
Louisiana State University Louisiana State University

LSU Digital Commons LSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

1987

Design of a Generic Manufacturing Cell Control System. Design of a Generic Manufacturing Cell Control System.

Derya Pamukcu
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation Recommended Citation

Pamukcu, Derya, "Design of a Generic Manufacturing Cell Control System." (1987). LSU Historical

Dissertations and Theses. 4416.

https://digitalcommons.lsu.edu/gradschool_disstheses/4416

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Digital Commons. For more information, please contact gradetd@lsu.edu.

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_disstheses
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_disstheses?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F4416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_disstheses/4416?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F4416&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

Order N um ber 8728212

Design of a generic manufacturing cell control system

Pamukcu, Derya, Ph.D.

The Louisiana State University and Agricultural and Mechanical Col., 1987

U MI
300 N. Zeeb Rd.
Ann Arbor, MI 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark V .

1. Glossy photographs or p ag es_____

2. Colored illustrations, paper or print______

3. Photographs with dark background_____

4. Illustrations are poor copy______

5. Pages with black marks, not original copy

6. Print shows through as there is text on both sides of p a g e _______

7. Indistinct, broken or small print on several pages

8. Print exceeds margin requirements______

9. Tightly bound copy with print lost in spine_______

10. Computer printout pages with indistinct print______

11. Page(s)____________lacking when material received, and not available from school or
author.

12. Page(s)____________seem to be missing in numbering only as text follows.

13. Two pages num bered . Text follows.

14. Curling and wrinkled pages______

15. Dissertation contains pages with print at a slant, filmed a s received_________

16. Other__

University
Microfilms

International

DESIGN OF A GENERIC MANUFACTURING CELL CONTROL SYSTEM

A Dissertation

Submitted to tlie Graduate Faculty of
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Interdepartmental Programs In Engineering

by
Derya Pamukcu

B.S., Bogazici University, Istanbul, Turkey, 1977
M.S., Louisiana State University, 1982

August, 1987

ACKNOWLEDGEMENTS

The author wishes to extend his sincere gratitude to
his major professor Prof. William E. Biles. His consistent
encouragement# support and guidance were invaluable. The
author also wishes to express his appreciation to his

professors, colleagues and the staff of the Industrial
Engineering Department of Louisiana State University for
their constant support and encouragement.

Special thanks to my wife Sibel for her patience! Her
undiminishing faith in me and her constant encouragement has
made the completion of this project possible.

The author would finally like to acknowledge his
parents who gave him the first lead in life by generously
providing the love and care he appreciates so much.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ii
LIST OF TABLES vi
LIST OF............. FIGURES Vli

ABSTRACT .. ix
Chapter

1. INTRODUCTION 1
OBJECTIVE 4
DISSERTATION OUTLINE 5

2. BACKGROUND 6
COMPUTER INTEGRATED MANUFACTURING 6
HIERARCHICAL CONTROL 14
PREVIOUS WORK 25

3. SIMULATION OF CIM ENVIRONMENT 45
GENERAL 4 5
GATEWAY SIMULATOR PROGRAM 47
Data for Simulation 48
Organization of the Program 49
Operator Interface 52
Simulation of Workstation Responses 53

SUMMARY 54
4. MANUFACTURING CELL CONTROLLER 55

FUNCTIONS OF A MANUFACTURING
CELL CONTROLLER 56

iii

IMPLEMENTATION OF THE MANUFACTURING
CELL CONTROLLER 58

CELL CONTROL PROGRAM 60
Databases Maintained by the CCP 61
Task Decomposition 63
Monitoring And Control 64
Operation of the Cell Control Program 65
Messaging System 70
SUMMARY 77

5. MACHINING WORKSTATION 78
WORKSTATION CONTROLLER 79
Implementation 80
Operation 84
Programming 86

PROGRAMMABLE EQUIPMENT....................... 90
Manipulator Arm 91

Operation 93
Programming 104

Programmable Logic Controller 110
Programming 112

SUMMARY 114
6. MATERIAL HANDLING SYSTEM SIMULATION 115

IMPLEMENTATION 118

OPERATION 120
7. DISCUSSION AND CONCLUSIONS 122

FURTHER RESEARCH 126

iv

REFERENCES .. 130
APPENDICES

A. ROBOT-5 INSTRUCTIONS 133
B. ABC PROTOCOL AND THE COMMUNICATIONS INTERFACE

MODULE OF THE PLC 150
C. MAJOR FLOWCHARTS 153

VITA ... 1 6 4

LIST OF TABLES

Table Page

4.1. Databases Required for FMS Control 62
4.2. Status Codes for Workstations 62
4.3. Messaging Protocol

for Operational Messages 73
4.4. Messaging Protocol

for Variable Length Messages 73
4.5. Operational Messages 74
4.6. Database Update Messages 74
4.7. Message Format for Fixed Messages 75
4.8. Messaging Format

for Database Update Messages 75
4.9. Opcodes and Operands of

Operational Messages 75
4.10. Database Message Information 76
5.1. Opcodes for Workstation

Programming Instructions 89
5.2. Workstation Program Instruction Structures 89
5.3. Message Format 109
5.4. The Messaging Protocol 109

vi

LIST OF FIGURES

Figure Page
2.1. Computer Integrated Factory 8
2.2. Manufacturing Database 8
2.3. Order Release to Shop Floor 10
2.4. Automated Material Handling and Warehouse 10
2.5. Material Handling System Coupling 12
2.6. Sharing Information Through

Factory-Wide Network 13
2.7. A Simple Hierarchy 17
2.8. An Interconnected Dynamical System 17
2.9. A Simple Problem Decomposition 20
2.10. A Simple Control Unit 20
2.11. Feedback to Hierarchical Control System ... 22
2.12. Correction of Performance 24
2.13. AMRF Control Levels 26
2.14. AMRF Control System Hierarchy 26
2.15. Generic Control Module 30
2.16. Evolution of An Intelligent Automated Control

System • 30
2.17. Current AMRF Control Structure 31
2.18. Hierarchical Control Structure by Gomoa ... 39
2.19. Generalized Hierarchical Structure

of Expert Systems 40
2.20. Expert Control System Block Diagram 40

vii

.. a * .

2.21. Organization of NNS 42
3.1. Gateway Simulator Organization 51
3.2. Expanded Simulation Model 51
3.3. Operation Menu of Gateway Program 52
4.1. Cell Controller Organization 59
4.2. Task Decomposition 63
4.3. Cell Control Program Display of Status 69
4.4. Fully Interlocked Protocol 70
5.1. Machining Workstation 83
5.2. Multiple Workstations with Dissimilar

Configurations 83
5.3. Binding of Machines in Workstation 84
5.4. Manipulator Arm Interfacing

to the Microcomputer 92
5.5. Remote Operation of the Manipulator Arm ... 92
5.6. Manipulator Arm Control Program Main Menu ., 95
5.7. Manual Control of Microbot 95
5.8. Edit/Modify Program Menu 99
5.9. Listing of a Program 99
5.10. Edit/Modify Registers Menu 103
5.11. Remote Command Bypass Feature Ill
5.12. Device Interface to CIM Ill
6.1. Material Handling System Requests 117

viii

ABSTRACT

The feasibility of design and demonstration of a cell
control system to function in the fully integrated
manufacturing environment independent of the parts produced
or the manufacturing processes involved was investigated. A
hierarchical control structure was used. Free standing
implementations of a cell controller, a workstation
controller, and programmable device interfaces were
designed. The system is data driven, and was designed to use
the manufacturing databases that exist in the computer
integrated manufacturing environment.

Operation of the cell controller and its interaction
with the rest of the system was demonstrated in real-time by
simulating the computer integrated manufacturing environment
on microcomputers connected to each other via communication
links.

CHAPTER 1
INTRODUCTION

Computer Integrated Manufacturing (CIM) is the name
given to the image of the production facility whose
engineering, production and management functions are
computerized and combined to achieve efficient operation.
Several levels of computerized automation have been
implemented in production facilities around the nation.
These facilities have been called "flexible manufacturing
facilities", "computer aided manufacturing facilities",
"computer integrated manufacturing cells", etc.. However,
most of these facilities have been solely the integration of

t

a few pieces of programmable equipment, sometimes referred
to as "islands of automation". These implementations are far
from the fulfillment of the above given description of CIM.
To distinguish from these, the facility that fits the above
description of CIM is generally termed "full CIM". No
commercial implementation of full CIM exists, however there
are several limited applications.

Pull implementation of CIM demands advanced computer
aided manufacturing (CAM) and computer aided engineering
(CAE) systems to aid in all aspects of manufacturing
planning of the designed part. Products of this system would
include flexible routings for production of the part as well
as flexible numerically controlled (NC) part programs,
fixture and handling information such as gripper and robot

2

approach sequences. These products of CAD/CAE are crucial to
achieving the goals of CIM because they introduce the
flexibility required for efficient operation of the
manufacturing facility. Implementations of many CIM (or FMS)
systems have actually been only programmable production
facilities rather than flexible ones because of the absence

of the above mentioned CAD/CAE capabilities tied to them.
Full CIM implementation generates voluminous amounts of

data to be shared among the components of the CIM.
Management of this data throughout the system calls for
communication networks, database management systems and a
complicated control structure. Vendors of manufacturing
systems have designed interim solutions to fulfill the
requirements of customers. The capital-intensive nature of
the automated manufacturing market has prohibited rapid
acceptance of state of the art equipment, and developments
in the automated manufacturing equipment have led to more
advanced islands of automation.

Vendors of automated manufacturing equipment have
developed a variety of computer controlled proprietary
equipment. Efforts are now concentrated in integration of
the facilities without losing the advantages of the multi
vendor environment. The first step in integration was the
establishment of connectivity and communication standards.
This has been established by the International Standards
Organization's (ISO) efforts in establishing the Open
Systems Interconnection (OSI) model, and development of the

3

Manufacturing Automation Protocol (MAP) with the leadership
of the General Motors Corporation.

The issues immediately following communications involve
the structure of the information flow between the components
of the computer integrated factory. Considering the
voluminous amounts of data generated by the closely
monitored computerized environment, it is obvious that not
all data should be passed to every other component. For
example, if a machine tool controller monitoring the
condition of the cutting tool should try to report the
cutting tool dullness to other controllers every fraction of
a second, the result would be congestion at every component.
Hierarchical structures, where information is digested and
filtered at each level, have therefore been used for
development of control systems in computer integrated
factories.

Several systems for production monitoring and control
in automated factories are being developed by vendors of
automated machine tools and computer equipment. However,
most products being developed address interim needs of the
market rather than provide solutions to the problem of

efficiently controlling operations in a highly integrated

factory environment. While interim solutions to adapt the
existing environment and provide smooth transition to the
fully integrated environment are essential to the industry,
development of control systems for the fully integrated

4

environment is necessary so that the software required to
achieve the efficiencies of that environment can be
developed and tested. This is an essential step in the
justification of the huge investments in fully integrated
factories.

OBJECTIVE
The objective of this dissertation is to investigate

the feasibility of design and demonstration of a shop floor
control structure to function in the fully integrated
manufacturing environment. The control structure designed
should have the following characteristics:

Independent of the parts produced or the
manufacturing processes involved.

Utilize the information created by the pre
manufacturing operations in CIM such as design and
process planning and should not require extensive post

processing.
. Modular so that its components can be replicated to
accommodate changes in the system capacity and
configuration.

. Expandable so that modification of the algorithms for
planning and control of production in the control
structure can be easily implemented.

5

DISSERTATION OUTLINE
The dissertation project can be broken down to the

following tasks: (1) synthesis of the existing information
on Computer Integrated Manufacturing Systems, (2)
development of simulated controllers for programmable
equipment, (3) development of the production planning and
control method at the cell level, (3) development of the
cell control program, (4) design and development of a
simulation model of the Computer Integrated Manufacturing
environment.

*
This dissertation is organized as follows. Chapter 2

presents information on • the Computer Integrated
Manufacturing, hierarchical control, and a review of the
previous work. Chapter 3 presents the general description of
the environment around the cell controller. Chapter 4
describes the cell controller, discusses the implementation
of the cell controller and the details of operation of the
cell controller program. Details of the workstation
controller and programmable equipment designed for the model
workstation are given in chapter 5. Chapter 6 describes the

operation of the automated material handling system and the

simulation of its operation.

CHAPTER 2
BACKGROUND

COMPUTER INTEGRATED MANUFACTURING
Computer Integrated Manufacturing (CIM) is the name

given to the image of the production facility whose
engineering, production and management functions are
computerized and combined to achieve efficient operation
(Figure 2.1). Computer Aided Design (CAD) and Computer Aided
Manufacturing (CAM) are the basic technologies underlying
CIM.

CAD functions are essential to CIM, since the part
description and design information generated at this phase
is used for CAM functions. It is essential that the
capabilities of a CAD system be used for design of the non
standard fixtures or tools required for the manufacturing of
the part. Indeed, it is difficult to determine the
boundaries of CAD and CAM in a CIM environment, since
functions of both should be used by the design engineer
simultaneously. It is expected that a number of subsystems
implementing CAD functions would be available to the design

engineer, such as expert systems to check whether the part
can be manufactured as designed.

After completion of the design of the part, an expert
system would create the process plan (or alternative process
plans) for fabricating the part. Numerical control (NC)
programs, robot approach sequences, etc. would be generated

7

and stored in the manufacturing data base {see Figure 2.2).
Group Technology, i.e., classifying parts according to
similarities in their physical shape and dimensions, or
according to the steps required for manufacturing the parts,
is the primary basis for realization of the above functions.

Based on the quantity required and the due date of the

order, resources required for the manufacturing of the part,
such as the raw material, tools and fixtures, are either
manufactured or are ordered for purchase. The cost of
manufacturing the part is available as soon as the part is
designed and the manufacturing data base is prepared.
Analysis of plant capacity and outstanding orders can be
undertaken to determine the possible manufacturing lead time
for the order. Availability of real-time information is
expected to change the whole control structure of the
factory, as methods of static planning and control are
augmented by algorithms to implement dynamic control of
production [21]. The large amount of data produced by the
processes and the variety of monitoring functions that can
take advantage of the data available makes the local control
of production units an attractive choice [4,18]. Allocation
of data storage and processing at each level is closely
related to the allocation of the control functions which
will use them.

When the resources for manufacturing of the part (or
group of parts) are ready, the order is released to the shop

8

DATA

Material in Product out

MANAGEMENT

PRODUCTION

ENGINEERING

Figure 2.1: Computer Integrated Factory

MANUFACTURING
DATABASE

FACILITIES
DATABASE

PART MATERIAL PART
DESCRIPTIONS DATA PROGRAM * * •

TOOL
DATA

PARTS

S T A N D A R D S

TOOLS FIXTURES NC
PROGRAMS
(TEMPLATES)

WORKSTATION
INFORMATION

MACHINE TOOL
INFORMATION

CONFIGURATION • « • •
CAPP

Updates

CAPP - Computer Aided Process Planning

Figure 2.2: Manufacturing Database

9

floor (Figure 2.3). Control of the shop floor is totally
computerized, with the information from the manufacturing
data base being used for scheduling, and NC programs for
workstation control. At the same time, data from the shop
floor flows upward to the production control database,
enabling monitoring for production control and quality
assurance purposes. Development of fully integrated systems
should lead to the capability of efficiently manufacturing a
variety of products from mid-volume to a lot size of one
[27] .

Manufactured parts, raw material and semi-finished
workpieces are stored in automated warehouses and retrieved
when requested by the control system. Automated material
handling and warehousing is an integral part of CIM (See
Figure 2.4). Workpieces are transported to and from
workstations by the Material Handling System (MHS) .
Automated loading and unloading of parts to the MHS is
accomplished by roller carts, robotic manipulators, or
whatever method is suitable to the part and the material
handling system. Several material handling methods such as
conveyors, overhead transports, and automated wire guided
vehicles (AWGV's) may be used on the same shop floor (see
Figure 2.5). The MHS controller is responsible for making

sure that the proper method(s) are used for transport of the
workpiece to the desired destination. Detailed description
of the physical facilities, such as the transport systems,
locations of workstations and the types of interfaces to the

10

Raw Material + Tools

PDB - Production Control Database (schedules, orders, etc.) .
HDB - Mnufacturing Database
FDB - Facilities Database

Figure 2.3: Order Release to Shop Floor

Raw Materials and Finished Parts

Pelletizing
or

Fixturing

Buffer Storage (HIP)

j i

1 —

MHS
Interface

'.
MHS

Interface
MHS

Interface
WORKSTATION WORKSTATION

Figure 2.4: Automated Material Handling and Warehouse

11

MHS, is kept by the CIM in the facilities database. This
information is shared by production planning and control, as
well as other systems such as MHS for use in performance of
their duties.

Another critical component of CIM is a communications
network, enabling information flow within the system [25].
It is through this network that the databases for
manufacturing and facilities are shared, commands and inputs
to the shop floor are sent, and data from the shop floor is
transmitted (Figure 2.6). The communications network for
manufacturing systems have to be suitable for the type of
control system. Varying amounts of data, from simple status
indicators to potentially very large NC programs, and in
varying urgencies, from emergency handling to routine
signals, will have to be handled by the network. The absence
of an accepted network standard has been a handicap to the
development of CIM systems [11,14]. The Manufacturing
Automation Protocol (MAP), a protocol based on the Open
Systems Interconnection Model (OSI) of the International

Standards Organisation (ISO), has recently emerged as a

standard accepted by many, and is likely to be the standard
for manufacturing systems. Detailed explanation of MAP is

given in [13].
Establishment of communications standards for the shop

floor has enabled vendors of automated manufacturing
equipment to provide communications capability compatible
with the others to their products. Given the connectivity of

12

all equipment, the task of controlling the manufacturing
system as a whole to achieve optimal performance of
operations remains as an area to be researched for a long
time.

