11th International
Symposium of the German Society for Computer Science (GI),
pages 768 – 779. Umweltinformatik, 1997.

[7] V. Wohlgemuth, B. Page, and W. Kreutzer. Combining discrete
event simulation and material flow analysis in a component-
based approach to industrial environmental protection. Envi-
ronmental Modelling and Software, 21(11):1607 – 1617, 2006.

	Introduction
	Material-Flow Analysis
	Material Flow DSL
	Semantics of the Proposed DSL
	Formal Semantics of Material Process

	Implementation
	Semantics of the Proposed DSL
	Simulation
	Code Generation

	Related Work
	Results and Discussions
	Conclusions

