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Abstract: In this paper, a flip-flop (FF) that minimizes the transition of internal nodes by using a
dual change-sensing scheme is discussed. Further, in order to reduce power consumption, a new
technique to eliminate short-circuit currents is described. The proposed dual change-sensing FF
(DCSFF) composed of 24T (T: number of transistors) has the lowest dynamic power consumption
among conventional FFs, independent of the data activity ratio. According to the measured results
with a 65 nm CMOS process, the power consumption of DCSFF is reduced by 98% and 32%, when
the data activity is close to 0% and 100%, respectively, compared to that of conventional transmission
gate FF. Further, compared to that of change-sensing FF, the power consumption of DCSFF is reduced
by 26% when the data activity is close to 100%.

Keywords: flip-flop; dual change-sensing flip-flop (DCSFF); internal transitions; ultra low-power
system chip

1. Introduction

The rapid development of CMOS process technology has facilitated the design of
high-performance and highly integrated circuits and systems [1]. Further, it is essential
to apply the CMOS process technology for many kinds of low-power digital basic build-
ing blocks, such as flip-flop (FF), memory, arithmetic logic unit, and so on [2]. Among
them, the design of an FF, which represents the primary synchronous logic component of
system-on-chip frameworks, has been widely studied [3–20]. Figure 1 shows the circuit
diagram of transmission-gate flip-flop (TGFF), which has been widely used in the field
of digital systems [3]. It is composed of conventional 24T (T: number of transistors) and
two latches. When CLK (or CLKa) is high, the first latch at the left side holds the previous
input data. Then, it is transferred to the second latch on the right side when CLK is low. It
means the output, Q, is holding the input data until the next CLK is high. Thus, a positive
edge-triggered data FF is easily obtained with the circuit diagram of TGFF, as shown in
Figure 1. However, TGFF has a high power dissipation due to a large number of comple-
mentary clock nodes. Whenever clock nodes are changed, huge short-circuit currents are
generated at the transistors. Thus, TGFF has a drawback of large power consumption. In
order to overcome the disadvantage of TGFF, an 11T flip-flop shown in Figure 2 has been
reported [4]. While TGFF uses a dual-phase clock, Figure 2 uses only a single-phase clock.
Thus, it is called a true single-phase clock flip-flop (TSPCFF). The TSPCFF has a lower
power consumption due to single-phase clock operations and the use of fewer transistors
compared to TGFF. However, this scheme of TSPCFF undergoes a performance degradation
due to sub-nanometer CMOS technology with a low supply voltage under 1.8 V. Further,
it has many glitches and non-static behaviors, because there are a lot of internal floating
nodes. Even though it has less internal nodes, many internal floating nodes generate huge
short-circuit currents and large power consumption.
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consumption. To minimize those internal transitions of S2CFF, a 24T change-sensing flip-
flop (CSFF) shown in Figure 4 has been proposed [6]. Since the CSFF uses a change-sens-
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this paper. The contents of this paper are as follows. In Section 2, a new FF is described 
and analyzed. The measured results are discussed in Section 3, and the conclusions are 
described in Section 4, respectively. 