Most of the systems to control manufacturing opertions

that have been developed or are being developed involve
hierarchical control structures. The next section presents a
review of the hierarchical control, and the section
following it describes previous work in this area.

AWGV
Tow-cart

WORKSTATION

WORKSTATION

WHS
Interface

WORKSTATION
MHS

Interface

Figure 2.5: Material Handling System Coupling

13

LOGICAL
DATA

DATA

ENGINEERING MANAGEMEN'DATA

PRODUCTIONDATA

PHYSICAL

DATADATA DATA

DATA

ENGINEERING MANAGEMENT PRODUCTION

Figure 2.6: Sharing Information Through Factory-Wide Network

14

HIERARCHICAL CONTROL
Controlling any system of reasonable complexity

requires a structure involving delegation of command and
responsibility. This hierarchical method of control is most
obvious at the institutions such as the army, and less
obvious (nevertheless similar) in control of complex
processes such as refineries or manufacturing installations.
Since most engineered systems can be decomposed into a
collection of interconnected subsystems, each of which can
be controlled individually, it may be possible to control
such systems by generating hierarchies.

A simple hierarchy is shown in Figure 2.7. Fundamental
properties of a hierarchy [26] are as follows:

1. Hierarchies consist of decision making units
arranged in a tree-like structure where at each level a
number of such units operate in parallel.

2. Hierarchical structures exist in systems which have
an overall goal, and the goals of all the decision makers
who constitute the hierarchy are in harmony.

3. There is an iterative information exchange between
the decision making units on the various levels of the
hierarchy with a precedence for the information going down
which is treated as a command by the lower levels which try
to obey it if they possibly can.

4. The time horizon of interest increases as one goes
up the hierarchy.

15

Hierarchies arise due to the following reasons:
a) The system having a definite goal is too complex for

one decision maker to comprehend let alone control, since

decision makers have limited information handling
capacities.

b) Since time flows sequentially, it is possible to
perform more tasks in a given period of time if the jobs are
done in parallel and this leads to parallel decision making
by decentralized controllers.

c) Decentralized decision makers need to coordinate
their activities to satisfy the overall goal and it is more
efficient to have a specialist coordination function and a
hierarchy than constant communication between all the
decision makers since it increases the burden on each
decision maker.

Advantages of hierarchical systems are:
a) Flexible configuration, and the possibility of

increasing capacity easily.
b) High reliability due to ease in adding parallel

redundant systems.
c) Lower cost due to simpler software and possible use

of standard components at each level.
Singh [26] presents the problem of synthesizing

hierarchical structures for large interconnected
hierarchical systems. Formulation of the problem for a
collection of N interconnected dynamical systems, where the
system can be described by linear differential or difference

16

equations/ and the cost function which defines the overall
goal of the hierarchy is a quadratic function of the states
and controls is shown in Figure 2.8.

For the ifch subsystem;
*i is an n^ dimensional state vector

is an dimensional control vector
is an r^ dimensional vector of inputs from other

subsystems.
Assuming linear system dynamics:

Ai<t) = hiHit) + B^iCt) + CjZitt) -------- (1)
with jc i (0) =

Assume that the vector of inputs z^ is a linear combination
of the states of the N subsystems:

i.e., = sum(L^j Jtj) for j = 1 to N ----- (2)
It is then desired to choose the controls ^/..../Un in
order to minimize the function of the kind:

N
J = I (1/2 j |2Li (T) | | 2 Qi

1=1 + 1/2 [||Xi(t)||2 Qi

+ I 1Hi I I 2 Hi + lllill 2 Si 1 dt

subject to constraints (1) and (2).Several approaches to
solve this problem, both feasible and infeasible are given
in [26]. A similar formulation of the same kind of problem
is presented in [28] to minimize the Work-In-Process, thus
optimizing the production planning and control function.

Engineering Engineering

Product ion

PLANT A
MANAGEMENT

PLANT B
MANAGEMENT

Production

TOP MANAGEMENT

ure 2.7: A simple Hierarchy

ure 2.8: An Interconnected Dynamical System

18

Each work section in layer j is represented by a similar
equation, and the objective function is of the same kind.
It is stated that the result would be impractical to apply,
since it inevitably yields an approach too cautious to

apply* reserving an unused margin to counteract the event
effects. Thus the solution would yield an inefficient
production planning and control system. The difficulties of
multivariable optimization in real-time are also discussed
in [19].

An approach to solving problems of reasonable
complexity is to map solution strategy by decomposing the
problem at hand to subproblems that can lead to the solution
of the main problem if they can be solved. These problems
than can be further decomposed into subproblems themselves,

using the same approach. At some point in the decomposition
process, subproblems whose solutions are known are
generated, and thus the solution to the principal problem is
obtained. The decomposition of problem A to subproblems B
and C (solution of either one would lead to the solution of
A), and then to subproblems D,E,F,G, and H are shown in
Figure 2.9. AND nodes are shown with a bar joining their
arcs, the others are OR nodes. Solutions to primitive
problems D and E, or to F,G and H yield the solution to the
main problem A. AND/OR decomposition is a valuable tool for
analyzing hierarchical networks.

This mapping of the solution to problem A is relevant

for most purposes, mainly for planning, however is not

19

readily applicable to real-time control systems because the
variable time is not explicitly represented. A method to
convert these AND/OR graphs to a continuous form in which
time is explicitly represented is necessary to apply the
ideas to hierarchical control systems. Such a method has
been developed at the National Bureau of Standards (NBS)

[2], It defines a mapping H from input space to output
space, where the input vector £ can be decomposed into

command plus feedback:

S. = £ + F
Thus the input vector describes the possible input
vectors(S) corresponding to the same command (C) , and the
outputs to these inputs (See Figure 2.10):

P = H (SJ
The input vector C represents a goal and the output vector JP
may be subgoals to the several levels below. In this case
the function H may be viewed as a decomposition function
where the command C is decomposed into subtasks. In another
case, this system may be a servomechanism where C is the
setpoint and feedback is used to compute the error signal.
In this case H is the transfer function and the outputs are

the drive signals to physical actuators. When the feedback
(or the error signal) is not continuous but discrete (such
as measurements at discrete points of a continuous
variable), then the continuous analysis degrades to a
discrete one. As long as the H functions are correctly

20

Figure 2.9: A Simple Problem Decomposition
Solution to A: (D and E) or (F and G and H)

S Is the STATE vector
C is the CONTROLS Vector
F is the FEEDBACK vector

Figure 2.10: A Simple Control Unit

21

formulated, and the sampling of feedback (error) is frequent
enough, stability of the system can be maintained.

A hierarchy of task decomposition operators, or
servomechanisms, can be used to describe the controls for a
complex system (see Figure 2.11). Feedback enters this
hierarchy at every level. At the lowest levels, the feedback
is unprocessed, or nearly so, and hence is fast acting with
very short loop delays. Feedback therefore closes a real
time control loop at each level in the hierarchy. The higher
level loops are more sophisticated and slower. The time rate
of change of the output vector £ will be of the same order
of magnitude of that of F and significantly faster than that
of the command vector C. This slower time rate of change of
the JP vectors at the higher levels is not because the
processing rate of the higher level H operators (which
indeed is the same as any other), but due to the fact that
the F vectors driving the higher levels convey information
about events which-occur less frequently. In some cases
higher level F vectors may require the integration of
information over long time intervals.

The composition of the feedback at each level, that is,

the amount of sensory information from the environment or
the lack of it, will determine the sensitivity of the
controls at that level to the conditions in the environment.
If the feedback vector contains many external variables, the
task decomposition at that level will be capable of
responding to the environment. If the feedback vector

22

.Command

Processed
Sensory
Feedback

^ Decision
Level i

Command
Status of
Lower levels Decison

Processed
Sensory
Feedback

1 Level i+1

Command

Status of
Lower levels Decison

^ r a it a t t .Processed
Sensory
Feedback

Level 1+2

Status of
Lower levels

Figure 2.11: Feedback to Hierarchical Control System

consists solely of internal variables, then the
decomposition at that level will be stereotyped and
insensitive to the conditions in the environment.

The success of performance of tasks depends on the
capability of the H functions at each level to provide the
correct mapping despite perturbations and uncertainties in
the environment. To maintain control, the transfer functions
must be defined around the regions of perfect performance as
well as the expected points, and must be able to direct the
actions to correct the deviations in the perfect performance
to maintain stability. If they fail to perform in the
presence of perturbations, then the system fails.

23

Small perturbations can be usually corrected by low
level feedback loops, since they require relatively little
sensory data processing (see Figure 2.12a). Larger
perturbations in the environment may overwhelm the lower
level feedback loops and require strategy change at higher
levels in order to maintain the system within the region of
successful performance. These are shown in Figure 2.12b. The
changes in the environment beyond the correction
capabilities of the lower level controllers is detected at
the higher levels and new command vectors for the lower
level controllers is calculated, representing a change in
the strategy to cope with the perturbations.

Integrated factory models have been developed by
several institutions utilizing the theory of hierarchical
control discussed above. These models are described in the
next section. Hierarchical control theory was also utilized
for development of the model in this research.

a) Small perturbations corrected at lowest level

Error at higher level

b) Lower level overwhelmed by the error
(change in strategy)

Figure 2.12: Correction of Performance

25

PREVIOUS WORK
Several institutions around the world have been

researching the possibilities of designing control
structures for efficient control of automated manufacturing
facilities. This section presents brief descriptions of
major relevant research in this area.

Most notable is the research continuing at the National
Bureau of Standards Automated Research Facility (NBS-AMRF).
It has been documented in [1,2,3,16,17]. Following is a

description of the model and current implementation of the
AMRF control system.

This facility is being developed by the NBS as a
testbed for developing standards in all aspects of managing
the factory of the future. The production control model
developed at AMRF consists of five layers: facility, shop,
cell, workstation, and equipment (see Figure 2.13). It is a
hierarchical control structure, in which the commands to
each control module is processed in a similar manner. The
current input command to a level is decomposed into
procedures to be executed at that level, to commands to be

issued to the lower levels, and to feedback to be
transmitted to the supervisory level. The feedback is used

to close the control loop at each level, supporting the
adaptive behavior of the system (see Figure 2.14).

The facility control system implements the highest
level of control, and has a planning horizon of anywhere

26

^ FACILITY^

(workstation)

^EQUIPMENT^

Figure 2.13: AMRF Control Levels

. Status
A Feedback

Level 1

Level 2

\
Status \
Feedback '

\
\
\

Equipment

Figure 2.14: AMRF Control System Hierarchy

27

from several months to several years. This level is broken
down to three major functional areas: manufacturing
engineering, information management, and production
management. Manufacturing engineering involves generation of
bill of materials for assemblies, as well as the process
plans necessary for the manufacturing of parts. Information
management provides the user and data interfaces for the
necessary administrative and business management functions
such as order handling, billing, payroll, etc. Production
management generates long range schedules, determines the
need for capital investments to meet production goals, and
summarizes production data. The long range schedules
produced by this system are used to generate work orders at
lower levels.

The shop control system is responsible for coordinating
the production and support jobs on the shop floor. This

system is also responsible for the allocation of resources
to those jobs. The planning horizon for the shop control
system varies from several weeks to several months. Major
components of this system are task manager and resource
manager. The task manager schedules job orders, maintenance
and shop support services. It also tracks equipment
utilization and schedules preventive maintenance for
equipment and tools in the factory. The task manager is
responsible for capacity planning, grouping orders into
batches, activating and de-activating "virtual" cells,
allocating resources to individual cells and tracking

28

individual orders to completion. Resource manager allocates
workstations, buffer storage areas, tooling etc. to cell
level controllers. It also updates inventories of all
equipment and tools in the factory. The dynamic allocation
of workstations to cell controllers makes it possible to
change configuration of cell compositions to fit the
production requirements.

The cell level controllers are responsible for
sequencing batches of jobs through workstations, and
supervising various other support services, such as material
handling or calibration. The planning horizons of cell
controllers vary from several hours to several weeks.
Components of the cell control system perform task
decomposition, analyze resource requirements and prepare
requisitions, report job progress and system status to shop
control, make dynamic batch routing decisions, schedule
operations at assigned workstations, dispatch tasks to
workstations, and monitor the progress of those tasks.

The workstation control system has a planning horizon
from several minutes to several hours. Activities of small
integrated physical groupings of shop floor equipment are
coordinated and directed by this level of control. A typical
workstation consists of a robot, a numerically controlled
machine tool, a material storage buffer and a control
computer. Interface of the cell to workstation controllers
is designed to be independent of the buffer and a control

29

computer. The of the cell to workstation controllers is
designed to be independent of the workstation type so that
the assignment of the workstations to the cell can be made
without difficulty.

Equipment Control Systems are closely tied to the
commercial equipment or industrial machinery on the shop

floor. These controllers have a planning horizon of several
milliseconds to several minutes. They in fact are the
interfaces of the commercial equipment to the workstation
control system.

Every control module in the AMRF hierarchy reacts to
inputs in essentially the same way: input commands from the
supervisory level are decomposed, status feedback from
subordinates are processed, and new outputs in the form of
commands and status are generated (see Figure 2.15). This
mode of operation, referred to as reaction, represents the
first of several levels of intelligent control envisioned:
reaction, planning, optimization, and learning (see Figure
2.16) .

To aid in specifying the required task decomposition
and task processing, a programming language and program
development environment called the Real-time Control System
(RCS) was implemented. It permits specification of programs
at each level as state tables, and the programming
environment permits the generation, editing, emulation, and
evaluation of these state tables. Details of this system are
given in [3,15],

Command Input
from next
Higher Level

Status Feedback
to next
Higher Level

CONTROL
LEVEL

Status Feedback
From Next
Lower Level

Output Command
to Next
Lower Level

Figure 2.15: Generic Control Module

LEARNING

OPTIMISATION

PLANNING

REACTION

Goal driven system implemented
by state/Lookup tables and
Simple invoked procedures

State space and heuristic
searches, predetermination
of intermediate states.

Simulation and selection
of plans from alternates
based on evaluation
criteria (sensitivity
analysis).

Recognition, encoding
and integration of
process and data of
lasting significance.

Figure 2.16: Evolution of an Intelligent
Automated Control System

31

As it is currently implemented, the AMRF consists of a
cell control system which receives commands from an operator

interface. It coordinates operations of a horizontal, a
vertical, and a turning machining centers, and a material
handling system (see Figure 2.17). Each machining
workstation manages four equipment level systems, a robot, a

machine tool, fixturing devices, and a local material
storage area. The material handling system manages a robot
cart, a sto r a g e and retrieval system, and a
loading/unloading area that is tended manually. Several
programming languages and environments have been used in the
implementation. The cell control system and the material
handling system have been implemented on a minicomputer.
Systems running on a computer use memory locations labeled
as mailboxes for communication. A network is planned for
communication of processes not implemented on the same

computer.

Cell Control System

Automated
Turning
Workstation

Material
Handling
Workstation

Vertical
Machining
Workstation

Horizontal
Machining
Workstation

Figure 2.17: Current AMRF Control Structure

32

The AMRF is being developed to fulfill the goal of the
NBS, to develop standards for automated manufacturing. It
therefore considers the interim needs of the industry as
well as the future. The interfaces to the operator and other
manual operations such as programming are adding to the
complexity of the systems being developed. The concepts
being implemented, however are valid in either case. The
programming systems developed involves forms of many types
that are efficient for manual data entry, but would require
additional processing of the available data to be generated
by a fully integrated system.

Use of state tables in the decision making elements may
cause fragmentation of the problem because of the
exponential increase in the possible number of states with
the number of elements to be controlled. As long as the
implementation of decision makers is on one computer, the
real-time nature of the response can be preserved. If
however the state table based decision makers are to be
implemented on multiple computers, it might not be possible
to respond in a reasonable time frame because of the large
number of transfers required between the decision makers.

The structure planned for AMRF is a typical
hierarchical control system for CIM except for the MHS. The
implementation of the material handling system as a
workstation to the cell controller is acceptable for a
facility consisting of one cell, however it would not be
practical in the presence of many cells, especially in an

33

environment where the workstations are allocated to cells by
an auctioning scheme. Rather, it would have to be an
autonomous controller accepting requests from all cell
controllers, and responding to them.

Development of another hierarchical control system to

carry out FMS integration is given in [21]. This system
involves following basic levels: dynamic scheduler, 'process
sequencer, resource allocation, and the communications

level. The dynamic scheduler determines the instantaneous
production rate of each part type, planned routing and
dispatch timing to best utilize the the varying capacity of
the system. It uses real-time data as well as the aggregate

I
data to make best use of the manufacturing system's
flexibility. The Process Sequencer infers, based on the
manufacturing system status and the production state of the
part, the next process, the appropriate material handling
move, and the production program to download, if required.
Major components are the knowledge base, where the facts and
the rule set reside, local data base where the system status
and production state are held and the inference engine <IE).
IE presents the current system status and the production

.state to the facts and rules, to come up with a set of
actions whose conditions are fulfilled.

The IE consists of four components: IE flow control
manages the program execution and interacts with the rest of
the software control. Local data base manager updates and
enforces consistency when new data arrives, internal

34

scheduler controls the order of the rules. The Interpreter
actually parses the rules using the facts and current data .

The objective of the Dynamic Resource Allocation Module
is to dynamically allocate the shared resources according to
the next task to be performed in the FMS, complying with
some priority policy. The output of this level are commands
to the communications interface module, in order to execute
particular movements.

The communication level transmits the decisions and
receives feedback from the direct machine controllers. Part
of this level is also in charge of collecting statistical
data, monitoring options of the system, and providing run
time services.

The control system design outlined above may be
implemented with success and work effectively for an FMS
system with limited capacity. It however would be difficult
to implement this system in CIM environment, because the
design is an integrated control system, instead of a
distributed one. The allocation of the scheduler and other
functions would have to be redefined given the necessity for
grouping of workstations (or cells) in a factory wide
implementation. The data required by this system, namely the
rules for the inference engine and the program for the FMS
control system, are not the type of information found in the
CIM environment naturally. They are the products of
additional processing of the production and product data
bases in CIM.

