
476 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 4, DECEMBER 2003

Design of a Fault Tolerant Solid State Mass Memory
Gian Carlo Cardarilli, Member, IEEE, Alessandro Leandri, Panfilo Marinucci, Marco Ottavi, Salvatore Pontarelli,

Marco Re, Member, IEEE, and Adelio Salsano, Member, IEEE

Abstract—This paper describes a novel architecture of fault
tolerant Solid State Mass Memory (SSMM) for satellite applica-
tions. Mass memories with low-latency time, high throughput,
and storage capabilities cannot be easily implemented using
space qualified components, due to the inevitable technological
delay of these kind of components. For this reason, the choice of
Commercial Off The Shelf (COTS) components is mandatory for
this application. Therefore, the design of an electronic system for
space applications, based on commercial components, must match
the reliability requirements using system level methodologies
[1], [2]. In the proposed architecture error-correcting codes are
used to strengthen the commercial Dynamic Random Access
Memory (DRAM) chips, while the system controller is developed
by applying fault tolerant design solutions. The main features of
the SSMM are the dynamic reconfiguration capability, and the
high performances which can be gracefully reduced in case of
permanent faults, maintaining part of the system functionality.

This paper shows the system design methodology, the architec-
ture, and the simulation results of the SSMM. The properties of the
building blocks are described in detail both in their functionality
and fault tolerant capabilities. A detailed analysis of the system
reliability and data integrity is reported. The graceful degrada-
tion capability of our system allows different levels of acceptable
performances, in terms of active I/O link Interfaces and storage
capability. The results also show that the overall reliability of the
SSMM is almost the same using different RS coding schemes, al-
lowing a dynamic reconfiguration of the coding to reduce the la-
tency (shorter codewords), or to improve the data integrity (longer
codewords). The use of a scrubbing technique can be useful if a
high SEU rate is expected, or if the data must be stored for a long
period in the SSMM.

The reported simulations show the behavior of the SSMM in
presence of permanent and transient faults. In fact, we show that
the SCU is able to recover from transient faults. On the other hand,
using a spare microcontroller also hard faults can be tolerated. The
distributed file system confines the unrecoverable fault effects only
in a single I/O Interface. In this way, the SSMM maintains its capa-
bility to store and read data. The proposed system allows obtaining
SSMM characterized by high reliability and high speed due the in-
trinsic parallelism of the switching matrix.

Index Terms—Codes, memory architecture, redundancy, self
checking, solid state mass memory, SSMM.

ACRONYMS1

EDAC Error Detection And Correction

IMAM Independent Memory Array Module

MCM Multi Chip Module

Manuscript received January 1, 2002; revised March 1, 2003.
G. C. Cardarilli, A. Leandri, M. Ottavi, S. Pontarelli, M. Re, and A. Salsano

are with the Department of Electronic Engineering University of Rome
“Tor Vergata”, Italy (e-mail: g.cardarilli@ieee.org, marco.re@ieee.org,
M.ottavi@uniroma2.it, pontarelli@uniroma2.it, salsano@uniroma2.it).

P. Marinucci is with Consorzio Ulisse (e-mail: panfilo@ing.univaq.it).
Digital Object Identifier 10.1109/TR.2003.821938

1The singular and plural of an acronym are always spelled the same.

MKU Memory Kernel Unit

SCU System Control Unit

SSMM Solid State Mass Memory

NOMENCLATURE

BER Bit Error Rate

LT Latency Time

MTTF Mean Time To Failure

MTTR Mean Time To Repair

R(t) Reliability function

SER Symbol Error Rate

I. INTRODUCTION

T
HE DESIGN of electronic systems for space applications

must consider several problems related to the harsh envi-

ronment in which they operate. In fact, in the space environ-

ment the electronic components are stressed by a large number

of physical phenomena, like mechanical stresses, ionizing radi-

ations and critical thermal conditions. To face these specific ap-

plication constraints, the typical approach has been the develop-

ment of space qualified electronic devices based on special and

expensive technology processes. The use of such components

implies some important drawbacks such as the high cost and

the low performance available compared to the Commercial Off

The Shelf (COTS) components [3]. Therefore, the design of an

electronic system for space applications using commercial com-

ponents must fulfill the reliability requirements following suit-

able system level methodologies. A typical application, where

this approach is exploited, is the design of space-borne mass

memories. In fact, the rapid growth in capacity of semiconductor

memory devices permits the development of solid-state mass

memories, which are competitive with respect to tape recorders

due to higher reliability, comparable density and better perfor-

mances. Solid-state mass memories have no moving parts and

their operational flexibility has made them suitable for many

applications. Moreover, the requirements of low latency time,

high throughput, and storage capabilities, cannot be satisfied by

space qualified components and the choice of COTS is manda-

tory. The SSMM presented in this paper is based on COTS com-

ponents. In the proposed architecture a number of SpaceWire

data links [4] access the memory banks through a cross-point

switch matrix [5]. This solution is convenient with respect to a

bus based architecture in terms of bandwidth, latency and recon-

figuration capability. In fact, the failure of a connection does not

compromise the entire connection of the network but only the

access to a specific node. Moreover, to improve both the fault

tolerance and the memory usage, we implemented a distributed

file system on the SSMM. Most of the functions performed by

the file system are hardware based and handled locally on each

0018-9529/03$17.00 © 2003 IEEE

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

CARDARILLI et al.: DESIGN OF A FAULT TOLERANT SSMM 477

memory module. This paper is organized as follows: Section II

illustrates the used design methodology. Section III describes

in details the SSMM architecture, while reliability evaluation

and the results of system simulation are given, respectively, in

Section IV and Section V.

II. DESIGN METHODOLOGY OF FAULT TOLERANT SYSTEMS

This section describes the design methodology followed for

the implementation of the fault-tolerant SSMM. We focus our

attention on the typical fault set defined for the space environ-

ment the Single Event Upset (SEU) faults, caused by ion-

izing particles, and stuck-at faults, related to the Total Ionizing

Dose (TID) [6], [7]. The design of fault tolerant systems can be

made in different ways, depending on the number of constraints

which the implementation must fulfill. The design is basically

composed of two main tasks which must be interdependent:

• matching of the specs in terms of performance and func-

tionality, and

• application of the suitable design strategies for obtaining

the requested reliability.

The fault tolerance design methodologies applied, when COTS

are used, are basically two: fault masking, e.g., Triple Modular

Redundancy (TMR) [8] or, when the application needs low

hardware overhead, fault detection and dynamic system re-

covery techniques. The latter method satisfies the requirement

of a lower hardware redundancy and lower power consumption,

with respect to TMR technique, but, on the other hand, needs

reconfiguration algorithms (software redundancy) and, when a

fault occurs, implies an out-of-order time interval related to the

Mean Time to Repair (MTTR). Moreover, the use of dynamic

reconfiguration algorithms allows a graceful degradation of

the system. In fact, after the detection of an unrecoverable

fault, the system can be modified to keep it working, even

if its performance or functionalities are generally reduced.

