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ABSTRACT

The feasibility of design and demonstration of a cell 
control system to function in the fully integrated 
manufacturing environment independent of the parts produced 
or the manufacturing processes involved was investigated. A 
hierarchical control structure was used. Free standing 
implementations of a cell controller, a workstation 
controller, and programmable device interfaces were 
designed. The system is data driven, and was designed to use 
the manufacturing databases that exist in the computer 
integrated manufacturing environment.

Operation of the cell controller and its interaction 
with the rest of the system was demonstrated in real-time by 
simulating the computer integrated manufacturing environment 
on microcomputers connected to each other via communication 
links.



CHAPTER 1 
INTRODUCTION

Computer Integrated Manufacturing (CIM) is the name 
given to the image of the production facility whose 
engineering, production and management functions are 
computerized and combined to achieve efficient operation. 
Several levels of computerized automation have been 
implemented in production facilities around the nation. 
These facilities have been called "flexible manufacturing 
facilities", "computer aided manufacturing facilities", 
"computer integrated manufacturing cells", etc.. However, 
most of these facilities have been solely the integration of

t

a few pieces of programmable equipment, sometimes referred 
to as "islands of automation". These implementations are far 
from the fulfillment of the above given description of CIM. 
To distinguish from these, the facility that fits the above 
description of CIM is generally termed "full CIM". No 
commercial implementation of full CIM exists, however there 
are several limited applications.

Pull implementation of CIM demands advanced computer 
aided manufacturing (CAM) and computer aided engineering 
(CAE) systems to aid in all aspects of manufacturing 
planning of the designed part. Products of this system would 
include flexible routings for production of the part as well 
as flexible numerically controlled (NC) part programs, 
fixture and handling information such as gripper and robot
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approach sequences. These products of CAD/CAE are crucial to 
achieving the goals of CIM because they introduce the 
flexibility required for efficient operation of the 
manufacturing facility. Implementations of many CIM (or FMS) 
systems have actually been only programmable production 
facilities rather than flexible ones because of the absence 

of the above mentioned CAD/CAE capabilities tied to them.
Full CIM implementation generates voluminous amounts of 

data to be shared among the components of the CIM. 
Management of this data throughout the system calls for 
communication networks, database management systems and a 
complicated control structure. Vendors of manufacturing 
systems have designed interim solutions to fulfill the 
requirements of customers. The capital-intensive nature of 
the automated manufacturing market has prohibited rapid 
acceptance of state of the art equipment, and developments 
in the automated manufacturing equipment have led to more 
advanced islands of automation.

Vendors of automated manufacturing equipment have 
developed a variety of computer controlled proprietary 
equipment. Efforts are now concentrated in integration of 
the facilities without losing the advantages of the multi­
vendor environment. The first step in integration was the 
establishment of connectivity and communication standards. 
This has been established by the International Standards 
Organization's (ISO) efforts in establishing the Open 
Systems Interconnection (OSI) model, and development of the
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Manufacturing Automation Protocol (MAP) with the leadership 
of the General Motors Corporation.

The issues immediately following communications involve 
the structure of the information flow between the components 
of the computer integrated factory. Considering the 
voluminous amounts of data generated by the closely 
monitored computerized environment, it is obvious that not 
all data should be passed to every other component. For 
example, if a machine tool controller monitoring the 
condition of the cutting tool should try to report the 
cutting tool dullness to other controllers every fraction of 
a second, the result would be congestion at every component. 
Hierarchical structures, where information is digested and 
filtered at each level, have therefore been used for 
development of control systems in computer integrated 
factories.

Several systems for production monitoring and control 
in automated factories are being developed by vendors of 
automated machine tools and computer equipment. However, 
most products being developed address interim needs of the 
market rather than provide solutions to the problem of 

efficiently controlling operations in a highly integrated 

factory environment. While interim solutions to adapt the 
existing environment and provide smooth transition to the 
fully integrated environment are essential to the industry, 
development of control systems for the fully integrated
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environment is necessary so that the software required to 
achieve the efficiencies of that environment can be 
developed and tested. This is an essential step in the 
justification of the huge investments in fully integrated 
factories.

OBJECTIVE
The objective of this dissertation is to investigate 

the feasibility of design and demonstration of a shop floor 
control structure to function in the fully integrated 
manufacturing environment. The control structure designed 
should have the following characteristics:

Independent of the parts produced or the 
manufacturing processes involved.

Utilize the information created by the pre­
manufacturing operations in CIM such as design and 
process planning and should not require extensive post 

processing.
. Modular so that its components can be replicated to 
accommodate changes in the system capacity and 
configuration.

. Expandable so that modification of the algorithms for 
planning and control of production in the control 
structure can be easily implemented.
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DISSERTATION OUTLINE
The dissertation project can be broken down to the 

following tasks: (1) synthesis of the existing information
on Computer Integrated Manufacturing Systems, (2) 
development of simulated controllers for programmable 
equipment, (3) development of the production planning and 
control method at the cell level, (3) development of the 
cell control program, (4) design and development of a 
simulation model of the Computer Integrated Manufacturing 
environment.

*
This dissertation is organized as follows. Chapter 2 

presents information on • the Computer Integrated 
Manufacturing, hierarchical control, and a review of the 
previous work. Chapter 3 presents the general description of 
the environment around the cell controller. Chapter 4 
describes the cell controller, discusses the implementation 
of the cell controller and the details of operation of the 
cell controller program. Details of the workstation 
controller and programmable equipment designed for the model 
workstation are given in chapter 5. Chapter 6 describes the 

operation of the automated material handling system and the 

simulation of its operation.



CHAPTER 2
BACKGROUND

COMPUTER INTEGRATED MANUFACTURING
Computer Integrated Manufacturing (CIM) is the name 

given to the image of the production facility whose 
engineering, production and management functions are 
computerized and combined to achieve efficient operation 
(Figure 2.1). Computer Aided Design (CAD) and Computer Aided 
Manufacturing (CAM) are the basic technologies underlying 
CIM.

CAD functions are essential to CIM, since the part 
description and design information generated at this phase 
is used for CAM functions. It is essential that the 
capabilities of a CAD system be used for design of the non­
standard fixtures or tools required for the manufacturing of 
the part. Indeed, it is difficult to determine the 
boundaries of CAD and CAM in a CIM environment, since 
functions of both should be used by the design engineer 
simultaneously. It is expected that a number of subsystems 
implementing CAD functions would be available to the design 

engineer, such as expert systems to check whether the part 
can be manufactured as designed.

After completion of the design of the part, an expert 
system would create the process plan (or alternative process 
plans) for fabricating the part. Numerical control (NC) 
programs, robot approach sequences, etc. would be generated
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and stored in the manufacturing data base {see Figure 2.2). 
Group Technology, i.e., classifying parts according to 
similarities in their physical shape and dimensions, or 
according to the steps required for manufacturing the parts, 
is the primary basis for realization of the above functions.

Based on the quantity required and the due date of the 

order, resources required for the manufacturing of the part, 
such as the raw material, tools and fixtures, are either 
manufactured or are ordered for purchase. The cost of 
manufacturing the part is available as soon as the part is 
designed and the manufacturing data base is prepared. 
Analysis of plant capacity and outstanding orders can be 
undertaken to determine the possible manufacturing lead time 
for the order. Availability of real-time information is 
expected to change the whole control structure of the 
factory, as methods of static planning and control are 
augmented by algorithms to implement dynamic control of 
production [21]. The large amount of data produced by the 
processes and the variety of monitoring functions that can 
take advantage of the data available makes the local control 
of production units an attractive choice [4,18]. Allocation 
of data storage and processing at each level is closely 
related to the allocation of the control functions which 
will use them.

When the resources for manufacturing of the part (or 
group of parts) are ready, the order is released to the shop
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floor (Figure 2.3). Control of the shop floor is totally 
computerized, with the information from the manufacturing 
data base being used for scheduling, and NC programs for 
workstation control. At the same time, data from the shop 
floor flows upward to the production control database, 
enabling monitoring for production control and quality 
assurance purposes. Development of fully integrated systems 
should lead to the capability of efficiently manufacturing a 
variety of products from mid-volume to a lot size of one 
[27] .

Manufactured parts, raw material and semi-finished 
workpieces are stored in automated warehouses and retrieved 
when requested by the control system. Automated material 
handling and warehousing is an integral part of CIM (See 
Figure 2.4). Workpieces are transported to and from 
workstations by the Material Handling System (MHS) . 
Automated loading and unloading of parts to the MHS is 
accomplished by roller carts, robotic manipulators, or 
whatever method is suitable to the part and the material 
handling system. Several material handling methods such as 
conveyors, overhead transports, and automated wire guided 
vehicles (AWGV's) may be used on the same shop floor (see 
Figure 2.5). The MHS controller is responsible for making 

sure that the proper method(s) are used for transport of the 
workpiece to the desired destination. Detailed description 
of the physical facilities, such as the transport systems, 
locations of workstations and the types of interfaces to the
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MHS, is kept by the CIM in the facilities database. This 
information is shared by production planning and control, as 
well as other systems such as MHS for use in performance of 
their duties.

Another critical component of CIM is a communications 
network, enabling information flow within the system [25]. 
It is through this network that the databases for 
manufacturing and facilities are shared, commands and inputs 
to the shop floor are sent, and data from the shop floor is 
transmitted (Figure 2.6). The communications network for 
manufacturing systems have to be suitable for the type of 
control system. Varying amounts of data, from simple status 
indicators to potentially very large NC programs, and in 
varying urgencies, from emergency handling to routine 
signals, will have to be handled by the network. The absence 
of an accepted network standard has been a handicap to the 
development of CIM systems [11,14]. The Manufacturing 
Automation Protocol (MAP), a protocol based on the Open 
Systems Interconnection Model (OSI) of the International 

Standards Organisation (ISO), has recently emerged as a 

standard accepted by many, and is likely to be the standard 
for manufacturing systems. Detailed explanation of MAP is 

given in [13].
Establishment of communications standards for the shop 

floor has enabled vendors of automated manufacturing 
equipment to provide communications capability compatible 
with the others to their products. Given the connectivity of
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all equipment, the task of controlling the manufacturing 
system as a whole to achieve optimal performance of 
operations remains as an area to be researched for a long 
time.

Most of the systems to control manufacturing opertions 

that have been developed or are being developed involve 
hierarchical control structures. The next section presents a 
review of the hierarchical control, and the section 
following it describes previous work in this area.

AWGV
Tow-cart

WORKSTATION

WORKSTATION

WHS
Interface

WORKSTATION
MHS

Interface

Figure 2.5: Material Handling System Coupling
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HIERARCHICAL CONTROL
Controlling any system of reasonable complexity 

requires a structure involving delegation of command and 
responsibility. This hierarchical method of control is most 
obvious at the institutions such as the army, and less 
obvious (nevertheless similar) in control of complex 
processes such as refineries or manufacturing installations. 
Since most engineered systems can be decomposed into a 
collection of interconnected subsystems, each of which can 
be controlled individually, it may be possible to control 
such systems by generating hierarchies.

A simple hierarchy is shown in Figure 2.7. Fundamental 
properties of a hierarchy [26] are as follows:

1. Hierarchies consist of decision making units 
arranged in a tree-like structure where at each level a 
number of such units operate in parallel.

2. Hierarchical structures exist in systems which have 
an overall goal, and the goals of all the decision makers 
who constitute the hierarchy are in harmony.

3. There is an iterative information exchange between 
the decision making units on the various levels of the 
hierarchy with a precedence for the information going down 
which is treated as a command by the lower levels which try 
to obey it if they possibly can.

4. The time horizon of interest increases as one goes 
up the hierarchy.
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Hierarchies arise due to the following reasons:
a) The system having a definite goal is too complex for 

one decision maker to comprehend let alone control, since 

decision makers have limited information handling 
capacities.

b) Since time flows sequentially, it is possible to 
perform more tasks in a given period of time if the jobs are 
done in parallel and this leads to parallel decision making 
by decentralized controllers.

c) Decentralized decision makers need to coordinate 
their activities to satisfy the overall goal and it is more 
efficient to have a specialist coordination function and a 
hierarchy than constant communication between all the 
decision makers since it increases the burden on each 
decision maker.

Advantages of hierarchical systems are:
a) Flexible configuration, and the possibility of 

increasing capacity easily.
b) High reliability due to ease in adding parallel 

redundant systems.
c) Lower cost due to simpler software and possible use 

of standard components at each level.
Singh [26] presents the problem of synthesizing 

hierarchical structures for large interconnected 
hierarchical systems. Formulation of the problem for a 
collection of N interconnected dynamical systems, where the 
system can be described by linear differential or difference



16

equations/ and the cost function which defines the overall 
goal of the hierarchy is a quadratic function of the states 
and controls is shown in Figure 2.8.

For the ifch subsystem;
*i is an n^ dimensional state vector 

is an dimensional control vector
is an r^ dimensional vector of inputs from other 

subsystems.
Assuming linear system dynamics:

Ai<t) = hiHit) + B^iCt) + CjZitt) --------  (1)
with jc i (0) =

Assume that the vector of inputs z^ is a linear combination
of the states of the N subsystems:

i.e., = sum(L^j Jtj) for j = 1 to N -----  (2)
It is then desired to choose the controls ^/..../Un in
order to minimize the function of the kind:

N
J = I (1/2 j |2Li (T) | | 2 Qi

1=1 + 1/2 [ ||Xi(t)||2 Qi

+ I 1Hi I I 2 Hi + lllill 2 Si 1 dt

subject to constraints (1) and (2).Several approaches to 
solve this problem, both feasible and infeasible are given 
in [26]. A similar formulation of the same kind of problem 
is presented in [28] to minimize the Work-In-Process, thus 
optimizing the production planning and control function.
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Each work section in layer j is represented by a similar 
equation, and the objective function is of the same kind. 
It is stated that the result would be impractical to apply, 
since it inevitably yields an approach too cautious to 

apply* reserving an unused margin to counteract the event 
effects. Thus the solution would yield an inefficient 
production planning and control system. The difficulties of 
multivariable optimization in real-time are also discussed 
in [19].

An approach to solving problems of reasonable 
complexity is to map solution strategy by decomposing the 
problem at hand to subproblems that can lead to the solution 
of the main problem if they can be solved. These problems 
than can be further decomposed into subproblems themselves, 

using the same approach. At some point in the decomposition 
process, subproblems whose solutions are known are 
generated, and thus the solution to the principal problem is 
obtained. The decomposition of problem A to subproblems B 
and C (solution of either one would lead to the solution of 
A), and then to subproblems D,E,F,G, and H are shown in 
Figure 2.9. AND nodes are shown with a bar joining their 
arcs, the others are OR nodes. Solutions to primitive 
problems D and E, or to F,G and H yield the solution to the 
main problem A. AND/OR decomposition is a valuable tool for 
analyzing hierarchical networks.

This mapping of the solution to problem A is relevant 

for most purposes, mainly for planning, however is not
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readily applicable to real-time control systems because the 
variable time is not explicitly represented. A method to 
convert these AND/OR graphs to a continuous form in which 
time is explicitly represented is necessary to apply the 
ideas to hierarchical control systems. Such a method has 
been developed at the National Bureau of Standards (NBS) 

[2], It defines a mapping H from input space to output 
space, where the input vector £ can be decomposed into 

command plus feedback:

S. = £  + F
Thus the input vector describes the possible input 
vectors(S) corresponding to the same command (C) , and the 
outputs to these inputs (See Figure 2.10):

P = H (SJ
The input vector C represents a goal and the output vector JP 
may be subgoals to the several levels below. In this case 
the function H may be viewed as a decomposition function 
where the command C is decomposed into subtasks. In another 
case, this system may be a servomechanism where C is the 
setpoint and feedback is used to compute the error signal. 
In this case H is the transfer function and the outputs are 

the drive signals to physical actuators. When the feedback 
(or the error signal) is not continuous but discrete (such 
as measurements at discrete points of a continuous 
variable), then the continuous analysis degrades to a 
discrete one. As long as the H functions are correctly
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Figure 2.9: A Simple Problem Decomposition
Solution to A: (D and E) or (F and G and H)

S Is the STATE vector 
C is the CONTROLS Vector 
F is the FEEDBACK vector

Figure 2.10: A Simple Control Unit
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formulated, and the sampling of feedback (error) is frequent 
enough, stability of the system can be maintained.