35

[14] gives a comparison of the products available from
vendors and address the issues of data compatibility and
communication in an integrated environment. It is stated
that the systems available from vendors are all in
development stage and mostly involve implementation of the
higher-level functions such as production scheduling and
inventory control than the cell or workstation level
controllers. It is also observed that the products entering
the market stress color graphics displays, and sophisticated
user interfaces rather than providing solutions to the
problem of distributed control in the shop floor. Authors
suggest a modified disk operating system type of approach to
the needs of a distributed control system on the shop floor.

Effective design of the control systems for Flexible
Manufacturing Systems is discussed in [5]. A
conceptualization of FMS environment is outlined and two
control structures, a single level and a two level are
described. An implementation of the two-level control system
is also detailed. The control system described here is based
on the use of a procedural language (termed CPL, Cell
Programming Language) for the manufacturing cycle. For each

piece to be manufactured in FMS, a program must be written.

From the language point of view, FMS is a set of devices

classified according to type and features. CPL consists of
instructions to request services or information from
devices, and instructions to reserve, activate or gain
exclusive use of a device.

36

The supervisory level controller consists of an
operations sequencer, a part loading module, and a table
manager. Three tables, active missions (workpiece tasks)
table (AMT), active step (operation request) table (AST),

and a table describing the current state of the devices in
the system (CDT) are kept by the supervisor. The interfacing
of the lower level (devices) with the controller is through
the common tables, particularly the AST.

The system described for control of FMS utilizes cell
controller programs for each part in addition to the part
programs for manufacturing processes. The cell control
programs, written in Cell Programming Language (CPL), are
then interpreted by the cell controller and reduced to a set
of common tables through which the workstations are
assigned, activated, etc. One of the preliminary advantages

cited for the system developed here is the ease of
programming by writing macros in a general purpose high
level language.

In the full CIM environment, the cell control program
for each piece would have to be written after the creation
of the process plan for manufacturing of a part. The fact

that all the information in the CPL program will be derived

from the manufacturing and facilities data bases in the CIM
environment, and will be reduced back to a table form in the
cell controller, suggests that it is a step redundant in the
CIM environment where data communications provide global

37

access to common databases. Furthermore, the integrity of
data in an environment where different forms of the same
information are present would be hard to preserve. The
operational control system so provided, therefore, may not
be as efficient in the Full CIM environment as it might be
in the FMS where the pre-manufacturing activities may not be
automated or integrated to the shop floor control.

A generalized hierarchical control structure for
machine control applications is presented in [20]. Five
major components are identified: command translator, command
interpreter, device manager, exception monitor and subsystem
monitor. The command translator serves as the communications
interface between the external host and the machine
controller. The command interpreter breaks down the incoming
command into elementary commands for further processing by
the device managers. The device manager executes the
incoming command by directly operating a hardware device or
by breaking down the command into more elementary ones for
further processing by the lower level device managers. The
exception monitor gathers and reports error conditions
detected by the subsystem monitors. The exception monitor
can command the machine to stop if the conditions so
dictate. The subsystem monitors process the inputs and
monitor the conditions of the passive hardware systems, such

as position calibration.

38

Control hierarchies may be built by using the same
controller model at each level. The termination point of the
control hierarchy is where the command action can be
executed by operating a single device in a simple sequence
of actions. Examples of similar hierarchical control designs
are cited (one by Albus, Fitzgerald and Barbera, and another
by Gomoa). The command processing chain of a hypothetical

application of the generalized hierarchical structure is
described. Hierarchical control structure by Gomoa is shown
in Figure 2.18.

The described generalized control module can be
implemented in many different ways and still fit this
framework. This can be observed by comparing the examples
cited and the hypothetical example given. The control system
designed does not show the lower level controllers which
would have to be different due to the characteristics of the
lower level inputs. Authors stress the importance of the
messaging service in the design of the controller
hierarchies and suggest use of a queuing system for messages
and use of semaphores.

Another approach to solution of the production planning
and control problem using hierarchical dynamical control
structure is given by [28], A tree organized Generalized
Hierarchical Structure of Decision Making Modules (expert
systems) is suggested. It involves definition of a set of
solution procedures, parameterized on the possibly occurring
event types, for all sub-problems within the hierarchy, and

39

Axis Controller

Sensory
Input

Sensory
Output

Interpreter

Axis Manager

Sensory I/O
Data Store

Control Panel
Input Handler

Control Panel
Output Handler

Control
Panel
Processor

Figure 2.18: Hierarchical Control Structure by Gomoa [20]

the organization of them into a relational framework able to
make event to control strategy matchings. Figures 2.19 and
2.20 show the block diagram of a generalized hierarchical
structure. The resulting Generalized Hierarchical System
then can be viewed as a network of expert control systems,
each consisting of an on-line learning process, an on-line
local planning design process, and an on-line coordination

process.
Another expert system based control hierarchy applied

to a flexible assembly cell is presented in [8]. NNS is a
complete on-line system for control of multi-robot assembly
workcells. The designed control hierarchy (see Figure 2.21)
covers three levels of abstraction: task level, functional

Knowledge Source
Coordination/
Decentralization
Rules

Oats
Compression
Rules

Coordinating Inferential Engine

11

Coordination Information
Processing
System

Automated
Manufacturing
System

Figure 2.19: Generalized Hierarchical Structure of
Expert Systems [28]

to/from higher level OH

Coordination suggestions

Section model

 ft— z.—
«

|Info Processing
i System

“" I

A-DDS for
production
Planning

Coordination of
Louar level DM1 s

Figure 2.20: Expert Control System Block Diagram [28]

41

level, and command level. The task level reasons about what
happens in the cell and what the system has to perform. It
involves planning, failure analysis, interface with higher
level systems (operator, workshop), execution monitoring and
action generation. The functional level is in charge of
action execution, in terms of functional primitives
available in the cell. It consists of two modules: the
sequence manager and the interpreter. The command level
interacts directly with the controllers of the components of

the cell, such as the robotic manipulators, or sensors.
NNS is implemented as a set of processes running on a

number of processors. Interprocess messages are used for
communications. Each component of the main cell is
controlled by a specialized module, implemented as an
independent low level interpreter. The specialized modules
have access to the state of the cell. The functional and
higher levels are implemented as processes in Lisp running
on a minicomputer.

This implementation of an assembly workcell uses
knowledge based decision makers at higher levels and
interpreter-monitors at lower ones to execute action
requests. The state of the flexible assembly cell is
maintained, together with the rules, by the decision makers.
Planning and monitoring is done based on the interpretation
of the state of the system and the rule base.

42

TASK LEVEL
failure
diagnosisplans

elementary
actions

FUNCTIONAL LEVEL sequences

functional primitives

ACTION LEVEL
requests

commands

MONITOR

PLANNER

INTERPRETER

ACTION
GENERATOR

Failure
Analysis

REAL-TIME
INTERFACE

Operator
and Workshop
Interface

FLEXIBLE ASSEMBLY CELL

Figure 2.21: Organization of NNS [8]

Expert systems are expected to be a part of solution to
almost any problem in the automated manufacturing area.

However, given the complexity of the CIM, it is not possible
to formulate the rules to manage the whole system, hence to
build an expert system to manage CIM optimally. Introduction

of expert systems to the manufacturing control systems
therefore has to be in the context of specialized decision

43

makers at several points in the hierarchy. The information
required by these systems may then be supplied by the
experts in these areas. The discussion in [28] does not
address the problem of relating the types of data and rule
sets required by the proposed control system to those
generated by the CIM during pre-manufacturing operations.

Several other commercial implementations of flexible
manufacturing cells such as the ones in Caterpillar, Renault
[12], and Martin Marietta [23] are reported. These
implementations are geared to solving particular problems in
well defined product classes and have controllers custom
designed for the particular implementation. The emphasis is
in improving productivity and quality by semi-automated
manufacturing groups. The requirements for unmanned
operation of the flexible manufacturing facilities and the
difficulties of conversion to the fully unmanned factory are
discussed in [18], There are also several implementations of
traditional software for production control and scheduling
that has been re-written on microcomputers, using the
improved user interface of these machines [7]. The problem
of dynamically coordinating the shop floor operations to
achieve goals of production have been totally overlooked by
such implementations, and the real-time nature of the
control systems have been ignored.

44

Many other organizations such as the consortium of
companies and schools in Europe [9] are investing in
research in this area but few results have yet been
published. There are no published, reports of an
implementation of a cell control system that is modular, de
centralized, portable and data driven to efficiently utilize
the highly standardized fully computer integrated
manufacturing environment. The contribution of this research
is expected to be a demonstration of the feasibility of such
a system.

CHAPTER 3
SIMULATION OF CIM ENVIRONMENT

GENERAL

An implementation of "Full CIM" involves computer aided
design and manufacturing systems, computerized planning and

tracking of orders, inventory, costs, quality, etc. This
research involves one small portion of this integrated
system, namely the manufacturing cell controller. It is
unrealistic, if not impossible, to describe the cell
controller and the manufacturing unit without making some
assumptions about the environment in which it operates. To
simulate one segment of an integrated system, it is
necessary to define the interfaces of the simulated portion
to the system. This enables us to determine the inputs of
the environment to the segment of interest, as well as
outputs of the simulated segment to the others. It is
therefore necessary to describe the domain of interest and
simulate the environment surrounding it, at least as far as
the interactions are concerned.

The manufacturing cell controller program runs on a
microcomputer. It is connected to another microcomputer
which is capable of simulating the CIM environment's

responses. These include responses expected from the
workstations, supervisory level controllers and the
material handling system controller.

45

46

One crucial requirement of the CIM environment is the
presence of certain information at each level of operation.
It is therefore assumed that the information required at
each simulated level is available through the factory-wide
network. In the absence of the network, this data is read
from local disk or obtained through the serial

communications link connecting elements of simulated
environment. Much of this data, such as NC programs, process
plans, etc., are actually products of the integrated system
itself, and are assumed to have been created previously.

A program running on a microcomputer simulates the
gateway to the world external to the cell controller. It

handles all communications in and out of the cell
controller, as well as coordinating or simulating the
Material Handling System (MHS), network controller,
workstation controllers, and provides an interface to the
operator. Commands from the control levels above the cell
controller are entered using the operator interface provided
on the microcomputer. The cell controller responds by
issuing commands to the workstation level controllers and
commands to the Material Handling System, as well as status
reports to the supervisory levels.

The CIM environment outside the cell controller can be
simulated on the microcomputer acting as the gateway, in
which case the simple modules built into this program will
be used, or some of the units such as the material handling
system or the workstation controller may be simulated on

47

separate computers. If external simulation programs are
attached, the gateway simulator program will act as a link
between those and the cell controller.

This flexible design of the system makes it possible to
use it in an environment when some of the simulations of
systems and workstations is not made on separate computers,
but on the gateway computer. It is therefore possible to run
the system simulation using only two computers.

The gateway simulator program and the limited
simulation of external systems, such as the workstation
controllers and material handling system controller, within
the context of this program, are described in this chapter.
Following chapters present the manufacturing cell control
program, the workstation controller program and the material
handling system simulator program.

GATEWAY SIMULATOR PROGRAM
Since a variety of functions are assigned to it, the

simulation program is designed in a modular fashion, each
function implemented as a set of modules executed only when
necessary, and returning to the monitor program without

suspending the user interface. This means that unless it is

absolutely necessary, functions do not do user interaction,
so that the simulation of the operation of the cell can be
carried out in real time.

48

The simulator program operates with queues. Each
operational message received is placed in the appropriate
queue. Informative messages are displayed (and lost) after

the statistics are updated. Event times are determined when
messages to start operations ending with events (such as
workstation operation, piece transport, etc.) are received.

The operator can override the scheduled event times, as well
as causing things to happen, even if not scheduled.

Simulated occurrence times of the events in the queues are
checked periodically, and those events whose times match the
current time are executed in the form of responses to the
cell controller from the appropriate unit.

Simulator program operates in synchronization with the
cell control program (CCP) running on the remote computer.
Upon initialization, CCP issues a synchronization signal,
which is acknowledged by the simulation program, and the
two programs reset their system timers.

Data for Simulation
The simulator program contains some of the data that is

required for running the simulation, however most of the
Manufacturing Data Base, which would otherwise be present in

the network, is not fed to the simulator. This avoids
duplication of the data that could otherwise introduce
integrity problems into the system. The remaining data
(those available at the databases of the cell controller
program) are requested from the CCP in form of database

49

queries initialized by the simulator program itself. Other
parameters required by the simulation program are passed to
it by the CCP using fields in the messages that otherwise
would be disregarded by the simulator, but would have to be
sent anyway to comply with the messaging format of the
communications system. One example is the second operand in

the "start operation" message. It normally would be ignored
by the receiving party, but is actually used to convey an
expected processing time to the simulator.

Simulation of the Material Handling System controller
requires presence of facility data in the simulator. It is
fed into the simulator from a file kept on the same machine,
and can be changed using an editor. Since changes in the
facilities is not normally expected, no provision exists for
interactive alteration of the facilities database during
simulation.

Organization of program
The simulation program is organized as functional

modules attached to a communications interface (see Figure
3.1). This organization provides for expansion of the
simulation program to many computers, as required. The
implemented functional modules may be overridden by the
configuration specification in the configuration file. Doing
so results in routing of the messages intended for those
systems to respective ports on the gateway computer,
reducing the gateway program to a link for those functions.

50

Each function therefore may be implemented as realistically
as required. Controllers may be implemented as expert
systems or may use sophisticated algorithms requiring the
power of a separate computing unit, and executing in

parallel (see Figure 3.2).
Data flow into the simulator is through the

communication module or the operator interface. The operator
interface is handled similar to the communication interface:
real-time operation is emphasized. Operational messages
received at the communications interface are assigned to
queues based on the type of message. It is then the duty of
each functional module to recognize and respond to the
events as represented by the initiation messages. The
scanning cycle of each unit is currently short, however,
when sophisticated simulation modules of a function is
desired (such as planning modules with optimization), then
it may be lengthened and interfere with the real-time
operation of the simulation.

51

Gateway Microcomputer

OPERATOR
INTERFACE

ORDER
TRACKING QUEUE

MANAGEMENT
SUPERVISOR
WORKSTATION
SIMULATION

COMMUNICATIONS

MRS SIMULATION

CELL CONTROL
PROGRAM

Figure 3.1: Gateway Simulator Organization

Gateway Microcomputer

CCP

QUEUE
MGMT.

COMMUNICA
TIONS

MHS
INTERFACE

l MSS
1 | v . y N T . - ! J L L .£ ,K

1
*

WORKSTATION t WORKSTATION
CONTROLLERINTERFACE 1

1
1
1
1
1
1
1

SUPERVISOR
INTERFACE

1
1 SUPERVISORY
1 COMPUTER

Figure 3.2: Expanded Simulation Model

52

Operator Interface
The simulation program has an operator menu which can

be called by the operator by typing an "M" at the keyboard.
Because of the real-time emphasis, menus are not presented
all the time. Even when the operator menu shown in Figure
3.3 is presented, the simulation program keeps operating
until the operator enters his request. At any point, the
operator may ask for the status of the system, the contents
of the queues, or any other statistic of interest. The
operator can also send a message (either operational or
database query) to the cell control program at any time by
using the "Send Message" option of the operator menu. It is
not very desirable however because some events (such as
pending messages) may be delayed, since the user is so much
slower to respond and assemble the message he wishes to
send.

Time is: 2210
WHAT DO YOU WISH TO DO NEXT?

S. Send Message
H. Respond to MHS Messages
F. Respond to Fixturing Requests
P. Respond to Program Download Messages
W. Respond to Operation Start Messages
D. Database Update
R. Read incoming Message (if any)
Selection ==>

Figure 3.3: Operation Menu of Gateway program

53

One example of required operator interaction is the
messages to the cell controller for manufacturing parts.

Since the operator interface is used for simulation of the
supervisory level controller's task allocation function, it
is necessary that the interface be used at least in this
capacity. Since this is not a frequent event within the time
period of interest to the cell controller, it does not
impede the operation of the simulation.

Simulation of Workstation Responses
The workstation simulation portion of the gateway to

the cell controller simply responds to commands from the
cell controller. The command to start operation is responded
after an appropriate time interval representing the
operation has elapsed. The operation times are deterministic
however a random element representing the dulling of the
cutting tools or similar events may be invoked if desired.
Ongoing operations are assigned a completion time and the
list of ongoing events is periodically scanned by the
simulation program to determine if any of the event times

have been reached. When one is found, a service completion
message is sent to the cell controller for that workstation.

When the computer integrated manufacturing environment
simulator is configured such that there is an attached
computer acting as a workstation controller, the messages
related to that workstation are routed to the appropriate

54

port, and responses sent to the cell controller. The stand
alone version of workstation controller simulator works in a
similar way, however it actually controls operation of
physical equipment, not merely a simulation of equipment.
The programmable equipment physically implemented were
instrumental in better understanding the needs of remotely

controlling such devices with local intelligence, thus
influencing the design of the workstation and cell level
controllers. Information on the operation and programming of
the workstation controller is given in a following chapter.

SUMMARY
A program to act as a gateway to the cell controller

was designed. Elements of the computer integrated
manufacturing environment that the cell controller routinely
interacts with, such as the workstation controllers and
material handling system controllers, are simulated by this
program to enable operation of the cell controller.

If material handling system controller or workstation
controllers are simulated on separate units, this program

can be configured to coordinate the communications between
computers. This feature makes it possible to distribute
simulation of the system to several computers as required by
detailed models.