This methodology can be easily applied for the realization of

SSMM for space applications, where the constraints on power

and weight are quite relevant and the system can tolerate the

presence of an out-of-order time when time-critical opera-

tions are not performed. A hierarchical fault tolerant design

methodology has been used achieving dynamic reconfiguration

and graceful degradation of the system. In fact, at each level

of the hierarchy, a module controller can be instantiated to

check the local functionality. The module controllers must be

designed by using high reliability techniques, avoiding single

points of failure because the reliability of the whole system

could be compromised in case of faults. The implementation of

subsystems with adequate levels of reliability can be made on

reprogrammable devices, like Field Programmable Gate Array

(FPGA) or System on Chip (SoC), which allow flexible recon-

figuration methodologies [9], [10]. Moreover, reprogrammable

devices allow the fast prototyping of the system reducing the

nonrecurrent costs with respect to an ASIC implementation.

System decomposition into self-checking functional blocks

allows a fine-grained fault localization and isolation with

system level procedures. This fine-grained fault localization

allows us to reduce the MTTR in case of recoverable faults,

and to improve the graceful degradation of the system in case

Fig. 1. External SSMM connections.

of unrecoverable faults. In fact, increasing the granularity of

fault detection, only a few logic resources or functional blocks

can be put off-line.

III. ARCHITECTURE DESCRIPTION

In this section, a detailed description of the SSMM archi-

tecture is presented. This architecture has been designed fol-

lowing the approach described in Section II. At the top level,

the SSMM can be viewed as a black box connected to dif-

ferent satellite apparatuses (Fig. 1). A number of bi-directional

serial links are used for high-speed data exchange. For these

links the Spacewire (IEEE 1355 DS-DE) protocol [11] has been

chosen. In fact, Spacewire is planned to become a European

Space Agency (ESA) standard for on-board data-handling in the

near future and is expected to be widely used in future Euro-

pean missions [4], [12]. Each Spacewire link carries informa-

tion (data or commands) at about 100 Mbit/sec over distances

of up to 10m. Moreover, the SSMM is connected with a MIL

1553 bus, which is widely used in satellite platforms due to its

physical redundancy (dual twisted pair bus structure) [13]. Two

main units compose the SSMM architecture (Fig. 2):

1) The Memory Kernel Unit (MKU) manages the bi-direc-

tional data flow between users, & memory chips.

2) The System Control Unit (SCU) manages the memory

resources, and provides system level reconfiguration.

The required reliability of the SSMM system is achieved both

by means of architectural redundancies, and by introducing

Error Detection And Correction Codes (EDAC), granting the

data integrity.

In (Fig. 3), for each unit are indicated the composing subunits

and in the bottom row, the adopted fault tolerant technique.

In the following pages each block of the architecture will be

described.

A. Memory Kernel Unit: General Description

As shown in Fig. 2 the Memory Kernel Unit is composed of

four functional modules:

1) Independent Memory Array Modules (IMAM) (see

Section III-A-I),

2) Routing Module (see Section III-A-II),

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

478 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 4, DECEMBER 2003

Fig. 2. SSMM architecture.

Fig. 3. Fault tolerance techniques.

3) I/O Link Interfaces (see Section III-A-III), and

4) I/O Memory Interfaces (see Section III-A-IV).

The memory kernel unit under the SCU control provides all

the resources for the implementation of a file system on the

set of SDRAM modules. The I/O Interfaces are divided into

two groups: I/O Link Interfaces and I/O Memory Interfaces.

The I/O Memory Interfaces handle the IMAM file system,

allowing basic operations like file read/write, delete, format

etc. The I/O Link Interfaces are the front end of the system,

providing a bi-directional transport of data and messages. The

packet routing control and the dynamic reconfiguration of the

system in case of faults are handled by exploiting the HW/SW

interaction between these interfaces and the SCU. Once a

connection between two interfaces is established, the data

flow control is achieved through full handshake. The Routing

Module is the central switch which interconnects the users (I/O

Link Interface) with the memory modules. All I/O Link Inter-

face and Memory Interface modules are connected to the SCU

through a message bus (MsgBus) which allows communication

of either the detection of a fault, or the necessary messages

to operate the packet routing control (Fig. 2). Each module

has been developed using different fault tolerant methodolo-

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

CARDARILLI et al.: DESIGN OF A FAULT TOLERANT SSMM 479

Fig. 4. Memory array architecture.

gies, depending on the final reliability requirements and the

functionalities performed. These choices will be described in

Sections III-A-I–IV together with a detailed description of the

modules.

1) Independent Memory Array Module (IMAM): The design

of the memory array with COTS RAM chips (DRAM) requires

an accurate characterization of the used components in the en-

vironment in which they will operate. The effects of ionizing

radiations on DRAM memory chips can be widely found in lit-

erature [3], [15], [16]. As we will show in Section IV, the appli-

cation of error correcting codes strengthen the IMAM both in

terms of reliability and data integrity.

Each IMAM module is composed of

• a Dynamic Random Access Memory (SDRAM) bank

(composed of several COTS chips or MCMs),

• a Control circuitry that interfaces the memory bank to the

other components of the IMAM module, and

• a Reed-Solomon (RS) coder-decoder which adds redun-

dancy to the data stored into the SDRAM.

The IMAM architecture is shown in Fig. 4.

The SDRAM packages are arranged on 4 rows per board side

and each row is composed of 18 packages. Each package im-

plements an 8 bit symbol. Using both the sides of the board, we

are able to implement either a Reed Solomon (RS) code with a

maximum codeword length of 144 symbols (2 sides 4 row

18 column 144 SDRAM packages) or a code with a minimum

codeword length of 18 symbols. The data word length depends

on the reliability and data integrity constraints. The IMAM is

able to support either variable dataword and/or codeword length.

The RS encoder is based on the work presented in [17]. The en-

coder architecture is shown in Fig. 5 where the number of the

registers used depends on the code length.

The decoder block is realized by a four stage pipeline as

shown in Fig. 6.

The most important codec features are

• the small area occupancy due to the methodology pro-

posed in [18] and “time-sharing” techniques that have

been successfully applied to finite response filter appli-

cations [19],

• the optimization of the decode latency as illustrated in

[20], and

• a low cost reconfiguration: the codec can be reconfig-

ured as RS with (36,32) (72,64)

(144 128).