A hierarchy of task decomposition operators, or
servomechanisms, can be used to describe the controls for a 
complex system (see Figure 2.11). Feedback enters this 
hierarchy at every level. At the lowest levels, the feedback 
is unprocessed, or nearly so, and hence is fast acting with 
very short loop delays. Feedback therefore closes a real 
time control loop at each level in the hierarchy. The higher 
level loops are more sophisticated and slower. The time rate 
of change of the output vector £ will be of the same order 
of magnitude of that of F and significantly faster than that 
of the command vector C. This slower time rate of change of 
the JP vectors at the higher levels is not because the
processing rate of the higher level H operators (which
indeed is the same as any other), but due to the fact that 
the F vectors driving the higher levels convey information 
about events which-occur less frequently. In some cases 
higher level F vectors may require the integration of 
information over long time intervals.

The composition of the feedback at each level, that is, 

the amount of sensory information from the environment or 
the lack of it, will determine the sensitivity of the
controls at that level to the conditions in the environment. 
If the feedback vector contains many external variables, the 
task decomposition at that level will be capable of 
responding to the environment. If the feedback vector
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Figure 2.11: Feedback to Hierarchical Control System

consists solely of internal variables, then the 
decomposition at that level will be stereotyped and 
insensitive to the conditions in the environment.

The success of performance of tasks depends on the 
capability of the H functions at each level to provide the 
correct mapping despite perturbations and uncertainties in 
the environment. To maintain control, the transfer functions 
must be defined around the regions of perfect performance as 
well as the expected points, and must be able to direct the 
actions to correct the deviations in the perfect performance 
to maintain stability. If they fail to perform in the 
presence of perturbations, then the system fails.
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Small perturbations can be usually corrected by low 
level feedback loops, since they require relatively little 
sensory data processing (see Figure 2.12a). Larger 
perturbations in the environment may overwhelm the lower 
level feedback loops and require strategy change at higher 
levels in order to maintain the system within the region of 
successful performance. These are shown in Figure 2.12b. The 
changes in the environment beyond the correction 
capabilities of the lower level controllers is detected at 
the higher levels and new command vectors for the lower 
level controllers is calculated, representing a change in 
the strategy to cope with the perturbations.

Integrated factory models have been developed by 
several institutions utilizing the theory of hierarchical 
control discussed above. These models are described in the 
next section. Hierarchical control theory was also utilized 
for development of the model in this research.



a) Small perturbations corrected at lowest level

Error at higher level

b) Lower level overwhelmed by the error 
(change in strategy)

Figure 2.12: Correction of Performance
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PREVIOUS WORK
Several institutions around the world have been 

researching the possibilities of designing control 
structures for efficient control of automated manufacturing 
facilities. This section presents brief descriptions of 
major relevant research in this area.

Most notable is the research continuing at the National 
Bureau of Standards Automated Research Facility (NBS-AMRF). 
It has been documented in [1,2,3,16,17]. Following is a 

description of the model and current implementation of the 
AMRF control system.

This facility is being developed by the NBS as a 
testbed for developing standards in all aspects of managing 
the factory of the future. The production control model 
developed at AMRF consists of five layers: facility, shop, 
cell, workstation, and equipment (see Figure 2.13). It is a 
hierarchical control structure, in which the commands to 
each control module is processed in a similar manner. The 
current input command to a level is decomposed into 
procedures to be executed at that level, to commands to be 

issued to the lower levels, and to feedback to be 
transmitted to the supervisory level. The feedback is used 

to close the control loop at each level, supporting the 
adaptive behavior of the system (see Figure 2.14).

The facility control system implements the highest 
level of control, and has a planning horizon of anywhere



26

^  FACILITY^

(workstation)

^EQUIPMENT^

Figure 2.13: AMRF Control Levels

. Status 
A Feedback

Level 1

Level 2

\
Status \ 
Feedback '

\
\
\

Equipment

Figure 2.14: AMRF Control System Hierarchy



27

from several months to several years. This level is broken 
down to three major functional areas: manufacturing
engineering, information management, and production 
management. Manufacturing engineering involves generation of 
bill of materials for assemblies, as well as the process 
plans necessary for the manufacturing of parts. Information 
management provides the user and data interfaces for the 
necessary administrative and business management functions 
such as order handling, billing, payroll, etc. Production 
management generates long range schedules, determines the 
need for capital investments to meet production goals, and 
summarizes production data. The long range schedules 
produced by this system are used to generate work orders at 
lower levels.

The shop control system is responsible for coordinating 
the production and support jobs on the shop floor. This 

system is also responsible for the allocation of resources 
to those jobs. The planning horizon for the shop control 
system varies from several weeks to several months. Major 
components of this system are task manager and resource 
manager. The task manager schedules job orders, maintenance 
and shop support services. It also tracks equipment 
utilization and schedules preventive maintenance for 
equipment and tools in the factory. The task manager is 
responsible for capacity planning, grouping orders into 
batches, activating and de-activating "virtual" cells, 
allocating resources to individual cells and tracking
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individual orders to completion. Resource manager allocates 
workstations, buffer storage areas, tooling etc. to cell 
level controllers. It also updates inventories of all 
equipment and tools in the factory. The dynamic allocation 
of workstations to cell controllers makes it possible to 
change configuration of cell compositions to fit the 
production requirements.

The cell level controllers are responsible for 
sequencing batches of jobs through workstations, and 
supervising various other support services, such as material 
handling or calibration. The planning horizons of cell 
controllers vary from several hours to several weeks. 
Components of the cell control system perform task 
decomposition, analyze resource requirements and prepare 
requisitions, report job progress and system status to shop 
control, make dynamic batch routing decisions, schedule 
operations at assigned workstations, dispatch tasks to 
workstations, and monitor the progress of those tasks.

The workstation control system has a planning horizon 
from several minutes to several hours. Activities of small 
integrated physical groupings of shop floor equipment are 
coordinated and directed by this level of control. A typical 
workstation consists of a robot, a numerically controlled 
machine tool, a material storage buffer and a control 
computer. Interface of the cell to workstation controllers 
is designed to be independent of the buffer and a control
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computer. The of the cell to workstation controllers is 
designed to be independent of the workstation type so that 
the assignment of the workstations to the cell can be made 
without difficulty.

Equipment Control Systems are closely tied to the 
commercial equipment or industrial machinery on the shop 

floor. These controllers have a planning horizon of several 
milliseconds to several minutes. They in fact are the 
interfaces of the commercial equipment to the workstation 
control system.

Every control module in the AMRF hierarchy reacts to 
inputs in essentially the same way: input commands from the 
supervisory level are decomposed, status feedback from 
subordinates are processed, and new outputs in the form of 
commands and status are generated (see Figure 2.15). This 
mode of operation, referred to as reaction, represents the 
first of several levels of intelligent control envisioned: 
reaction, planning, optimization, and learning (see Figure 
2.16) .

To aid in specifying the required task decomposition 
and task processing, a programming language and program 
development environment called the Real-time Control System 
(RCS) was implemented. It permits specification of programs 
at each level as state tables, and the programming 
environment permits the generation, editing, emulation, and 
evaluation of these state tables. Details of this system are 
given in [3,15],
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As it is currently implemented, the AMRF consists of a 
cell control system which receives commands from an operator 

interface. It coordinates operations of a horizontal, a 
vertical, and a turning machining centers, and a material 
handling system (see Figure 2.17). Each machining 
workstation manages four equipment level systems, a robot, a 

machine tool, fixturing devices, and a local material 
storage area. The material handling system manages a robot 
cart, a sto r a g e  and retrieval system, and a 
loading/unloading area that is tended manually. Several 
programming languages and environments have been used in the 
implementation. The cell control system and the material 
handling system have been implemented on a minicomputer. 
Systems running on a computer use memory locations labeled 
as mailboxes for communication. A network is planned for 
communication of processes not implemented on the same 

computer.

Cell Control System

Automated
Turning
Workstation

Material
Handling
Workstation

Vertical
Machining
Workstation

Horizontal
Machining
Workstation

Figure 2.17: Current AMRF Control Structure
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The AMRF is being developed to fulfill the goal of the 
NBS, to develop standards for automated manufacturing. It 
therefore considers the interim needs of the industry as 
well as the future. The interfaces to the operator and other 
manual operations such as programming are adding to the 
complexity of the systems being developed. The concepts 
being implemented, however are valid in either case. The 
programming systems developed involves forms of many types 
that are efficient for manual data entry, but would require 
additional processing of the available data to be generated 
by a fully integrated system.

Use of state tables in the decision making elements may 
cause fragmentation of the problem because of the 
exponential increase in the possible number of states with 
the number of elements to be controlled. As long as the 
implementation of decision makers is on one computer, the 
real-time nature of the response can be preserved. If 
however the state table based decision makers are to be 
implemented on multiple computers, it might not be possible 
to respond in a reasonable time frame because of the large 
number of transfers required between the decision makers.

The structure planned for AMRF is a typical 
hierarchical control system for CIM except for the MHS. The 
implementation of the material handling system as a 
workstation to the cell controller is acceptable for a 
facility consisting of one cell, however it would not be 
practical in the presence of many cells, especially in an
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environment where the workstations are allocated to cells by 
an auctioning scheme. Rather, it would have to be an 
autonomous controller accepting requests from all cell 
controllers, and responding to them.

Development of another hierarchical control system to 

carry out FMS integration is given in [21]. This system 
involves following basic levels: dynamic scheduler, 'process 
sequencer, resource allocation, and the communications 

level. The dynamic scheduler determines the instantaneous 
production rate of each part type, planned routing and 
dispatch timing to best utilize the the varying capacity of 
the system. It uses real-time data as well as the aggregate

I
data to make best use of the manufacturing system's 
flexibility. The Process Sequencer infers, based on the 
manufacturing system status and the production state of the 
part, the next process, the appropriate material handling 
move, and the production program to download, if required. 
Major components are the knowledge base, where the facts and 
the rule set reside, local data base where the system status 
and production state are held and the inference engine <IE). 
IE presents the current system status and the production 

.state to the facts and rules, to come up with a set of 
actions whose conditions are fulfilled.

The IE consists of four components: IE flow control 
manages the program execution and interacts with the rest of 
the software control. Local data base manager updates and 
enforces consistency when new data arrives, internal
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scheduler controls the order of the rules. The Interpreter 
actually parses the rules using the facts and current data .

The objective of the Dynamic Resource Allocation Module 
is to dynamically allocate the shared resources according to 
the next task to be performed in the FMS, complying with 
some priority policy. The output of this level are commands 
to the communications interface module, in order to execute 
particular movements.

The communication level transmits the decisions and 
receives feedback from the direct machine controllers. Part 
of this level is also in charge of collecting statistical 
data, monitoring options of the system, and providing run­
time services.

The control system design outlined above may be 
implemented with success and work effectively for an FMS 
system with limited capacity. It however would be difficult 
to implement this system in CIM environment, because the 
design is an integrated control system, instead of a 
distributed one. The allocation of the scheduler and other 
functions would have to be redefined given the necessity for 
grouping of workstations (or cells) in a factory wide 
implementation. The data required by this system, namely the 
rules for the inference engine and the program for the FMS 
control system, are not the type of information found in the 
CIM environment naturally. They are the products of 
additional processing of the production and product data 
bases in CIM.
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[14] gives a comparison of the products available from 
vendors and address the issues of data compatibility and 
communication in an integrated environment. It is stated 
that the systems available from vendors are all in 
development stage and mostly involve implementation of the 
higher-level functions such as production scheduling and 
inventory control than the cell or workstation level 
controllers. It is also observed that the products entering 
the market stress color graphics displays, and sophisticated 
user interfaces rather than providing solutions to the 
problem of distributed control in the shop floor. Authors 
suggest a modified disk operating system type of approach to 
the needs of a distributed control system on the shop floor.

Effective design of the control systems for Flexible 
Manufacturing Systems is discussed in [5]. A 
conceptualization of FMS environment is outlined and two 
control structures, a single level and a two level are 
described. An implementation of the two-level control system 
is also detailed. The control system described here is based 
on the use of a procedural language (termed CPL, Cell 
Programming Language) for the manufacturing cycle. For each 

piece to be manufactured in FMS, a program must be written. 

From the language point of view, FMS is a set of devices 

classified according to type and features. CPL consists of 
instructions to request services or information from 
devices, and instructions to reserve, activate or gain 
exclusive use of a device.
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The supervisory level controller consists of an 
operations sequencer, a part loading module, and a table 
manager. Three tables, active missions (workpiece tasks) 
table (AMT), active step (operation request) table (AST), 

and a table describing the current state of the devices in 
the system (CDT) are kept by the supervisor. The interfacing 
of the lower level (devices) with the controller is through 
the common tables, particularly the AST.

The system described for control of FMS utilizes cell 
controller programs for each part in addition to the part 
programs for manufacturing processes. The cell control 
programs, written in Cell Programming Language (CPL), are 
then interpreted by the cell controller and reduced to a set 
of common tables through which the workstations are 
assigned, activated, etc. One of the preliminary advantages 

cited for the system developed here is the ease of 
programming by writing macros in a general purpose high 
level language.

In the full CIM environment, the cell control program 
for each piece would have to be written after the creation 
of the process plan for manufacturing of a part. The fact 

that all the information in the CPL program will be derived 

from the manufacturing and facilities data bases in the CIM 
environment, and will be reduced back to a table form in the 
cell controller, suggests that it is a step redundant in the 
CIM environment where data communications provide global
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access to common databases. Furthermore, the integrity of 
data in an environment where different forms of the same 
information are present would be hard to preserve. The 
operational control system so provided, therefore, may not 
be as efficient in the Full CIM environment as it might be 
in the FMS where the pre-manufacturing activities may not be 
automated or integrated to the shop floor control.

A generalized hierarchical control structure for 
machine control applications is presented in [20]. Five 
major components are identified: command translator, command 
interpreter, device manager, exception monitor and subsystem 
monitor. The command translator serves as the communications 
interface between the external host and the machine 
controller. The command interpreter breaks down the incoming 
command into elementary commands for further processing by 
the device managers. The device manager executes the 
incoming command by directly operating a hardware device or 
by breaking down the command into more elementary ones for 
further processing by the lower level device managers. The 
exception monitor gathers and reports error conditions 
detected by the subsystem monitors. The exception monitor 
can command the machine to stop if the conditions so 
dictate. The subsystem monitors process the inputs and 
monitor the conditions of the passive hardware systems, such 

as position calibration.
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Control hierarchies may be built by using the same 
controller model at each level. The termination point of the 
control hierarchy is where the command action can be 
executed by operating a single device in a simple sequence 
of actions. Examples of similar hierarchical control designs 
are cited (one by Albus, Fitzgerald and Barbera, and another 
by Gomoa). The command processing chain of a hypothetical 

application of the generalized hierarchical structure is 
described. Hierarchical control structure by Gomoa is shown 
in Figure 2.18.

The described generalized control module can be 
implemented in many different ways and still fit this 
framework. This can be observed by comparing the examples 
cited and the hypothetical example given. The control system 
designed does not show the lower level controllers which 
would have to be different due to the characteristics of the 
lower level inputs. Authors stress the importance of the 
messaging service in the design of the controller 
hierarchies and suggest use of a queuing system for messages 
and use of semaphores.