CHAPTER 4
MANUFACTURING CELL CONTROLLER

This chapter introduces the highest level decision
maker implemented in the context of this project, the
Manufacturing Cell Controller. The design and implementation
of the cell controller is described in the following
sections, after a review of the functions of the
manufacturing cell controller. Since the workstation
controllers and the material handling system controller
operate upon instructions from the cell controllers,
understanding the operations of the cell controller is
essential for clear interpretation of the workings of the
manufacturing cell.

This chapter also describes the messaging system used
by the cell controller in detail. Since these messages are
received and responded to by the other controllers that are
connected to the cell controller, an explanation of the
messages and the messaging system at the end of this chapter
may be used as a guide when the other controllers are being

considered as well.

55

56

FUNCTIONS OF A MANUFACTURING CELL CONTROLLER
A. Task Decomposition. The cell controller must be able to

efficiently reduce the higher level commands (requests)

from the supervisor to lower level tasks. Lower level
tasks must then be further decomposed to either direct
commands to shop floor equipment, or to high level
commands to subsystems (such as the material handling
or tooling subsystems). Models for achieving this
function have been constructed, generally using state
tables or petri nets.

B. Monitoring and Control. The workstation must monitor
all the equipment and subsystems within the domain of
the cell, and take action when necessary.

1. The monitoring functions can be grouped as process
monitoring, equipment monitoring, handling
monitoring, and quality monitoring.
a) Equipment monitoring involves checking the

performance of the equipment, such as machines or
robots, to make sure that they are functioning

properly. Included are the cleaning systems,
safety systems, etc, which may report to the cell

controller.
b) Process monitoring involves monitoring of chip

removal, tooling, and progress of the
manufacturing processes. Tool wear or breakage, or

57

other mishaps during the process will have to be

detected through the monitoring of the process.
c) Material handling is monitored by tracking the

execution of the commands given to the material
handling system so that coordination of the
operation of the cell with responses from material
handling system can be achieved.

d) Quality monitoring involves the dimensional checks
on workpieces as well as calibration of the
equipment. Results of these may be used by the
controller for maintenance planning.

2. Controls must be exercised by the cell controller on
I

the equipment in the cell and on the associated
subsystems such as to correct faulty operations or to
achieve production goals.
a) Direct control involves evaluation of the

monitoring data by the cell controller to take
action. Sensory data is directly monitored by the
cell controller.

b) Supervisory control involves coordination of the
control functions of the lower level direct
controllers.

C. Reporting is a function of the cell controller which
covers a wide range of summary and statistical reports,
as well as real-time status reports. These reports are
used for inventory control, production scheduling,
maintenance planning, and managerial functions.

58

D. Communications is an essential function of the cell
controller. The cell controller must be connected to
the network and should be able to communicate with
supervisory level computers, as well as lower level
equipment controllers.

IMPLEMENTATION OF THE MANUFACTURING CELL CONTROLLER

The asynchronous nature of the events in the cell
necessitates a flexible implementation of the functions
defined in the above section. A simple but effective
organization, consisting of modular functional units
attached to a messaging system, was implemented (see Figure
4.1). This organization, in addition to being capable of
responding to asynchronous events, is also advantageous
because of the ease of maintenance and improvement of the
program. Evolutionary changes, such as substitution of a
complex algorithm for workstation loading, can be made

easily by replacing functional modules.
It is assumed that the functions implemented in the

cell control program will be replaced by better ones in
time, leading to a series of intelligent decision-makers

that control functions of the cell controller in the future.
Listing of the Cell control system programs and programmer's
manual are given in 124]. Major flow charts for the cell
controller and simulator are given in the appendix.

59

COMMUNICATIONS
MONITORING

AND
REPORTING

JOB ASSIGNMENT
TO WORKSTATIONS

TASK
DECOMPOSITION

(ORDER REDUCTION)

Figure 4.1: Cell Controller Organization

The cell controller is implemented as the Cell
Controller Program (CCP) written in Prolog language. Prolog
was chosen for the ease of programming in the intended

modular fashion and without the procedural definition of
each detail. A discussion of the suitability of Prolog to
this type of problem is given by Bullers [6].

60

CELL CONTROL PROGRAM
The Cell Control Program (CCP) implements the functions

of a manufacturing cell controller. Decisions for assignment
of jobs to machining centers and control of activities
within the cell are made by this program. The status of the

workstations in the cell and that of the manufacturing
orders are displayed in real-time.

Briefly stated, this program receives orders to be
fulfilled from the supervisory levels, decomposes the orders
to tasks, and monitors the execution of these tasks by
workstations in the cell. The coordination of activities in
the workstations and subsystems such as Material Handling
are also made by this program. CCP is written in Prolog, and
is a modular program.

CCP is a data driven program. All the functions
implemented work on the existing databases and apply
transformations to it. The link between functions are the
changes in the databases; algorithms remain the same
irrespective of the orders or configuration.

61

Databases Maintained by the CCP
Databases maintained by the cell controller cover a

wide range of information: cell configuration, equipment
status, production status, product information, and
operational data (see Table 4.1). These databases may be
queried by supervisory level controllers, or subsystems such

as MHS and tooling. Databases may also be updated by the
supervisory level controllers through the network.

Cell configuration information include the types of
workstations in the cell, designations of individual
workstations, and information necessary to make dispatching
decisions such as input output port types, buffers, etc.

Equipment status data include the starting times of
workstations and the tasks on which they are working. Status
codes are given in Table 4.2. Error conditions, the time
since the last failure and statistical information are also
kept on workstations.

Product information includes the process plans for the

parts currently assigned to the cell, as well as the types
of the workcells required, fixturing, tooling, material
handling information, NC program designations etc. This data
are normally kept by the central system and dispatched to
the cell controllers as jobs are allocated. NC programs may
be kept by the central system and downloaded directly to the
workstations upon request by the cell controller.

62

Production status data and operational data are the
piece counts, message queues (in and out), waiting lists for
equipment, material handling etc. are also used by the
control program.

Table 4.1: Databases Required for FMS Control

Order Id, Part_id, Quantity, Due_time
Part id. Material, Process__plan_#
Process plan #, Operation no, Machine_typ, Tool,

Fixture, Program_length.
Workst id, Machine_typ
Workst id, Status, Order_id, Part_id, Operation_no,

Start time

Table 4.2 Status Codes for Workstations
0 - Available (idle)
1 - Allocated
20 - Program Download Complete
50 - workpiece transport completed
100 - Operation Initiated
150 - Maintenance (scheduled)
180 - Error Condition Pending

63

Task Decomposition
The task decomposition function is based on a process

driven by birth and death of tasks. A task is an entry in a
"task table". Tasks are classified in three levels: master,
intermediate, and terminal. Tasks give "birth" to a number
of subtasks at a lower level (see Figure 4.2). Terminal
tasks "die" upon realization of certain conditions in the
system status, triggered by events in the system such as
completion of a machining operation in a workstation. Tasks
die when all the subtasks of the task are dead.

Each order for manufacturing a part (or a group of
parts) by the cell creates a master task, which in turn

I
creates subtasks. Each of the subtasks also create subtasks
to cover every step of the work to be done for completion of
the order.

Intarmadiate

Figure 4.2: Task Decomposition

64

Scheduling of the jobs to the workcenters is currently
based on a few simple rules: a workcenter must be available;
a task which is waiting for the type of workcenter must be

eligible (i.e. satisfy precedence relationships).
Sophisticated priority schemes may be added to the Cell
Control Program without difficulty.

Monitoring and Control
Monitoring and control functions require prompt

handling of asynchronous events in the cell, which is
difficult to implement efficiently in a non-multitasking
environment. To achieve good performance and flexible
operation, all I/O was implemented through queues, and
functions of the program were tied to these queues instead
of real I/O, therefore relieving the network connection
which otherwise would be a bottleneck.

Interfacing of the CCP to the central network is made

through I/O queues. Messages are inserted to these queues by

various functions of the CCP. Portions of the program scan
incoming messages and remove messages that are addressed to
them. This arrangement provides for flexibility in the
handling of input output and the monitoring functions.
Protocols used by the messaging system are strictly
interlocked to ensure correct transmission.

65

Also implemented is the real-time display of the status
of the workstations in the cell, and reporting of the part
completion, order completion, etc, to the supervisory and
subordinate level controllers.

Operation of CCP
Functions implemented in CCP are periodically scanned

and executed in sequence. Most functions, however, require
certain input conditions to operate and therefore decline to
operate in the absence of them. This provides timely
scanning of all functions, as well as monitoring of
asynchronous events.
1. The order dispatching function monitors the incoming
message queue for new jobs. When a new job is released, a
master task is created identifying the order. The master
task gives birth to the required number of subtasks: for
each part to be produced for the order, a subtask is created
(called an intermediate task). A message to the Material
Handling System signals the creation of each intermediate
task (hence a workpiece). Each subtask then produces
terminal tasks, each terminal task identifying an operation

to be performed on one part. Terminal tasks place a request
for the types of workstations required for performing their
respective operations: a waiting queue is formed.
Upon receipt of the message signalling the release of the
part, and depending on the number of fixtures available for

66

the workpiece, MHS readies workpieces for transportation.
Each part is fixtured as required. When a workpiece is ready

for transportation, a message is sent to the cell
controller and the associated tasks are marked as active
(fixtured).
2. Waiting queues are periodically scanned for matches in
waiting tasks and idle workstations. When a match is made: a
workstation is available and a task is waiting for the type
of workstation, the precedence constraints of the task is
checked. If all the task preceding the candidate have been
completed, the workstation is allocated to the task.
Otherwise, other candidates are considered. If the
workstation is allocated to the task, the task is dropped
from the waiting queue, and placed in waiting completion
queue. The status record of the allocated workstation is
updated and messages are sent to the network for dispatch of
the workpiece to the workstation. Instructions for
downloading the program required for processing the
workpiece at the workstation are also sent to the network.
3. Message queues are continuously checked for messages to
be sent or received. When an incoming message is detected
(currently a request on the port), the incoming message is
received and placed in the incoming messages queue. When the
presence of outgoing messages in the queue is detected, the
status of the transmitter is interrogated. If the
transmitter is available, the message is removed from the
"outgoing messages queue" and sent.

67

4. The incoming message queue is continuously checked for
messages from the workstations and from subsystems. When an
"end of processing" message is received, the waiting
completion queue is updated, and the task operating on the
workstation is completed {"dies"). The parent process of the
completed task is also checked for completion. If the

completed process is the last child of the parent process,
it dies too, and the link proceeds all the way to the
fulfillment of the order (i.e., death of the master task) by
the completion of the last operation on the last part in the
order. When completion of a task means a part is completed,
the "end of task" message is passed to the material handling
system, so that the part can be dispatched to the warehouse
as a completed part. This also signals the MHS that the
fixture is now available for another workpiece, and will be
used in case any requests are pending for that type of
fixture. Messages from the network ("end of download"), and
from the Material Handling system ("end of transport") are
used for updating status information and for starting the

processing at the workstation when the workpiece is
transported, and the NC programs are downloaded.
5. Scheduled maintenance on workstations is performed at the

discretion of the "maintenance planning unit", which
instructs the workstation controller not to schedule a
workstation past a certain time. When the workstation
becomes available, the scheduled maintenance event prevents

68

it from being reassigned to another task. The workstation
then shuts down for maintenance. Upon completion of
maintenance, the cell controller receives a "workstation
available" instruction, and the workstation is added to the

pool of available equipment for allocation of tasks.
6. When a workstation has to shut down because of an error
in operation, the cell controller is informed. If the
workstation has an allocated task, it is reinstated in the
waiting tasks pool. The MHS is instructed to remove the
workpiece, and until a "error condition removed" message is
received, the workstation is not assigned to any other task.
7. At the end of each scanning cycle (i.e. when all the
functions have executed), the status of workstations as
contained in the databases is displayed. It is therefore
possible to see the assignment of jobs to workstations and
progress of orders in the cell, (see Figure 4.3).

The Material Handling System (MHS) works as a subsystem
of cell controllers.The cell controller places requests to
the MHS via messages through the network. Responses of the
MHS are passed back to the cell controller the same way.

Movement of the workpieces between workstations and buffers

is executed by this subsystem. MHS is also expected to
manage the workpieces in process (i.e. unfinished parts in
the shop floor) by making the decision either to move them
to buffer storages or to keep them in the I/O buffers at the
workstations. The operation of the MHS and its specific
implementation used in this project are detailed in other

69

chapters.
The Tooling System works the same way as the Material

Handling System: as a subsystem of the cell controllers. It
has not been implemented in the current version but may be
easily attached to the system if desired. Control of this
subsystem will be similar to that of the material handling
subsystem: via messages through the network.

Equipment Status Debug
ID Status Order Pact

Output
Sequence St.Time

• a a m ■■*■«■■■■ SB BB ■ BB BB ■ litlllll

1 IB 2 Idle - - 0
1801 Idle - - 0
1902 Idla - - B

1401 Woeking 1 1 1 211
1701 Working 2 44 1 378
1402 Working 1 1 3 434
1101 Idle - - 446
1901 Assigned 1 1 2 448

Equipment Status Debug Output
ID Status Older Pact Sequence St.Time

BBSS llkistlll BBB ■ B ■ BBB B BBBBBBBB B B B a B B a
1101 Idle _ B
1102 Idla _ _ _ 0
1801 Idle - -
1901 Idle • • • a
1902 Idle • - •
1401 Wt.Dwnld 1 1 46
1402 Wait MHS 1 1 2 SS
1701 Assigned 2 44 1 256

Figure 4.3: Cell Control Program Display of Status

70

Messaging System
Messages are passed to and from the subsystems through

a network connected to all the workstations on the shop
floor as well as to the cell controllers and supervisory
level controllers. Downloading of the processing programs to
the workstations is made directly from the network-wide
program storage area, upon request by the cell controller.
In the absence of the actual network, the messages were
passed through a serial link to the simulated "network
gateway computer". The responses of the network are also
simulated by this computer.

Since the serial link is run asynchronously, and
operating systems of all computers do not provide an
adequate input/output buffer, a fully interlocked protocol
was used to pass error-free messages between computers. It
calls for acknowledgement of every byte received (see Figure
4.4), as well as leader and follower byte handshakes. Tables
4.3 and 4.4 show the protocols used.

SENOER Sand
Byt« i

Send
Byte i+11RECEIVER Echo

Byte i
Echo
Byte i+1

Figure 4.4: Fully Interlocked Protocol

71

Two types of messages are handled by the cell
controller messaging system: operational and database
related. There are two types of database related messages:
database updates and database queries.

Operational messages are those involving commands to
and from subsystems: status requests and diagnostics (see

Table 4.5). Database update messages are those that involve
insertion of new information to the cell controller
databases, or deletion of a record from them (see Table
4.6). Database queries are the messages sent to the cell
controller for downloading of certain information in the
databases.

Two formats (see Tables 4.7 and 4.8) are used for
messages: fixed and variable. Operational messages use the
fixed format. Database related messages use both variable
and fixed formats. The database update messages use the
variable format and contain all fields of the record being
updated (only the key fields are used for deleting).
Database queries are received in the fixed format and are
queued, but the result (most of the time more than two
fields), is sent using variable length format.

The three types of messages are handled differently by

the messaging system:
Operational messages are queued in and out of the cell

controller. Actual processing of incoming messages is
performed through the queue by functional modules. The

72

format of these messages is fixed length (see Table 4.9).
Database queries are received in the fixed format and

are queued as such. However, when the message is processed,
the database is queried using the key in the message, and
the result (most of the time more than two fields) is sent
in a variable length form distinguished by the request
signal.

Certain types of messages are not queued, but are
interpreted at once. These types of messages use a variable
length message format (see Table 4.8), where the length of
the database record updated and the kind of update
determines the message length (see Table 4.10). For example,
inserting a database record with seven fields requires all
fields to be sent, whereas deleting a similar record only
requires the key field.

73

Table 4.3: The Messaging Protocol For Operational Messages
Initiating Party
Request (a 7 or 15)
Hi-byte of opcode
Lo-byte of opcode
Hi-byte of first operand
Lo-byte of first operand
Hi-byte of second operand
Lo-byte of second operand
End-of message (a 7 or 15)

Receiving Party

Acknowledge ("A")
Echo hi-byte
Echo lo byte
Echo hi-byte
Echo lo-byte
Echo hi-byte
Echo lo-byte
Acknowledge ("I")

Table 4.4: Messaging Protocol Of Variable Length Messages
Initiating Party Receiving Party
Request byte

Acknowledge ("A")
Hi-byte of database code

Echo hi-byte
Lo-byte of database code

Echo lo byte
Hi-byte of update type

Echo hi-byte
Lo-byte of update type

Echo lo-byte
Hi-byte of operand

Echo hi-byte
Lo-byte of operand

Echo lo-byte
(repeated for each operand)

End-of message
Acknowledge ("I")

NOTES:
Request byte is: a 17 for updates,
25 for query responses.
End-of message byte is 17 for updates,
15 for query responses.

