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The largest gene knock-down experiments performed to date

have used multiple short interfering/short hairpin (si/sh)RNAs

per gene1–3. To overcome this burden for design of a genome-

wide siRNA library, we used the Stuttgart Neural Net

Simulator to train algorithms on a data set of 2,182 randomly

selected siRNAs targeted to 34 mRNA species, assayed

through a high-throughput fluorescent reporter gene system.

The algorithm, (BIOPREDsi), reliably predicted activity of

249 siRNAs of an independent test set (Pearson coefficient

r = 0.66) and siRNAs targeting endogenous genes at

mRNA and protein levels. Neural networks trained on a

complementary 21-nucleotide (nt) guide sequence were

superior to those trained on a 19-nt sequence. BIOPREDsi

was used in the design of a genome-wide siRNA collection

with two potent siRNAs per gene. When this collection of

50,000 siRNAs was used to identify genes involved in the

cellular response to hypoxia, two of the most potent hits

were the key hypoxia transcription factors HIF1A and ARNT.

Evidence suggests that motifs in the siRNA and/or the target mRNA
largely determines inhibitory activity of siRNAs4. Current tools created
to recognize such motifs have been developed from studies on
localized hybridization energy in parts of the siRNA duplex, on the
occurrence of preferred nucleotides at specific positions and on
H-bonding patterns. Analysis of a moderately large data set of func-
tional micro (mi)RNA and siRNA guides has revealed that the 5¢-ends
are consistently rich in A/U5,6. Furthermore, uridine is often present at
positions 1 and 17 of the guide strand, and an adenosine moiety at
position 10 (ref. 7). Finally, strong internal structures, an absence of
G/C stretches and a prevalence of certain nucleotides at positions 4, 7,
9, 14 and at the 3¢-end are also characteristic of active siRNAs8–10.
Although there is consensus on the importance of features at the
5¢-terminus of the guide strand, there is little agreement on the other
positions possibly because the data sets used are often too small to
ensure statistical significance11. It is also likely that the complexity
of motifs and other strand characteristics that promote the

RNAi mechanism depend on more than just the single nucleotide
composition. Spontaneous hydrolysis and ribonuclease A–induced
hydrolysis is accelerated at pyrimidine-A dinucleotides12, and influ-
enced by neighboring nucleotides and hydrogen bonds13. Such motifs
are difficult to detect by hypothesis-driven inspection of sequences in
small data sets. Furthermore, as more motifs are discovered, it is more
difficult to identify target-specific siRNAs that carry all motifs.
Consequently, they need to be weighted, a process that is usually
based upon arbitrarily selected factors7.

Artificial neural networks (ANNs), often referred to as ‘black boxes’
because the parameters that they derive to approximate patterns
cannot be easily analyzed14, provide a powerful method of identifying
highly complex traits in data sets. ANNs discover and work with large
numbers of interrelated motifs developed through automated
unbiased learning. They then combine them for accurate prediction
using their own weighting systems. ANNs have been broadly applied
in the biological sciences, for example, for predicting drug mechan-
isms15 and 3D-protein structure16 and also, to identify active antisense
oligonucleotides (ASOs)17,18. The prediction quality and generaliza-
tion19 capabilities of an ANN of fixed size depend on a sufficiently
large training set of directly comparable data points. However, as
oligonucleotide activity is highly sensitive to several biological and
experimental parameters (e.g., transfection efficiency, target metabo-
lism, biology), direct comparison of siRNAs between assays or even
across targets in the same cell line is usually difficult. We concluded
that there was no published data set suitable for ANN training. We
reasoned that an algorithm that predicts relative potencies of siRNAs
targeted to an ectopically expressed reporter gene should function
equally well on endogenously expressed genes, and that a large
homogeneous data set for training ANNs could be best generated in
a high-throughput reporter screening assay.

We modified a previously described reporter assay20 using a plasmid
coding for both a reporter gene (enhanced yellow fluorescent protein,
eYFP) bearing target cDNA inserts in its 3¢-untranslated region (UTR;
that is, a fusion mRNA) and a reference gene (enhanced cyan
fluorescent protein, eCFP) (see Supplementary Fig. 1a online).
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Hybridization of siRNAs to sites in the inserts attenuates eYFP protein
levels only. Although modification of the 3¢-UTR of an mRNA might
be expected to affect its regulation, we have generally observed that
levels of expressed protein vary three- to fourfold at most. Cotransfec-
tion of a plasmid and NAS 12842, a potent eYFP siRNA targeted to a
common site in its 5¢-UTR, resulted in a specific dose-dependent
decrease in eYFP expression (Supplementary Fig. 1b online). Further-
more, having six mismatched nucleotides to eCFP, NAS 12,842
showed no effect on eCFP expression (data not shown). Moreover,
of seven additional eYFP siRNAs with Z85% identity to eCFP mRNA,
five showed a near perfect specificity for eYFP (data not shown). To
demonstrate a correlation between the potency profile of a set of
siRNAs targeted to the reporter gene and the profile obtained from
targeting the endogenously expressed mRNA, we designed and tested
37 siRNAs (see Supplementary Table 1 online) against the following
three cDNA target inserts: a 3¢-UTR sequence from the TC10 ras-like
gene and coding regions from ubiquitin conjugating enzymes (E2s)

UBE2I and CDC34. Inhibition of endogenous TC10 mRNA expression
was measured using quantitative reverse transcriptase PCR (Q-PCR),
whereas inhibition of the E2s was assayed by western blot analysis.