Another approach to solution of the production planning 
and control problem using hierarchical dynamical control 
structure is given by [28], A tree organized Generalized 
Hierarchical Structure of Decision Making Modules (expert 
systems) is suggested. It involves definition of a set of 
solution procedures, parameterized on the possibly occurring 
event types, for all sub-problems within the hierarchy, and
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the organization of them into a relational framework able to 
make event to control strategy matchings. Figures 2.19 and 
2.20 show the block diagram of a generalized hierarchical 
structure. The resulting Generalized Hierarchical System 
then can be viewed as a network of expert control systems, 
each consisting of an on-line learning process, an on-line 
local planning design process, and an on-line coordination 

process.
Another expert system based control hierarchy applied 

to a flexible assembly cell is presented in [8]. NNS is a 
complete on-line system for control of multi-robot assembly 
workcells. The designed control hierarchy (see Figure 2.21) 
covers three levels of abstraction: task level, functional
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level, and command level. The task level reasons about what 
happens in the cell and what the system has to perform. It 
involves planning, failure analysis, interface with higher 
level systems (operator, workshop), execution monitoring and 
action generation. The functional level is in charge of 
action execution, in terms of functional primitives 
available in the cell. It consists of two modules: the
sequence manager and the interpreter. The command level 
interacts directly with the controllers of the components of 

the cell, such as the robotic manipulators, or sensors.
NNS is implemented as a set of processes running on a 

number of processors. Interprocess messages are used for 
communications. Each component of the main cell is 
controlled by a specialized module, implemented as an 
independent low level interpreter. The specialized modules 
have access to the state of the cell. The functional and 
higher levels are implemented as processes in Lisp running 
on a minicomputer.

This implementation of an assembly workcell uses 
knowledge based decision makers at higher levels and 
interpreter-monitors at lower ones to execute action 
requests. The state of the flexible assembly cell is 
maintained, together with the rules, by the decision makers. 
Planning and monitoring is done based on the interpretation 
of the state of the system and the rule base.
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Expert systems are expected to be a part of solution to 
almost any problem in the automated manufacturing area. 

However, given the complexity of the CIM, it is not possible 
to formulate the rules to manage the whole system, hence to 
build an expert system to manage CIM optimally. Introduction 

of expert systems to the manufacturing control systems 
therefore has to be in the context of specialized decision
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makers at several points in the hierarchy. The information 
required by these systems may then be supplied by the 
experts in these areas. The discussion in [28] does not 
address the problem of relating the types of data and rule 
sets required by the proposed control system to those 
generated by the CIM during pre-manufacturing operations.

Several other commercial implementations of flexible 
manufacturing cells such as the ones in Caterpillar, Renault 
[12], and Martin Marietta [23] are reported. These 
implementations are geared to solving particular problems in 
well defined product classes and have controllers custom 
designed for the particular implementation. The emphasis is 
in improving productivity and quality by semi-automated 
manufacturing groups. The requirements for unmanned 
operation of the flexible manufacturing facilities and the 
difficulties of conversion to the fully unmanned factory are 
discussed in [18], There are also several implementations of 
traditional software for production control and scheduling 
that has been re-written on microcomputers, using the 
improved user interface of these machines [7]. The problem 
of dynamically coordinating the shop floor operations to 
achieve goals of production have been totally overlooked by 
such implementations, and the real-time nature of the 
control systems have been ignored.
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Many other organizations such as the consortium of 
companies and schools in Europe [9] are investing in 
research in this area but few results have yet been 
published. There are no published, reports of an 
implementation of a cell control system that is modular, de­
centralized, portable and data driven to efficiently utilize 
the highly standardized fully computer integrated 
manufacturing environment. The contribution of this research 
is expected to be a demonstration of the feasibility of such 
a system.



CHAPTER 3 
SIMULATION OF CIM ENVIRONMENT

GENERAL

An implementation of "Full CIM" involves computer aided 
design and manufacturing systems, computerized planning and 

tracking of orders, inventory, costs, quality, etc. This 
research involves one small portion of this integrated 
system, namely the manufacturing cell controller. It is 
unrealistic, if not impossible, to describe the cell 
controller and the manufacturing unit without making some 
assumptions about the environment in which it operates. To 
simulate one segment of an integrated system, it is 
necessary to define the interfaces of the simulated portion 
to the system. This enables us to determine the inputs of 
the environment to the segment of interest, as well as 
outputs of the simulated segment to the others. It is 
therefore necessary to describe the domain of interest and 
simulate the environment surrounding it, at least as far as 
the interactions are concerned.

The manufacturing cell controller program runs on a 
microcomputer. It is connected to another microcomputer 
which is capable of simulating the CIM environment's 

responses. These include responses expected from the 
workstations, supervisory level controllers and the 
material handling system controller.

45
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One crucial requirement of the CIM environment is the 
presence of certain information at each level of operation. 
It is therefore assumed that the information required at 
each simulated level is available through the factory-wide 
network. In the absence of the network, this data is read 
from local disk or obtained through the serial 

communications link connecting elements of simulated 
environment. Much of this data, such as NC programs, process 
plans, etc., are actually products of the integrated system 
itself, and are assumed to have been created previously.

A program running on a microcomputer simulates the 
gateway to the world external to the cell controller. It 

handles all communications in and out of the cell 
controller, as well as coordinating or simulating the 
Material Handling System (MHS), network controller, 
workstation controllers, and provides an interface to the 
operator. Commands from the control levels above the cell 
controller are entered using the operator interface provided 
on the microcomputer. The cell controller responds by 
issuing commands to the workstation level controllers and 
commands to the Material Handling System, as well as status 
reports to the supervisory levels.

The CIM environment outside the cell controller can be 
simulated on the microcomputer acting as the gateway, in 
which case the simple modules built into this program will 
be used, or some of the units such as the material handling 
system or the workstation controller may be simulated on
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separate computers. If external simulation programs are 
attached, the gateway simulator program will act as a link 
between those and the cell controller.

This flexible design of the system makes it possible to 
use it in an environment when some of the simulations of 
systems and workstations is not made on separate computers, 
but on the gateway computer. It is therefore possible to run 
the system simulation using only two computers.

The gateway simulator program and the limited 
simulation of external systems, such as the workstation 
controllers and material handling system controller, within 
the context of this program, are described in this chapter. 
Following chapters present the manufacturing cell control 
program, the workstation controller program and the material 
handling system simulator program.

GATEWAY SIMULATOR PROGRAM
Since a variety of functions are assigned to it, the 

simulation program is designed in a modular fashion, each 
function implemented as a set of modules executed only when 
necessary, and returning to the monitor program without 

suspending the user interface. This means that unless it is 

absolutely necessary, functions do not do user interaction, 
so that the simulation of the operation of the cell can be 
carried out in real time.
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The simulator program operates with queues. Each 
operational message received is placed in the appropriate 
queue. Informative messages are displayed (and lost) after 

the statistics are updated. Event times are determined when 
messages to start operations ending with events (such as 
workstation operation, piece transport, etc.) are received. 

The operator can override the scheduled event times, as well 
as causing things to happen, even if not scheduled. 

Simulated occurrence times of the events in the queues are 
checked periodically, and those events whose times match the 
current time are executed in the form of responses to the 
cell controller from the appropriate unit.

Simulator program operates in synchronization with the 
cell control program (CCP) running on the remote computer. 
Upon initialization, CCP issues a synchronization signal, 
which is acknowledged by the simulation program, and the 
two programs reset their system timers.

Data for Simulation
The simulator program contains some of the data that is 

required for running the simulation, however most of the 
Manufacturing Data Base, which would otherwise be present in 

the network, is not fed to the simulator. This avoids 
duplication of the data that could otherwise introduce 
integrity problems into the system. The remaining data 
(those available at the databases of the cell controller 
program) are requested from the CCP in form of database
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queries initialized by the simulator program itself. Other 
parameters required by the simulation program are passed to 
it by the CCP using fields in the messages that otherwise 
would be disregarded by the simulator, but would have to be 
sent anyway to comply with the messaging format of the 
communications system. One example is the second operand in 

the "start operation" message. It normally would be ignored 
by the receiving party, but is actually used to convey an 
expected processing time to the simulator.

Simulation of the Material Handling System controller 
requires presence of facility data in the simulator. It is 
fed into the simulator from a file kept on the same machine, 
and can be changed using an editor. Since changes in the 
facilities is not normally expected, no provision exists for 
interactive alteration of the facilities database during 
simulation.

Organization of program
The simulation program is organized as functional 

modules attached to a communications interface (see Figure
3.1). This organization provides for expansion of the 
simulation program to many computers, as required. The 
implemented functional modules may be overridden by the 
configuration specification in the configuration file. Doing 
so results in routing of the messages intended for those 
systems to respective ports on the gateway computer, 
reducing the gateway program to a link for those functions.
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Each function therefore may be implemented as realistically 
as required. Controllers may be implemented as expert 
systems or may use sophisticated algorithms requiring the 
power of a separate computing unit, and executing in 

parallel (see Figure 3.2).
Data flow into the simulator is through the 

communication module or the operator interface. The operator 
interface is handled similar to the communication interface: 
real-time operation is emphasized. Operational messages 
received at the communications interface are assigned to 
queues based on the type of message. It is then the duty of 
each functional module to recognize and respond to the 
events as represented by the initiation messages. The 
scanning cycle of each unit is currently short, however, 
when sophisticated simulation modules of a function is 
desired (such as planning modules with optimization), then 
it may be lengthened and interfere with the real-time 
operation of the simulation.
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Operator Interface
The simulation program has an operator menu which can 

be called by the operator by typing an "M" at the keyboard. 
Because of the real-time emphasis, menus are not presented 
all the time. Even when the operator menu shown in Figure
3.3 is presented, the simulation program keeps operating 
until the operator enters his request. At any point, the 
operator may ask for the status of the system, the contents 
of the queues, or any other statistic of interest. The 
operator can also send a message (either operational or 
database query) to the cell control program at any time by 
using the "Send Message" option of the operator menu. It is 
not very desirable however because some events (such as 
pending messages) may be delayed, since the user is so much 
slower to respond and assemble the message he wishes to 
send.

Time is: 2210
WHAT DO YOU WISH TO DO NEXT?

S. Send Message
H. Respond to MHS Messages
F. Respond to Fixturing Requests
P. Respond to Program Download Messages
W. Respond to Operation Start Messages
D. Database Update
R. Read incoming Message (if any)
Selection ==>

Figure 3.3: Operation Menu of Gateway program
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One example of required operator interaction is the 
messages to the cell controller for manufacturing parts. 

Since the operator interface is used for simulation of the 
supervisory level controller's task allocation function, it 
is necessary that the interface be used at least in this 
capacity. Since this is not a frequent event within the time 
period of interest to the cell controller, it does not 
impede the operation of the simulation.

Simulation of Workstation Responses
The workstation simulation portion of the gateway to 

the cell controller simply responds to commands from the 
cell controller. The command to start operation is responded 
after an appropriate time interval representing the 
operation has elapsed. The operation times are deterministic 
however a random element representing the dulling of the 
cutting tools or similar events may be invoked if desired. 
Ongoing operations are assigned a completion time and the 
list of ongoing events is periodically scanned by the 
simulation program to determine if any of the event times 

have been reached. When one is found, a service completion 
message is sent to the cell controller for that workstation.

When the computer integrated manufacturing environment 
simulator is configured such that there is an attached 
computer acting as a workstation controller, the messages 
related to that workstation are routed to the appropriate
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port, and responses sent to the cell controller. The stand 
alone version of workstation controller simulator works in a 
similar way, however it actually controls operation of 
physical equipment, not merely a simulation of equipment. 
The programmable equipment physically implemented were 
instrumental in better understanding the needs of remotely 

controlling such devices with local intelligence, thus 
influencing the design of the workstation and cell level 
controllers. Information on the operation and programming of 
the workstation controller is given in a following chapter.

SUMMARY
A program to act as a gateway to the cell controller 

was designed. Elements of the computer integrated 
manufacturing environment that the cell controller routinely 
interacts with, such as the workstation controllers and 
material handling system controllers, are simulated by this 
program to enable operation of the cell controller.

If material handling system controller or workstation 
controllers are simulated on separate units, this program 

can be configured to coordinate the communications between 
computers. This feature makes it possible to distribute 
simulation of the system to several computers as required by 
detailed models.



CHAPTER 4 
MANUFACTURING CELL CONTROLLER

This chapter introduces the highest level decision 
maker implemented in the context of this project, the 
Manufacturing Cell Controller. The design and implementation 
of the cell controller is described in the following 
sections, after a review of the functions of the 
manufacturing cell controller. Since the workstation 
controllers and the material handling system controller 
operate upon instructions from the cell controllers, 
understanding the operations of the cell controller is 
essential for clear interpretation of the workings of the 
manufacturing cell.

This chapter also describes the messaging system used 
by the cell controller in detail. Since these messages are 
received and responded to by the other controllers that are 
connected to the cell controller, an explanation of the 
messages and the messaging system at the end of this chapter 
may be used as a guide when the other controllers are being 

considered as well.

55
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FUNCTIONS OF A MANUFACTURING CELL CONTROLLER
A. Task Decomposition. The cell controller must be able to 

efficiently reduce the higher level commands (requests) 

from the supervisor to lower level tasks. Lower level 
tasks must then be further decomposed to either direct 
commands to shop floor equipment, or to high level 
commands to subsystems (such as the material handling 
or tooling subsystems). Models for achieving this 
function have been constructed, generally using state 
tables or petri nets.

B. Monitoring and Control. The workstation must monitor 
all the equipment and subsystems within the domain of 
the cell, and take action when necessary.

1. The monitoring functions can be grouped as process 
monitoring, equipment monitoring, handling 
monitoring, and quality monitoring.
a) Equipment monitoring involves checking the 

performance of the equipment, such as machines or 
robots, to make sure that they are functioning 

properly. Included are the cleaning systems, 
safety systems, etc, which may report to the cell 

controller.
b) Process monitoring involves monitoring of chip 

removal, tooling, and progress of the 
manufacturing processes. Tool wear or breakage, or
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other mishaps during the process will have to be 

detected through the monitoring of the process.
c) Material handling is monitored by tracking the 

execution of the commands given to the material 
handling system so that coordination of the 
operation of the cell with responses from material 
handling system can be achieved.

d) Quality monitoring involves the dimensional checks 
on workpieces as well as calibration of the 
equipment. Results of these may be used by the 
controller for maintenance planning.

2. Controls must be exercised by the cell controller on
I

the equipment in the cell and on the associated
subsystems such as to correct faulty operations or to
achieve production goals.
a) Direct control involves evaluation of the 

monitoring data by the cell controller to take 
action. Sensory data is directly monitored by the 
cell controller.

b) Supervisory control involves coordination of the 
control functions of the lower level direct 
controllers.

C. Reporting is a function of the cell controller which 
covers a wide range of summary and statistical reports, 
as well as real-time status reports. These reports are 
used for inventory control, production scheduling, 
maintenance planning, and managerial functions.
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D. Communications is an essential function of the cell 
controller. The cell controller must be connected to 
the network and should be able to communicate with 
supervisory level computers, as well as lower level 
equipment controllers.