The ratio , for all the used codes, is 0.89 i.e., the check

byte overhead is constant with respect to the selected code.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

480 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 4, DECEMBER 2003

Fig. 5. Encoder architecture (conventional).

Fig. 6. Decoder block diagram (4-stages pipeline).

Suppose we have random errors and that erasures occur.

The following equation indicated by maximum correction capa-

bility should be satisfied in RS codes [20]:

RS code reconfiguration is used when a permanent failure oc-

curs in a memory package. For example, if the SSMM is initially

configured with an RS (18,16) code and a permanent failure oc-

curs in a memory package, the code can’t correct any random

error. Therefore we need to reconfigure the memory module

with a new RS code. For example a RS (144 128) code is able

to correct the 8 erased symbols and is also able to correct upon

4 random symbol errors. Otherwise, if a fixed RS code is used,

the module memory shall be in permanent fault and the only

possible strategy is its substitution with a spare module. Per-

manent package failures can be easily detected by applying a

reading and decoding procedure. The decoded (and corrected)

data will be coded again with a RS code with higher correction

capabilities. To perform this operation, a suitable buffer tem-

porarily stores the codewords that will be grouped to form the

larger one. Obviously, the use of a higher RS code involves the

use of a higher number of symbols. On the other hand, the fixed

ratio allows the use of higher RS code without adding sym-

bols overhead.

As an example we show the reconfiguration from the RS

(36,32) to the RS (144 128). Starting from a RS (36,32) coding

scheme, after a certain period of time, the check procedure de-

tects three permanent package failures (three erasures).

All the data stored in the memory module are converted from

RS (36,32) to RS (144 128): for example, four 36 byte code-

words are read & decoded and the 128 data bytes are coded into

a codeword of 144 bytes.

This procedure allows preserving the data stored in the

memory. However, if the number of erasures is greater than

the error correction capability of the active code, (for example,

5 erasures for the RS (36,32) code), the data stored in the

codeword are unrecoverable; but the functionality of the

memory element can be restored using a code with greater error

correction capability.

The use of longer codewords improves the integrity of the

stored data degrading the performance of the IMAM in terms

of latency. In fact, the decode latency depends on the codeword

length.

2) Routing Module: The routing system connects the I/O

Memory Interfaces with the I/O Link Interfaces through a

crossbar switch matrix. The interconnection is performed

in nonblocking mode. An arbiter provides the acknowledge

signals to the I/O interfaces that send data through the crossbar.

The main blocks composing the routing module are:

• a crossbar switching matrix, and

• an access arbiter.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

CARDARILLI et al.: DESIGN OF A FAULT TOLERANT SSMM 481

Fig. 7. Distributed arbiter.

With this interconnection method multiple parallel con-

nections between users and resources can be established,

increasing the overall throughput. Latencies can be reduced

choosing appropriate arbitrating policies. Moreover, the in-

trinsic redundancy of such architecture increases the reliability

of the system. The failure of a connection, due to a fault in an

I/O interface or in a switch, implies only a partial loss of the

system functionality.

a) Crossbar Switch Matrix: This component allows the

physical interconnection among I/O Link Interfaces and

I/O Memory Interfaces (see Fig. 2). The number of the pos-

sible connections, and thus the number of switches and wires

necessary in a crossbar switch matrix can be defined by intro-

ducing a interconnection matrix where . In

this matrix the element is equal to 1 if there is a connection

between the input and the output and 0 if the connection is

not present. In particular, for this matrix we can distinguish three

typical cases and evaluate the number of switches and wires of

crossbar matrix implementing the connection.

1) Complete connection: every input is connected with every

output:

requires switches and wires.

2) Without loopback: no connection between and if

requires switches and wires.

3) With I/O subsets: In this case we consider two subsets of

the set of I/O interfaces: and of and elements

respectively, being and

. Connections are only present between elements

belonging to different subsets. This case requires

switches and wires.

The Solid State Mass Memory routing system doesn’t need

a full connection between all users, thus a connection of type

3) could been used. However, the choice of the switching

matrix can be seen like a trade-off between area overhead and

performance/reliability. In fact, the use of a topology like that

of 3) reduces the area overhead of the matrix but implies that,

if a connection fails, the bi-directional communication between

two interfaces is no longer possible. Therefore, because the

implementation of the general-purpose switch connection 1)

doesn’t introduce high overhead with respect to the topology of

3), while granting more flexibility in the connections available,

the switching matrix is implemented with this topology. More-

over, the loopback connections can be exploited to evaluate the

correct operations of the single interfaces in test mode.

b) Arbiter: The arbiters handle the interconnections be-

tween I/O interfaces. The use of a single arbiter to manage all the

interconnections represents a single point of failure. Therefore

we implemented an arbiter for each shared output. This method

implies another advantage respect to a centralized arbiter; in fact

it is easier to set different arbitrating policies for each output. In

Fig. 7 we show the scheme of the switch matrix with the em-

bedded arbiters for each output. The figure represents only the

connections from I/O Link Interfaces to I/O Memory modules

for sake of simplicity

Each I/O interface handshakes the request of an output with

the arbiter. The signals involved are a request (REQ) emitted

by the interface and an acknowledge (ACK) generated by the

arbiter. The possible arbitrating policies are priority-based or

time-sharing. In the first case, only some I/O Interfaces have

more bandwidth available (e.g., During the window of visibility

of a Low Earth Orbit (LEO) satellite the I/O Memory Interfaces

that are downloading the data to the earth station must have more

bandwidth assigned). In the other case the bandwidth is almost

equally shared between the interfaces.

3) I/O Link Interfaces: As stated above, the I/O Link In-

terfaces provide the transport of data and messages between

users (i.e., the data collecting instruments, the remote control

circuitry) and the memory modules. The structure of the packets

exchanged with the spacewire interface is composed of three

parts: header, payload, End Of Packet (EOP). The header is one

byte long, and indicates the ID of the packet while the payload is

composed of a variable number of bytes terminated by the End

Of Packet (EOP) marker. We assume that header values in the

range of 1 to 255 indicate that the packet is part of a file whose

ID number is the header value. The header value 0 indicates a

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

482 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 4, DECEMBER 2003

Fig. 8. I/O link interface.

special packet containing commands or diagnostic communica-

tions sent or received from the memory. Thus the file system can

handle 255 files and the memory can be controlled and moni-

tored using the same links carrying the data.

Most of the I/O Link Interfaces are unidirectional. These in-

terfaces correspond to the links carrying the measurement in-

formation. A small number of interfaces requires reading and

writing of the memories. One of the most important interfaces

connects the memories to the telemetry circuitry. This circuit

transmits collected information from the satellite to the earth

station.

