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Abstract: A power divider (PD) with a wide stopband and simple symmetric structure using open-
and short-ended stubs is analyzed and implemented in this paper. In the proposed power divider,
for the first time, the output resistor is divided into two sections and open- and short-ended stubs
are used between the resistors. The incorporated open- and short-ended stubs have resulted in a
controllable bandwidth for the proposed PD, which resulted in 40% of the fractional bandwidth
considering 3 dB attenuation of insertion loss. The proposed PD operates at 2 GHz, which shows
more than 20 dB attenuation for the return and isolation losses. In addition, the obtained insertion
loss at the operating frequency is approximately 0.3 dB, which shows a minor loss, and also, high
isolation is achieved in the device. Moreover, 20 dB and 30 dB attenuation levels have been achieved
for second and third harmonics. The results show high performance for the proposed power divider.

Keywords: power divider; microstrip; open-ended; short-ended; resonator; radio frequency; 2 GHz;
harmonics

1. Introduction

Power dividers are important components in microwave and radio frequency fields.
The power dividers are used to divide the radio frequency signals into a specific ratio in
the desired operating frequency. With the growth in wireless communications, the demand
for power dividers with a compact size, low loss, and high performance has increased.
Power dividers can be realized using lumped elements, microstrip transmission lines, or
hybrid composite lines according to specifications [1,2]. Among the different types of power
dividers, Wilkinson power dividers (WPDs) are a good choice for modern communication
applications because of their full port matching, low loss, and high isolation.

Recently, several techniques have been introduced to reduce the size and improve
the functionality of power dividers [3]. These features, such as multi-band operation [4],
wideband operation [5], multi-ports [6], asymmetric structure [7], filter usage [8,9], and
harmonics suppression [10], have been investigated in recent works. Moreover, recently,
optical fiber substrates [11,12] have been employed to achieve higher frequencies for power
dividers [13,14]. Moreover, artificial intelligence (AI) techniques [15–17] and optimization
methods [18–20], which are powerful tools, have been utilized to design PDs and other
microwave components [21,22].

Furthermore, the integrated waveguide is a technique that has been recently used to
obtain a compact filtering power divider. In [23], the integrated waveguide technique with
cavities was exploited to obtain a compact divider. Dual-band operation has been obtained
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in this work, but the insertion losses in the pass bands are high and the suppression band
is not wide enough.

In [24], metamaterial and ring resonators were used to design a tri-band power divider
for different applications. However, this divider size is rather large, and bandwidths of
operating frequencies are narrow, such that the shifted frequencies in the fabrication process
degraded the performance of the divider at operating frequencies. Open stubs, radial stubs,
and rectangular resonators have been used to design a WPD (Wilkinson power divider) for
GSM applications [25]. A Gysel divider based on composite transmission lines has been
designed in [26]. The proposed transmission lines in [25] can be used to control the three
operating bandwidths of the divider, but the divider size is rather large.

A generalized architecture for the power divider was presented in [27], using open
stubs, radial lines, and a multi-stage structure. The dividers presented in [27] show dual-
or triple-band operation, but the device size is larger than the typical one. A divider with
open stubs and tapered resonators was presented [28] to obtain a wide suppression band.
The divider designed in [28] was used for antenna array applications, but the size of this
divider was rather large. A multi-band divider was presented in [29] using open stubs and
multi-mode resonators, which achieved a wide suppression band. Furthermore, the open
stubs in [29] were used to amend the isolation of the divider.

Recently, new design techniques have been presented to design wideband power
dividers [30–32]. In [30], coupled lines and the multi-section technique were used to
achieve dual-band and wideband operations. Furthermore, in [31,32], a multi-section
structure and analytic design method were used to design power dividers with wideband
and dual-band operations. Coupled lines and open stubs were used in [33] to design
filtering response dividers with frequency reconfigurable ability. However, in [33], a wide
suppression band was not achieved.