IMPLEMENTATION OF THE MANUFACTURING CELL CONTROLLER

The asynchronous nature of the events in the cell 
necessitates a flexible implementation of the functions 
defined in the above section. A simple but effective 
organization, consisting of modular functional units 
attached to a messaging system, was implemented (see Figure
4.1). This organization, in addition to being capable of 
responding to asynchronous events, is also advantageous 
because of the ease of maintenance and improvement of the 
program. Evolutionary changes, such as substitution of a 
complex algorithm for workstation loading, can be made 

easily by replacing functional modules.
It is assumed that the functions implemented in the 

cell control program will be replaced by better ones in 
time, leading to a series of intelligent decision-makers 

that control functions of the cell controller in the future. 
Listing of the Cell control system programs and programmer's 
manual are given in 124]. Major flow charts for the cell 
controller and simulator are given in the appendix.
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COMMUNICATIONS
MONITORING

AND
REPORTING

JOB ASSIGNMENT 
TO WORKSTATIONS

TASK 
DECOMPOSITION 

(ORDER REDUCTION)

Figure 4.1: Cell Controller Organization

The cell controller is implemented as the Cell 
Controller Program (CCP) written in Prolog language. Prolog 
was chosen for the ease of programming in the intended 

modular fashion and without the procedural definition of 
each detail. A discussion of the suitability of Prolog to 
this type of problem is given by Bullers [6].
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CELL CONTROL PROGRAM
The Cell Control Program (CCP) implements the functions 

of a manufacturing cell controller. Decisions for assignment 
of jobs to machining centers and control of activities 
within the cell are made by this program. The status of the 

workstations in the cell and that of the manufacturing 
orders are displayed in real-time.

Briefly stated, this program receives orders to be 
fulfilled from the supervisory levels, decomposes the orders 
to tasks, and monitors the execution of these tasks by 
workstations in the cell. The coordination of activities in 
the workstations and subsystems such as Material Handling 
are also made by this program. CCP is written in Prolog, and 
is a modular program.

CCP is a data driven program. All the functions 
implemented work on the existing databases and apply 
transformations to it. The link between functions are the 
changes in the databases; algorithms remain the same 
irrespective of the orders or configuration.
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Databases Maintained by the CCP
Databases maintained by the cell controller cover a 

wide range of information: cell configuration, equipment 
status, production status, product information, and 
operational data (see Table 4.1). These databases may be 
queried by supervisory level controllers, or subsystems such 

as MHS and tooling. Databases may also be updated by the 
supervisory level controllers through the network.

Cell configuration information include the types of 
workstations in the cell, designations of individual 
workstations, and information necessary to make dispatching 
decisions such as input output port types, buffers, etc.

Equipment status data include the starting times of 
workstations and the tasks on which they are working. Status 
codes are given in Table 4.2. Error conditions, the time 
since the last failure and statistical information are also 
kept on workstations.

Product information includes the process plans for the 

parts currently assigned to the cell, as well as the types 
of the workcells required, fixturing, tooling, material 
handling information, NC program designations etc. This data 
are normally kept by the central system and dispatched to 
the cell controllers as jobs are allocated. NC programs may 
be kept by the central system and downloaded directly to the 
workstations upon request by the cell controller.
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Production status data and operational data are the 
piece counts, message queues (in and out), waiting lists for 
equipment, material handling etc. are also used by the 
control program.

Table 4.1: Databases Required for FMS Control

Order Id, Part_id, Quantity, Due_time
Part id. Material, Process__plan_#
Process plan #, Operation no, Machine_typ, Tool,

Fixture, Program_length.
Workst id, Machine_typ
Workst id, Status, Order_id, Part_id, Operation_no,

Start time

Table 4.2 Status Codes for Workstations
0 - Available (idle)
1 - Allocated
20 - Program Download Complete 
50 - workpiece transport completed 
100 - Operation Initiated 
150 - Maintenance (scheduled)
180 - Error Condition Pending
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Task Decomposition
The task decomposition function is based on a process 

driven by birth and death of tasks. A task is an entry in a 
"task table". Tasks are classified in three levels: master, 
intermediate, and terminal. Tasks give "birth" to a number 
of subtasks at a lower level (see Figure 4.2). Terminal 
tasks "die" upon realization of certain conditions in the 
system status, triggered by events in the system such as 
completion of a machining operation in a workstation. Tasks 
die when all the subtasks of the task are dead.

Each order for manufacturing a part (or a group of 
parts) by the cell creates a master task, which in turn

I
creates subtasks. Each of the subtasks also create subtasks 
to cover every step of the work to be done for completion of 
the order.

Intarmadiate

Figure 4.2: Task Decomposition
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Scheduling of the jobs to the workcenters is currently 
based on a few simple rules: a workcenter must be available; 
a task which is waiting for the type of workcenter must be 

eligible (i.e. satisfy precedence relationships). 
Sophisticated priority schemes may be added to the Cell 
Control Program without difficulty.

Monitoring and Control
Monitoring and control functions require prompt 

handling of asynchronous events in the cell, which is 
difficult to implement efficiently in a non-multitasking 
environment. To achieve good performance and flexible 
operation, all I/O was implemented through queues, and 
functions of the program were tied to these queues instead 
of real I/O, therefore relieving the network connection 
which otherwise would be a bottleneck.

Interfacing of the CCP to the central network is made 

through I/O queues. Messages are inserted to these queues by 

various functions of the CCP. Portions of the program scan 
incoming messages and remove messages that are addressed to 
them. This arrangement provides for flexibility in the 
handling of input output and the monitoring functions. 
Protocols used by the messaging system are strictly 
interlocked to ensure correct transmission.
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Also implemented is the real-time display of the status 
of the workstations in the cell, and reporting of the part 
completion, order completion, etc, to the supervisory and 
subordinate level controllers.

Operation of CCP
Functions implemented in CCP are periodically scanned 

and executed in sequence. Most functions, however, require 
certain input conditions to operate and therefore decline to 
operate in the absence of them. This provides timely 
scanning of all functions, as well as monitoring of 
asynchronous events.
1. The order dispatching function monitors the incoming 
message queue for new jobs. When a new job is released, a 
master task is created identifying the order. The master 
task gives birth to the required number of subtasks: for 
each part to be produced for the order, a subtask is created 
(called an intermediate task). A message to the Material 
Handling System signals the creation of each intermediate 
task (hence a workpiece). Each subtask then produces 
terminal tasks, each terminal task identifying an operation 

to be performed on one part. Terminal tasks place a request 
for the types of workstations required for performing their 
respective operations: a waiting queue is formed.
Upon receipt of the message signalling the release of the 
part, and depending on the number of fixtures available for
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the workpiece, MHS readies workpieces for transportation. 
Each part is fixtured as required. When a workpiece is ready 

for transportation, a message is sent to the cell 
controller and the associated tasks are marked as active 
(fixtured).
2. Waiting queues are periodically scanned for matches in 
waiting tasks and idle workstations. When a match is made: a 
workstation is available and a task is waiting for the type 
of workstation, the precedence constraints of the task is 
checked. If all the task preceding the candidate have been 
completed, the workstation is allocated to the task. 
Otherwise, other candidates are considered. If the 
workstation is allocated to the task, the task is dropped 
from the waiting queue, and placed in waiting completion 
queue. The status record of the allocated workstation is 
updated and messages are sent to the network for dispatch of 
the workpiece to the workstation. Instructions for 
downloading the program required for processing the 
workpiece at the workstation are also sent to the network.
3. Message queues are continuously checked for messages to 
be sent or received. When an incoming message is detected 
(currently a request on the port), the incoming message is 
received and placed in the incoming messages queue. When the 
presence of outgoing messages in the queue is detected, the 
status of the transmitter is interrogated. If the 
transmitter is available, the message is removed from the 
"outgoing messages queue" and sent.
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4. The incoming message queue is continuously checked for 
messages from the workstations and from subsystems. When an 
"end of processing" message is received, the waiting 
completion queue is updated, and the task operating on the 
workstation is completed {"dies"). The parent process of the 
completed task is also checked for completion. If the 

completed process is the last child of the parent process, 
it dies too, and the link proceeds all the way to the 
fulfillment of the order (i.e., death of the master task) by 
the completion of the last operation on the last part in the 
order. When completion of a task means a part is completed, 
the "end of task" message is passed to the material handling 
system, so that the part can be dispatched to the warehouse 
as a completed part. This also signals the MHS that the 
fixture is now available for another workpiece, and will be 
used in case any requests are pending for that type of 
fixture. Messages from the network ("end of download"), and 
from the Material Handling system ("end of transport") are 
used for updating status information and for starting the 

processing at the workstation when the workpiece is 
transported, and the NC programs are downloaded.
5. Scheduled maintenance on workstations is performed at the 

discretion of the "maintenance planning unit", which 
instructs the workstation controller not to schedule a 
workstation past a certain time. When the workstation 
becomes available, the scheduled maintenance event prevents
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it from being reassigned to another task. The workstation 
then shuts down for maintenance. Upon completion of 
maintenance, the cell controller receives a "workstation 
available" instruction, and the workstation is added to the 

pool of available equipment for allocation of tasks.
6. When a workstation has to shut down because of an error 
in operation, the cell controller is informed. If the 
workstation has an allocated task, it is reinstated in the 
waiting tasks pool. The MHS is instructed to remove the 
workpiece, and until a "error condition removed" message is 
received, the workstation is not assigned to any other task.
7. At the end of each scanning cycle (i.e. when all the 
functions have executed), the status of workstations as 
contained in the databases is displayed. It is therefore 
possible to see the assignment of jobs to workstations and 
progress of orders in the cell, (see Figure 4.3).

The Material Handling System (MHS) works as a subsystem 
of cell controllers.The cell controller places requests to 
the MHS via messages through the network. Responses of the 
MHS are passed back to the cell controller the same way. 

Movement of the workpieces between workstations and buffers 

is executed by this subsystem. MHS is also expected to 
manage the workpieces in process (i.e. unfinished parts in 
the shop floor) by making the decision either to move them 
to buffer storages or to keep them in the I/O buffers at the 
workstations. The operation of the MHS and its specific 
implementation used in this project are detailed in other
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chapters.
The Tooling System works the same way as the Material 

Handling System: as a subsystem of the cell controllers. It 
has not been implemented in the current version but may be 
easily attached to the system if desired. Control of this 
subsystem will be similar to that of the material handling 
subsystem: via messages through the network.

Equipment Status Debug 
ID Status Order Pact

Output
Sequence St.Time

• a a m ■■*■«■■■■ SB BB ■ BB BB ■ litlllll

1 IB 2 Idle - - 0
1801 Idle - - 0
1902 Idla - - B

1401 Woeking 1 1 1 211
1701 Working 2 44 1 378
1402 Working 1 1 3 434
1101 Idle - - 446
1901 Assigned 1 1 2 448

Equipment Status Debug Output
ID Status Older Pact Sequence St.Time

BBSS llkistlll BBB ■ B ■ BBB B BBBBBBBB B B B a B B a
1101 Idle _ B
1102 Idla _ _ _ 0
1801 Idle - -
1901 Idle • • • a
1902 Idle • - •
1401 Wt.Dwnld 1 1 46
1402 Wait MHS 1 1 2 SS
1701 Assigned 2 44 1 256

Figure 4.3: Cell Control Program Display of Status
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Messaging System
Messages are passed to and from the subsystems through 

a network connected to all the workstations on the shop 
floor as well as to the cell controllers and supervisory 
level controllers. Downloading of the processing programs to 
the workstations is made directly from the network-wide 
program storage area, upon request by the cell controller. 
In the absence of the actual network, the messages were 
passed through a serial link to the simulated "network 
gateway computer". The responses of the network are also 
simulated by this computer.

Since the serial link is run asynchronously, and 
operating systems of all computers do not provide an 
adequate input/output buffer, a fully interlocked protocol 
was used to pass error-free messages between computers. It 
calls for acknowledgement of every byte received (see Figure 
4.4), as well as leader and follower byte handshakes. Tables
4.3 and 4.4 show the protocols used.

SENOER Sand
Byt« i

Send
Byte i+11RECEIVER Echo 

Byte i
Echo
Byte i+1

Figure 4.4: Fully Interlocked Protocol
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Two types of messages are handled by the cell 
controller messaging system: operational and database
related. There are two types of database related messages: 
database updates and database queries.

Operational messages are those involving commands to 
and from subsystems: status requests and diagnostics (see 

Table 4.5). Database update messages are those that involve 
insertion of new information to the cell controller 
databases, or deletion of a record from them (see Table 
4.6). Database queries are the messages sent to the cell 
controller for downloading of certain information in the 
databases.

Two formats (see Tables 4.7 and 4.8) are used for 
messages: fixed and variable. Operational messages use the
fixed format. Database related messages use both variable 
and fixed formats. The database update messages use the 
variable format and contain all fields of the record being 
updated (only the key fields are used for deleting). 
Database queries are received in the fixed format and are 
queued, but the result (most of the time more than two 
fields), is sent using variable length format.

The three types of messages are handled differently by 

the messaging system:
Operational messages are queued in and out of the cell 

controller. Actual processing of incoming messages is 
performed through the queue by functional modules. The
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format of these messages is fixed length (see Table 4.9).
Database queries are received in the fixed format and 

are queued as such. However, when the message is processed, 
the database is queried using the key in the message, and 
the result (most of the time more than two fields) is sent 
in a variable length form distinguished by the request 
signal.

Certain types of messages are not queued, but are 
interpreted at once. These types of messages use a variable 
length message format (see Table 4.8), where the length of 
the database record updated and the kind of update 
determines the message length (see Table 4.10). For example, 
inserting a database record with seven fields requires all 
fields to be sent, whereas deleting a similar record only 
requires the key field.
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Table 4.3: The Messaging Protocol For Operational Messages
Initiating Party 
Request (a 7 or 15)
Hi-byte of opcode 
Lo-byte of opcode 
Hi-byte of first operand 
Lo-byte of first operand 
Hi-byte of second operand 
Lo-byte of second operand 
End-of message (a 7 or 15)

Receiving Party

Acknowledge ("A") 
Echo hi-byte 
Echo lo byte 
Echo hi-byte 
Echo lo-byte 
Echo hi-byte 
Echo lo-byte 
Acknowledge ("I")

Table 4.4: Messaging Protocol Of Variable Length Messages
Initiating Party Receiving Party
Request byte

Acknowledge ("A")
Hi-byte of database code

Echo hi-byte
Lo-byte of database code

Echo lo byte
Hi-byte of update type

Echo hi-byte
Lo-byte of update type

Echo lo-byte
Hi-byte of operand

Echo hi-byte
Lo-byte of operand

Echo lo-byte
(repeated for each operand)

End-of message
Acknowledge ("I")

NOTES:
Request byte is: a 17 for updates,
25 for query responses.
End-of message byte is 17 for updates,
15 for query responses.
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Table 4.5. Operational Messages

From Cell Controller: Destination
Start processing at workstation Workstation
Download program to equipment Network
Transport to workstation MHS
Part complete (transport part to warehouse) MHS
Raw material in store, fixture MHS
Operation complete (remove workpiece) MHS
Remove workpiece (Error in workstation) MHS
Order completed Network

To Cell Controller Origin
Processing completed
Program download completed
workpiece transported to workstation
Workpiece fixturing complete
Process order (order dispatched to cell)
Scheduled maintenance at workstation
End of maintenance
Irrecoverable error condition
End of error condition

Workstation
Network
MHS
MHS
Network
Network
Network
Workstation
Workstation

Table 4.6: Database Update Messages

Insert new order record or Delete old order record
Insert new part information or Delete old part information 
Insert new process plan or Delete old process plan
Insert new equipment or Delete old equipment
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Table 4.7: Messaging Format For Fixed Length Messages
Opcode (2 bytes)

Operand one (2 bytes)
Operand two (2 bytes)

Table 4.8: Messaging Format For Database Update Messages
Database code (2 bytes)
Update type {2 bytes)
Operands (2 bytes each operand)
(Number of operands is determined by the 
database code and the update type)

Table 4.9: Opcodes and operands of operational messages

Opcode Message Operand-1 Operand-2

10 Start: processing Workstation-id -

11 Completion of processing Workstation-id -
20 Download program Workstation-id Program-id
21 Download complete Workstation-id Program-id
30 Process order Order Number -
31 Order completed Order number -
50 Transport workpiece Piece-no Workstation-id
51 Workpiece transported Piece-no Workstation-id
52 Part completed Piece-no -
54 Fixture raw material Piece-no Material no
55 Fixturing completed Piece-no
56 Operation completed Piece-no Workstation-id
58 Operation failed Piece-no Workstation-id
70 Scheduled maintenance Workstation-id Time
72 End of maintenance Workstation-id -
80 Error condition Workstation-id -
82 End of error condition Workstation-id -
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Table 4.10: Database Message Information 
Database codes for database update messages 

Database update
Code Type Description
1 1 Insert new order record
1 2 Delete old order record
2 1 Insert new part information
2 2 Delete old part information
3 1 Insert new process plan
3 2 Delete old process plan
4 1 Insert new process plan step
4 2 Delete old process plan step
5 1 Insert new equipment
5 2 Delete old equipment
6 1 Insert new equipment status record
6 2 Delete old equipment status record

Database Codes Used by Query and Update Functions
Database Code/Name No.of Fields No.of Keys
1. Orders 4 1
2. Parts 3 1
3. Process Plans 2 1
4. Process Steps 7 2
5. Equipment 3 1
6. Equipment Status 4 1*

Opcodes and Operands of Database Query Messages 
Opcode Operandl Operand2
400+(database code) Keyl Key2
500+(database code) <all fields in database record>

Note: Requests have codes starting with 400 
Responses have codes starting with 500
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SUMMARY
A manufacturing cell controller was designed and 

implemented on a microcomputer. The cell controller is data 
driven, performs independent of the cell configuration, and 
exploit databases that exist in the computer integrated 
manufacturing environment. It is an asynchronous program 
that has a modular structure, and therefore can be easily 
extended to include sophisticated algorithms for planning
and control functions. The cell 
alone microcomputer, and can 
messages through the connection

controller runs on a stand- 
be controlled by means of 
to the factory-wide network.