All the interfaces access the switch matrix in full-duplex

mode, and request arbitration through dedicated links. An

internal shared bus interconnects all the I/O interfaces and the

microcontroller to provide file system management and error

detection. A generic I/O link interface is composed of two

main functional blocks (Fig. 8): the “Data Routing Block”, that

handles the data flow, and the “Interface Controller” block,

that connects the interface with the System Control Unit and

provides also local error handling with the “Error Handler”

function.

The main functions of the “Data Routing Block” are the

following:

• LVDS I/F. This block implements the electric interfacing

between the differential signals LVDS (Low Voltage

Differential Signaling) and Data and Strobe single ended

signals.

• SpaceWire (1355 DS-DE) I/F. This interface interprets the

serial signal, implements the flow and the parity control

following the procedures of the SpaceWire protocol, ex-

tracts the clock signal and pushes the extracted data into

the FIFO in parallel mode. The parallelism of the data is

8 bit + 1 flag bit to separate a data/header token from an

EOP marker.

• FIFO. The FIFO depth must be chosen to avoid data loss

due to the latency of the successive subsystems. Because

serial link can reach 100 Mbps, the FIFO speed is up to

10 Mtps (Mega tokens per second, with 10 bits per token).

• LINK I/F. This block represents the core of I/O Link in-

terfaces. It is composed of master and slave. The master

Fig. 9. I/O memory interface.

block manages a local table of 255 elements containing the

dynamically reconfigurable output association for each

file. The entries of the table are written by the SCU through

the “Message Handler” block. Once the output association

is set the master negotiates the output connection with the

arbiter.

4) I/O Memory Interfaces: These interfaces handle the file

system. Each I/O Memory Interface has a local File Allocation

Table (FAT) stored in the controlled memory module. The par-

tition of the file system in every module reduces the amount of

data which can be lost in case of an unrecoverable failure in the

FAT. In fact, in case of failure we will only lose locally stored

information.

This macro-block is composed of a number of components as

shown in Fig. 9. To handle the file system the memory interface

implements the following functions:

• Delete function: used to delete a file from the FAT

• Fragment function: used to add to the FAT the occurrence

of more fragments of the same file

• Read function: used to read a file from the memory

• Write function: used to write a file to the memory

• Format function: used to set-up the FAT in the initializa-

tion phase

Each function is implemented with a separate block and the

“Operation Handler” inside the Interface Controller performs

the activation of each function. Moreover, each functional block

is self-checking and a spare block is used to obtain fault toler-

ance. In fact, because the occurrence of a failure on a single

block can be detected, the “Error Handler” inside the Inter-

face Controller can activate the spare module with a low time

overhead.

Both the “Operation Handler” and the “Error Handler” com-

municate with the rest of the SSMM through the message han-

dler that is the third block composing the Interface Controller.

Therefore, through the message bus, the SCU can control the

status of each I/O Memory Interface both in the case of normal

function and in the case of fault occurrence.

To obtain single point of failure avoidance, the Interface con-

troller has been implemented with TMR technique.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

CARDARILLI et al.: DESIGN OF A FAULT TOLERANT SSMM 483

Fig. 10. System control unit.

B. System Control Unit

The System Control Unit (Fig. 10), manages the access of the

users and the resources of memory. This module is connected

with the rest of the SSMM system through the internal com-

munication Bus MsgBus, used for the communications service,

and through the selection signal Sel that regulates the modality

of access to the MsgBus.

The Bus_IF interface handles the exchange of messages be-

tween the controller and the rest of the SSMM system through

the MsgBus. The system uses two Intel 8051 microcontrollers

which can be connected or isolated from the system through the

block Bypass. Normally only a single processor is active and

connected to the system, while the other one is in stand-by and

electrically isolated.

The active microcontroller accesses a 2k ROM memory,

which contains the executable program, and to a 1K RAM

memory that is used for the data storage and management.

The Mem_IF block supplies the coding of the data the micro-

controller writes in the RAM. The data read from the memory is

decoded from the same block. The operation performed by the

Mem_IF is transparent to the microcontroller.

The “Address handler” block handles the connection be-

tween the microcontroller and the Mem_IF and Bus_IF creating

the suitable switches, transparently to the microcontroller, to

achieve the required connections.

The “Signature calculation” block controls the correctness

of the operations performed by the microcontroller. This block

reads the sequence of the addresses output by the microcon-

troller and verifies they are following a correct sequence. The

evaluation of the correct execution is performed with a specific

application of a well-know fault detection technique called sig-

nature analysis [21], [22].

The “Operations handler” block manages the phases of the

elaboration of a message. If some phases are not executed cor-

rectly, this system supplies the relative error signaling.

The “Error handler” block receives error signals from all the

blocks of the system and handles the error exceptions. It oper-

ates in a transparent way, and assumes the control of the system

only if an error is found. The error management is aimed to mask

the system faults. If the error persists, the manager can substi-

tute the active microcontroller with the spare one.

IV. RELIABILITY AND DATA INTEGRITY EVALUATIONS

In this section some evaluations of reliability and data in-

tegrity of the SSMM are shown. The IMAM dominates the com-

plexity of the system. In fact, to obtain a storage capacity of

several Gigabytes, a high number of SDRAM chips must be

used. Therefore, the reliability of this subsystem must be ac-

curately studied. Moreover, the use of RS codes to grant a high

level of data integrity allows an increase in the reliability of the

IMAM. In fact, the erroneous data of a failed SDRAM chip can

be viewed as particular data errors, called erasure, and corrected

by the RS codec. This improvement of the reliability depends on

the codeword length and on the memory scrubbing frequency.

A. Solid State Mass Memory Reliability Evaluation

The allocation of reliability to a system involves solving the

basic inequality:

where is the allocation reliability parameter for the -th sub-

system, is the system reliability requirement parameter and

is the functional relationship between subsystem and system

reliability.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

484 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 4, DECEMBER 2003

Fig. 11. Reliability model of the solid state mass memory.

Fig. 12. Reliability model of the IMAM configured with RS (36,32).

For a simple series of systems, in which the ’s represent the

probability of survival at End Of Life (EOL), we get

The above equation has an infinite number of solutions and

a procedure that yields a unique or limited number of solutions

must be used. For this purpose we use a proprietary optimization

tool [23] based on the minimization of an Effort Function, as

described in [24]. For the reliability evaluation of the SSMM

the reliability model shown in Fig. 11 is used.

Each block represents a subsystem where the numeration cor-

responds to:

• 1—SCU;

• 2—Routing Module;

• MM -th IMAM;

• MMS -th Spare IMAM;

The Error handler and the bypass blocks of the SCU allow

switching to the cold spare microcontroller when a permanent

fault is detected. Thus, the SCU subsystem can be seen, in a

coarse estimation, as the parallel of two blocks, if we assume

the switch and the checker as ideal.