In all of the mentioned works, open- and short-ended stubs and other resonators were
utilized for miniaturization or to provide a suppression band. However, in the proposed
work, the open- and short-ended stubs are not only used to provide the suppression band,
but are also utilized to control the operating bandwidth with a very simple structure.
Furthermore, in the presented structure, two resistors are employed to obtain high isolation.
Although a very simple structure is designed for the proposed WPD, high performances,
such as more than 20 dB attenuation for the return loss and isolation, are achieved. In
addition, the obtained insertion loss at the operating frequency is approximately 0.3 dB,
which shows a minor loss, and also, high isolation is achieved in the device. Moreover,
20 dB and 30 dB attenuation levels have been achieved for second and third harmonics.

2. Design of the Power Divider Circuit

The presented circuit is a WPD with a single input and two output ports. At first, a
typical WPD is presented and investigated, and then the proposed circuit is studied.

Typical Power Divider

Figure 1 shows a typical WPD including two main quarter-wavelength branches and
a single resistor, where the resistor is used to provide isolation in the device. The main
branches’ impedance is 70.7 Ω and their electrical length is 90◦.

A typical WPD is simulated on the Rogers/5880 substrate with ADS momentum
software. The thickness, loss tangent, and εr of the applied substrate are 0.508 mm, 0.0009,
and 2.2, respectively. The frequency response and layout of the typical WPD at an operating
frequency of 2 GHz are depicted in Figure 2.

It can be concluded from the typical WPD results that the WPD does not have a
compact size and it does not have the desirable suppression band, which may result in
the presence of unwanted harmonics. In the following sections, it will be explained that
the proposed divider can improve the scattering parameters and also achieve a desirable
suppression band and compact size.
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Figure 2. Simulated structure and frequency response of a typical WPD operating at 2 GHz: (a) 
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3. Structure of the Proposed WPD

As mentioned, the short-ended and open-ended stubs, along with the meandered lines
and stepped impedance, are considered to design the proposed WPD. The design steps of
the proposed circuit are described in the following subsections.

3.1. Output Short-Ended Stub

At this step, a short-ended stub is incorporated between the output ports of the divider.
As mentioned before, isolation resistance is needed between the divider’s output ports,
so this resistance is divided into two parts and the short-ended stub is added between
them. The frequency response and layout of the initial design power divider are depicted
in Figure 3.
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Figure 3. Structure and frequency response of the initial power divider design at the operating
frequency of 2 GHz. (a) Layout; (b)|S21| and |S11|.

Comparing the initial WPD and typical WPD results, it can be shown that adding
the short-ended stub between the divider output ports resulted in a frequency response
improvement, such that the isolation and return loss decreased below −30 dB attenuation.
Furthermore, the −3 dB fractional bandwidth (FBW) increased by 80%.

3.2. Input Short-Ended Stub

To improve the proposed power divider’s frequency response, a short-ended stub is
added at the input of the WPD. This short-ended stub is connected to the input port and
located inside the divider structure to maintain the overall size of the device. The frequency
response and layout of the basic design WPD are shown in Figure 4. As can be seen in
Figure 4, adding the input short-ended stub in the basic power divider design resulted in
an input return loss below the −30 dB attenuation level at the operating frequency.
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3.3. Odd and Even-Mode Analyses

The odd- and even-mode equivalent circuits for the initial design of the WPD structure
at an operating frequency of 2 GHz are depicted in Figure 5. It should be mentioned that the
simulation results for the initial design WPD structure at an operating frequency of 2 GHz
are shown in Figure 3b. From the odd-mode equivalent circuit in Figure 5a, Equation (1)
can be extracted.

2
R(Ω)

+
−j cot(θ1)

2Z1(Ω)
=

1
50(Ω)

(1)

By equating the imaginary and real parts of Equation (1), it can be concluded that
R = 100 Ω and θ1 = 90◦. Furthermore, the even-mode equivalent circuit impedance relations
can be written as shown in Equation (2).