CHAPTER 5
MACHINING WORKSTATION

A machining workstation consists of a primary 
programmable machine, equipment to load and unload 
workpieces to it, and auxiliary equipment such as vision, 
chip removal, etc. The primary programmable equipment is 
typically a numerically controlled machine tool, such as a 

mill or lathe, or an inspection machine. To load and unload 
the machine tool, it may be necessary to use other 
programmable equipment such as robotic arms or machine- 
specific loaders. Manipulator arms or robots may be used in 
the workstation for loading and unloading the machines, or 
for inspection and cleaning purposes.

Each workstation must have an interface to the 
automated material handling system which is used to 
transport workpieces to and from it. See Figure 5.1. This 
interface, $uch as a roller table, is under the control of 
material handling system. However, the cell controller must 
be capable of identifying the workpiece at the interface, or 

at least to verify the presence of it through the sensors in 
the workcell. The orientation of the workpiece, if 
necessary, can be verified using the optional equipment such 
as vision and tactile sensors.

Each workstation is controlled by a computer connected 
to the factory-wide network: the Workstation controller.

78
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WORKSTATION CONTROLLER
A workstation controller is in charge of operations 

within the domain of a workstation. Commands controlling 
operation of the programmable equipment in the workstation 
are issued by the workstation controller in accordance with 
the workstation program loaded by the cell controller.

The workstation controller receives instructions from 
the cell controller to work on a part, and the program 
required for the operation is downloaded to the controller. 
The workstation program contains instructions for all
available units in the workstation as required for the
assigned work. It may contain instructions for the
manipulator to load the machine, instructions for the
automatic tool changer to set the proper tool, or for the 
vision system to inquire the orientation of the workpiece.

A workstation may be programmed on-line or off-line. 
Off-line programming may be done using computer graphics or 
a programming language designed for programming 

workstations. On-line programming can be done using follow 
through sequence and manual control. Several programmable 
systems for workstation control have been developed 

[2,3,8,10].
A workstation must be able to run calibration and 

diagnostic programs as required by the maintenance 
supervisor, or by the cell controller. Results of such 
activities are reported to the supervisor. Expert systems 
are being implemented for problem diagnosis in workstations.
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Implementation
In the context of this project, a simulation of 

responses of a workstation controller is made by the gateway 
simulation program (see Chapter 2). However, when the 
manufacturing cell model is expanded and run on several 

microcomputers, a limited simulation of responses of 
machining workstations may not be satisfactory. It may also 
be desirable to construct several workstations and run them 
under control of the cell controller. A machining 
workstation controller was designed and implemented so that 
it can be duplicated and used for as many workstations as

i
are in the cell. This implementation is not only intended to 
be instrumental in demonstrating the operation of a 
workstation controller, but also to enable the cell 
controller simulation to take place by responding to its 
requests.

Two programmable devices were physically implemented as 
a component of this research. They were chosen as being 
representative of a wide variety of programmable equipment 
controllers (or interfaces to them). They were instrumental 
in determining the operational requirements of the 
workstation controller. The types of control required by 

these devices, and the types of feedback available to the 
controller were considered in the design of the workstation 
controller. It was observed that the capability of these 
devices to handle exception processing reduces the real-time
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demand on the workstation controller. On the other hand, it 
was determined that availability of a richer and 
consequently larger feedback data stream may strain the 
processing and the communications network. This places 
additional burden on the planning on what data transfer is 
to occur and the communications protocols used between 
devices.

The current implementation of the machining workstation 
controller is not sophisticated, but provides the 
foundations for further development. Since its design is not 
tailored to specific equipment, but assumes presence of an 
interfacing computer (the device interface), it can be 
duplicated to form several workstations (see Figure 5.2). 
Due to the flexible design of the workstation controller, 
the configuration of the workstation is flexible, consisting 
of any number of similar or dissimilar types and models of 
equipment. The configuration of each workstation is 

specified in the configuration file which is local to the 
workstation and provide all the necessary information on I/O 
ports and available equipment types.

The workstation controller can be programmed with a 
simple programming language provided. The basic idea of 
programming the workstation is to provide the messages to 
the programmable equipment to activate, deactivate, perform 
diagnostics, load programs, read values from sensors as 
required. The programming language provides simple ways of
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controlling flow of the program in the workstation 
controller. Detailed explanation of the instruction set is 
given in the following sections. Each workstation program 
also contains the required equipment types and additional 
information as necessary.

Binding of the equipment in the workstation (as read-in 
from the configuration file) to the equipment requested by 
the workstation control program (as read-in with the 
program) takes place after the program is loaded. The 
workstation program may or may not address any of the 
equipment available in the workstation. For example, if 
there is a vision sensor available, it may not be utilized 
in the processing of the particular part (see Figure 5.3). 
However, all the requested equipment must be present in the 
workstation. Absence of any required items would result in 
an error condition upon loading of the workstation program.

The workstation physically constructed for this 
project, and using the workstation controller program 

consists of a workstation controller computer to which a 
programmable machine tool and a programmable manipulator arm 

are attached.
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VISION
SYSTEM

PROGRAMMABLE 
MACHINE TOOL

MHS
INTERFACE

ROBOTIC
MANIPULATOR

Figure 5.1: Machining Workstation

ROBOT
VISION

TURNING
STATION

HILLING
STATION

WORKSTATIONWORKSTATION WORKSTATION

CELL
CONTROLLER

Figure 5.2: Multiple Workstations with
Dissimilar Configurations
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CONFIGURATION DATA PROGRAM HEADER

ID TYPE QUANTITY NO TYPE QUANTITY
A 1 1 1 6 1
B 5 1 2 1 1
C,D 6 2

AFTER BINDING 
NO ID
1 A
2 C

Figure 5.3: Binding of Machines in Workstation

Operation
The workstation controller receives instructions from 

the cell controller. Messages received at the cell 
controller connection are interpreted by the workstation 

controller and action is taken accordingly. When the cell 
controller requests a program to be downloaded, disk read 
operations are substituted instead of requesting the 
download from the factory-wide network. This is a reasonable 
substitution in the absence of the global high speed network 
to access factory-wide manufacturing database. The 
workstation controller is programmed in a simple way, and 
programming includes the names of the files containing 
programs to be downloaded to the attached programmable
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equipment. Those file names are passed to the controllers of 
the programmable equipment, where the actual NC programs are 
stored locally, and are accessed by the programmable 
equipment directly instead of being downloaded. All 
programmable equipment programs require an action from the 
workstation controller to start execution.

Upon receipt of the acknowledgement of program loading, 
the workstation controller waits for the cell controller to 
start operation. When the "Start Operation" command from the 
cell controller is received, signals are dispatched to the 
programmable equipment to continue execution of the loaded 
programs. No further interaction is necessary at this point. 
However, the workstation control program may contain several 
breakpoints for the equipment at specific times, and may 
test for status of the equipment by reading values from 
their registers. Since these are equipment specific 
operations, programming of each item of equipment unit would 
have to be done for its particular equipment type. The type 
of workstation system, however, is not of concern to the 
workstation controller whose operation is independent of the 

equipment. The workstation controller simply waits for end- 
of-operation signals from the programmable equipment, and 
after all of the equipment units has responded, it reports 
completion of operation to the cell controller.
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Programming
The workstation is programmed using the simple 

programming language provided. Since the workstation 
controller carries out all functions by sending and 
receiving messages to the attached equipment, the 
programming is based on messages. Simple program flow 
control structures using internal variables are also 

provided for use by the programmer.
Workstation programs consist of the header and the body 

of the program. The program header contains the number of 
required equipment units, and the type of each equipment
required by the program (see Figure 5.3). This information

1
is used by the workstation controller in binding the 
requested equipment to those available in the workstation 
(as mentioned in the previous sections).

The body of the workstation program consists of an 
opcode and up to five operands per instruction. The opcodes 
implemented are given in Table 5.1. Instructions implemented 

are explained below:
The "execute" (or send) instruction causes operands 

two, three and four to be transmitted to the equipment 
specified in operand one. The transmitted message is 
interpreted as a command by the equipment receiving it. The 
workstation controller, however, does not interpret it. All 
instructions with "unconditional send" opcodes are 
transmitted as soon as the program starts executing. The 
fifth operand of all instructions has the number of the
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instruction to be executed next. If the fifth operand of a 
send instruction is not given, it indicates that the 
instruction following it contains the needed information.

The conditional execution instructions are not executed 
(i.e. their messages transmitted) until a next-to-execute 
operand points to them. In contrast, all unconditional 
execute instructions are transmitted as soon as the program 
starts executing. This facilitates initializing and starting 
all equipment at once and then waiting for the results of 
each to continue program.

The "wait" instruction results in the placement of an 
expected message from a certain equipment to the wait queue. 
Until the message is received, no action is taken. All the 
incoming messages are tested against the expected messages. 
When a match is made, the next-to-execute instruction 
(operand 5) of the wait instruction is executed. This 
enables continuous checking for certain error and completion 
messages to be stacked and the responses programmed as 
conditionally executed set of statements.

To test for the completion codes from equipment and to 
be able to read and transmit values to and from equipment, 
variables are implemented. A total of fifty variables are 
permitted in each program. Variables may assume values from 
the messages received from the connected equipment, and may 
be used within the messages to be transmitted to others. If 
a value has not been assigned, variables have a value of 
zero.
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Perhaps the most extensive use of variables is made in 
the test and branch instructions. These instructions (opcode 
110) test for the condition (specified in operand 2) of the 
variable whose number is given in operand one to the value 

given in operand 3. If the condition holds, the next-to- 
execute instruction is contained in operand five. If not, 
the next instruction to execute is contained in operand 
four. Table 5.2 shows the workstation program instructions 
and their operands.

The format of each instruction is an array of six 
integer elements per instruction, where the first element is 
the opcode and the others are operands. Variables are also 
implemented as integers. Values -9900 to -9949 represent 
variables 1 to 50 in the program.

The reasons for this structure are the simplicity and 
ease of implementation. The fact that these programs are 
expected to be generated by programs at CAD/CAM systems 
means that they need not necessarily be intelligible to 
humans. If manual programming or manipulation of programs is 
required, an interpreting editor may be used. Currently, any 
ASCII editor may be used to edit programs.
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Table 5.1: Opcodes of Workstation Programming Instructions
Opcode Meaning
0 Execute (send)
100 Conditional execute (send)
1 Wait for response
110 Test & branch

Table 5.2: Workstation Program Instruction Structures

Instruction: Execute(O) or Conditional Execute(lOO)
Operands:

1. Equipment number
2. Command (first two bytes)
3. Command (next two bytes)
4. Command (next two bytes)
5. Number of the next instruction to execute 

(default is following instruction)

Instruction: Wait for response (1)
Operands:

1. Equipment number
2. Response (first two bytes)
3. Response (next two bytes)
4. Response (next two bytes)
5. Number of the next instruction to execute upon receipt

of response (default is following instruction)

Instruction: Wait for response {1)
Operands:

1. Variable number (whose value will be compared)
2. Condition (-1,0,+1 for <,«,> respectively)
3. Value to compare (maybe another variable
4. Next-instruction-to execute if condition fails 

( default * none)
5. Number of the next instruction to execute upon receipt

of response (default is following instruction)
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PROGRAMMABLE EQUIPMENT
Equipment used in the workstation in this study were a 

programmable logic controller (PLC) and a programmable 
manipulator arm. Operation of these units are described in 
their respective manuals, and the interfaces to the system 
are described in the following sections. The PLC represents 
a programmable machine tool, an inspection machine, or any 
other generic programmable equipment with remote control and 
communications capability. The programmable manipulator arm 
is representative of a generic computerized system that may 
also represent any one of the equipment mentioned above. It 
consists of a point to point robotic arm interfaced to a 
microcomputer that acts as the controller and provides local 
or remote programming capability, operator interface, and 
interfaces with several sensors that may be used in programs 
or separately to monitor and coordinate with external 
events.

The manipulator arm and the device interface for the 
PLC were implemented physically rather than simulated in 
software to better understand the requirements of remotely 

controlling programmable devices with local intelligence. 
The types of control signals, which are used in controlling 
such devices were observed along with the urgency and 
frequency of the messages. The high degree of flexibility 
built into the design of the workstation controller was 
based on these observations and used as the basis for 
interaction with intelligent devices.
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Manipulator Arm

Interfacing the robotic arm was accomplished by 
designing a card to fit the internal slot of the 
microcomputer. The interface card contained the required 
hardware to buffer the outputs to the arm and inputs from 
the external sensors. Signals to the stepper motors on the 
manipulator were output to the interface and multiplexed by 
the interface card on the manipulator. The manipulator can 
be manually moved to the desired position by using the 
keyboard as a teach pendant, and the position recorded as a 
step in the program(see Figure 5.4). It can also be 
programmed using the simple programming language provided 
and the programs can be edited, single stepped, and stored. 
It is possible to program the robot manupilator using 
positions of external switches or the position of the 
manipulator for branching, thereby creating reactive motion.

The manipulator can also be programmed to send or 
receive signals on the serial port of the computer. One 
option relinquishes all control to the serial port, thereby 
enabling remote programming and control of the manipulator 
arm. This capability was utilized by the workstation 

controller. See Figure 5.5.
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MICROCOMPUTER 
{ARM CONTROLLER)

X
Switches

I

Figure 5.4: Manipulator Arm Interfacing to the Microcomputer

Setial Link

WORKSTATION
CONTROLLER

CONTROL COMPUTER

Figure 5.5: Remote Operation of the Manipulator Arm
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Operation
Robots was designed as an interactive, menu driven 

system for controlling the Minimover-5 Microbot robotic arm. 
Six stepper motors control movements of parts of the arm in 
both directions along three axes of motion. Information on 
the structure and construction of the hardware is given in 
the manual [22] and will not be replicated here.

Underlying the whole system are the routines which 
send the required pulses to activate the stepper motors, 
thereby causing the robotic arm movements. A simple 
algorithm is used to move from one point to another in a 
straight line. There are no transducers to sense the 
velocity, position or acceleration of the arm. The 
programmer must be aware of the restrictions in using the 
program. A switch on the arm senses the tension of the cable 

activating the gripper and can be read through the software 
to signal closure of the grip. Several other binary (two 
position) switches can also be read through the software.