7 4

Table 4.5. Operational Messages

From Cell Controller: Destination
Start processing at workstation Workstation
Download program to equipment Network
Transport to workstation MHS
Part complete (transport part to warehouse) MHS
Raw material in store, fixture MHS
Operation complete (remove workpiece) MHS
Remove workpiece (Error in workstation) MHS
Order completed Network

To Cell Controller Origin
Processing completed
Program download completed
workpiece transported to workstation
Workpiece fixturing complete
Process order (order dispatched to cell)
Scheduled maintenance at workstation
End of maintenance
Irrecoverable error condition
End of error condition

Workstation
Network
MHS
MHS
Network
Network
Network
Workstation
Workstation

Table 4.6: Database Update Messages

Insert new order record or Delete old order record
Insert new part information or Delete old part information
Insert new process plan or Delete old process plan
Insert new equipment or Delete old equipment

75

Table 4.7: Messaging Format For Fixed Length Messages
Opcode (2 bytes)

Operand one (2 bytes)
Operand two (2 bytes)

Table 4.8: Messaging Format For Database Update Messages
Database code (2 bytes)
Update type {2 bytes)
Operands (2 bytes each operand)
(Number of operands is determined by the
database code and the update type)

Table 4.9: Opcodes and operands of operational messages

Opcode Message Operand-1 Operand-2

10 Start: processing Workstation-id -

11 Completion of processing Workstation-id -
20 Download program Workstation-id Program-id
21 Download complete Workstation-id Program-id
30 Process order Order Number -
31 Order completed Order number -
50 Transport workpiece Piece-no Workstation-id
51 Workpiece transported Piece-no Workstation-id
52 Part completed Piece-no -
54 Fixture raw material Piece-no Material no
55 Fixturing completed Piece-no
56 Operation completed Piece-no Workstation-id
58 Operation failed Piece-no Workstation-id
70 Scheduled maintenance Workstation-id Time
72 End of maintenance Workstation-id -
80 Error condition Workstation-id -
82 End of error condition Workstation-id -

76

Table 4.10: Database Message Information
Database codes for database update messages

Database update
Code Type Description
1 1 Insert new order record
1 2 Delete old order record
2 1 Insert new part information
2 2 Delete old part information
3 1 Insert new process plan
3 2 Delete old process plan
4 1 Insert new process plan step
4 2 Delete old process plan step
5 1 Insert new equipment
5 2 Delete old equipment
6 1 Insert new equipment status record
6 2 Delete old equipment status record

Database Codes Used by Query and Update Functions
Database Code/Name No.of Fields No.of Keys
1. Orders 4 1
2. Parts 3 1
3. Process Plans 2 1
4. Process Steps 7 2
5. Equipment 3 1
6. Equipment Status 4 1*

Opcodes and Operands of Database Query Messages
Opcode Operandl Operand2
400+(database code) Keyl Key2
500+(database code) <all fields in database record>

Note: Requests have codes starting with 400
Responses have codes starting with 500

77

SUMMARY
A manufacturing cell controller was designed and

implemented on a microcomputer. The cell controller is data
driven, performs independent of the cell configuration, and
exploit databases that exist in the computer integrated
manufacturing environment. It is an asynchronous program
that has a modular structure, and therefore can be easily
extended to include sophisticated algorithms for planning
and control functions. The cell
alone microcomputer, and can
messages through the connection

controller runs on a stand-
be controlled by means of
to the factory-wide network.

CHAPTER 5
MACHINING WORKSTATION

A machining workstation consists of a primary
programmable machine, equipment to load and unload
workpieces to it, and auxiliary equipment such as vision,
chip removal, etc. The primary programmable equipment is
typically a numerically controlled machine tool, such as a

mill or lathe, or an inspection machine. To load and unload
the machine tool, it may be necessary to use other
programmable equipment such as robotic arms or machine-
specific loaders. Manipulator arms or robots may be used in
the workstation for loading and unloading the machines, or
for inspection and cleaning purposes.

Each workstation must have an interface to the
automated material handling system which is used to
transport workpieces to and from it. See Figure 5.1. This
interface, $uch as a roller table, is under the control of
material handling system. However, the cell controller must
be capable of identifying the workpiece at the interface, or

at least to verify the presence of it through the sensors in
the workcell. The orientation of the workpiece, if
necessary, can be verified using the optional equipment such
as vision and tactile sensors.

Each workstation is controlled by a computer connected
to the factory-wide network: the Workstation controller.

78

79

WORKSTATION CONTROLLER
A workstation controller is in charge of operations

within the domain of a workstation. Commands controlling
operation of the programmable equipment in the workstation
are issued by the workstation controller in accordance with
the workstation program loaded by the cell controller.

The workstation controller receives instructions from
the cell controller to work on a part, and the program
required for the operation is downloaded to the controller.
The workstation program contains instructions for all
available units in the workstation as required for the
assigned work. It may contain instructions for the
manipulator to load the machine, instructions for the
automatic tool changer to set the proper tool, or for the
vision system to inquire the orientation of the workpiece.

A workstation may be programmed on-line or off-line.
Off-line programming may be done using computer graphics or
a programming language designed for programming

workstations. On-line programming can be done using follow
through sequence and manual control. Several programmable
systems for workstation control have been developed

[2,3,8,10].
A workstation must be able to run calibration and

diagnostic programs as required by the maintenance
supervisor, or by the cell controller. Results of such
activities are reported to the supervisor. Expert systems
are being implemented for problem diagnosis in workstations.

80

Implementation
In the context of this project, a simulation of

responses of a workstation controller is made by the gateway
simulation program (see Chapter 2). However, when the
manufacturing cell model is expanded and run on several

microcomputers, a limited simulation of responses of
machining workstations may not be satisfactory. It may also
be desirable to construct several workstations and run them
under control of the cell controller. A machining
workstation controller was designed and implemented so that
it can be duplicated and used for as many workstations as

i
are in the cell. This implementation is not only intended to
be instrumental in demonstrating the operation of a
workstation controller, but also to enable the cell
controller simulation to take place by responding to its
requests.

Two programmable devices were physically implemented as
a component of this research. They were chosen as being
representative of a wide variety of programmable equipment
controllers (or interfaces to them). They were instrumental
in determining the operational requirements of the
workstation controller. The types of control required by

these devices, and the types of feedback available to the
controller were considered in the design of the workstation
controller. It was observed that the capability of these
devices to handle exception processing reduces the real-time

81

demand on the workstation controller. On the other hand, it
was determined that availability of a richer and
consequently larger feedback data stream may strain the
processing and the communications network. This places
additional burden on the planning on what data transfer is
to occur and the communications protocols used between
devices.

The current implementation of the machining workstation
controller is not sophisticated, but provides the
foundations for further development. Since its design is not
tailored to specific equipment, but assumes presence of an
interfacing computer (the device interface), it can be
duplicated to form several workstations (see Figure 5.2).
Due to the flexible design of the workstation controller,
the configuration of the workstation is flexible, consisting
of any number of similar or dissimilar types and models of
equipment. The configuration of each workstation is

specified in the configuration file which is local to the
workstation and provide all the necessary information on I/O
ports and available equipment types.

The workstation controller can be programmed with a
simple programming language provided. The basic idea of
programming the workstation is to provide the messages to
the programmable equipment to activate, deactivate, perform
diagnostics, load programs, read values from sensors as
required. The programming language provides simple ways of

82

controlling flow of the program in the workstation
controller. Detailed explanation of the instruction set is
given in the following sections. Each workstation program
also contains the required equipment types and additional
information as necessary.

Binding of the equipment in the workstation (as read-in
from the configuration file) to the equipment requested by
the workstation control program (as read-in with the
program) takes place after the program is loaded. The
workstation program may or may not address any of the
equipment available in the workstation. For example, if
there is a vision sensor available, it may not be utilized
in the processing of the particular part (see Figure 5.3).
However, all the requested equipment must be present in the
workstation. Absence of any required items would result in
an error condition upon loading of the workstation program.

The workstation physically constructed for this
project, and using the workstation controller program

consists of a workstation controller computer to which a
programmable machine tool and a programmable manipulator arm

are attached.

83

VISION
SYSTEM

PROGRAMMABLE
MACHINE TOOL

MHS
INTERFACE

ROBOTIC
MANIPULATOR

Figure 5.1: Machining Workstation

ROBOT
VISION

TURNING
STATION

HILLING
STATION

WORKSTATIONWORKSTATION WORKSTATION

CELL
CONTROLLER

Figure 5.2: Multiple Workstations with
Dissimilar Configurations

84

CONFIGURATION DATA PROGRAM HEADER

ID TYPE QUANTITY NO TYPE QUANTITY
A 1 1 1 6 1
B 5 1 2 1 1
C,D 6 2

AFTER BINDING
NO ID
1 A
2 C

Figure 5.3: Binding of Machines in Workstation

Operation
The workstation controller receives instructions from

the cell controller. Messages received at the cell
controller connection are interpreted by the workstation

controller and action is taken accordingly. When the cell
controller requests a program to be downloaded, disk read
operations are substituted instead of requesting the
download from the factory-wide network. This is a reasonable
substitution in the absence of the global high speed network
to access factory-wide manufacturing database. The
workstation controller is programmed in a simple way, and
programming includes the names of the files containing
programs to be downloaded to the attached programmable

85

equipment. Those file names are passed to the controllers of
the programmable equipment, where the actual NC programs are
stored locally, and are accessed by the programmable
equipment directly instead of being downloaded. All
programmable equipment programs require an action from the
workstation controller to start execution.

Upon receipt of the acknowledgement of program loading,
the workstation controller waits for the cell controller to
start operation. When the "Start Operation" command from the
cell controller is received, signals are dispatched to the
programmable equipment to continue execution of the loaded
programs. No further interaction is necessary at this point.
However, the workstation control program may contain several
breakpoints for the equipment at specific times, and may
test for status of the equipment by reading values from
their registers. Since these are equipment specific
operations, programming of each item of equipment unit would
have to be done for its particular equipment type. The type
of workstation system, however, is not of concern to the
workstation controller whose operation is independent of the

equipment. The workstation controller simply waits for end-
of-operation signals from the programmable equipment, and
after all of the equipment units has responded, it reports
completion of operation to the cell controller.

86

Programming
The workstation is programmed using the simple

programming language provided. Since the workstation
controller carries out all functions by sending and
receiving messages to the attached equipment, the
programming is based on messages. Simple program flow
control structures using internal variables are also

provided for use by the programmer.
Workstation programs consist of the header and the body

of the program. The program header contains the number of
required equipment units, and the type of each equipment
required by the program (see Figure 5.3). This information

1
is used by the workstation controller in binding the
requested equipment to those available in the workstation
(as mentioned in the previous sections).

The body of the workstation program consists of an
opcode and up to five operands per instruction. The opcodes
implemented are given in Table 5.1. Instructions implemented

are explained below:
The "execute" (or send) instruction causes operands

two, three and four to be transmitted to the equipment
specified in operand one. The transmitted message is
interpreted as a command by the equipment receiving it. The
workstation controller, however, does not interpret it. All
instructions with "unconditional send" opcodes are
transmitted as soon as the program starts executing. The
fifth operand of all instructions has the number of the

87

instruction to be executed next. If the fifth operand of a
send instruction is not given, it indicates that the
instruction following it contains the needed information.

The conditional execution instructions are not executed
(i.e. their messages transmitted) until a next-to-execute
operand points to them. In contrast, all unconditional
execute instructions are transmitted as soon as the program
starts executing. This facilitates initializing and starting
all equipment at once and then waiting for the results of
each to continue program.

The "wait" instruction results in the placement of an
expected message from a certain equipment to the wait queue.
Until the message is received, no action is taken. All the
incoming messages are tested against the expected messages.
When a match is made, the next-to-execute instruction
(operand 5) of the wait instruction is executed. This
enables continuous checking for certain error and completion
messages to be stacked and the responses programmed as
conditionally executed set of statements.

To test for the completion codes from equipment and to
be able to read and transmit values to and from equipment,
variables are implemented. A total of fifty variables are
permitted in each program. Variables may assume values from
the messages received from the connected equipment, and may
be used within the messages to be transmitted to others. If
a value has not been assigned, variables have a value of
zero.

88

Perhaps the most extensive use of variables is made in
the test and branch instructions. These instructions (opcode
110) test for the condition (specified in operand 2) of the
variable whose number is given in operand one to the value

given in operand 3. If the condition holds, the next-to-
execute instruction is contained in operand five. If not,
the next instruction to execute is contained in operand
four. Table 5.2 shows the workstation program instructions
and their operands.

The format of each instruction is an array of six
integer elements per instruction, where the first element is
the opcode and the others are operands. Variables are also
implemented as integers. Values -9900 to -9949 represent
variables 1 to 50 in the program.

The reasons for this structure are the simplicity and
ease of implementation. The fact that these programs are
expected to be generated by programs at CAD/CAM systems
means that they need not necessarily be intelligible to
humans. If manual programming or manipulation of programs is
required, an interpreting editor may be used. Currently, any
ASCII editor may be used to edit programs.

89

Table 5.1: Opcodes of Workstation Programming Instructions
Opcode Meaning
0 Execute (send)
100 Conditional execute (send)
1 Wait for response
110 Test & branch

Table 5.2: Workstation Program Instruction Structures

Instruction: Execute(O) or Conditional Execute(lOO)
Operands:

1. Equipment number
2. Command (first two bytes)
3. Command (next two bytes)
4. Command (next two bytes)
5. Number of the next instruction to execute

(default is following instruction)

Instruction: Wait for response (1)
Operands:

1. Equipment number
2. Response (first two bytes)
3. Response (next two bytes)
4. Response (next two bytes)
5. Number of the next instruction to execute upon receipt

of response (default is following instruction)

Instruction: Wait for response {1)
Operands:

1. Variable number (whose value will be compared)
2. Condition (-1,0,+1 for <,«,> respectively)
3. Value to compare (maybe another variable
4. Next-instruction-to execute if condition fails

(default * none)
5. Number of the next instruction to execute upon receipt

of response (default is following instruction)

90

PROGRAMMABLE EQUIPMENT
Equipment used in the workstation in this study were a

programmable logic controller (PLC) and a programmable
manipulator arm. Operation of these units are described in
their respective manuals, and the interfaces to the system
are described in the following sections. The PLC represents
a programmable machine tool, an inspection machine, or any
other generic programmable equipment with remote control and
communications capability. The programmable manipulator arm
is representative of a generic computerized system that may
also represent any one of the equipment mentioned above. It
consists of a point to point robotic arm interfaced to a
microcomputer that acts as the controller and provides local
or remote programming capability, operator interface, and
interfaces with several sensors that may be used in programs
or separately to monitor and coordinate with external
events.

The manipulator arm and the device interface for the
PLC were implemented physically rather than simulated in
software to better understand the requirements of remotely

controlling programmable devices with local intelligence.
The types of control signals, which are used in controlling
such devices were observed along with the urgency and
frequency of the messages. The high degree of flexibility
built into the design of the workstation controller was
based on these observations and used as the basis for
interaction with intelligent devices.

91

Manipulator Arm

Interfacing the robotic arm was accomplished by
designing a card to fit the internal slot of the
microcomputer. The interface card contained the required
hardware to buffer the outputs to the arm and inputs from
the external sensors. Signals to the stepper motors on the
manipulator were output to the interface and multiplexed by
the interface card on the manipulator. The manipulator can
be manually moved to the desired position by using the
keyboard as a teach pendant, and the position recorded as a
step in the program(see Figure 5.4). It can also be
programmed using the simple programming language provided
and the programs can be edited, single stepped, and stored.
It is possible to program the robot manupilator using
positions of external switches or the position of the
manipulator for branching, thereby creating reactive motion.

The manipulator can also be programmed to send or
receive signals on the serial port of the computer. One
option relinquishes all control to the serial port, thereby
enabling remote programming and control of the manipulator
arm. This capability was utilized by the workstation

controller. See Figure 5.5.

92

MICROCOMPUTER
{ARM CONTROLLER)

X
Switches

I

Figure 5.4: Manipulator Arm Interfacing to the Microcomputer

Setial Link

WORKSTATION
CONTROLLER

CONTROL COMPUTER

Figure 5.5: Remote Operation of the Manipulator Arm

93

Operation
Robots was designed as an interactive, menu driven

system for controlling the Minimover-5 Microbot robotic arm.
Six stepper motors control movements of parts of the arm in
both directions along three axes of motion. Information on
the structure and construction of the hardware is given in
the manual [22] and will not be replicated here.

Underlying the whole system are the routines which
send the required pulses to activate the stepper motors,
thereby causing the robotic arm movements. A simple
algorithm is used to move from one point to another in a
straight line. There are no transducers to sense the
velocity, position or acceleration of the arm. The
programmer must be aware of the restrictions in using the
program. A switch on the arm senses the tension of the cable

activating the gripper and can be read through the software
to signal closure of the grip. Several other binary (two
position) switches can also be read through the software.

The main menu presented in Figure 5.6 shows the

options available to the user. The user is returned to this
menu after each function selected is completed. Note that an

indication of the program status is displayed at the bottom
of the screen.

94

Upon selection of an item from this menu, the user
is given either a menu (example, Edit/Modify Current
Program) or asked to verify a request (example, Erase the
Program in Memory). This feature provides protection of the
program from faulty keystrokes.

Manual control of the Microbot is done using the
keyboard and can be conveniently used to set the initial
position of the arm (See Figure 5.7). Note that the Home key
on this operation will set the step counters of all motors
to zero, thereby declaring the current position "Home" (It
is also highly recommended that instruction 22 be used to do
this at the beginning of each program).

The speed of the motors can be set using the arrow
keys, and will result in display of the delay value. The
delay value represents the time interval between two
consecutive pulses sent to a motor. Therefore, a large delay
value will result in slow movement and a smaller delay value
will increase the speed of movements of the arm. The user
may experiment using different speeds to determine the best
delay value for his application. Note that small delay

values will result in higher speed, while causing the
stepper motors to start slipping. Control of the position

versus step values will not be possible under those
conditions. Large delay values may result in unacceptably
slow speeds.

95

HICROBOT CONTROL HENU (Yer S.l)...............................
SELECT OHE OF THE FOLLOWING:

X ... EXIT ? ... Help
1 ... Manually control M c r o b o t
2 ... Program Nlcrobot (or teach)
3 ... Retrieve Program from 01sk
4 ... Execute program In memory (ONCE)
5 ... Execute program In memory (repeat)
S ... Save program to disk
7 ... Edlt/Modt fy/L1s t Current program
0 ... Eraxe the program In memory
9 ... Modi fy/Change Regiiteri
C ... Continue Execution
R ... Remote Operation

«•» HO PROGRAM IN MEMORY ***

Figure 5.6: Manipulator Arm Control Program Main Menu

KEYBOARD CONTROL OF HICROBOT

USE THE FOLLOWING KEYS TO CONTROL M1CROOOT MANUALLY:
FORWARD REVERSE MOTOR HUMBER

0W
ER
T
Y

HOME
<UP ARROW>

<DOUH ARROU> f

BASE
SHOULOERELBOW
RIGHT WRIST
LEFT WRIST
GRIPPER
CLOSE GRIPPER (GRAB)
TO ZERO ALL COUNTERS
TO SPEED UP
TO SLOW DOUN
TO QUIT

DELAY: 136

Figure 5.7: Manual Control of Microbot

96

The speed of manual control and program execution will

may be the same even if the delay values are set the same
(the difference may however be negligible). The user may
prefer to experiment and get an intuitive feeling of this
difference.