An estimation of the reliability of the routing module should

consider the graceful degradation capability of the module. An

example of such approach can be found in the literature [29],

[30].

In this section, we evaluate the lower bound of the routing

module reliability approaching it in the same way of the SCU

module. This approach means that the reliability evaluation

of the SSMM is referred to the system without performance

degradation.

To evaluate the reliability of the IMAM we must de-

compose the subsystem depending from the choice of the used

RS code.

Figs. 12 and 13 describe the reliability model for the con-

figurations RS (36,32) and RS (72,64), showing the series and

parallel connections needed to provide the reliability expression

for the IMAM.

Each block represents a subsystem where the numeration cor-

responds to:

3—Partition driver.

4—Mem. Module Front End Electrics;

5—Mem. package hardware (Buffer, LCL,…);

6—SDRAM stack;

7—EDAC;

8—Memory module controller;

Now we can define the component reliability function as:

(1)

where is the mission time and is the component failure rate

(in failure/ .

The Component failure rate can be estimated using the

models reported in Table I.

The factors present in the models are the stress parameters

and base part failure rate values. The factors for failure rate cal-

culation are reported in Table II.

To calculate the reliability of the IMAM we apply the fol-

lowing equations:

Hot redundancy (-out-of- structure)

(2)

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

CARDARILLI et al.: DESIGN OF A FAULT TOLERANT SSMM 485

Fig. 13. Reliability model of the IMAM configured with RS (72,64).

TABLE I
FORMULAS FOR MICROCIRCUIT RELIABILITY

TABLE II
FACTORS FOR FAILURE RATE CALCULATION

where is the number of units and is the number of units

needed for the correct functionality.

Cold redundancy (ideal switching module):

(3)

where is the failure rate of the active components,

is the failure rate of the components in standby (by assumption),

is number of units, is the number of units needed for the

correct functionality and .

Cold redundancy out of nonideal switching module

(4)

where are the failure rates of the active components and

is the failure rate of the components in standby.

Notice that, in the reliability estimation, we include the

failure rate of the components in standby. This approach gives

a more realistic system modeling, because the various parts

of the system are active only for a fraction of the system life.

As an example, we consider the following configuration of the

SSMM:

TABLE III
SUBSYSTEMS FAILURE RATES

TABLE IV
RELIABILITY EVALUATION OF THE SSMM

• Five active memory modules, each module having

576 MBytes including the code symbols, and a cold spare

one;

• MCM-V memory packages with two layers;

• 144 MCM-V on every PCB; and

• EDAC with the code RS (36,32) and RS (72,64).

We want to obtain the reliability after 2 years for two different

configurations of the RS codec i.e., RS (72,64) and RS (36,32).

We use the subsystems’ failure rates reported in Table III, where

for the components 1 and 2 we apply the formulas given in

Table I.

In Table IV, we report the results of the reliability after 2 years

obtained for the two code configurations applying the above

formulas.

The above results show that the architecture has a reliability

level matching the requirements of a two-year long satellite mis-

sion. Notice that the overall results are related to the hypothesis

of full functionality of the SSMM after 2 years. However, the

graceful degradation capability of our system allows different

levels of acceptable performance; for example, the SSMM can

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

486 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 4, DECEMBER 2003

TABLE V
NOTATION

be reconfigured to work also with less I/O link Interfaces and/or

memory modules. Therefore the above evaluations can be con-

sidered as a worst case analysis of the system, while the proba-

bility that the SSMM keeps working at the end of mission with

reduced performance is quite higher as explained in [32]. Ana-

lyzing the results in detail, we can notice that the reliability of

the memory control for the RS (36,32) configuration is better

than RS (72,64); however the latter can tolerate a larger number

of memory package failures. Therefore, the overall reliability

of the RS (72,64) configuration is almost the same as the other

case. The modification of the RS coding scheme improves the

data integrity as we will show in Section VI-B.

B. Data Integrity Evaluation

To evaluate the data integrity of the system we use the nota-

tion adopted in [14], [25] and reported in Table V.

we assume the following:

1) Transient faults occur with a Poisson distribution.

2) Bit failures are statistically independent and thus linearly

uncorrelated.

3) The control, correction, and interface circuitry in the

memory system are fault-tolerant.

4) There is a dominant memory bit cell failure mode. This

assumption, with assumption 3, provides an upper bound

on system reliability.

A theoretical model of the mass memory can be applied to

evaluate the data integrity. The memory is modeled as a trans-

mission channel [14], [25]. During the latency period the noise

corrupts the integrity of data. If the noise is generated by SEU,

the BER depends on the latency time of data and it is given

by (5) where is the rate of occurrence of SEU and depends on

radiation environment and device technologies [29].

(5)

The correction device performs the error correction function

as the inverse operation of noise source. It uses the correction

data (output of the virtual observer) and the channel output to

restore data integrity. For messages with one bit symbol, and

considering perfect error correction codes, we can use the ap-

proximation derived in [25] to calculate the BER after the cor-

rection operations:

(6)

For messages with bit symbols and for perfect error cor-

rection codes we can extend the approximation derived in [25]

to calculate the Symbol Error Rate (SER) after the correction

operations:

(7)

where if

If the BER after a single memory correction

(i.e., memory scrubbing) is given by

(8)

Derivation of BER approximation for memory subsystem

with scrubbing:

This memory subsystem uses a perfect code (as

Reed Solomon code, able to correct random errors)

and scrubbing procedure. Periodically the whole memory is ac-

cessed and it is checked for correctness. If errors are

detected the word is corrected and rewritten in its original lo-

cation. An uncorrectable word error occurs and memory sub-

system fails, if the errors accumulated in one word exceed the

correction capability of EDAC (i.e., if). If we assume that

the errors are distributed randomly over the address space, the

number of erroneous bits at j-th scrubbing is given by

(9)

where:

• represents the scrubbing cycle,

• represents the number of intervals of deterministic scrub-

bing ,

• represents the corrupted bit after at start of

-th scrubbing, and

• represents the number of errorless

bits after -th scrubbing.

In (9) we included the corrupted bits flipped to correct value.

A SEU causes the switching of the state of a memory cell. If a

cell has a corrupted value then the occurrence of a SEU causes

the transition to its original value. Equation (9) provides the

number of corrupted bits after j-th scrubbing as the sum of:

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

CARDARILLI et al.: DESIGN OF A FAULT TOLERANT SSMM 487

TABLE VI
BER @ STORAGE PERIOD OF 48 HOURS AND T = 1000 Sec

TABLE VII
T @ T = 2 DAY AND BER = 10

(0 MEM. PACKAGE FAILURE)

• corrupted bits) that are not flipped to the

correct value by a SEU occurred between -th and

-th scrubbing, and

• corrupted bits occurred between -th and -th scrub-

bing that are uncorrectable by EDAC.