The main menu presented in Figure 5.6 shows the 

options available to the user. The user is returned to this 
menu after each function selected is completed. Note that an 

indication of the program status is displayed at the bottom 
of the screen.
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Upon selection of an item from this menu, the user 
is given either a menu (example, Edit/Modify Current 
Program) or asked to verify a request (example, Erase the 
Program in Memory). This feature provides protection of the 
program from faulty keystrokes.

Manual control of the Microbot is done using the 
keyboard and can be conveniently used to set the initial 
position of the arm (See Figure 5.7). Note that the Home key 
on this operation will set the step counters of all motors 
to zero, thereby declaring the current position "Home" (It 
is also highly recommended that instruction 22 be used to do 
this at the beginning of each program).

The speed of the motors can be set using the arrow 
keys, and will result in display of the delay value. The 
delay value represents the time interval between two 
consecutive pulses sent to a motor. Therefore, a large delay 
value will result in slow movement and a smaller delay value 
will increase the speed of movements of the arm. The user 
may experiment using different speeds to determine the best 
delay value for his application. Note that small delay 

values will result in higher speed, while causing the 
stepper motors to start slipping. Control of the position 

versus step values will not be possible under those 
conditions. Large delay values may result in unacceptably 
slow speeds.
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HICROBOT CONTROL HENU (Yer S.l)...............................
SELECT OHE OF THE FOLLOWING:

X ... EXIT ? ... Help
1 ... Manually control M c r o b o t
2 ... Program Nlcrobot (or teach)
3 ... Retrieve Program from 01sk
4 ... Execute program In memory (ONCE)
5 ... Execute program In memory (repeat) 
S ... Save program to disk
7 ... Edlt/Modt fy/L1s t Current program 
0 ... Eraxe the program In memory 
9 ... Modi fy/Change Regiiteri 
C ... Continue Execution 
R ... Remote Operation

«•» HO PROGRAM IN MEMORY ***

Figure 5.6: Manipulator Arm Control Program Main Menu

KEYBOARD CONTROL OF HICROBOT

USE THE FOLLOWING KEYS TO CONTROL M1CROOOT MANUALLY: 
FORWARD REVERSE MOTOR HUMBER

0W
ER
T
Y

HOME 
<UP ARROW> 

<DOUH ARROU> f

BASE
SHOULOERELBOW
RIGHT WRIST 
LEFT WRIST 
GRIPPER
CLOSE GRIPPER (GRAB)
TO ZERO ALL COUNTERS 
TO SPEED UP 
TO SLOW DOUN 
TO QUIT

DELAY: 136

Figure 5.7: Manual Control of Microbot
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The speed of manual control and program execution will 

may be the same even if the delay values are set the same 
(the difference may however be negligible). The user may 
prefer to experiment and get an intuitive feeling of this 
difference.

Option two. Program Microbot, cannot be used when 

there is a program stored in memory. If starting over is 
desired, the program in memory should be erased (using 
option eight), and then programmed. It is possible to add to 
an existing program using Option seven (Edit/Modify/List 
Current Program) conveniently.

An option to Edit is given upon exit from Option 
two anyway, since the first thing after programming would 
naturally be to list and see the program.

Programming the robot involves entry of the op­
code for each instruction, upon which the instruction's 
function is presented (so that entry of the wrong op-code 
can be immediately recognized by the user). The program 
monitor then prompts the user for each operand required (or 
optional) for the instruction. The ranges of valid entries 
are given for most operands and entries are checked for 
validity. When a wrong instruction is entered, the 
recommended way to correct this is to exit (op-code 99), 
edit the program, delete the last instruction, and get back 
to the Program Editor using the ADD (A) option on the Edit 
menu.
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Retrieve a program from disk (Option 3) will issue 
a warning if a program is already stored in the memory. If 
the user verifies the request by entering a file name (in 
which a program was previously stored), it will be retrieved 
and overwrite the current program. Registers will also be 
set to zero.

Three options are available for executing a 
program. Option 4 will execute the stored program starting 
with the first instruction and will return to main menu when 
a "Stop Execution" instruction (op-code zero) is 
encountered. Option 5 will start execution with the first 
instruction too, but will continue with the first 
instruction when a stop is encountered, therefore continuing 
the execution of the program indefinitely.

Execution of the program can be interrupted at any 
time by depressing a key on the keyboard, however the 
current instruction will be completed before the 
interruption. One exception is any instruction that requires 
a switch status change for completion. Any of these 
instructions will be completed as soon as any key is struck. 
This feature will prevent the program from waiting 
indefinitely for a nonexistent switch (This feature also 
applies to the close-gripper instruction).
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If starting execution is desired starting with an 
instruction other than the first one, Option "C" (continue 
execution) must be used. This option will present the number 
of the last executed instruction (if any) and will ask the 
number of the next instruction to start execution. This 
feature may be used for debugging portions of the program 
stored or for returning to the execution of the program 

after inspecting contents of registers.
The Edit (option seven) presents the menu shown in 

Figure 5.8. This menu is designed for inspection and 
modification of the stored program. Listing of a program is
shown in Figure 5.9. It must be used with caution, however

(
since the "Jump" instructions will not be changed to 
compensate for the deleted and inserted instructions. A good 

programming practice is to leave "No operation" (NOP, op- 
code=l) instructions between most instructions so that 
additions or deletions can be made without difficulty. 
Example: Instead of deleting an instruction and adjusting 
all Jump instructions that are affected, you may replace the 
instruction with a "NOP". Another example would be to insert 
an instruction without having to readjust the jump 
instructions, you may replace an existing NOP with the 
desired instruction, without affecting any other 

instruction.
All registers (explained in the following 

paragraphs) can be read and changed using option nine.



5e!ec one of the following end hit return: 
... Lilt... Replee* in Instruction... Delete sn Instruction
... Insert tn Instruction... Ada to the END of the progrin
... Help 
... EXIT

Selection (L/R/0/I/A/7/X/) ■> L

Figure 5.8: Edit/Modify Program Menu

HO OPCODE Operi Operz 0per3 0per4 OperS Opera 0per7
1 1 0 0 0 0 0 0 0
Z 1 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0
4 7 0 0 3 0 0 0 0
S IS 1 3 0 0 0 0 06 3 0 0 -455 385 0 0 0
7 1 0 0 0 0 0 0 0
a 1 0 0 0 0 0 0 0
9 3 70 0 0 0 0 5 103010 1 0 0 0 0 0 0 0

11 3 100 0 305 20 0 0 0
1Z 1 0 0 0 0 0 0 0
13 4 0 0 0 0 0 0 014 3 100 0 -250 0 0 0 0
IS 11 26 2 1 0 0 0 016 IS 1 6 0 0 0 0 0
17 3 0 -750 0 0 0 0 0
IS 3 0 0 115 -120 0 0 019 3 0 0 0 0 0 0 475ZD 3 0 0 -3B5 0 0 0 021 1 0 0 0 0 0 0 0
22 5 0 0 0 0 0 0 0
23 1 0 0 0 0 0 0 024 1 0 0 0 0 0 0 025 0 0 0 0 0 0 - 026 11 15 4 1 . 0 0 0 027 18 1 7 0 0 0 0 028 3 80 915 0 0 0 0 0
29 1 0 0 0 0 0 0 0
30 3 0 0 45 -200 0 0 031 1 0 0 0 0 0 0 0
32 3 0 0 0 0 0 0 615
33 1 0 0 0 0 0 0 034 3 0 0 0 200 0 0 0
35 3 0 -360 0 0 0 0 036 3 0 -140 200 -270 0 0 037 1 0 0 0 0 0 0 038 1 0 0 0 0 0 0 0
39 5 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0R eu se .
pleese press <return> to continue.

Figure 5.9: Listing of a program



100

Remote operation (Option "R”) enables the robot 
controller to function under control from another computer 
or as a part of a network. When the remote option is 
selected, control of the robot is returned to the serial 
port until a key is hit at the keyboard. Commands to 
read/write register values, to load and execute programs, to 
suspend and re-start execution of program are implemented. 
All commands received at the serial port conform to a fully 
interlocked protocol designed to insure error free 
transmission. Valid remote commands and detailed explanation 
of the messaging protocol is given in the later sections.

Some instructions included in the programming 
language work only in the remote mode. They are skipped if 
the program is executed in local mode (which would enable 
the programmer to debug the program locally, without the 
synchronization). These instructions may provide informative 
messages or synchronization signals to the remote operator, 
as well as suspending the execution or transmitting the 
contents of registers in which statistics on the performance 
are stored.

When the remote operation is in effect, commands 
from the remote operator can read and write to the internal 
registers, and inquire about the operation, such as the last 
instruction executed. These requests are honored even while 
the program in the robot is being executed. All commands 
received from the remote operator are acknowledged and
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results if any are returned. At the end of the program 
execution, a message to the remote operator signals that the 
program has stopped execution. It is also possible to 
suspend execution of the program using a suspend execution 
in remote instruction. This instruction, when executed will 
issue a message to the remote operator, in which the number 
of the last executed instruction is transmitted. Then the 
end of execution message will be also issued by the remote 
monitor. The program can be restarted using "continue 
execution" command by the remote operator. Serial port is 
inactive when the remote operation is not in effect.

General purpose storage spaces (called registers) 
are provided for use by the programmer. These registers may 
be used for data collection or for control of program flow. 
Registers are accessible to the user for manipulation 
through option nine on the main menu. Using this option, the 
user can initialize, read and change the values of all 
registers.

The instruction set provides several instructions 
for accessing registers during program executions (see the 
section "Instruction Set"). These instructions may be 

utilized for data collection (counts of events), storage of 
a position for later retrieval by the program or comparison, 
and for saving status information on the task being 
performed.
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For ease of manual manipulation {such as Listing 
contents of registers), a register is marked as "Active" 
when accessed or altered after bulk initialization of all 
registers. This enables the user to view only the registers 
of interest by the "List" command. All registers can be 
inspected or altered regardless of "Active" status. See 
Figures 5.10a and 5.10b.

All registers are set to zero (inactive) 
initially. When a new program is retrieved from disk, 
registers are also set to the initial status (the idea is 
that each program uses an independent set of registers). 
Erasing the program in memory also clears all registers to 
"Inactive" status and initializes them to zero. Programs 
that require certain values in registers should load them 
within the program using appropriate instructions.

One other use of the registers is in the remote 
operation. Since the registers can be read and written by 
the remote operator during the remote operation, they may be 
used to control the flow of program by the remote operator. 
Instruction set provides instructions to transmit values of 
registers to remote operator so that they may be used as 
status indicators that are routinely transmitted during the 
execution of the program.

A total of fifty registers may be used in any 
sequence, but the numbers of the used registers may not 
exceed fifty, or be less than one.
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Select one of the following :I ... H i t  active rtgllteri contents 
A ... List ALL registers contents 
D ... Display * register contents C ... Change a register contents
R ... Re-Inittallie all registers
? ... KELP
X ... EXIT

Selection »■> C
Enter Register Ho (1 to 50) ■•> 32

REGISTER 32 CONTENTS: 0 ACTIVE

Enter NEW *alue •*» 6

REGISTER 32 CONTENTS: S ACTIVE

P a u s e .
Please press <return» to continue.

(a) Change register selection

Select one of the following :
L ... List active registers contents 
A ... List ALL registers contents
D ... Display a register contentsC __  Change a register contents
R ... Re-Initialize all registers
? ... HELP
X ... EXIT

Selection ■■> L
NUMBER CONTENT ACTIVE?

32 6 YES

1 REGISTERS LISTEO 
Pause .
please press <return> to continue.

(b) List Registers Selection 
Figure 5.10: Edit/Modify Registers Menu
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Programming
Twenty-eight instructions have been implemented 

for programming the robotic arm. They can be grouped as 
follows:

a) Movement instructions
These instructions cause the Minimover to step 
motor(s). Included are two move instructions 
(absolute and relative), an instruction to close 
the gripper, and an instruction to return the 
robot to the latest designated "Home" position. 
Two more instructions cause stepping of motor(s)
until a specified condition is met (switch

(

closure or a key strike). Move instructions 
optionally may have a delay value (to change the 
speed of movement) which will then become the 
current delay value for the following 
instructions.

b) Program Control Instructions
These instructions include several "Conditional 
Jump" instructions as well as "Stop Execution", 

"Wait" etc. Conditional Jump instructions cause 
the program execution to continue at a specified 
instruction number if certain conditions are met. 

Conditions are specified in terms of switch status 
(ON/OFF), register contents (being less than, 
equal to, greater than, not equal to, etc.), or 
the position (step counter value) of a motor.
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c) Register/Step Counter Manipulation Instructions 
These instructions access the internal registers 
of the robot control system during program 
execution and can be used for data collection, 
status indication, or for control of the program 
flow (when used with related "Jump" instructions). 
Step counters of the motors can be changed by 
these instructions thus causing effective change 
of the "Home" position of individual motors during 
execution.

d) Remote Mode Instructions
These instructions are executed only when the 
remote mode is in effect. If any of these 
instructions are encountered during local mode 
execution, no action is taken, they are skipped, 
and execution continues with the next instruction. 
The instructions implemented are to pause the 

execution, transmit values stored in registers to 
the remote operator, and to transmit messages for 
purposes of signaling events or synchronization. 
When used in combination with the program control 
instructions and register manipulation 
instructions, they form a complete set to remotely 
monitor and control the operation of the robotic 

arm.
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These instructions form a complete set which may be 
used to program the robot to perform tasks requiring 
decisions based on the status of the external switches, 

process statistics, etc. Details of the structure of the 
instructions and operands are given in the Appendix.

When the built-in editor is used for programming, 
prompts for the necessary (and optional) operands of each 
instruction are displayed, thus making the programming task 
an interactive and convenient process. However, when an 
external editor is used, the programmer is responsible for 
hand assembling each instruction.

During remote operation, commands from the remote 
operator are received at the serial port. Some of them, such 
as "Start Execution" or "Load Program” can be issued only 
when a program is not already being executed. Others, such 
as read/write registers, can be executed any time.

Commands are transmitted in messages from the 
remote. Messages consist of an op-code and two parameters. 
The opcode indicates the command and the necessary operands 
are transmitted as parameters. Most responses to commands 

have the same opcode, and if any, the values requested. 
Sometimes, such as a programmed message a response is 

generated without a command from the remote operator.
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A listing and brief discussion of commands are given 
below:

Opcode = 1, Retrieve Program from disk (or Load 
Program). This command has one operand/ the name of the 
program. A four-byte filename is transmitted as the 
parameters.
Opcode = 2, Read Register. The value of the register 
whose number is the operand of the instruction is 
transmitted to the remote operator. The response has 
the same opcode, the same first parameter, and the 
contents of the register as the second parameter.
Opcode = 3, Write Register. The number of the register 
and the value to be stored in it are the two parameters 
transmitted with this message. The request is 
performed, and the message is transmitted back as 

acknowledgement.
Opcode = 4, Return Number of Last instruction Executed. 
This instruction, has no operands, and results in 
transmission of the number of the last executed 
instruction to the remote operator as the parameter of 
a message with the same op-code.
Opcode = 5, Execute Program. This instruction causes an 
acknowledgement (echo back of message) and start of 
execution of the program loaded in the memory. The 
remote operator is send an "End of execution message" 
(Opcode = 8) when the execution ends.
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Opcode = 6, Suspend Execution. This command is valid 
only when a program is executing, and will result in 
termination of the execution. A response with the 
number of the last executed instruction as the first 
parameter will be generated. In addition, an "End of 
execution" message will also be transmitted.
Opcode = 7, Continue Execution. This instruction will 
cause the excution to be resumed from the point of 
suspension. It is not valid when issued during 

execution of a program. No operands in either the 
command, nor the response.
Opcode = 8 and 9 are responses to the remote operator. 
Opcode 8 is an "End of Execution" indicator, and has no 
parameters. Opcode 9 is an unsolicited response, 
generated by the executing program and has four byte 
message as parameters. It is to be interpreted by the 
remote operator.