Q

CLK CLKb CLKa

CLKb

CLKa

CLKa

CLKb

Data

Local clock buffer

CLKb

CLKa
CLKa

CLKb
1st Latch 2nd Latch

 
Figure 1. Transmission Gate Flip-Flop (TGFF). Figure 1. Transmission Gate Flip-Flop (TGFF).
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To improve the circuit performance at low power supply voltage, a 24T static single-
phase contention-free flip-flop (S2CFF) shown in Figure 3 has been published [5]. The S2CFF
can eliminate many glitches and maintain single-phase clock operation. Thus, the authors
have described that the performance of S2CFF is much better than that of TSPCFF. However,
it is still suffering from high power consumption because the continuous internal transitions
of the node (the red line of net2 in Figure 3) are lastly undergoing. When the input data
is low, the net2 is just following the clock. It means there is high power consumption. To
minimize those internal transitions of S2CFF, a 24T change-sensing flip-flop (CSFF) shown
in Figure 4 has been proposed [6]. Since the CSFF uses a change-sensing scheme, it can
reduce the internal transitions. However, the power consumption might be significantly
increased if the short circuit currents are generated at the node (the blue line of DNCS in
Figure 4). The timing diagram of internal node (net2) transitions is shown in Figure 5. The
timing diagram of CSFF is also shown in Figure 5. When the input data is high, the CS
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node (the red line in Figure 4) fluctuates. It means that huge power consumption can be
generated at the high data activity ratio.
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In order to reduce power consumption with a wide dynamic voltage range, a flip-flop
should satisfy the design requirements as follows. (1) Static operation: dynamic nodes are
susceptible to process, voltage, and temperature variations at low power supply voltages.
(2) contention-free transitions: ratioed logics may have serious unstable conditions with
the wide range voltage swing. (3) Single-phase clocking: it avoids toggling the internal
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clock inverters and corresponding power penalty. (4) Small chip area: the chip size of the
new FF should be smaller than that of conventional FFs. Even though various kinds of
FFs to satisfy the requirements have been reported [8–16], a new scheme is proposed in
this paper. The contents of this paper are as follows. In Section 2, a new FF is described
and analyzed. The measured results are discussed in Section 3, and the conclusions are
described in Section 4, respectively.

2. Proposed Dual Change-Sensing Flip-Flop (DCSFF)

Figure 6 shows the circuit diagram of the proposed dual change-sensing flip-flop
(DCSFF). The aim of DCSFF is to minimize the power consumption by the reduction of
internal transitions and the elimination of short-circuit currents that generate glitches in
CSFF. Notably, since the continuous internal transitions are caused by CLK without the
influence of output node, Q of FFs, those redundant transitions result in an increase of
dynamic power consumption. The timing diagram which demonstrates the redundant
transitions of conventional FFs is shown in Figure 5. The TGFF shows continuous redundant
transitions due to the local clock buffer (CLKa and CLKb), whereas net2 of S2CFF involves
continuous redundant transitions only when the data are “0”. The CS nodes of CSFF
shown in Figure 4 reduce the redundant transitions compared to those of S2CFF because
the redundant transitions only occur at the data transitions. To significantly minimize
those redundant transitions, the proposed DCSFF divides CS nodes into two nodes (DCS-1
and DCS-2). DCS-1 and DCS-2 replace CS nodes when the data are rising and falling,
respectively. The redundant transitions of CSFF and DCSFF generated by the data and CLK
have four states shown in Figure 7. DCS-1 can eliminate the redundant transition when
the input data are rising (Data = “0” to “1”). Compared to the conventional FFs, therefore,
the proposed DCSFF has the least redundant transitions, which results in the minimum
dynamic power consumption.
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The left side of Figure 8a shows the process of glitch generation due to the short-circuit
current in the CSFF. When the CLK maintains the “1” state, the CS node is discharged to
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detect the input data rising. As the input data changes “0” to “1”, the discharge path of
DNCS is generated. Thus, a huge short-circuit current is generated with the glitch of DNCS,
although the CS is discharged before the DNCS is discharged to maintain a value of “1”.
Further, the DNCS should not retain the “1” state to eliminate the mechanism by which
the short-circuit current in the CSFF is generated. On the contrary, the operation principle
of the proposed DCSFF is shown in Figure 8b. The DNDCS of DCSFF is a similar node
to the DNCS. In the same way, the DCSFF allows DCS-1 to hold “0”, even if the DNDCS
is discharged without maintaining “1”. Therefore, no additional operation is required to
maintain “1” in the DCSFF. As shown in Figure 8c, while DNCS has a serious short-circuit
current, the DNDCS does not generate a short-circuit current, even if CLK remains in the
“1” state when data are rising with DCS-1. Therefore, the proposed DCSFF reduces the
dynamic power consumption by half compared to CSFF. Furthermore, the proposed DCSFF
consumes less power than that of CSFF when the data activity ratio is high.
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3. Measured Results