Option two. Program Microbot, cannot be used when

there is a program stored in memory. If starting over is
desired, the program in memory should be erased (using
option eight), and then programmed. It is possible to add to
an existing program using Option seven (Edit/Modify/List
Current Program) conveniently.

An option to Edit is given upon exit from Option
two anyway, since the first thing after programming would
naturally be to list and see the program.

Programming the robot involves entry of the op
code for each instruction, upon which the instruction's
function is presented (so that entry of the wrong op-code
can be immediately recognized by the user). The program
monitor then prompts the user for each operand required (or
optional) for the instruction. The ranges of valid entries
are given for most operands and entries are checked for
validity. When a wrong instruction is entered, the
recommended way to correct this is to exit (op-code 99),
edit the program, delete the last instruction, and get back
to the Program Editor using the ADD (A) option on the Edit
menu.

97

Retrieve a program from disk (Option 3) will issue
a warning if a program is already stored in the memory. If
the user verifies the request by entering a file name (in
which a program was previously stored), it will be retrieved
and overwrite the current program. Registers will also be
set to zero.

Three options are available for executing a
program. Option 4 will execute the stored program starting
with the first instruction and will return to main menu when
a "Stop Execution" instruction (op-code zero) is
encountered. Option 5 will start execution with the first
instruction too, but will continue with the first
instruction when a stop is encountered, therefore continuing
the execution of the program indefinitely.

Execution of the program can be interrupted at any
time by depressing a key on the keyboard, however the
current instruction will be completed before the
interruption. One exception is any instruction that requires
a switch status change for completion. Any of these
instructions will be completed as soon as any key is struck.
This feature will prevent the program from waiting
indefinitely for a nonexistent switch (This feature also
applies to the close-gripper instruction).

98

If starting execution is desired starting with an
instruction other than the first one, Option "C" (continue
execution) must be used. This option will present the number
of the last executed instruction (if any) and will ask the
number of the next instruction to start execution. This
feature may be used for debugging portions of the program
stored or for returning to the execution of the program

after inspecting contents of registers.
The Edit (option seven) presents the menu shown in

Figure 5.8. This menu is designed for inspection and
modification of the stored program. Listing of a program is
shown in Figure 5.9. It must be used with caution, however

(
since the "Jump" instructions will not be changed to
compensate for the deleted and inserted instructions. A good

programming practice is to leave "No operation" (NOP, op-
code=l) instructions between most instructions so that
additions or deletions can be made without difficulty.
Example: Instead of deleting an instruction and adjusting
all Jump instructions that are affected, you may replace the
instruction with a "NOP". Another example would be to insert
an instruction without having to readjust the jump
instructions, you may replace an existing NOP with the
desired instruction, without affecting any other

instruction.
All registers (explained in the following

paragraphs) can be read and changed using option nine.

5e!ec one of the following end hit return:
... Lilt... Replee* in Instruction... Delete sn Instruction
... Insert tn Instruction... Ada to the END of the progrin
... Help
... EXIT

Selection (L/R/0/I/A/7/X/) ■> L

Figure 5.8: Edit/Modify Program Menu

HO OPCODE Operi Operz 0per3 0per4 OperS Opera 0per7
1 1 0 0 0 0 0 0 0
Z 1 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0
4 7 0 0 3 0 0 0 0
S IS 1 3 0 0 0 0 06 3 0 0 -455 385 0 0 0
7 1 0 0 0 0 0 0 0
a 1 0 0 0 0 0 0 0
9 3 70 0 0 0 0 5 103010 1 0 0 0 0 0 0 0

11 3 100 0 305 20 0 0 0
1Z 1 0 0 0 0 0 0 0
13 4 0 0 0 0 0 0 014 3 100 0 -250 0 0 0 0
IS 11 26 2 1 0 0 0 016 IS 1 6 0 0 0 0 0
17 3 0 -750 0 0 0 0 0
IS 3 0 0 115 -120 0 0 019 3 0 0 0 0 0 0 475ZD 3 0 0 -3B5 0 0 0 021 1 0 0 0 0 0 0 0
22 5 0 0 0 0 0 0 0
23 1 0 0 0 0 0 0 024 1 0 0 0 0 0 0 025 0 0 0 0 0 0 - 026 11 15 4 1 . 0 0 0 027 18 1 7 0 0 0 0 028 3 80 915 0 0 0 0 0
29 1 0 0 0 0 0 0 0
30 3 0 0 45 -200 0 0 031 1 0 0 0 0 0 0 0
32 3 0 0 0 0 0 0 615
33 1 0 0 0 0 0 0 034 3 0 0 0 200 0 0 0
35 3 0 -360 0 0 0 0 036 3 0 -140 200 -270 0 0 037 1 0 0 0 0 0 0 038 1 0 0 0 0 0 0 0
39 5 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0R eu se .
pleese press <return> to continue.

Figure 5.9: Listing of a program

100

Remote operation (Option "R”) enables the robot
controller to function under control from another computer
or as a part of a network. When the remote option is
selected, control of the robot is returned to the serial
port until a key is hit at the keyboard. Commands to
read/write register values, to load and execute programs, to
suspend and re-start execution of program are implemented.
All commands received at the serial port conform to a fully
interlocked protocol designed to insure error free
transmission. Valid remote commands and detailed explanation
of the messaging protocol is given in the later sections.

Some instructions included in the programming
language work only in the remote mode. They are skipped if
the program is executed in local mode (which would enable
the programmer to debug the program locally, without the
synchronization). These instructions may provide informative
messages or synchronization signals to the remote operator,
as well as suspending the execution or transmitting the
contents of registers in which statistics on the performance
are stored.

When the remote operation is in effect, commands
from the remote operator can read and write to the internal
registers, and inquire about the operation, such as the last
instruction executed. These requests are honored even while
the program in the robot is being executed. All commands
received from the remote operator are acknowledged and

101

results if any are returned. At the end of the program
execution, a message to the remote operator signals that the
program has stopped execution. It is also possible to
suspend execution of the program using a suspend execution
in remote instruction. This instruction, when executed will
issue a message to the remote operator, in which the number
of the last executed instruction is transmitted. Then the
end of execution message will be also issued by the remote
monitor. The program can be restarted using "continue
execution" command by the remote operator. Serial port is
inactive when the remote operation is not in effect.

General purpose storage spaces (called registers)
are provided for use by the programmer. These registers may
be used for data collection or for control of program flow.
Registers are accessible to the user for manipulation
through option nine on the main menu. Using this option, the
user can initialize, read and change the values of all
registers.

The instruction set provides several instructions
for accessing registers during program executions (see the
section "Instruction Set"). These instructions may be

utilized for data collection (counts of events), storage of
a position for later retrieval by the program or comparison,
and for saving status information on the task being
performed.

102

For ease of manual manipulation {such as Listing
contents of registers), a register is marked as "Active"
when accessed or altered after bulk initialization of all
registers. This enables the user to view only the registers
of interest by the "List" command. All registers can be
inspected or altered regardless of "Active" status. See
Figures 5.10a and 5.10b.

All registers are set to zero (inactive)
initially. When a new program is retrieved from disk,
registers are also set to the initial status (the idea is
that each program uses an independent set of registers).
Erasing the program in memory also clears all registers to
"Inactive" status and initializes them to zero. Programs
that require certain values in registers should load them
within the program using appropriate instructions.

One other use of the registers is in the remote
operation. Since the registers can be read and written by
the remote operator during the remote operation, they may be
used to control the flow of program by the remote operator.
Instruction set provides instructions to transmit values of
registers to remote operator so that they may be used as
status indicators that are routinely transmitted during the
execution of the program.

A total of fifty registers may be used in any
sequence, but the numbers of the used registers may not
exceed fifty, or be less than one.

103

Select one of the following :I ... H i t active rtgllteri contents
A ... List ALL registers contents
D ... Display * register contents C ... Change a register contents
R ... Re-Inittallie all registers
? ... KELP
X ... EXIT

Selection »■> C
Enter Register Ho (1 to 50) ■•> 32

REGISTER 32 CONTENTS: 0 ACTIVE

Enter NEW *alue •*» 6

REGISTER 32 CONTENTS: S ACTIVE

P a u s e .
Please press <return» to continue.

(a) Change register selection

Select one of the following :
L ... List active registers contents
A ... List ALL registers contents
D ... Display a register contentsC __ Change a register contents
R ... Re-Initialize all registers
? ... HELP
X ... EXIT

Selection ■■> L
NUMBER CONTENT ACTIVE?

32 6 YES

1 REGISTERS LISTEO
Pause .
please press <return> to continue.

(b) List Registers Selection
Figure 5.10: Edit/Modify Registers Menu

104

Programming
Twenty-eight instructions have been implemented

for programming the robotic arm. They can be grouped as
follows:

a) Movement instructions
These instructions cause the Minimover to step
motor(s). Included are two move instructions
(absolute and relative), an instruction to close
the gripper, and an instruction to return the
robot to the latest designated "Home" position.
Two more instructions cause stepping of motor(s)
until a specified condition is met (switch

(

closure or a key strike). Move instructions
optionally may have a delay value (to change the
speed of movement) which will then become the
current delay value for the following
instructions.

b) Program Control Instructions
These instructions include several "Conditional
Jump" instructions as well as "Stop Execution",

"Wait" etc. Conditional Jump instructions cause
the program execution to continue at a specified
instruction number if certain conditions are met.

Conditions are specified in terms of switch status
(ON/OFF), register contents (being less than,
equal to, greater than, not equal to, etc.), or
the position (step counter value) of a motor.

105

c) Register/Step Counter Manipulation Instructions
These instructions access the internal registers
of the robot control system during program
execution and can be used for data collection,
status indication, or for control of the program
flow (when used with related "Jump" instructions).
Step counters of the motors can be changed by
these instructions thus causing effective change
of the "Home" position of individual motors during
execution.

d) Remote Mode Instructions
These instructions are executed only when the
remote mode is in effect. If any of these
instructions are encountered during local mode
execution, no action is taken, they are skipped,
and execution continues with the next instruction.
The instructions implemented are to pause the

execution, transmit values stored in registers to
the remote operator, and to transmit messages for
purposes of signaling events or synchronization.
When used in combination with the program control
instructions and register manipulation
instructions, they form a complete set to remotely
monitor and control the operation of the robotic

arm.

106

These instructions form a complete set which may be
used to program the robot to perform tasks requiring
decisions based on the status of the external switches,

process statistics, etc. Details of the structure of the
instructions and operands are given in the Appendix.

When the built-in editor is used for programming,
prompts for the necessary (and optional) operands of each
instruction are displayed, thus making the programming task
an interactive and convenient process. However, when an
external editor is used, the programmer is responsible for
hand assembling each instruction.

During remote operation, commands from the remote
operator are received at the serial port. Some of them, such
as "Start Execution" or "Load Program” can be issued only
when a program is not already being executed. Others, such
as read/write registers, can be executed any time.

Commands are transmitted in messages from the
remote. Messages consist of an op-code and two parameters.
The opcode indicates the command and the necessary operands
are transmitted as parameters. Most responses to commands

have the same opcode, and if any, the values requested.
Sometimes, such as a programmed message a response is

generated without a command from the remote operator.

107

A listing and brief discussion of commands are given
below:

Opcode = 1, Retrieve Program from disk (or Load
Program). This command has one operand/ the name of the
program. A four-byte filename is transmitted as the
parameters.
Opcode = 2, Read Register. The value of the register
whose number is the operand of the instruction is
transmitted to the remote operator. The response has
the same opcode, the same first parameter, and the
contents of the register as the second parameter.
Opcode = 3, Write Register. The number of the register
and the value to be stored in it are the two parameters
transmitted with this message. The request is
performed, and the message is transmitted back as

acknowledgement.
Opcode = 4, Return Number of Last instruction Executed.
This instruction, has no operands, and results in
transmission of the number of the last executed
instruction to the remote operator as the parameter of
a message with the same op-code.
Opcode = 5, Execute Program. This instruction causes an
acknowledgement (echo back of message) and start of
execution of the program loaded in the memory. The
remote operator is send an "End of execution message"
(Opcode = 8) when the execution ends.

108

Opcode = 6, Suspend Execution. This command is valid
only when a program is executing, and will result in
termination of the execution. A response with the
number of the last executed instruction as the first
parameter will be generated. In addition, an "End of
execution" message will also be transmitted.
Opcode = 7, Continue Execution. This instruction will
cause the excution to be resumed from the point of
suspension. It is not valid when issued during

execution of a program. No operands in either the
command, nor the response.
Opcode = 8 and 9 are responses to the remote operator.
Opcode 8 is an "End of Execution" indicator, and has no
parameters. Opcode 9 is an unsolicited response,
generated by the executing program and has four byte
message as parameters. It is to be interpreted by the
remote operator.

Version 6.1 of the microbot controller program is
designed to retransmit messages with opcodes 50 to 70
through the second serial port to the device connected

there. Operation of the robot controller will be the same in
case no messages are intended for the second device, or no
connection is present. This feature will also bypass
messages from the secondary device to the remote operator
(in that case, the workstation controller). See Figure 5.11.

109

Remote operation of the robotic arm requires
communication between the remote operator, which may be a
computer, a terminal or other programmable device, and the
robotic arm controller program. The portion of the program
that performs this function is called the remote operator
monitor program. The serial port, which is the connection to
the remote, is monitored and messages are interpreted by
this program. To be correctly interpreted, messages must
conform to the strict transmission format given in Table
5.3, and must be transmitted with the protocol described in
Table 5.4.

Table 5.3: Message Format

Opcode {2 bytes)
Operands (4 bytes)

Table 5.4: The Messaging Protocol

Initiating Party
Request (a
Hi-byte of
Lo-byte of

Hi-byte of
Lo-byte of
Hi-byte of
Lo-byte of

15)
Opcode
Opcode

Parameter 1
Parameter 1
Parameter 2
Parameter 2

Receiving Party

Acknowledge ("A")
Echo Hi-byte
Echo Lo-byte
Echo Hi-byte
Echo Lo-byte
Echo Hi-byte
Echo Lo-byte

End-of-Message (a 15)
Acknowledge ("I")

110

Programmable Logic Controller
The PLC is augmented by a computer to act as a generic

programmable machine controller and interface to the
computer integrated manufacturing environment (see Figure

5.12). It also acts as the network connection by locally
storing and retrieving programs to be downloaded to the PLC,

and by accepting and interpreting commands from the
workstation controller.

Commands from the workstation controller are received,
executed, and responses to the workstation controller, in
the form of completion codes, are sent. The machine tool
controller also interprets the signals received from the PLC
and conveys them to the workstation controller when
appropriate. The communications protocol which may be
proprietary to the programmable tool is also converted to
the protocols used in the CIM environment by the controller.
In the case of the PLC, the protocol used for communications
is called the ABC protocol. This protocol is used by the
computer in communicating with the PLC. Information on the
ABC protocol is given in the Appendix. The PLC programs are
read from the local disk and downloaded to the PLC using the

command structure of the communications interface on the
PLC.

Serial Link

Serial Link

WORKSTATION
CONTROLLER

OTHER
DEVICE

ROBOT
CONTROLLER

Figure 5.11: Remote Command Bypass Feature

PLCWORKSTATION

Serial Link Serial Link
■ (Network Protocol) (ABC Protocol)

Figure 5.12: Device Interface to CIM

112

programming

Commands from the workstation controller are sent in
the form of messages with an opcode and two operands. The
messaging format and protocol are the same as that of the
robotic arm (given in the previous sections and illustrated
in Tables 5.3 and 5.4). The opcodes of commands interpreted
by the PLC controller are:

Opcode = 51 Load Program to Device. The name of the
file to be downloaded to the PLC is the next four bytes
transmitted as the two operands.

Opcode = 52 Read Register Value. The value of a
register of the PLC is read and sent to the workstation
controller. The register number is in the first parameter.

Response to this command contains the same message except
for the value read from the register is transmitted as the
second operand.

Opcode = 53 Write to a Register. Same as the read
register instruction, except the value to be written to the
register is received as the second operand.

Opcode = 54 Perform Diagnostics. This instruction

performs a loopback test to check the operation of the

connection to the PLC, and returns error code if necessary.
If no errors are detected, zero operands are returned.

Opcode = 55 and 56 are instructions to read and write
to the I/O tables of the PLC respectively. Their operation
is similar to opcodes 52 and 53, except that the values to

113

be written must be a zero (OFF) or one (ON).
Opcode = 57 Change Loading Address, this instruction

alters the address of PLC to which the first program
instruction will be downloaded. Normally it is 11, but can
also be used to merge programs in PLC memory.

Information on the operation of the PLC is given in the

manual for the equipment.

114

SUMMARY
A workstation controller was designed and implemented

on a microcomputer. A small physical model of a workstation
was also built by interfacing two programmable devices to
the workstation controller. The workstation controller is
independent of the the type or number of programmable
devices forming the workstation.

One of the devices used is a commercial programmable
logic controller (PLC) with communications capability. The
other is a programmable manipulator arm with an extensive
instruction set and full remote control capability. The two
physically implemented devices were chosen as being
representative of a wide variety of programmable equipment
controllers. They were used to determine the operational
requirements of the workstation controller. The interfaces
built for the two physical devices are typical of the kind
of interfaces that would be required to accommodate
different types of devices.