Version 6.1 of the microbot controller program is 
designed to retransmit messages with opcodes 50 to 70 
through the second serial port to the device connected 

there. Operation of the robot controller will be the same in 
case no messages are intended for the second device, or no 
connection is present. This feature will also bypass 
messages from the secondary device to the remote operator 
(in that case, the workstation controller). See Figure 5.11.
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Remote operation of the robotic arm requires 
communication between the remote operator, which may be a 
computer, a terminal or other programmable device, and the 
robotic arm controller program. The portion of the program 
that performs this function is called the remote operator 
monitor program. The serial port, which is the connection to 
the remote, is monitored and messages are interpreted by 
this program. To be correctly interpreted, messages must 
conform to the strict transmission format given in Table 
5.3, and must be transmitted with the protocol described in 
Table 5.4.

Table 5.3: Message Format

Opcode {2 bytes)
Operands (4 bytes)

Table 5.4: The Messaging Protocol

Initiating Party
Request (a 
Hi-byte of 
Lo-byte of 

Hi-byte of 
Lo-byte of 
Hi-byte of 
Lo-byte of

15)
Opcode 
Opcode 

Parameter 1 
Parameter 1 
Parameter 2 
Parameter 2

Receiving Party

Acknowledge ("A") 
Echo Hi-byte 
Echo Lo-byte 
Echo Hi-byte 
Echo Lo-byte 
Echo Hi-byte 
Echo Lo-byte

End-of-Message (a 15)
Acknowledge ("I")
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Programmable Logic Controller
The PLC is augmented by a computer to act as a generic 

programmable machine controller and interface to the 
computer integrated manufacturing environment (see Figure 

5.12). It also acts as the network connection by locally 
storing and retrieving programs to be downloaded to the PLC, 

and by accepting and interpreting commands from the 
workstation controller.

Commands from the workstation controller are received, 
executed, and responses to the workstation controller, in 
the form of completion codes, are sent. The machine tool 
controller also interprets the signals received from the PLC 
and conveys them to the workstation controller when 
appropriate. The communications protocol which may be 
proprietary to the programmable tool is also converted to 
the protocols used in the CIM environment by the controller. 
In the case of the PLC, the protocol used for communications 
is called the ABC protocol. This protocol is used by the 
computer in communicating with the PLC. Information on the 
ABC protocol is given in the Appendix. The PLC programs are 
read from the local disk and downloaded to the PLC using the 

command structure of the communications interface on the 
PLC.
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Figure 5.12: Device Interface to CIM
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programming

Commands from the workstation controller are sent in 
the form of messages with an opcode and two operands. The 
messaging format and protocol are the same as that of the 
robotic arm (given in the previous sections and illustrated 
in Tables 5.3 and 5.4). The opcodes of commands interpreted 
by the PLC controller are:

Opcode = 51 Load Program to Device. The name of the
file to be downloaded to the PLC is the next four bytes
transmitted as the two operands.

Opcode = 52 Read Register Value. The value of a
register of the PLC is read and sent to the workstation
controller. The register number is in the first parameter. 

Response to this command contains the same message except 
for the value read from the register is transmitted as the 
second operand.

Opcode = 53 Write to a Register. Same as the read 
register instruction, except the value to be written to the 
register is received as the second operand.

Opcode = 54 Perform Diagnostics. This instruction 

performs a loopback test to check the operation of the 

connection to the PLC, and returns error code if necessary. 
If no errors are detected, zero operands are returned.

Opcode = 55 and 56 are instructions to read and write 
to the I/O tables of the PLC respectively. Their operation 
is similar to opcodes 52 and 53, except that the values to



113

be written must be a zero (OFF) or one (ON).
Opcode = 57 Change Loading Address, this instruction 

alters the address of PLC to which the first program 
instruction will be downloaded. Normally it is 11, but can 
also be used to merge programs in PLC memory.

Information on the operation of the PLC is given in the 

manual for the equipment.
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SUMMARY
A workstation controller was designed and implemented 

on a microcomputer. A small physical model of a workstation 
was also built by interfacing two programmable devices to 
the workstation controller. The workstation controller is 
independent of the the type or number of programmable 
devices forming the workstation.

One of the devices used is a commercial programmable 
logic controller (PLC) with communications capability. The 
other is a programmable manipulator arm with an extensive 
instruction set and full remote control capability. The two 
physically implemented devices were chosen as being 
representative of a wide variety of programmable equipment 
controllers. They were used to determine the operational 
requirements of the workstation controller. The interfaces 
built for the two physical devices are typical of the kind 
of interfaces that would be required to accommodate 
different types of devices.



CHAPTER 6 
MATERIAL HANDLING SYSTEM SIMULATION

An automated material handling system is a crucial part 
of any Computer Integrated Manufacturing System. Operation 
of this system has a significant effect on the performance 
of the whole system. It is therefore one of the functional 
modules that simulate the computer integrated manufacturing 
environment.

The material handling system controller is simulated in 
two ways: In the context of the network gateway to the cell 
controller, or separately on a microcomputer connected to 
the gateway computer. The reason for doing this is to 
provide the flexibility of being able to run a simple 
simulation with only two computers, yet to preserve the 
capability to implement and test complex and powerful 
decision-makers for the material handling system controller.

in the context of the program simulating the network 
gateway to the cell controller, a module is implemented to 
react to the calls for MHS, a simple simulation of the MHS, 
in case the computer on which the MHS simulation is made is 

not connected. Also, a mechanism for exchanging messages 
with the appropriate port when the MHS is addressed exists, 
so that in the presence of the connection to the MHS 
controller simulation, messages addressed to the MHS can be 
routed and responses received.
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The MHS is not a subsystem of the cell controller, but 
receives and responds to requests by the cell controllers. 
In the simulator it is assumed that the simulated cell 
controller is the only patron of the MHS, whereas there may 
be several cell controllers and other subsystems such as 
maintenance and tooling that may require the services of the 

MHS.
Operation of the MHS requires decisions on many 

problems arising from coordination and satisfaction of the 
demand on the transportation systems (see Figure 6.1). 
Requests with differing levels of urgency are received, and 
decisions to commit resources have to be made such as to 
avoid deadlock situations and to optimally commit resources 
to activities. In a dynamic environment, the MHS controller 
must continuously review decisions and requests, such as to 
continue operation with an optimal set of (or at least a 
good set of) resource commitment decisions.

The material handling system makes the decisions 
regarding placement of the work-in-process inventory, and 
that is simulated in this program. The current 
implementation is a reaction environment: that is, no effort 
is made to make intelligent planning at this point. 
Algorithms for planning and making intelligent resource 

commitment decisions, or optimization algorithms, could be 
implemented in the stand-alone version of the MHS simulator 
and their effects of the change observed in the whole 
system. These modifications can be made easily since the
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simulator is modular. The module simulating MHS decision­
making would have to be replaced by a module implementing 
the new algorithm.

The MHS controller requires a facility database, which 
defines the presence and location of each unit on the shop 
floor. The facilities database also contains information on 
the MHS facilities: the types and quantities of
transporters, buffer storage, automated storage and 
retrieval systems, etc., and the types of interfaces of the 
MHS to the workstations. This data is crucial to the 
operation of the MHS controller.

Transport WorkpieceFixture
Workpiece

MHS
CONTROLLER Transport Coolant

Buffer w i p Transport Tool

FACILITY
DATA

OPERATIONAL
DATA

Figure 6.1: Material Handling System Requests
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IMPLEMENTATION
The material handling system simulation program runs on 

a microcomputer. All connections to the factory-wide network 
are assumed to be in place; however, since the program is 
running on a microcomputer and the only physical connection 
to it is the serial link to the gateway simulator computer, 
all commands from and to the MHS controller are received 
through the gateway computer connection. Part of the data 
that would normally be present and readily accessible on the 
factory-wide database will be read from the disk, or a 
database query to the cell controller will be made through 
the gateway computer. Since it is fast, reading from the 
disk is totally acceptable for simulation purposes. Database 
queries to the cell controller's database are possible but 
will not be used unless absolutely necessary, because the 
serial link is relatively slow even at high transmission 
rates.

The program is implemented such that there are two 
parts: simulation of the MHS, and simulation of the MHS 

controller. Simulation of the MHS is done such that the 
travelling distances which are available from the facilities 
database are used to calculate the travel time once the 
loading is made. Allowances are made for loading and 
unloading the workpiece.
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The MHS controller is implemented such that each 
request to transport a workpiece is queued. Requests are 
fulfilled in the order received: available resources are 
committed to tasks as they become available. Each command is 
analyzed when received. If the command requests transport to 
a machine tool that is occupied, and work on the workpiece 
has been completed, a request for transport of the workpiece 
to an available buffer is generated and queued preceding the 

current order. This self-generated transport order can be 
overridden by a subsequent command for transport of the same 
workpiece, but will have to be executed before the command 
to transport the second workpiece is made.

Although the data structures for tracking the orders 
and their precedence relationships have been created, no 
attempt has been made to do planning at this point. It can, 
however, be implemented by replacing the controller 
simulation module with a module that does planning. This 
program has been viewed as a necessity for the expansion of 
the current simulation of the environment, and serves the 
purpose of the whole project by providing a testground for 
implementing algorithms to be used in a computer integrated 
manufacturing environment.
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OPERATION

Operation of the material handling system simulation 
program can be explained in two contexts: decision-making 
through the MHS controller, and the simulation of the MHS. 
Both parts are asynchronous programs, that is their inputs 
and outputs occur at random times. Inputs to the controller 
are through the serial link. Commands are received from the 
cell controller(s) and queued. Input queues are checked 
periodically and assignment of the resources are made as a 
first-come-first-serve basis, except for the precedence 
relationships described above. Precedence relationships of 
the orders, implied by the sequence of orders or generated 
by the MHS controller, must be satisfied before a commitment 
is made so that deadlock does not occur. A typical deadlock 
situation would be the case of a cart waiting for the buffer 
to be cleared so that it can unload a workpiece, and the 
workpiece in the buffer waiting for the same cart so that it 

can be moved and the buffer cleared. Since resource 
commitments are not made in advance, deadlock situations are 
not expected to occur in the current implementation.

The material handling system controller keeps track of 
all workpieces in the shop floor, from the time they enter 
the system until they are completed and delivered to the 
shop, Fixturing of the workpieces is required so that they 
can be transported. Material handling system keeps track of 
available fixtures and instructs the automated storage and 
retrieval system to fixture the device so that it can be
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transported. Since an automated warehousing system 
simulation is currently not implemented, responses from that 
unit are simulated in the MHS simulator itself. When that 
unit is simulated externally, commitment of the transporters 
would be delayed until the fixtures were applied to the 
workpieces, or the operation simulated by the external 
system and messages indicating completion of the task were 
received.



CHAPTER 7

DISCUSSION AND CONCLUSIONS

The objective of this research was to investigate the 

feasibility of design and demonstration of the operation of 
a shop floor control structure to function in the fully 

integrated manufacturing environment independent of the 
parts produced or the manufacturing processes involved. The 
desired properties of the control system included modularity 
and expandability to accommodate future changes in control 
algorithms and configuration of the system. It was also 
desired to take advantage of the databases existing in the 
CIM environment.

This research has defined the conceptual design of a 
full CIM environment. This design was successfully tested in 
a hierarchical control structure implemented on two 
interconnected microcomputers. The resulting simulation 
involves the full spectrum of a CIM environment. The 
simulation was, however, specifically directed at testing 
the cell control system. It included a free standing cell 
controller, a workstation controller, and programmable 

device interfaces. To be able to demonstrate the operation 
of the cell controller in the CIM environment, responses of 
the systems that interact with the cell controller were 
emulated on a microcomputer connected to the cell controller 
(called the gateway). Requests from the higher level

122
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controllers, responses of the workstation controllers, 
material handling system controller and the factory-wide 
network were simulated on that computer. This gateway 
computer can be dynamically re-configured, so that the 
configuration of the cell can be changed. It is also 
possible to use free standing implementations of workstation 
controllers or material handling system controller on other 
computers that are attached to the gateway via communication 
links.

A manipulator arm representing a generic programmable 
equipment was implemented using a microcomputer as the
device controller. The control requirements and types of

(

feedback from this model were observed. Also, a programmable 
logic controller (PLC) with communications capability was 
connected to a microcomputer representing another type of 
device interface to the control system. The variety of 
control requirements and types of feedback by these widely 
differing systems helped us determine the operational 
requirements of the workstation and workcell level 
controllers.

The design of the control system started with an 
examination of the type of data that would be naturally 
present in the CIM environment before the part would be 
released to the shop floor. The design was then built around 

this available data so that the databases that were present 
in the system could be utilized directly by the controllers, 
rather than processing the available data to generate code



124

to drive the shop floor controllers. This led to a data 
driven structure, rather than a programmable one.

Functions of the cell controller were implemented as 
functional units that are executed at each cycle of 
operation. Each functional unit operates on the databases 

and updates them if necessary. The operation cycle time 
needs to be short so that each functional unit can take a 
turn without degrading the real-time response of the system. 
It is therefore possible to implement a functional unit such 
that it will complete its function in a number of turns. It 
is also possible to implement a functional unit as an 
interface so that it will invoke the function implemented in 
another computer through the messaging system. It is 
expected that operations such as optimization whose long 
execution times warrant a stand alone implementation on a 
microcomputer will be implemented using this approach.

The capability of the cell controller to function in 
the presence of many asynchronous events was essential to 
the operation of the cell controller in real-time. To 
accommodate all events without tying-up other controllers 

and yet be able to process all inputs in some sequence, an 

input output (I/O) queue scheme was designed. All inputs are 
queued as soon as received, and so are the outputs. To 
preserve the real-time response of the system, the inputs to 
the cell controller and outputs from it are processed at 
every cycle of operation between the operation of each 
functional unit.
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This asynchronous, modular design of the cell 
controller also accounts for easy modification or expansion 
of the controller by providing a uniform, easy to access 
input output interface for all functional modules. The 

implemented functional modules can be replaced, removed or 
modified without any changes in the rest of the functional 
modules.

The approach developed and tested at the cell 
controller was used to design the workstation controller and 
the programmable device interfaces. They use essentially the 
same approach to dealing with the problem of asynchronous 
events.

The workstation controller designed for the model 
workstation has a limited command set, yet it is capable of 
handling a wide variety of devices. The implementation which 
defers the binding of the devices to the point of program 
loading provides this flexibility.

The generic cell control system concepts proposed in 
this work utilize the high level of standardization required 
in the CIM environment and emphasize modularity and 
expandability. Unlike most of the designs discussed in the 
background section, the proposed system design does not 
address the interim needs of the market, nor does it provide 
solutions for existing manufacturing facilities. This work 
is however, relevant to the needs of full CIM 
implementations to be made in the future. This research has
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tested the concepts developed by demonstrating a simple and 
structured design for shop floor control, and provides a 

testbed to aid in future extensions of algorithms for that 
environment.

FURTHER RESEARCH

One of the contributions of this project has been the 
creation of a CIM environment which can be used for 
development and testing of algorithms for dynamic planning 
and real-time control of manufacturing in the integrated 
environment. For example, the rules used for selection of 
jobs to be assigned to available workstations is currently 
made in a simple way. A look-ahead type of algorithm could 
be implemented by replacing the present one without 
difficulty. Effects of this change may then be measured in 
the simulated cell operation in terms of machine utilization 
or reduction in work-in-process inventory.

Similar replacements may also be made in the material 
handling system controller and new methods for allocating 
transport vehicles to requests for transportation of 
workpieces, or allocation of work-in-process inventory to 

buffer storages may be made. The data structures for the 
required information has been implemented, even if not fully 
utilized. An example is the material handling system 
interface type. Data structures for this information has 
been provided so that a more sophisticated model of the
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material handling system where more than one type of 
transport system is present may be simulated. The simulated 
base model however has used one type of transport system.