Z1(Ω) + j × 100(Ω)× tan(θ1)

100(Ω)×+j × Z1
2(Ω)2tan(θ1)

+
1

ZM(Ω) + 50(Ω)
=

1
50(Ω)

(2)Symmetry 2022, 14, x FOR PEER REVIEW 6 of 15 
 

 

°,  Z1θ1

0
5
 

Z
0
 =

 

Port2

Port1

R
/2

 
(a) 

°,  Z1θ1

0
5
 

Z
0
 =

 

Port2Port1

R
/21
0
0
 

2
Z

0
 =

 

,
 

2
Z

2
°

θ
2

M

 
(b) 

Figure 5. The (a) odd- and (b) even-mode equivalent circuit for the initial design WPD at operating 

frequency of 2 GHz. 

The odd- and even-mode equivalent circuits for the basic design of the WPD struc-

ture at an operating frequency of 2 GHz are depicted in Figure 6. It should be mentioned 

that the simulation results for the basic design of the WPD structure at an operating fre-

quency of 2 GHz are shown in Figure 4b. It can be seen that the odd mode of the two 

circuits in Figures 5 and 6 is the same, so it can be concluded that R = 100 Ω and θ1 = 90°. 

Furthermore, the impedance relations of the even-mode equivalent circuit can be written 

in Equation (3). 

°,  Z1θ1

0
5
 

Z
0
 =

 

Port2

Port1

R
/2

 
(a) 

°,  Z1θ1

0
5
 

Z
0
 =

 

Port2Port1

R
/21
0
0
 

2
Z

0
 =

 

,
 

2
Z

3
°

θ
3

 
(b) 

Figure 6. The (a) odd- and (b) even-mode equivalent circuits for the basic design WPD at operating 

frequency of 2 GHz. 

Figure 5. The (a) odd- and (b) even-mode equivalent circuit for the initial design WPD at operating
frequency of 2 GHz.



Symmetry 2022, 14, 1973 6 of 14

We assume the value of θ2 = 90◦ results in ZM = 0. Moreover, by considering the
obtained value of θ1 = 90◦ in Equation (2), the values of Z1 will be calculated as Z1 = 70.7 Ω.

The odd- and even-mode equivalent circuits for the basic design of the WPD structure
at an operating frequency of 2 GHz are depicted in Figure 6. It should be mentioned that
the simulation results for the basic design of the WPD structure at an operating frequency
of 2 GHz are shown in Figure 4b. It can be seen that the odd mode of the two circuits in
Figures 5 and 6 is the same, so it can be concluded that R = 100 Ω and θ1 = 90◦. Furthermore,
the impedance relations of the even-mode equivalent circuit can be written in Equation (3).

−j cot(θ3)
2Z3(Ω)

+
Z1(Ω) + j × 50(Ω)× tan(θ1)

50(Ω)× Z1(Ω) + j × Z1
2(Ω)2tan(θ1)

=
1

100(Ω)
(3)

Considering the obtained value of θ1 = 90◦ in Equation (3), the values of Z1 and θ3 will
be calculated as Z1 = 70.7 Ω and θ3 = 90◦ will be achieved. From both circuit analyses, it
can be concluded that the values of Z2 and Z3 can be freely changed while the equations
are valid. Therefore, the values Z2 and Z3 can be used to tune the desired bandwidth of
the divider.
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3.4. Final Design of the Proposed WPD

By combining the previous initial and basic designs, the final design of the proposed
power divider can be obtained. In the final design, both input and output short-ended
stubs are used in the PD structure. The schematic and frequency response of the proposed
divider is shown in Figure 7. The FBW of the schematic design of the proposed WPD based
on a 3 dB attenuation level is 45% from 1.45 GHz up to 2.3 GHz. Furthermore, the FBW of
the schematic design of the proposed divider considering a 10 dB input return loss is 20%
from 1.8 GHz up to 2.2 GHz.