CHAPTER 6
MATERIAL HANDLING SYSTEM SIMULATION

An automated material handling system is a crucial part
of any Computer Integrated Manufacturing System. Operation
of this system has a significant effect on the performance
of the whole system. It is therefore one of the functional
modules that simulate the computer integrated manufacturing
environment.

The material handling system controller is simulated in
two ways: In the context of the network gateway to the cell
controller, or separately on a microcomputer connected to
the gateway computer. The reason for doing this is to
provide the flexibility of being able to run a simple
simulation with only two computers, yet to preserve the
capability to implement and test complex and powerful
decision-makers for the material handling system controller.

in the context of the program simulating the network
gateway to the cell controller, a module is implemented to
react to the calls for MHS, a simple simulation of the MHS,
in case the computer on which the MHS simulation is made is

not connected. Also, a mechanism for exchanging messages
with the appropriate port when the MHS is addressed exists,
so that in the presence of the connection to the MHS
controller simulation, messages addressed to the MHS can be
routed and responses received.

116

The MHS is not a subsystem of the cell controller, but
receives and responds to requests by the cell controllers.
In the simulator it is assumed that the simulated cell
controller is the only patron of the MHS, whereas there may
be several cell controllers and other subsystems such as
maintenance and tooling that may require the services of the

MHS.
Operation of the MHS requires decisions on many

problems arising from coordination and satisfaction of the
demand on the transportation systems (see Figure 6.1).
Requests with differing levels of urgency are received, and
decisions to commit resources have to be made such as to
avoid deadlock situations and to optimally commit resources
to activities. In a dynamic environment, the MHS controller
must continuously review decisions and requests, such as to
continue operation with an optimal set of (or at least a
good set of) resource commitment decisions.

The material handling system makes the decisions
regarding placement of the work-in-process inventory, and
that is simulated in this program. The current
implementation is a reaction environment: that is, no effort
is made to make intelligent planning at this point.
Algorithms for planning and making intelligent resource

commitment decisions, or optimization algorithms, could be
implemented in the stand-alone version of the MHS simulator
and their effects of the change observed in the whole
system. These modifications can be made easily since the

117

simulator is modular. The module simulating MHS decision
making would have to be replaced by a module implementing
the new algorithm.

The MHS controller requires a facility database, which
defines the presence and location of each unit on the shop
floor. The facilities database also contains information on
the MHS facilities: the types and quantities of
transporters, buffer storage, automated storage and
retrieval systems, etc., and the types of interfaces of the
MHS to the workstations. This data is crucial to the
operation of the MHS controller.

Transport WorkpieceFixture
Workpiece

MHS
CONTROLLER Transport Coolant

Buffer w i p Transport Tool

FACILITY
DATA

OPERATIONAL
DATA

Figure 6.1: Material Handling System Requests

118

IMPLEMENTATION
The material handling system simulation program runs on

a microcomputer. All connections to the factory-wide network
are assumed to be in place; however, since the program is
running on a microcomputer and the only physical connection
to it is the serial link to the gateway simulator computer,
all commands from and to the MHS controller are received
through the gateway computer connection. Part of the data
that would normally be present and readily accessible on the
factory-wide database will be read from the disk, or a
database query to the cell controller will be made through
the gateway computer. Since it is fast, reading from the
disk is totally acceptable for simulation purposes. Database
queries to the cell controller's database are possible but
will not be used unless absolutely necessary, because the
serial link is relatively slow even at high transmission
rates.

The program is implemented such that there are two
parts: simulation of the MHS, and simulation of the MHS

controller. Simulation of the MHS is done such that the
travelling distances which are available from the facilities
database are used to calculate the travel time once the
loading is made. Allowances are made for loading and
unloading the workpiece.

119

The MHS controller is implemented such that each
request to transport a workpiece is queued. Requests are
fulfilled in the order received: available resources are
committed to tasks as they become available. Each command is
analyzed when received. If the command requests transport to
a machine tool that is occupied, and work on the workpiece
has been completed, a request for transport of the workpiece
to an available buffer is generated and queued preceding the

current order. This self-generated transport order can be
overridden by a subsequent command for transport of the same
workpiece, but will have to be executed before the command
to transport the second workpiece is made.

Although the data structures for tracking the orders
and their precedence relationships have been created, no
attempt has been made to do planning at this point. It can,
however, be implemented by replacing the controller
simulation module with a module that does planning. This
program has been viewed as a necessity for the expansion of
the current simulation of the environment, and serves the
purpose of the whole project by providing a testground for
implementing algorithms to be used in a computer integrated
manufacturing environment.

120

OPERATION

Operation of the material handling system simulation
program can be explained in two contexts: decision-making
through the MHS controller, and the simulation of the MHS.
Both parts are asynchronous programs, that is their inputs
and outputs occur at random times. Inputs to the controller
are through the serial link. Commands are received from the
cell controller(s) and queued. Input queues are checked
periodically and assignment of the resources are made as a
first-come-first-serve basis, except for the precedence
relationships described above. Precedence relationships of
the orders, implied by the sequence of orders or generated
by the MHS controller, must be satisfied before a commitment
is made so that deadlock does not occur. A typical deadlock
situation would be the case of a cart waiting for the buffer
to be cleared so that it can unload a workpiece, and the
workpiece in the buffer waiting for the same cart so that it

can be moved and the buffer cleared. Since resource
commitments are not made in advance, deadlock situations are
not expected to occur in the current implementation.

The material handling system controller keeps track of
all workpieces in the shop floor, from the time they enter
the system until they are completed and delivered to the
shop, Fixturing of the workpieces is required so that they
can be transported. Material handling system keeps track of
available fixtures and instructs the automated storage and
retrieval system to fixture the device so that it can be

121

transported. Since an automated warehousing system
simulation is currently not implemented, responses from that
unit are simulated in the MHS simulator itself. When that
unit is simulated externally, commitment of the transporters
would be delayed until the fixtures were applied to the
workpieces, or the operation simulated by the external
system and messages indicating completion of the task were
received.

CHAPTER 7

DISCUSSION AND CONCLUSIONS

The objective of this research was to investigate the

feasibility of design and demonstration of the operation of
a shop floor control structure to function in the fully

integrated manufacturing environment independent of the
parts produced or the manufacturing processes involved. The
desired properties of the control system included modularity
and expandability to accommodate future changes in control
algorithms and configuration of the system. It was also
desired to take advantage of the databases existing in the
CIM environment.

This research has defined the conceptual design of a
full CIM environment. This design was successfully tested in
a hierarchical control structure implemented on two
interconnected microcomputers. The resulting simulation
involves the full spectrum of a CIM environment. The
simulation was, however, specifically directed at testing
the cell control system. It included a free standing cell
controller, a workstation controller, and programmable

device interfaces. To be able to demonstrate the operation
of the cell controller in the CIM environment, responses of
the systems that interact with the cell controller were
emulated on a microcomputer connected to the cell controller
(called the gateway). Requests from the higher level

122

123

controllers, responses of the workstation controllers,
material handling system controller and the factory-wide
network were simulated on that computer. This gateway
computer can be dynamically re-configured, so that the
configuration of the cell can be changed. It is also
possible to use free standing implementations of workstation
controllers or material handling system controller on other
computers that are attached to the gateway via communication
links.

A manipulator arm representing a generic programmable
equipment was implemented using a microcomputer as the
device controller. The control requirements and types of

(

feedback from this model were observed. Also, a programmable
logic controller (PLC) with communications capability was
connected to a microcomputer representing another type of
device interface to the control system. The variety of
control requirements and types of feedback by these widely
differing systems helped us determine the operational
requirements of the workstation and workcell level
controllers.

The design of the control system started with an
examination of the type of data that would be naturally
present in the CIM environment before the part would be
released to the shop floor. The design was then built around

this available data so that the databases that were present
in the system could be utilized directly by the controllers,
rather than processing the available data to generate code

124

to drive the shop floor controllers. This led to a data
driven structure, rather than a programmable one.

Functions of the cell controller were implemented as
functional units that are executed at each cycle of
operation. Each functional unit operates on the databases

and updates them if necessary. The operation cycle time
needs to be short so that each functional unit can take a
turn without degrading the real-time response of the system.
It is therefore possible to implement a functional unit such
that it will complete its function in a number of turns. It
is also possible to implement a functional unit as an
interface so that it will invoke the function implemented in
another computer through the messaging system. It is
expected that operations such as optimization whose long
execution times warrant a stand alone implementation on a
microcomputer will be implemented using this approach.

The capability of the cell controller to function in
the presence of many asynchronous events was essential to
the operation of the cell controller in real-time. To
accommodate all events without tying-up other controllers

and yet be able to process all inputs in some sequence, an

input output (I/O) queue scheme was designed. All inputs are
queued as soon as received, and so are the outputs. To
preserve the real-time response of the system, the inputs to
the cell controller and outputs from it are processed at
every cycle of operation between the operation of each
functional unit.

125

This asynchronous, modular design of the cell
controller also accounts for easy modification or expansion
of the controller by providing a uniform, easy to access
input output interface for all functional modules. The

implemented functional modules can be replaced, removed or
modified without any changes in the rest of the functional
modules.

The approach developed and tested at the cell
controller was used to design the workstation controller and
the programmable device interfaces. They use essentially the
same approach to dealing with the problem of asynchronous
events.

The workstation controller designed for the model
workstation has a limited command set, yet it is capable of
handling a wide variety of devices. The implementation which
defers the binding of the devices to the point of program
loading provides this flexibility.

The generic cell control system concepts proposed in
this work utilize the high level of standardization required
in the CIM environment and emphasize modularity and
expandability. Unlike most of the designs discussed in the
background section, the proposed system design does not
address the interim needs of the market, nor does it provide
solutions for existing manufacturing facilities. This work
is however, relevant to the needs of full CIM
implementations to be made in the future. This research has

126

tested the concepts developed by demonstrating a simple and
structured design for shop floor control, and provides a

testbed to aid in future extensions of algorithms for that
environment.

FURTHER RESEARCH

One of the contributions of this project has been the
creation of a CIM environment which can be used for
development and testing of algorithms for dynamic planning
and real-time control of manufacturing in the integrated
environment. For example, the rules used for selection of
jobs to be assigned to available workstations is currently
made in a simple way. A look-ahead type of algorithm could
be implemented by replacing the present one without
difficulty. Effects of this change may then be measured in
the simulated cell operation in terms of machine utilization
or reduction in work-in-process inventory.

Similar replacements may also be made in the material
handling system controller and new methods for allocating
transport vehicles to requests for transportation of
workpieces, or allocation of work-in-process inventory to

buffer storages may be made. The data structures for the
required information has been implemented, even if not fully
utilized. An example is the material handling system
interface type. Data structures for this information has
been provided so that a more sophisticated model of the

127

material handling system where more than one type of
transport system is present may be simulated. The simulated
base model however has used one type of transport system.

The emulator developed for this project is designed to
serve as a laboratory for further research in this area. It
provides a structure or frame that can be filled to the
extent desired. Configuration of the CIM environment can be
made to fit the requirements of the experiment desired. The
allocation of ports to the connected microcomputers (on
which MHS simulation or workstation controller may run) is
made using configuration files which indicate presence of
each connection, and hence the configuration of the
experiment. It may be desirable to test cell controller
algorithms in the two-computer base model, on one of which
the cell controller runs and the other is the simulation of
the CIM environment. Other cases may require better
simulation of the material handling system, hence three
computers for running the experiment. Still another
configuration may be physical simulation of one or more
workstations, hence more connections.

Only one implementation of the developed workstation
controller was made because the amount of programmable
equipment at hand was limited and the contribution of the
additional workstations would be marginal. As stated
earlier, however, this workstation model is general enough
so that it can be duplicated when additional equipment is

128

available, and construction of additional workstations is
desirable.

Another addition to the model may be the tooling
system, which is more or less similar to the material
handling system as far as the relationship to the
manufacturing cell is concerned. The data structures for
future addition of this system are also implemented.

The improvements that can be made to this system can be

grouped in two separate areas: hardware and software. As far
as the hardware is concerned, one critical improvement would
be the inclusion of a network and communications controller
which would provide high speed reliable transmission and
access to data bases. The serial transmission methods used
are limited to lower speeds of transmission. The absence of
good buffering and support of operating system in some cases
has necessitated the use of fully interlocked protocols for
transfer of information, hence unnecessarily slowing down
the communications.

On the software side, an operating system that supports
multitasking and good communications support between tasks
would improve the performance of programs written to take

advantage of them.
The next step to be taken in the direction of this

research is the addition of the shop control level, which
would be the supervisor of cell controllers. Development of
the planning modules at several levels should however be
done before expanding the model. Implementation of decision

129

makers using expert systems or artificial intelligence
methods should also be considered at each level.

REFERENCES
1. Albus, J. S., Barbera, A. J., Fitzgerald, M. L., Kent,

E., McLean, C., McCain, H., Bloom, H., Haynes, L.,
Furlani, C., Barkmeyer, E., Mitchell, M., Scott, H.,
Bloomquist, D., Kilmer, R., "A Control System for an
Automated Manufacturing Research Facility," Robots 8
Conference Proceedings, Detroit, Michigan, June 4, 1984

2. Albus, J. S., Barbera, A. J., and Nagel, R. N., "Theory
and Practice of Hierarchical Control," Twenty-third
IEEE Computer Society International Conference, Sept.
1981, pp 18-39

3. Barbera, A. J., Fitzgerald, M. L., Albus, J. S.,
Haynes, L., S., "RCS: the NBS Real-time Control System"
Robots 8 Conference Proceedings, Detroit, Michigan,
June 4, 1984. pp 19.1-19.33

4. Bjorke, 0., "Towards Integrated Manufacturing Systems -
Manufacturing Cells and Their Subsystems," Robotics and
Computer-Integrated Manufacturing Journal, Vol.l, No.l,
pp 3-19

5. Brondolese, A., Garetti, M., "FMS Control Systems:
Design Criteria and Performance Analysis," Proceedings
of the 2nd International Confereence on Flexible
Manufacturing Systems, Oct 1983, pp 365-381

6. Bullets, W. I. Jr., "Logic Programming For
Manufacturing System Specification," Proceedings of
1986 IEEE International Conference on Robotics and
Automation, San Francisco, California, April, 1986, pp
1831-1836

7. Chang, P. S., "Developing a Prototype Microcomputer
Network for Implementing a Manufacturing Planning and
Control System in Small Manufacturing Companies,"
Conference Proceedings of 11th Conference on Production
Research and Technology, May, 1984

8. Chochon, H. and Alami, R., "NNS, A Knowledge Based On-
Line System For An Assembly Workcell," Proceedings of
1986 IEEE International Conference on Robotics and
Automation, San Francisco, California, April, 1986, pp
603-609

130

131

9. Dato, M. A ., "Control Systems for Integrated
Manufacturing - The CAM Solution," Proceedings of 1986
IEEE International Conference on Robotics and
Automation, San Francisco, California, April, 1986, pp
791-795

10. DiCesare, F., Goldbogen, G., Langan, D., Suresh, R.,
Desrochers, A., "Functions of a Manufacturing
Workstation Controller," Proceedings of 1986 IEEE
International Conference on Robotics and Automation,
San Francisco, California, April, 1986, pp 1470-1475

11. Elgabry, K. A., "Communicating Product Definition and
Support Data in a CAE/CAD/CAM Environment", Proceedings
of CASA/SME Autofact'85 Conference, Detroit, Michigan,
November 1985, pp 9-11

12. Gatelmand, C. D., and Vignaud, J. P., "FMS Design and
Specifications", Autofact-Europe, September 1983.

13. General Motors' Manufacturing Automation Protocol,
General Motors Corporation, Warren, Michigan, 1985

14. Harned, J., and Holcman, S. B., "An Approach for
Solving The CIM Gap Problem", Proceedings of CASA/SME
Autofact'85 Conference, Detroit, Michigan, November
1985, p 3-7

15. Haynes, L. S., Wavering, A. J., "Real-Time Control
System Software: Some Problems and Approach,"
Proceedings of 1986 IEEE International Conference on
Robotics and Automation, San Francisco, California,
April, 1986. pp 1470-1475

16. Haynes, L. S., Barbera, A. J., Albus, J. S.,
Fitzgerald, M. L., McCain, H. G., "An Application
Example of the NBS Robot Control System," Robotics and
Computer-Integrated Manufacturing Journal, Vol.l, No.l,
1984, pp 81-95

17. Jones, A. T., McLean, C. R., "A Proposed Hierarchical
Control Model for Automated Manufacturing Systems,"
Journal of Manufacturing Systems, Vol.5, No.l, 1986, pp
15-25

18. Krizsan, A., Haidegger, G., and Nagy, S. S.,
"Manufacturing Systems Based on Distributed
Intelligence Cell Concept," Integration of CAD/CAM,
Editor: D. Kochan, IFIP, 1984, pp 253-263

132

19. Li, C., H., "Computer Integrated Self Optimizing
Factory," Proceedings of CASA/SME Autofact'85
Conference, Detroit, Michigan, November, 1985, pp 3.54-
3.74

20. Liu, T., Simon, M., et al. "Machine Control Software
Design," Proceedings of 1986 IEEE International
Conference on Robotics and Automation, San Francisco,
California, April, 1986, pp 1470-1475

21. Maimon, 0., "FMS Real-Time Operational Control,"
Proceedings of CASA/SME Autofact'85 Conference,
Detroit, Michigan, November 1985, pp 6-31

22. Microbot, Inc., Minimover-5 Robotics Reference and
Applications Manual, Microbot, Inc., Mountain View,
California, 1982.