Therefore, the obtained BER at the end of -th scrubbing is

given by

(10)

(11)

If we can simplify the (11)

(12)

In interplanetary space a background rate of – er-

rors/bit/day can be assumed, which occasionally increases up to
– errors/bit/day during solar flares. The following tables

summarize the data integrity evaluation in terms of BER from

the minimum SEU rate to the maximum SEU rate, even if some

package failures occur.

In Table VIII the equations used for the BER calculation

were:

• for RS (36,32)

,

• for RS (72,64)

.

The above reported results show that the SSMM is able to

tolerate a high number of permanent and transient faults oc-

curring in the IMAM exploiting the RS coding reconfigura-

tion. The reconfigurability of the RS code allows, given an ex-

pected SEU rate and a BER requirement, to operate both on

TABLE VIII
T @ T = 2 DAY AND BER = 10

(2 MEM. PACKAGE FAILURE)

Fig. 14. SSMM Design Flow.

the codeword length and/or the scrubbing period to obtain the

requested memory performances. The choice of the codeword

length and of the scrubbing period is the result of a trade-off. In

fact the use of long codewords increases the time for decoding

the data-word, while the use of short scrubbing periods increases

the time in which the memory can’t be accessed by the user. Fi-

nally, we can notice that, as shown in Table VIII, with some

combinations of SEU rate package failures and coding scheme,

the scrubbing techniques are not necessary if we suppose that

the memory contents are downloaded to an earth station every

two days.

V. SIMULATION RESULTS

The simulation of the system was performed to test any single

component composing the SSMM with suitable test benches for

determining both its performances and its fault tolerant capabil-

ities. The simulations have been performed in the design phase

using VHDL language. To have a closer emulation of real phys-

ical faults, we injected faults in post-synthesis structural VHDL

[26], [27]. The results obtained by behavioral and post-synthesis

with fault injection simulations of the system gave us feedbacks

in the design flow (Fig. 14).

The simulation results reported here show the capability of

the system to have a graceful degradation of its performances

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

488 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 4, DECEMBER 2003

Fig. 15. SCU without fault injection.

in case of faults. This is a further feature of the system that ex-

ploits the concurrent error detection capability of the architec-

ture to improve its performability [32], [33] for a given level of

reliability.

In Section V-A we will show the behavior of the MKU and

of the SCU units when they recover from fault occurrence. We

will compare the normal behavior and the recovered one after

detection.

A. SCU Simulation

The system control unit test has been made with a suitable on-

line injection fault method based on a VHDL model of the SCU.

During the normal operation of the SCU system, we injected a

single error in order to simulate the random Single Event Upset

(SEU) due to radiation that may occur in a space environment.

The targets of this error injection were all the internal micro-

controller special function registers and RAM locations. The

injected errors were generated with uniform distribution in both

logical addresses and time locations into a predetermined range.

The normal SCU operation is composed of two operations:

during the first operation, the SCU receives a write file request;

in the second operation the SCU system receives a report that

a block of pages has been allocated. The injection of a single

SEU happens randomly during one of these operations. Fig. 15

shows the normal execution of both operations described above.

The signals Mop and Nop represent that a new operation must

be performed by the microcontroller. When both the signals be-

come low, the microcontroller starts a new operation. The ERF

signal represents the occurrence of a signature error, while port

3 represents the microcontroller port used to handle the inter-

rupts and the control signals. finally, RAMI and BI are signals

used to inject errors in VHDL. The simulation can be described

as follows: first the SCU system reads the request message from

the MsgBus (1); second the request message is handled and the

SCU stores local data in the external RAM memory (2), while,

during the last step (3), the answer message is generated. The

write file request operation is closed when both Mop and Nop

signals come back high. The second test operation starts when

both signals Mop and Nop become again low and is composed

of three steps like the first operation. The block allocation opera-

tion starts with message request reading (4); this step is identical

for both first and second test’s operations. The computing of re-

ceived request continues though elaboration process (5) and ter-

minates with the emission of end signal (6). This signal is used

to communicate to all state machine of SCU system the end of

a message processing that normally doesn’t need the generation

of an answer message. The end of test occurs when both Mop

and Nop signals become again high.

Fig. 16 shows how the SCU system handles the error re-

covery. As shown in the last two lines of the waveforms of

Fig. 16, the injection of a SEU is performed during the third

step of first phase of the test. In this case, the injected fault af-

fects the Stack Pointer register of the microcontroller thus the

error is revealed by “error handler” that generates the signal ERF

signaling that a wrong signature has been generated by the se-

quence of operations performed. The “error handler” starts the

recovery algorithm forcing the repetition of all the steps of the

phase affected by the error. The detection forces MOP low, re-

questing the repetition of the last operation. In fact, in Step (4)

the packet is reloaded by the microcontroller; in step 5 the elab-

oration of the request is performed again; and, finally, in step 6

the phase is terminated correctly and the signals MOP and NOP

go high. The test ends correctly performing the second phase

that is not affected by the error injection.

B. MKU Simulation

The validation of the Memory Kernel unit has been done sim-

ulating the occurrence of unrecoverable failure in a memory

module or in an I/O Memory Interface. In both cases the MKU

must switch the data path from the out of order memory module

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

CARDARILLI et al.: DESIGN OF A FAULT TOLERANT SSMM 489

Fig. 16. SCU fault injection test.

Fig. 17. Fault detection and re-routing.

to another one preventing the loss of data. Due to the system

symmetry, the same reconfiguration can be done also if a failure

occurs on an I/O Link Interface. This last feature exploits the

capability of the system to read the data stored in the memories

from any I/O Link Interface. The steps that compose the failure

recovery routine are the following:

1) The failure is detected by the module due to its self-

checking capability,

2) The SCU receives the error signal, chooses another target

memory module for the data and signals the new output

for the I/O Link Interfaces connected to the out of order

module.

3) The Routing Module switches the data path accom-

plishing the requests of the I/O Link Interfaces.

In Fig. 17 are shown the waveforms corresponding to a data

transfer from two link interfaces to two memory modules. In

particular, file one coming from link one is routed to module one

while file two, coming from link two is routed to module two. At

a time we injected a simulated permanent fault in a memory

module. We can see that, before the fault occurrence the transfer

of the files is carried out concurrently on separate memory mod-

ules while after the detection of the fault the transfer of the same

files are re-routed to a single memory module. The data flow to

module one is multiplexed to permit the transfer of both files.