Furthermore, the layout of the proposed WPD is depicted in Figure 8. The applied
transmission line values in the final design of the proposed WPD are listed in Table 1.
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Table 1. The applied transmission line values in the proposed power divider.

Param. Value (mm) Param. Value (mm) Param. Value (mm)

L1 6.8 L5 11 L9 12.5
L2 3.5 L6 8.5 L10 8.7
L3 23.6 L7 5.8 W1 2.1
L4 9.2 L8 3.4 W2/W3 1.3/2.4

4. Simulation Results

The proposed WPD layout, which operates at 2 GHz, is simulated with the assistance
of ADS software using the Rogers/5880 substrate. The simulated S-parameters of the
designed WPD are illustrated in Figure 9a,b.

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 15 
 

 

L1

L2 L3

L4

L5

L6

L7

L8

L9
W1

W2

W3

L10Port1

Port2

Port3

R = 50   

R = 50   

 

Figure 8. Layout of the proposed final power divider design. 

Table 1. The applied transmission line values in the proposed power divider. 

Param. Value (mm) Param. Value (mm) Param. Value (mm) 

L1 6.8 L5 11 L9 12.5 

L2 3.5 L6 8.5 L10 8.7 

L3 23.6 L7 5.8 W1 2.1 

L4 9.2 L8 3.4 W2/W3 1.3/2.4 

4. Simulation Results 

The proposed WPD layout, which operates at 2 GHz, is simulated with the assistance 

of ADS software using the Rogers/5880 substrate. The simulated S-parameters of the de-

signed WPD are illustrated in Figure 9a,b. 

51 10

   

   

   

0

S21

Frequency (GHz)

M
ag

n
it

u
d

e 
(d

B
)

S11

GHz2

S21

S11

 
(a) 

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 15 
 

 

51 10

   

   

   

0

Frequency (GHz)

M
ag

n
it

u
d

e 
(d

B
)

S22

S32

S32

S22

GHz2

 
(b) 

Figure 9. Simulated S-parameters of the designed WPD. (a)|S12| and |S11|; (b) |S22| and |S32|. 

As seen from the simulated results, at this operating frequency, the isolation and in-

sertion losses are approximately 30 dB and 0.1 dB, respectively. Moreover, the input and 

output return losses are approximately 28 dB and 44 dB, respectively. In addition, the 

third and second harmonics are suppressed with a high attenuation level. 

Moreover, the equivalent lumped-elements circuit of the proposed WPD and its sim-

ulation results are depicted in Figure 10a and b, respectively. As can be seen, two trans-

mission zeros near 4 GHz and 6 GHz are created to suppress the second and third har-

monics of the proposed WPD. 

Port 1

Port 2

Port 3

 
  
 

 
 p

F
6 

9 
 n

H

9 0  nH

9 0  nH

9 0  nH

 
  
 

 
 p

F
6 

9 
 n

H

5 
2 

 n
H

5 
2 

 n
H

     pF

     pF

3 6  nH

9 3  nH

9 3  nH

7 
2 

 p
F

2  pF 2  pF

2 
 n

H
2 
 n

H

1  pF

50    

50    

7 
2 

 p
F

2 9  nH

 
(a) 

Figure 9. Simulated S-parameters of the designed WPD. (a)|S12| and |S11|; (b) |S22| and |S32|.

As seen from the simulated results, at this operating frequency, the isolation and
insertion losses are approximately 30 dB and 0.1 dB, respectively. Moreover, the input and
output return losses are approximately 28 dB and 44 dB, respectively. In addition, the third
and second harmonics are suppressed with a high attenuation level.

Moreover, the equivalent lumped-elements circuit of the proposed WPD and its
simulation results are depicted in Figure 10a and b, respectively. As can be seen, two
transmission zeros near 4 GHz and 6 GHz are created to suppress the second and third
harmonics of the proposed WPD.
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Figure 10. (a) The equivalent lumped-elements circuit of the proposed WPD and (b) its simulation results.