23. Neal, R. E., DeMint, P. D., Klages, E. J., et.al,
"Integrated Manufacturing Information and Control
System," Proceedings of CASA/SME Autofact'85
Conference, Detroit, Michigan, November 1985, pp 17-16

24. Pamukcu, D.,"Computer Programs for a Generic
Manufacturing Cell Control System," IE 87-2 Working
Paper Series, Industrial Engineering Department,
Louisiana State University, Baton Rouge, Louisiana,
May, 1987.

25. Ranky, P. G., The Design and Operation of FMS, North-
Holland Publishing Co., 1983.

26. Singh, M. G., Dynamical Hierarchical Control, North-
Holland Publishing Co., 1980

27. Solberg, J. S., Paul, R. P., and Anderson, D. C., "The
Factory of The Future: A framework for Research,"
Conference Proceedings of 11th Conference on Production
research and Technology, May, 1984, pp 53-58

28. Villa, A., Mosca, A., Murari, G., "Expert Control
Theory: A Key For Solving Production Planning and
Control Problems in Flexible Manufacturing,"
Proceedings of 1986 IEEE International Conference on
Robotics and Automation, San Francisco, California,
April, 1986, pp 466-471

APPENDIX A
ROBOT-5 INSTRUCTION SET

133

134

Robot-5 is the software designed to program and control
a Minimover-5 robotic arm. Detailed information on this
system is given in Chapter 5. This appendix contains
complete information on the instruction set and structure of
each instruction for programming the robotic arm.

LIST OF INSTRUCTIONS
Following is a list of the implemented instructions by

opcode:
0 - Stop Execution.

No Operands.
1 - No Operation.

This instruction causes the execution to continue
with the next instruction. No operands.

2 - Absolute Move.
This instruction will step all motors until the
step counter of each motor is the same as a given
value (absolute position).
Operands:
A delay value (optional) to specify the speed of
the stepper motors.
Positions of each motor (step counter values). All

motors need not be specified, in which case they

shall not be moved (a step count value of -9999
means not specified).

135

3 - Move Relative
This instruction will step all motors with the
number of steps specified for each motor. Operands
are the same as (2) but if a motor need not be
moved, a zero value may be specified for the
number of steps for that motor.

4 - Close Gripper (GRAB).
This instruction will pulse the gripper motor (6)
until the gripper switch is closed. No operands.

5 - Return To Home Position.
All motors will be pulsed until the step counters
are zero. No operands.

I
6 - Move Motor Until Switch is Hit.

This instruction will move the specified motor in
the indicated direction until the designated switch
is in the position specified.
Operands:
Delay value (optional, if change of speed is
desired),
Motor number to be moved.
Switch number to be checked,
Condition to stop (ON/OFF), Direction of

movement (Forward/Backward).
7 - Wait (idle) UNTIL Switch is ON/OFF.

This instruction will hold the execution of the
program until a switch is at the indicated
position (ON/OFF).

136

Operands:
Switch Number to check,
Triggering position of the switch.

8 - Move motor Ontil a Key is Hit.
This instruction will move a motor until a key (at
the keyboard) is struck.

Operands are the same as (6) except for
switch number

9 - Set Delay Value (Speed of motors).
This instruction changes the delay value
(explained above) resulting the change in the
speed of the motors.
Operand is the delay value.

10 - Onconditional Jump.
This instruction will cause the execution to
continue with the instruction specified.
Operand is the instruction number.

11 - Jump on Switch Condition.
This instruction will cause the execution to
continue with the given instruction if a switch is
in the indicated condition. If the condition is

not met, execution will continue with the next

instruction.
Operands:
Instruction number for jump,

Switch number to check,

137

Condition of the switch (ON/OFF) which will
result in Jump.

12 - Jump if Switch Not in the Given Position.

This instruction is the same as (11) except that
it will cause a jump if the switch is not in the
specified position.
Operands are the same as (11).

13 - Jump on the Position of the Motor.
This instruction will cause execution to continue

at the given instruction if the specified motor's
step counter, compared to the given value meets
the condition for jump. Otherwise, execution will
continue with the next instruction.
Operands:
Instruction number for jump,
Motor number,
Value for comparison,
Condition (equal to, less than, greater than,
not equal, less than or equal to, greater
than or equal to).

14 - Jump on the Contents of the Register.
This instruction will cause the execution to
continue at the given instruction number, if the
specified value compared to the contents of the
specified register meets the condition for jump.
Otherwise execution will continue with the next
instruction.

138

Operands:
Instruction number for jump,
Register number,
Value for comparison,
Condition (equal to, less than, greater than,
not equal, less than or equal to, greater
than or equal to).

15 - Set all Registers to a Value.
This instruction will set the contents of all
registers to the value given. Previous contents of
all registers will be lost. All registers will be
marked as unused (since reset).
Operands:
Value to store in all registers.

16 - Store a Value in a Register.
This instruction will set the contents of a
register to the value given. Previous contents of
the register will be lost. The register will be
marked as used.
Operands:
Value to store in the register.

17 - Add To Register.

This instruction will add a value to the specified
register. The register will be marked as used.
Operands:
Register number,
Value to be added to the register.

.j.

139

18 - Increment Register Contents.
This instruction will add one to the contents of
the specified register. A useful instruction for
use in collecting event counts etc.
Operand is the register number.

19 - Decrement Register Contents.
Similar to (18), will subtract one from the
contents of the specified register.
Operand is the register number.

20 - Add Two Registers.
This instruction will add the contents of two
specified registers, and the result will be stored
in the third register. Register numbers of any or
all the operands may be the same. Result

register's previous contents will be lost. All
three registers will be marked as used.
Operands are three register numbers.

21 - Subtract Two Registers.
Contents of the second specified register will be
subtracted from the contents of the first
register. Result will replace the contents of the

third register.
Operands are three register numbers. Any or
all of the register numbers may be same.

140

22 - Declare Current Motor Positions "Home".
This instruction will zero the step counters of
all motors, thus declaring the current position of
the arm as the "Home" position. Contents of the
step counters of motors will be lost.
No operands.

23 - Set Step Counter of a Motor to a Value.

This instruction will replace the current step
counter of the motor specified with the given
value. It may be used to declare the current
position of the motor as home (value = 0).
Previous value of the step counter of the motor
will be lost, therefore effectively altering the
home position of the motor.
Operands:
Motor number whose step counter will be involved,
Value to initialize the counter.

24 - Copy Value in Register to Step Counter of a Motor.
This instruction will set the step counter of a
motor to the value specified in the specified
register. Previous contents of the step counter of
the motor will be lost, effectively altering the
Home position for the motor. Contents of the

register will be unchanged.
Operands:
Motor number whose step counter will be changed,
Register number whose contents will be used.

141

25 - Copy Step Counter of a Motor to a Register.
This instruction will copy the current value of
the step counter of the motor to a Register.

Contents of the step counter will not be changed.
Previous contents of the register will be lost.
Operands are:
Motor number whose step counter value will be
copied,
Register number to be used for copy.

26 - Suspend Execution (in remote mode only)
This instruction is equivalent to stop execution
instruction (opcode = O) except for the message
that is immediately transmitted to the remote
operator, and containing the number of the last
executed instruction. The "End of Execution"
message is also sent to the remote operator.
Execution can be resumed with the next instruction
in the program when the "Continue Execution"

instruction is received from the remote operator.
This instruction will be skipped during execution
if opertion is local (not remote mode).

No Operands
27 - Transmit Contents of a Register to Remote Operator

(in remote mode only)
This instruction causes the robot controller to
transmit a message to the remote operator.
Operation code of the message will be (2) similar

142

to that of a request by the remote operator, and
the content of the register specified by the
operand will be transmitted as the second
parameter of the message.
This instruction enables the programmer to send

piece counts, repeat values etc., to the remote
operator during execution, therefore generating
feedback to the remote operator.
This instruction will be skipped during execution
if opertion is local (not remote mode).
The only operand is the register number whose
contents (value) will be transmitted.

28 - Transmit a Four Byte Message to Remote Operator
(in remote mode only)
This instruction enables the programmer to send a
signal to the remote operator. It may be a
synchronization signal, a flag to inform the
operator of start or end of a move, or any other
informative message. The message is coded into the
instruction, and therefore can not be changed
during execution.

143

This instruction will be skipped during execution
if operation is local (not remote mode).
Coding of the message is such that four bytes will
be transmitted. Operation code of the message will
be (9), and the two parameters of the message are
contained in the first two operands of the

instruction (two bytes per operand).

INSTRUCTION STRUCTURES BY OPCODE

0 - Stop Execution
No Operands (Blank instruction)

1 - No Operation
No Operands.

2 - Absolute Move
Operands:
1) Delay Value (or zero for no change in speed) ,
2-7) Position to step to (for each motor, in order)

Value -9999 means no movement for that motor.
3 - Move

Operands:
1) Delay Value (Speed),
2-7) Number of steps for each motor, in order.

Value of zero means no movement for that motor

4 - Close Gripper
No Operands.

5 - Return to Home Position
No Operands,

6 - Move Motor Until Switch is ON/OFF
Operands;
1) Delay Value (zero for no change),
2) Motor number (1-6)
3) Switch Number,

145

4) Switch Position (1=0N, 0=0FF),
5) Sense of Movement (Forward=l, Reverse= -1).

7 - Wait (idle) Until Switch is ON/OFF
Operands:
1) Delay Value (zero for no change),
2) Motor number (1-6)
3) Switch Number,
4) Switch Position (1=0N, 0=0FF).

8 - Move Motor UNTIL a Key is Struck at the Keyboard
Operands:
1) Delay Value (zero for no change),
2) Motor number (1-6),
5) Sense of Movement (Forward=l, Reverse= -1).

9 - Set Delay Value (speed of motors)
Operands:
1) Delay Value (NONZERO).

10 - Unconditional Jump
Operands:
1) instruction number.

11 - Jump on Switch Condition
Operands:
1) Instruction number,
2) Switch Number,
3) Condition of Switch for Jump (On=l, 0FF=0).

146

12 - Jump on HOT Switch Condition
Operands:
1) instruction number,
2) Switch Number,
3) Condition of Switch for Jump (On=l, 0FF=0).

13 - Jump on Step Counter of a Motor
Operands:
1) Instruction number,
2) Motor Number,
3) Value for comparison (to step counter),
4) Condition for Jump:

= 1 Equal to,
= 2 Less Than,
= 3 Greater than,
= 4 Not equal,
= 5 Less than or equal,
= 6 Greater than or equal.

14 - Jump on Register Value Comparison
Operands:
1) Instruction number,
2) Register Number,
3) Value for comparison (to register contents),
4) Condition for Jump:

= 1 Equal to,
= 2 Less Than,
= 3 Greater than,
= 4 Not equal,

147

= 5 Less than or equal,
= 6 Greater than or equal.

15 - Set All Registers to a Value (initialize)
Operands:
1) Set Value,
2) Zero.

16 - Set a Register to a Value (initialize)
Operands:
1) Set Value,
2) Register Number.

17 - Add a Value to a Register
Operands: 1
1) Value to add,
2) Register Number.

18 - Increment a Register (add one to contents)
Operands:
1) One,
2) Register Number.

19 - Decrement a Register (subtract one from contents)
Operands:
1) Minus One,
2) Register Number.

20 - Add Two Registers (rl) + (r2) -> (r3)

Operands:
1) First Register Number,
2) Second Register Number,

148

3) Result Register Number.
21 - Subtract Two Registers (rl) - (r2) -> (r3)

Operands:
1) First Register Number,
2) Second Register Number,

3) Result Register Number.
22 - Reset (to zero) step counters of all motors

No Operands.
23 - Set Step Counter of a Motor to a Value

Operands:
1) Set Value,

*2) Motor Number (=0 for all motors).
24 - Copy Contents of a Register to a Step Counter

Operands:
1) Register Number,
2) Motor Number.

25 - Save Contents of a Step Counter to a Register

Operands:
1) Register Number,
2) Motor Number.

26 - Suspend Execution (in remote mode only)

No Operands
27 - Transmit Contents of a Register to Remote Operator

(in remote mode only)
Operands:
1) Register Number,

28 - Transmit a four byte message to remote operator
(in remote mode only)

Operands:
1) First two bytes of message (an integer) ,
2) Next two bytes of message (an integer).

APPENDIX B
ABC PROTOCOL AND THE COMMUNICATIONS INTERFACE MODULE

OF THE PROGRAMMABLE LOGIC CONTROLLER

150

151
v

GENERAL
The Honeywell 620 Programmable Logic Controller (PLC)

has three parts that must be distinguished: the input/output
(I/O) tables, sixteen bit registers, and program memory.

The I/O consists of two parts: external and internal.
External I/O are the group of I/O bits that can be

physically connected to the outside world through the
modules in the PLC. Internal I/O are the group of bits that
can be used in the same manner as the external I/O, but can
not be physically connected to external devices.

All I/O is single bit (i.e. a one or a zero). Status of
all I/O bits are kept in a table called the I/O table. PLC
periodically checks the status of the inputs and updates the
I/O table. Outputs are updated when referred by the PLC
program.

Honeywell 620 PLC provides a number of sixteen-bit
registers that can be used by the programmer. Among the
possible uses of these registers are timer preset values,
piece counts, etc.. These registers can be accessed by the
PLC program.

The program memory of the PLC consists of 24-bit
program words. Program instructions are stored sequentially.
First few locations in the program memory are used for
diagnostic, etc., however, locations starting with 11 can be
used by the application program.

152

COMMUNICATIONS INTERFACE MODULE
One of the modules available for the Honeywell 620

series PLC is the Communications Interface Module (CIM) that
can be used to connect the FLC to the external devices using
serial connections. The CIM port may be used to connect the
PLC to terminals, computers, or to networks, and may be
programmed for different modes of communication.

CIM uses Asynchronous Bisync Communications (ABC)
protocol. Commands received through the CIM port are checked
for the correct opcodes and are responded to by the PLC (or
the CIM itself). Detailed description of the operation and
configuration of CIM is given in the PLC CIM manual.

ABC PROTOCOL
This protocol uses leader and follower bytes for each

message. The header bytes are: SOH (ASCII 1), Node Address,
a control character identifying the message type, ETB (ASCII
23), STX (ASCII 2). Following these five bytes is one byte
opcode and two bytes of message length. The message length
is the number of bytes following the eighth byte (the lo-
byte of the length), excluding the follower bytes. The
follower bytes are checksum (one byte) and ETX (ASCII 3).
The checksum includes everything including nodal address to
(excluding) checksum.

Detailed description of the ABC protocol is also given
in the PLC CIM manual. This protocol was implemented on

microcomputer using assembly language.

APPENDIX C
i

MAJOR FLOWCHARTS

153

MAJOR FLOWCHARTS
FOR THE CELL CONTROLLER PROGRAM

154

155

Cell Controller
Program

Yes No

N /

\ /
Decompose
New Order

Update
Status
Display

Decompose " \
Nev Order J

\ /

Return

Fetch New Order

Create Processes:
Master
Intermediate
Terminal

Queue Requests
for Resources
and. Operations

157

Monitor

No Output
Queue
Empty?

YesNo

\ / Fetch MessageYes
Output

Messages

Database
Update

Message?No Yes
In p u t
Queue
Em pty?

\ f
PlaceNo

Queue
Yes

Return

158

Monitor Devices

Yes

/ a n y \
^ process >
waiting for
workstation?

YesNoNo

Return

Yes Preceeding '
 Activities

Completed?,

NoAllocate
Workstation

Yes

No

B etum

ProceBS Tn craning
Messagea ^

Yes Database
Query ?

Respond
to Query No

YesNew
Order ?

Decompose
New Order

NoReturn

Yes Schedule
Next

Service

Service
Completion ?

No

ErrofS.
Condition orX^Yes

sR equest

Service
Condition

orSchedule

No

Return \ /

MAJOR FLOWCHARTS
FOR THE GATEWAY CONTROLLER PROGRAM

160

/ " QM Simulator " \
y an d Gateway Pr.^y

lTnfflaHrj*

Operator
Entry ?

Service the
Operator

Message
from cell
controller

?
^NoGet Message

and Queue

Message
from

W orkstation
?

NoProcess
W orkstation

Response

simulation
tim e to
respond ?

Vf
Generate

and Transmit
Response

Service Operator

Get Message
from O perator
& tra n sm it

Y e s , / Message to ^
\ C e l l C on tro ller

No

Menu
Display
Request?

Display
Operator
Menu

Yes

No

Status
Report
Request?

YesDisplay Status
of System

No

Return

Get Message N
it Queue

Yea No

YesNo

Yes

No 2k______________ ik.
Update MKS Queue

Return

No

Yei

Fetch The Message

Determine
Response
Time

Transm it
Message
toMHS
ControllerDetermine

Simulated
Response
Time

VITA

The author, Derya Pamukcu, was born in Ankara, Turkey
on June 25, 1955. He completed a B.S. in Mechanical
Engineering in September, 1977 at Bogazici University in

Istanbul, Turkey. After working as a project engineer for
two years at Pasabahce Glassworks of Istanbul, Turkey, Mr.
Pamukcu enrolled at Louisiana State University in January,
1979.

At L.S.U. , Mr. Pamukcu has worked on a part time basis
in the Energy Programs Office as a graduate research
assistant and later as a graduate teaching assistant for the
Industrial Engineering Department. After receiving his Ms.
in Industrial Engineering in May, 1982, he worked as a full
time Instructor for the same department.

164

DOCTORAL EXAMINATION AND DISSERTATION REPORT

Candidate: D erya Pamukcu

Major Field: E n g in e e r in g S c ie n c e

Title of Dissertation: D e s ig n o f a G en eric M a n u fa ctu r in g C e l l C o n tr o l System

Approved:

aJ L U a___
Major Professor and ChairmanA Cha

K

Dean of the Graduate School

EXAMINING COMMITTEE:

V/ ; fr

Date of Examination:

March 12 , 1987

	Design of a Generic Manufacturing Cell Control System.
	Recommended Citation

	00001.tif