The reconfiguration of the routing allows a graceful degrada-

tion of the system in terms of throughput but keeps the basic

functionality of the storing system. In fact, the shared transfer

of the files on module one is more time consuming than the

time needed for parallel transfer to different modules, but we

obtained the result that the system can still store and read files

from at least one memory module. The same consideration can

be done also if some link interfaces fail.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers that

helped them to improve this paper with their comments and

suggestions.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

490 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 4, DECEMBER 2003

REFERENCES

[1] M. P. Kluth, F. Simon, J. Y. Le Gall, and E. Muller, “Design of a fault
tolerant 100 Gbits solid-state mass memory for satellites,” in Proc. 14th

VLSI Test Symp., 1996, pp. 281–286.
[2] T. Fichna, M. Gartner, F. Gliem, and F. Rombeck, “Fault-tolerance of

spacebome semiconductor mass memories,” in Twenty-Eighth Annual

Int. Symp. Fault-Tolerant Computing, Digest of Papers, 1998, pp.
408–413.

[3] J. Fox, W. E. Abare, and A. Ross, “Suitability of COTS IBM 64Mb
DRAM in space,” in Fourth European Conf. Radiation and Its Effects

on Components and Systems, RADECS 97, 1997, pp. 240–244.
[4] S. M. Parkes, “Spacewire: The standard,” in DASIA’99, (ESA SP-447),

pp. 111–116.
[5] G. C. Cardarilli, P. Marinucci, M. Ottavi, and A. Salsano, “A fault-tol-

erant 176 GBit solid state mass memory architecture,” in Int. Symp. De-

fect and Fault Tolerance in VLSI Systems, DFT ’00, 2000, pp. 173–180.
[6] T. R. Oldham, K. W. Bennett, J. Beaucour, T. Carriere, C. Polvey, and P.

Garnier, “Total dose failures in advanced electronics from single ions,”
IEEE Trans. Nucl. Sci., pt. 1–2, vol. 40, pp. 1820–1830, Dec. 1993.

[7] A. H. Johnston, “Radiation effects in advanced microelectronics tech-
nologies,” IEEE Trans. Nucl. Sci., pt. 3, vol. 45, pp. 1339–1354, Jun.
1998.

[8] P. K. Lala, Fault Tolerant and Fault Testable Hardware Design: Prentice-
Hall, 1985.

[9] L. Yanmei, L. Dongmei, and W. Zhihua, “A new approach to de-
tect-mitigate-correct radiation-induced faults for SRAM-based FPGAs
in aerospace application,” in Proc. IEEE 2000 National Aerospace and

Electronics Conf. NAECON 2000, 2000, pp. 588–594.
[10] S. D’Angelo, C. Metra, and G. Sechi, “Transient and permanent fault di-

agnosis for FPGA-based TMR systems,” in Int. Symp. Defect and Fault

Tolerance in VLSI Systems, 1999. DFT ’99, 1999, pp. 330–338.
[11] SpaceWire Homepage. [Online]. Available: http://www.estec.esa.nl/

tech/spacewire/index.html
[12] D. Maeusli, F. Teston, P. Vuilleumier, and R. Harboe-sorensen, “ESA

developments in solid sate mass memories,” Preparing for the Future,
vol. 5, no. 2, Jun. 1995.

[13] MIL-STD-1553.
[14] A. M. Saleh, J. J. Serrano, and J. H. Patel, “Reliability of scrubbing

recovery-techniques for memory systems,” IEEE Trans. Rel., vol. 39,
pp. 114–122, Apr. 1990.

[15] J. F. Ziegler et al., “Cosmic ray soft error rates of 16-Mb DRAM memory
chips,” IEEE J. Solid-State Circuits, vol. 33, Feb. 1998.

[16] S. Bertazzoni, G. C. Cardarilli, D. D. Giovenale, G. C. Grande, D. Pier-
gentili, M. Salmeri, A. Salsano, and S. Sperandei, “Failure tests on 64Mb
SDRAM in radiation environment,” in Int. Symp.Defect and Fault Tol-

erance in VLSI Systems (DFT’99), 1999, pp. 158–164.
[17] R. E. Blahut, Theory and Practice of Error Control Codes: Addison-

Wesley Publishing Company, 1983.
[18] C. Paar and M. Rosner, “Comparison of arithmetic architectures for

reed-solomon decoders in reconfigurable hardware,” in Proc. Symp.

Field-Programmable Custom Computing Machines, Apr. 1997, pp.
219–225.

[19] W. Wilhelm, “A new scalable VLSI architecture for reed-solomon de-
coders,” IEEE J. Solid-State Circuits, vol. 34, pp. 388–396, Mar. 1999.

[20] K. Sunghoon and S. Hyunchul, “An area-efficient VLSI architecture of
a reed-solomon decoder/encoder for digital VCRs,” IEEE Trans. Con-

sumer Electronics, vol. 43, pp. 1019–1027, Nov. 1997.
[21] A. Mahmood and E. J. McCluskey, “Concurrent error detection using

watchdog processors-a survey,” IEEE Trans. Computers, vol. 37, pp.
160–174, Feb. 1988.

[22] N. R. Saxena and E. J. McCluskey, “Parallel signature analysis design
with bounds on aliasing,” IEEE Trans. Computers, vol. 46, pp. 425–438,
Apr. 1997.

[23] G. C. Cardarilli, P. Marinucci, and A. Salsano, “Development of an eval-
uation model for the design of fault-tolerant solid state mass memory,”
in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS2000), vol. 2, May
2000, pp. 673–676.

[24] MIL-HDBK 338 B—6.3.5.
[25] F. Labeau, C. Desset, B. Macq, and L. Vandendorpe, “Approximating

the protection offered by a channel code in terms of bit error rate,” in
Proc. European Signal Processing Conf., Rhodes, Greece, 1999.

[26] J. Gracia, J. C. Baraza, D. Gil, and P. J. Gil, “Comparison and application
of different VHDL-based fault injection techniques,” in Proc. Int. Symp.

Defect and Fault Tolerance in VLSI Systems, 2001, pp. 233–241.

[27] B. Parrotta, M. Rebaudengo, M. S. Reorda, and M. Violante, “New tech-
niques for accelerating fault injection in VHDL descriptions,” in Proc.

6th IEEE Int. On-Line Testing Workshop, 2000, pp. 61–66.
[28] MIL-HDBK 217.
[29] V. Cherkassky and M. Malek, “A measure of graceful degradation in

parallel-computer systems,” IEEE Trans. Rel., vol. 38, pp. 76–81, Apr.
1989.