In order to implement an accurate comparison between conventional FFs and the pro-
posed DCSFF, efficient on-chip testing circuits to measure many performance parameters
should be considered. For example, the considered parameters are the power consumption,
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setup time, hold time, C-Q delay, data activity factor, etc. The measurement blocks are
designed to realize the on-chip testing of each parameter. The setup and hold time measure-
ment block is shown in Figure 9, which consists of a delay chain and an external monitoring
block to encode the outputs and predict the internal skews [17]. Figure 10 shows the C-Q
delay measurement block [18–20]. It has a ring oscillator structure, and the C-Q delay can
be measured when we consider the difference in the frequency between the device under
test (DUT) and reference rings. Figure 11 shows the power consumption measurement
block. For the power consumption measurement block, the data activity factor is designed
to be regulated. The initial external patterns are applied to the DUT periodically with a
constant pulse signal. The data activity can be adjusted to range from 0% to 100% in 10%
intervals.
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leakage) because the drastic reduction of internal transition nodes is available. Thus, the 
CSFF and DCSFF have low absolute power consumption, even though the TGFF and 
S2CFF have a large power consumption when the data activity ratio is low. At the data 
activity ratio of 0%, for example, the power consumption of DCSFF is smaller by 94% than 
that of S2CFF from Figure 13a,b. Further, at the data activity ratio of 20%, for example, the 
power consumption of DCSFF is smaller by 78% than that of S2CFF from Figure 13a,b. By 
the way, since the CSFF is more sensitive to the data activity ratio than that of DCSFF, the 

Figure 11. Block Diagram of Power Measurement.

The layout drawing of the fabricated chip and testing PCB is shown in Figure 12. The
proposed DCSFF has been fabricated with a Samsung 65-nm CMOS process with TGFF,
S2CFF, and CSFF. All of them have been measured on the same chip. The setup and hold
time measurement block shown in Figure 9 is placed at the right top side of Figure 12a.
C-Q delay measurement block shown in Figure 10 is placed at the left top side of Figure 12a.
Finally, the power measurement block shown in Figure 11 is placed at the left middle side
of Figure 12a. Each block has the conventional FFs and the proposed DCSFF. The testing
printed circuit board (PCB) with a fabricated chip is shown in Figure 12b.
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Figure 12. (a) Chip Layout; (b) Testing PCB with a Fabricated Chip.

Figure 13 shows the measured power consumption, according to the increase of data
activity ratio from 0% to 100%. The power consumptions of each FF have been measured
under two conditions: (a) 1.2 V/100 MHz and (b) 0.5 V/10 MHz. In terms of data activity
ratios, the CSFF and DCSFF almost do not consume power at 0% data activity ratio (=no
leakage) because the drastic reduction of internal transition nodes is available. Thus, the
CSFF and DCSFF have low absolute power consumption, even though the TGFF and S2CFF
have a large power consumption when the data activity ratio is low. At the data activity
ratio of 0%, for example, the power consumption of DCSFF is smaller by 94% than that of
S2CFF from Figure 13a,b. Further, at the data activity ratio of 20%, for example, the power
consumption of DCSFF is smaller by 78% than that of S2CFF from Figure 13a,b. By the way,
since the CSFF is more sensitive to the data activity ratio than that of DCSFF, the slope of
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power consumption of CSFF is steeper by about 26% than that of DCSFF. When the data
activity is 20%, the DCSFF has a 22.1% and 22% lower power consumption at 1.2 V/100
MHz and 0.5 V/10 MHz, respectively, compared to the CSFF. When the data activity is
100%, the power consumption of DCSFF is smaller by 26% than that of the CSFF.
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Figure 13. Measured Power Consumption. (a) 1.2 V Supply and 100 MHz Clock (b) 0.5 V Supply and
10 MHz Clock.