The emulator developed for this project is designed to 
serve as a laboratory for further research in this area. It 
provides a structure or frame that can be filled to the 
extent desired. Configuration of the CIM environment can be 
made to fit the requirements of the experiment desired. The 
allocation of ports to the connected microcomputers (on 
which MHS simulation or workstation controller may run) is 
made using configuration files which indicate presence of 
each connection, and hence the configuration of the 
experiment. It may be desirable to test cell controller 
algorithms in the two-computer base model, on one of which 
the cell controller runs and the other is the simulation of 
the CIM environment. Other cases may require better 
simulation of the material handling system, hence three 
computers for running the experiment. Still another 
configuration may be physical simulation of one or more 
workstations, hence more connections.

Only one implementation of the developed workstation 
controller was made because the amount of programmable 
equipment at hand was limited and the contribution of the 
additional workstations would be marginal. As stated 
earlier, however, this workstation model is general enough 
so that it can be duplicated when additional equipment is
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available, and construction of additional workstations is 
desirable.

Another addition to the model may be the tooling 
system, which is more or less similar to the material 
handling system as far as the relationship to the 
manufacturing cell is concerned. The data structures for 
future addition of this system are also implemented.

The improvements that can be made to this system can be 

grouped in two separate areas: hardware and software. As far 
as the hardware is concerned, one critical improvement would 
be the inclusion of a network and communications controller 
which would provide high speed reliable transmission and 
access to data bases. The serial transmission methods used 
are limited to lower speeds of transmission. The absence of 
good buffering and support of operating system in some cases 
has necessitated the use of fully interlocked protocols for 
transfer of information, hence unnecessarily slowing down 
the communications.

On the software side, an operating system that supports 
multitasking and good communications support between tasks 
would improve the performance of programs written to take 

advantage of them.
The next step to be taken in the direction of this 

research is the addition of the shop control level, which 
would be the supervisor of cell controllers. Development of 
the planning modules at several levels should however be 
done before expanding the model. Implementation of decision
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makers using expert systems or artificial intelligence 
methods should also be considered at each level.
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Robot-5 is the software designed to program and control 
a Minimover-5 robotic arm. Detailed information on this 
system is given in Chapter 5. This appendix contains 
complete information on the instruction set and structure of 
each instruction for programming the robotic arm.

LIST OF INSTRUCTIONS
Following is a list of the implemented instructions by 

opcode:
0 - Stop Execution.

No Operands.
1 - No Operation.

This instruction causes the execution to continue 
with the next instruction. No operands.

2 - Absolute Move.
This instruction will step all motors until the 
step counter of each motor is the same as a given 
value (absolute position).
Operands:
A delay value (optional) to specify the speed of 
the stepper motors.
Positions of each motor (step counter values). All 

motors need not be specified, in which case they 

shall not be moved (a step count value of -9999 
means not specified).
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3 - Move Relative
This instruction will step all motors with the 
number of steps specified for each motor. Operands 
are the same as (2) but if a motor need not be 
moved, a zero value may be specified for the 
number of steps for that motor.

4 - Close Gripper (GRAB).
This instruction will pulse the gripper motor (6) 
until the gripper switch is closed. No operands.

5 - Return To Home Position.
All motors will be pulsed until the step counters 
are zero. No operands.

I
6 - Move Motor Until Switch is Hit.

This instruction will move the specified motor in 
the indicated direction until the designated switch 
is in the position specified.
Operands:
Delay value (optional, if change of speed is 
desired),
Motor number to be moved.
Switch number to be checked,
Condition to stop (ON/OFF), Direction of 

movement (Forward/Backward).
7 - Wait (idle) UNTIL Switch is ON/OFF.

This instruction will hold the execution of the 
program until a switch is at the indicated 
position (ON/OFF).
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Operands:
Switch Number to check,
Triggering position of the switch.

8 - Move motor Ontil a Key is Hit.
This instruction will move a motor until a key (at 
the keyboard) is struck.

Operands are the same as (6) except for 
switch number

9 - Set Delay Value (Speed of motors).
This instruction changes the delay value 
(explained above) resulting the change in the 
speed of the motors.
Operand is the delay value.

10 - Onconditional Jump.
This instruction will cause the execution to 
continue with the instruction specified.
Operand is the instruction number.

11 - Jump on Switch Condition.
This instruction will cause the execution to 
continue with the given instruction if a switch is 
in the indicated condition. If the condition is 

not met, execution will continue with the next 

instruction.
Operands:
Instruction number for jump,

Switch number to check,
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Condition of the switch (ON/OFF) which will 
result in Jump.

12 - Jump if Switch Not in the Given Position.

This instruction is the same as (11) except that 
it will cause a jump if the switch is not in the 
specified position.
Operands are the same as (11).

13 - Jump on the Position of the Motor.
This instruction will cause execution to continue 

at the given instruction if the specified motor's 
step counter, compared to the given value meets 
the condition for jump. Otherwise, execution will 
continue with the next instruction.
Operands:
Instruction number for jump,
Motor number,
Value for comparison,
Condition (equal to, less than, greater than, 
not equal, less than or equal to, greater 
than or equal to).

14 - Jump on the Contents of the Register.
This instruction will cause the execution to 
continue at the given instruction number, if the 
specified value compared to the contents of the 
specified register meets the condition for jump. 
Otherwise execution will continue with the next 
instruction.
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Operands:
Instruction number for jump,
Register number,
Value for comparison,
Condition (equal to, less than, greater than, 
not equal, less than or equal to, greater 
than or equal to).

15 - Set all Registers to a Value.
This instruction will set the contents of all 
registers to the value given. Previous contents of 
all registers will be lost. All registers will be 
marked as unused (since reset).
Operands:
Value to store in all registers.

16 - Store a Value in a Register.
This instruction will set the contents of a 
register to the value given. Previous contents of 
the register will be lost. The register will be 
marked as used.
Operands:
Value to store in the register.

17 - Add To Register.

This instruction will add a value to the specified 
register. The register will be marked as used. 
Operands:
Register number,
Value to be added to the register.

.j.
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18 - Increment Register Contents.
This instruction will add one to the contents of 
the specified register. A useful instruction for 
use in collecting event counts etc.
Operand is the register number.

19 - Decrement Register Contents.
Similar to (18), will subtract one from the 
contents of the specified register.
Operand is the register number.

20 - Add Two Registers.
This instruction will add the contents of two 
specified registers, and the result will be stored 
in the third register. Register numbers of any or 
all the operands may be the same. Result 

register's previous contents will be lost. All 
three registers will be marked as used.
Operands are three register numbers.

21 - Subtract Two Registers.
Contents of the second specified register will be 
subtracted from the contents of the first 
register. Result will replace the contents of the 

third register.
Operands are three register numbers. Any or 
all of the register numbers may be same.
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22 - Declare Current Motor Positions "Home".
This instruction will zero the step counters of 
all motors, thus declaring the current position of 
the arm as the "Home" position. Contents of the 
step counters of motors will be lost.
No operands.

23 - Set Step Counter of a Motor to a Value.

This instruction will replace the current step 
counter of the motor specified with the given 
value. It may be used to declare the current 
position of the motor as home (value = 0). 
Previous value of the step counter of the motor 
will be lost, therefore effectively altering the 
home position of the motor.
Operands:
Motor number whose step counter will be involved, 
Value to initialize the counter.

24 - Copy Value in Register to Step Counter of a Motor. 
This instruction will set the step counter of a 
motor to the value specified in the specified 
register. Previous contents of the step counter of 
the motor will be lost, effectively altering the 
Home position for the motor. Contents of the 

register will be unchanged.
Operands:
Motor number whose step counter will be changed, 
Register number whose contents will be used.
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25 - Copy Step Counter of a Motor to a Register.
This instruction will copy the current value of 
the step counter of the motor to a Register. 

Contents of the step counter will not be changed. 
Previous contents of the register will be lost. 
Operands are:
Motor number whose step counter value will be 
copied,
Register number to be used for copy.

26 - Suspend Execution (in remote mode only)
This instruction is equivalent to stop execution 
instruction (opcode = O) except for the message 
that is immediately transmitted to the remote 
operator, and containing the number of the last 
executed instruction. The "End of Execution" 
message is also sent to the remote operator. 
Execution can be resumed with the next instruction 
in the program when the "Continue Execution" 

instruction is received from the remote operator. 
This instruction will be skipped during execution 
if opertion is local (not remote mode).

No Operands
27 - Transmit Contents of a Register to Remote Operator

(in remote mode only)
This instruction causes the robot controller to 
transmit a message to the remote operator. 
Operation code of the message will be (2) similar



142

to that of a request by the remote operator, and 
the content of the register specified by the 
operand will be transmitted as the second 
parameter of the message.
This instruction enables the programmer to send 

piece counts, repeat values etc., to the remote 
operator during execution, therefore generating 
feedback to the remote operator.
This instruction will be skipped during execution 
if opertion is local (not remote mode).
The only operand is the register number whose 
contents (value) will be transmitted.

28 - Transmit a Four Byte Message to Remote Operator
(in remote mode only)
This instruction enables the programmer to send a 
signal to the remote operator. It may be a 
synchronization signal, a flag to inform the 
operator of start or end of a move, or any other 
informative message. The message is coded into the 
instruction, and therefore can not be changed 
during execution.
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This instruction will be skipped during execution 
if operation is local (not remote mode).
Coding of the message is such that four bytes will 
be transmitted. Operation code of the message will 
be (9), and the two parameters of the message are 
contained in the first two operands of the 

instruction (two bytes per operand).



INSTRUCTION STRUCTURES BY OPCODE

0 - Stop Execution
No Operands (Blank instruction)

1 - No Operation
No Operands.

2 - Absolute Move
Operands:
1) Delay Value (or zero for no change in speed) , 
2-7) Position to step to (for each motor, in order) 

Value -9999 means no movement for that motor.
3 - Move

Operands:
1) Delay Value (Speed),
2-7) Number of steps for each motor, in order.

Value of zero means no movement for that motor

4 - Close Gripper
No Operands.

5 - Return to Home Position
No Operands,

6 - Move Motor Until Switch is ON/OFF
Operands;
1) Delay Value (zero for no change),
2) Motor number (1-6)
3) Switch Number,
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4) Switch Position (1=0N, 0=0FF),
5) Sense of Movement (Forward=l, Reverse= -1).

7 - Wait (idle) Until Switch is ON/OFF
Operands:
1) Delay Value (zero for no change),
2) Motor number (1-6)
3) Switch Number,
4) Switch Position (1=0N, 0=0FF).

8 - Move Motor UNTIL a Key is Struck at the Keyboard
Operands:
1) Delay Value (zero for no change),
2) Motor number (1-6),
5) Sense of Movement (Forward=l, Reverse= -1).

9 - Set Delay Value (speed of motors)
Operands:
1) Delay Value (NONZERO).

10 - Unconditional Jump
Operands:
1) instruction number.

11 - Jump on Switch Condition
Operands:
1) Instruction number,
2) Switch Number,
3) Condition of Switch for Jump (On=l, 0FF=0).
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12 - Jump on HOT Switch Condition
Operands:
1) instruction number,
2) Switch Number,
3) Condition of Switch for Jump (On=l, 0FF=0).

13 - Jump on Step Counter of a Motor
Operands:
1) Instruction number,
2) Motor Number,
3) Value for comparison (to step counter),
4) Condition for Jump:

= 1 Equal to,
= 2 Less Than,
= 3 Greater than,
= 4 Not equal,
= 5 Less than or equal,
= 6 Greater than or equal.

14 - Jump on Register Value Comparison
Operands:
1) Instruction number,
2) Register Number,
3) Value for comparison (to register contents),
4) Condition for Jump:

= 1 Equal to,
= 2 Less Than,
= 3 Greater than,
= 4 Not equal,
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= 5 Less than or equal,
= 6 Greater than or equal.

15 - Set All Registers to a Value (initialize)
Operands:
1) Set Value,
2) Zero.

16 - Set a Register to a Value (initialize)
Operands:
1) Set Value,
2) Register Number.

17 - Add a Value to a Register
Operands: 1
1) Value to add,
2) Register Number.

18 - Increment a Register (add one to contents)
Operands:
1) One,
2) Register Number.

19 - Decrement a Register (subtract one from contents)
Operands:
1) Minus One,
2) Register Number.

20 - Add Two Registers (rl) + (r2) -> (r3)

Operands:
1) First Register Number,
2) Second Register Number,
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3) Result Register Number.
21 - Subtract Two Registers (rl) - (r2) -> (r3)

Operands:
1) First Register Number,
2) Second Register Number,

3) Result Register Number.
22 - Reset (to zero) step counters of all motors

No Operands.
23 - Set Step Counter of a Motor to a Value

Operands:
1) Set Value,

*2) Motor Number (=0 for all motors).
24 - Copy Contents of a Register to a Step Counter

Operands:
1) Register Number,
2) Motor Number.

25 - Save Contents of a Step Counter to a Register

Operands:
1) Register Number,
2) Motor Number.

26 - Suspend Execution (in remote mode only)

No Operands
27 - Transmit Contents of a Register to Remote Operator

(in remote mode only)
Operands:
1) Register Number,

28 - Transmit a four byte message to remote operator
(in remote mode only)



Operands:
1) First two bytes of message (an integer) ,
2) Next two bytes of message (an integer).



APPENDIX B
ABC PROTOCOL AND THE COMMUNICATIONS INTERFACE MODULE 

OF THE PROGRAMMABLE LOGIC CONTROLLER
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GENERAL
The Honeywell 620 Programmable Logic Controller (PLC) 

has three parts that must be distinguished: the input/output 
(I/O) tables, sixteen bit registers, and program memory.

The I/O consists of two parts: external and internal. 
External I/O are the group of I/O bits that can be 

physically connected to the outside world through the 
modules in the PLC. Internal I/O are the group of bits that 
can be used in the same manner as the external I/O, but can 
not be physically connected to external devices.

All I/O is single bit (i.e. a one or a zero). Status of 
all I/O bits are kept in a table called the I/O table. PLC 
periodically checks the status of the inputs and updates the 
I/O table. Outputs are updated when referred by the PLC 
program.

Honeywell 620 PLC provides a number of sixteen-bit 
registers that can be used by the programmer. Among the 
possible uses of these registers are timer preset values, 
piece counts, etc.. These registers can be accessed by the 
PLC program.

The program memory of the PLC consists of 24-bit 
program words. Program instructions are stored sequentially. 
First few locations in the program memory are used for 
diagnostic, etc., however, locations starting with 11 can be 
used by the application program.
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COMMUNICATIONS INTERFACE MODULE
One of the modules available for the Honeywell 620 

series PLC is the Communications Interface Module (CIM) that 
can be used to connect the FLC to the external devices using 
serial connections. The CIM port may be used to connect the 
PLC to terminals, computers, or to networks, and may be 
programmed for different modes of communication.

CIM uses Asynchronous Bisync Communications (ABC) 
protocol. Commands received through the CIM port are checked 
for the correct opcodes and are responded to by the PLC (or 
the CIM itself). Detailed description of the operation and 
configuration of CIM is given in the PLC CIM manual.

ABC PROTOCOL
This protocol uses leader and follower bytes for each 

message. The header bytes are: SOH (ASCII 1), Node Address, 
a control character identifying the message type, ETB (ASCII 
23), STX (ASCII 2). Following these five bytes is one byte 
opcode and two bytes of message length. The message length 
is the number of bytes following the eighth byte (the lo- 
byte of the length), excluding the follower bytes. The 
follower bytes are checksum (one byte) and ETX (ASCII 3). 
The checksum includes everything including nodal address to 
(excluding) checksum.

Detailed description of the ABC protocol is also given 
in the PLC CIM manual. This protocol was implemented on 

microcomputer using assembly language.
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MAJOR FLOWCHARTS 
FOR THE CELL CONTROLLER PROGRAM
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