[30] J. Sengupta and P. Bansal, “High speed dynamic fault-tolerance,” in
Proc. IEEE Region 10 Int. Conf. Electrical and Electronic Technology,

2001. TENCON. Volume: 2, vol. 2, 2001, pp. 669–675.
[31] N. Nemoto, K. Matsuzaki, J. Aoki, T. Akutsu, and S. Matsuda, “Eval-

uation of single-event upset tolerance on recent commercial memory
ICs,” in National Space Development Agency of Japan. Sengen,
Tsukuba-shi, Japan: Ibaraki-Ken, pp. 305–8505.

[32] G. C. Cardarilli, M. Ottavi, S. Pontarelli, and A. Salsano, “A fault tol-
erant hardware based file system manager for solid state mass memory,”
in Proc. 2003 Int. Symp. Circuits and Systems ISCAS 2003, Volume: 5,
vol. 5, 2003, pp. V-649–V-652.

[33] J. F. Meyer, “On evaluating the performability of degradable computing
systems,” IEEE Trans. Computer, vol. C-29, pp. 720–731, Aug. 1980.

Gian Carlo Cardarilli received the Laurea (summa cum laude) in 1981 from
the University of Rome “La Sapienza”. He works for the University of Rome
“Tor Vergata” since 1984. At present he is full professor of Digital Electronics
and Electronics for Communication Systems at the University of Rome
“Tor Vergata”. During the years 1992–1994 he worked for the University of
L’Aquila. During the years 1987/1988 he worked for the Circuits and Systems
team at EPFL of Lausanne (Switzerland). Professor Cardarilli interests are in
the area of VLSI architectures for Signal Processing and IC design. In this field
he published over 140 papers in international journals and conferences. He also
participated to the work group of JESSI-SMI for the support to the medium
and small industries. For this structure he consulted different SMIs, designing
a number ASICs, in order to introduce the microelectronics technology in
the industry’s products. He has also regular cooperation with companies
like Alenia Aerospazio, Rome, Italy, STM, Agrate Brianza, Italy, Micron,
Avezzano, Italy, Ericsson Lab, Rome, Italy and with a lot of SMEs. Scientific
interests of Professor Cardarilli concern the design of special architectures for
signal processing. In particular, he works in the field of computer arithmetic
and its application to the design of fast signal digital processor. He also
developed mixed-signal neural network architectures implementing them in
silicon technology. Recently, he also proposed different new solutions for the
implementation of fault-tolerant architectures.

Alessandro Leandri received the Laurea degree in Electronic Engineering in
2001, from University of Rome “Tor Vergata”, Italy. His degree thesis topic was
on the development of a Solid State Mass Memory for space applications.

Panfilo Marinucci was born in Sulmona, Italy, on August 8, 1967. He re-
ceived the Laurea degree in Electronic Engineering 1992 from the University
of L’Aquila, Italy, and the Ph.D. degree in 1996 from the same university. Since
1997, he practiced the profession in the area of scientific research and techno-
logical innovation. His research interests include artificial neural network HW
and SW design, data integrity and reliability engineering for space applications.
Recently, he was involved in the development of neural network technique for
financial application and in particular for decision and risk analysis. Since 1998,
he started collaboration with the ULISSE Consortium of Rome, Italy, where he
worked on the development of solid state mass memory for space application.

Marco Ottavi received the Laurea degree in Electronic Engineering in 1999,
from University of Rome “La Sapienza”, Italy. In 2000 he worked with
ULISSE Consortium, Rome on the design of reliable digital systems for space
applications. Since 2000 he is pursuing the Ph.D. degree at the Department
of Electronic Engineering, University of Rome “Tor Vergata”. Currently he
is a visiting research assistant in the Department of Electric and Computer
Engineering of Northeastern University, Boston, USA. His research mainly
focuses on fault tolerance, on-line testing, reconfigurable digital architectures
and yield enhancement.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

CARDARILLI et al.: DESIGN OF A FAULT TOLERANT SSMM 491

Salvatore Pontarelli received the Laurea degree in Electronic Engineering
from the University of Bologna in 1999 and the Ph.D. in Microelectronics and
Telecommunications Engineering from the University of Rome “Tor Vergata”
in 2003. His research mainly focuses on fault tolerance, on-line testing and
reconfigurable digital architectures.

Marco Re received the Laurea degree in Electronic Engineering from the Uni-
versity of Rome “La Sapienza” in 1991 and the Ph.D. in Microelectronics and
Telecommunications Engineering from the University of Rome “Tor Vergata” in
1996. In 1998 he joined the Department of Electronic Engineering of the Univer-
sity of Rome “Tor Vergata” as Researcher. He was awarded two one-year NATO
fellowships with the University of California at Berkeley in 1997 and 1998. His
main interests and activities are in the area of DSP algorithms, fast DSP ar-
chitectures, Fuzzy Logic hardware architectures, Hardware-Software Codesign,
Number Theory with particular emphasis on Residue Number System, Com-
puter Arithmetic and Cad tools for DSP, Fault Tolerant and Self Checking cir-
cuits. He has authored and coauthored more than eighty papers.

Adelio Salsano was born in Rome on December 26, 1941 and is currently full
professor of Microelectronics at the University of Rome, “Tor Vergata” where
he teaches the courses of Microelectronics and Electronic Programmable Sys-
tems. His present research work focuses on the techniques for the design of
VLSI circuits, considering both the CAD problems and the architectures for
ASIC design. In particular, of relevant interest are the research activities on
fault tolerant/fail safe systems for critical environments as space, automotive
etc.; on low power systems considering the circuit and architectural points of
view; and on fuzzy and neural systems for pattern recognition. An international
patent and more than 90 papers on international journals or presented in interna-
tional meetings are the results of his research activity. At present he is the Pres-
ident of a national consortium named U.L.I.S.S.E., between ten universities,
three polytechnics and several of the biggest national industries, as STMicro-
electronics, ESAOTE, FINMECCANICA. He is responsible for contracts with
the ASI, Italian Space Agency, for the evaluation and use in space environment
of COTS circuits and for the definition of new suitable architectures for space
applications. Professor Salsano is also involved in professional activities in the
field of information technology and is also consultant of many public authori-
ties for specific problems. In particular he is consultant of the Departments of
the Research and of the Industry, of IMI and of other authorities for the evalu-
ation of industrial public and private research projects. Professor Salsano was
a member of the consulting Committee for Engineering Sciences of the CNR
(National Research Council) from 1981 to 1994 and participated in the design
of public research programs in the fields of “Telematics”, “Telemedicine”, “Of-
fice Automation”, “Telecommunication” and, recently, “Microelectronics and
Bioelectronics”.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on May 13,2010 at 15:17:06 UTC from IEEE Xplore. Restrictions apply.