However, the slope of power consumption of CSFF and DCSFF is two or three times
steeper than that of TGFF and S2CFF, according to the increase of data activity ratios. At
the data activity ratio of 100%, the power consumption of CSFF is bigger by 20% than that
of S2CFF, and smaller by 15% than that of TGFF. However, the power consumption of the
proposed DCSFF is always smaller than that of TGFF, S2CFF, and CSFF. Figure 14 shows
the comparison data of the active energy consumption at the data activity ratio of 100%.
The active energy of DCSFF is reduced by 35.7% and 26.6% compared to that of the TGFF
and CSFF, respectively. Further, the active energy consumption of DCSFF is smaller by 11%
than that of S2CFF. Therefore, the proposed DCSFF has the lowest power consumption
among other conventional ones.
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Table 1 shows the measurement comparison table between the proposed DCSFF and
other FFs. Since the proposed DCSFF is contention-free and composed of 24 transistors
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with a single phase clock, it is easy to design a circuit diagram and a layout drawing. When
the layout size of the TGFF is normalized to 1, the area is increased by 5% for S2CFF, by
13% for CSFF, and by only 4% for DCSFF. It means the layout size of DCSFF is smaller
by 8% than that of CSFF. The measured C-Q delay of DCSFF is 112.7 pico-seconds, which
is the shortest among other FFs. However, the measured setup time and hold time is
216 pico-seconds and 49 pico-seconds, respectively. It means the proposed DCSFF has
a disadvantage from the viewpoint of operating speed. At 100 MHz clock with 1.2 V
power supply, the measured power consumption is 0.37 µW and 1.54 µW at the activity
ratio of 20% and 100%, respectively. At 10 MHz clock with a 0.5 V power supply, the
measured power consumption is 0.013 µW and 0.048 µW at the activity ratio of 20% and
100%, respectively. Further, the measured leakage power consumption is only 0.084 µW at
a 1.2 V power supply. It means, in terms of power consumption, the proposed DCSFF has
an excellent advantage compared to that of other ones. Therefore, the proposed DCSFF is
suitable for ultra-low power system chips.

Table 1. Performance Comparison Table between DCSFF and Other Ones.

Performance DCSFF TGFF [3] SSCFF [5] CSFF [6]

Contention-free YES YES YES NO
Number of Transistor 24 24 24 24

Single Phase Clock YES NO YES YES
Layout Size (relative size) 1.04 1 1.05 1.13

Measured C-Q Delay @1.2 V (ps) 112.7 150.6 140.6 128.9
Measured Setup Time @1.2 V (ps) 216 165 186 197
Measured Hold Time @1.2 V (ps) 49 55 46 34

Measured Power @ 1.2 V, 100 MHz,
20%/100% (µW) 0.37/1.54 1.72/2.39 1.49/1.69 0.48/2.09

Measured Power @ 0.5 V, 10 MHz,
20%/100% (µW) 0.013/0.048 0.058/0.075 0.051/0.053 0.016/0.066

Measured Leakage@1.2 V (µW) 0.084 1.555 1.435 0.079

4. Conclusions

In this paper, the design of a dual change-sensing flip-flop (DCSFF) to reduce dynamic
power consumption and short circuit currents was described. Since the DCSFF has min-
imized the internal transition nodes shown in TGFF and SSCFF, there was no dynamic
power consumption when the data activity was 0%. In addition, we proposed a new
technique where a node to detect data changes in the CSFF has been separated into DCS-1
node and DCS-2 node, respectively. It reduced the internal transitions to detect the low
to high of the data signal. At the same time, the glitch generated from the CSFF has been
removed to reduce short circuit currents. Therefore, the dynamic power consumption and
short-circuit currents of DCSFF have been drastically reduced. Finally, DCSFF had the
lowest power consumption compared to other FFs in all sections of data activity. We expect
that the proposed DCSFF could play a significant role in developing future ultra-low-power
systems.
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