The surface current distribution in the proposed divider is depicted in Figure 11. As
seen in Figure 11a, the current is distributed uniformly at the output ports in the main
frequency. Furthermore, Figure 11b,c show that the current has not reached the output
at the second and third harmonics, which proves the harmonic suppression ability of the
proposed WPD.
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Figure 11. Surface current distribution in the proposed WPD at the frequencies of (a) 2 GHz, operating
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5. Experimental Results

To verify the simulation results, the proposed device is fabricated and measured.
The fabricated device is depicted in Figure 12. The proposed WPD experimental results
are shown in Figure 13a,b. The E8362B Network Analyzer is considered to perform the
experimental measurement for the proposed power divider.

According to the achieved experimental results, the isolation and insertion losses are
approximately 20 dB and 0.3 dB, respectively, at the main frequency. Furthermore, the
measured input and output return losses are approximately 21 dB and 26 dB, respectively,
at the main frequency. In addition, the second and third harmonics are suppressed with a
high attenuation level of 30 dB and 20 dB, respectively. The fractional bandwidth (FBW)
of the proposed divider considering a 10 dB input return loss is 17% corresponding to
1.83 GHz up to 2.17 GHz, which is indicated with an FBW1 box in the frequency response
in Figure 13a. Moreover, the FBW based on a 3 dB attenuation level is 40% from 1.5 GHz to
2.25 GHz, which is indicated with an FBW2 box in the frequency response in Figure 13a.
Figure 13b shows the output return loss (|S22|) and isolation (|S32|) of the proposed power
divider. As seen in Figure 13b, the desirable output return loss and isolation are obtained
near the operating frequency. The performances of the fabricated WPD are compared with
related dividers in Table 2. As seen, the designed WPD with a new structure has achieved
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high performance compared to the related dividers. The overall size of the proposed power
divider is 36.7 mm × 27.5 mm, which is equivalent to 0.32λg × 0.24λg, where λg is the
guided wavelength at the center frequency of 2 GHz.
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Table 2. The comparison between performances of the fabricated WPD and related dividers.

Ref.
Freq

(GHz)
FBW
(%)

Input Return
Loss

Output
Return Loss Isolation

Insertion
Loss (dB)

Suppressed Harmonics
Level (dB)

Filtering
Response

2nd 3rd

[3] 2.4 28 22 dB 30 dB 23 dB 0.8 20 20 Yes

[34] 2.65 48 27 dB N/A 22 dB 0.4 - 29 No

[35] 0.9 N/A 24 dB N/A N/A 0.32 - 22 No

[36] 1 34 20 dB 17 dB 20 dB 0.1 31 50 No

[37] 1 21 20 dB 20 dB 20 dB 0.2 30 30 No

[38] 4.5 66 12 dB 12 dB 10 dB 0.3 22 24 Yes

[39] 0.5 14 26 dB 26 dB 39 dB 0.27 - - No

[40] 5.9 27 11 dB N/A 30 dB 0.4 35 - Yes

This Work 2 17 */40 ** 21 dB 26 dB 20 dB 0.3 30 20 Yes

* The FBW considering 10 dB attenuation for input return loss. ** The FBW considering 3 dB attenuation for
insertion loss.

6. Conclusions

In this paper, a new structure of WPD with a wide suppression band is designed
and fabricated, which follows the modern communication system’s specifications. The
proposed device operates at 2 GHz, which shows 30 dB and 20 dB attenuation for second
and third harmonics, respectively. Open-ended and short-ended stubs are used for the
performance improvement of the presented divider. The open- and short-ended stubs were
used between the divided output resistor in the proposed power divider for the first time,
which resulted in achieving a controllable bandwidth, high levels of harmonic suppression,
and low insertion loss. Moreover, two resistors were used between output ports to improve
the isolation between output ports. The results showed that desirable parameters of the
divider were obtained, in terms of input return loss, output return loss, and isolation.
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