Activities of 12 TC10 siRNAs in the reporter assay varied broadly
and less than half of them inhibited eYFP expression by Z50%
(Fig. 1a). The range of activities against the endogenously expressed
target was narrower (Fig. 1b), even at higher siRNA concentrations
and, also, if tested with a second set of primer/probes (data not
shown). A standard Pearson correlation coefficient was calculated for
the data sets (Fig. 1c): r¼ 0.89 (P ¼ 1.2 � 10�4). The high correlation
on this relatively small sample size is consistent with similar experi-
ments using ASOs20. Of fourteen siRNAs targeted to UBE2I, five
inhibited eYFP by Z50% (Fig. 1d) and were among the most
inhibitory oligonucleotides as measured by quantification of residual
endogenous UBE2I protein (Fig. 1e). A Pearson correlation coefficient
of r ¼ 0.83 (P ¼ 2.3 � 10�4) was obtained (Fig. 1f). Similarly, of
eleven siRNAs targeting CDC34 (Fig. 1g), less than half inhibited the
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Figure 1 Thirty seven siRNAs were designed and tested against three human targets (for siRNA sequences, see Supplementary Table 1). Inhibitory activity

was measured in the dual reporter assay and also against endogenously expressed genes at the mRNA or protein levels. siRNAs are identified by their

position relative to the start codon. The reporter assay was expressly performed at suboptimal concentrations so as to obtain the broadest possible window of

inhibitory activity. Protein levels were normalized to a-tubulin. (a) Downregulation of eYFP- TC10 reporter gene fusion by twelve siRNAs targeted to various

positions in the predicted 3¢-UTR sequence of the TC10 ras-like gene (NM_012249) (50 nM, 48 h) in H1299 compared to an unrelated negative control
siRNA NAS 8549 (C), measured by eYFP fluorescence. (b) Downregulation of endogenous TC10 mRNA in H1299 measured by real-time reverse-

transcriptase PCR (Q-PCR: primer and Taqman probes positioned in the 3¢-UTR) with siRNAs (10 nM, 48 h) compared to control (C). (c) Two-dimensional

plot with linear regression line of siRNAs targeting endogenous TC10 mRNA and a TC10-containing eYFP reporter construct: Pearson correlation coefficient:

r ¼ 0.89. (d) Inhibition of eYFP-UBE2I reporter gene fusion (H1299) with fourteen siRNAs (50 nM, 48h) targeted to various positions in the coding region

of the human UBE2I gene (NM_003345), compared to control (C) measured by eYFP fluorescence. (e) Western blot analysis showing inhibition of

endogenous UBE2I protein with the siRNAs (H1299, 25 nM, 48h) compared to control (C): a-tubulin was used to normalize UBE2I protein expression

values for slight variations in protein gel loading. (f) Two-dimensional plot with linear regression line of siRNAs targeting endogenous UBE2I protein and

eYFP-UBE2I reporter: Pearson correlation coefficient: r ¼ 0.83. (g) Inhibition of eYFP- CDC34 reporter gene fusion (H1299) with 11 siRNAs (50 nM, 48h)

targeted to various positions of the CDC34 coding region (NM_004359), compared to control (C), measured by eYFP fluorescence. (h) Western blot analysis

showing inhibition of endogenous CDC34 protein with the siRNAs (H1299, 25 nM, 48h) compared to control (C). (i) Two-dimensional plot with linear

regression line of siRNAs targeting endogenous CDC34 protein and eYFP-CDC34 reporter: Pearson correlation coefficient: r ¼ 0.66. The apparent outlier

CDC34 siRNA of mediocre inhibitory activity in the reporter assay was stimulatory when assayed against endogenous CDC34 protein. In HeLa and KB-31

cells the same batch of siRNA behaved as expected (data not shown) and so we assume that this is a nonspecific effect in H1299.
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reporter gene expression by Z50%. With the exception of one siRNA,
members of this sub-group were also among the most inhibitory at
the protein level (Fig. 1h). A Pearson correlation coefficient of r ¼
0.66 (P ¼ 2.8 � 10�2) was obtained for CDC34 (Fig. 1i). The high
correlation coefficients in these relatively small experiments (37
siRNAs) indicate that potency profiles of siRNAs against the reporter
fusion mRNA and the corresponding endogenous gene are similar: a
poor correlation here would have strongly implied that nucleotide
sequence is of lesser importance to potency than, for example, mRNA
abundance, half-life, processing or transport. It also implies that
common sequence segments in endogenous and fusion RNAs have
similar secondary/tertiary structures, or alternatively, that the RNAi
mechanism can overcome RNA folding. We favor the former explana-
tion, without discounting the latter, as analogous results were obtained
for ASOs, which operate via a different mechanism. In summary, we
concluded that the reporter assay was a suitable means to generate
large homogeneous data sets for training ANNs.

ANNs were generated with data according to a flowchart (Fig. 2a).
Thirty-four constructs with fully sequenced inserts derived from
nineteen E2s, seven other human and eight rodent genes (see
Supplementary Table 2 online) yielded 27,000 nucleotides of total
target sequence, which amounted to B27,000 possible tiled siRNAs.
Then, we screened 3,106 randomly selected siRNAs in which all
possible di- and trinucleotides were frequently represented at each
possible starting position, in H1299 cells in duplicate. Positive and
negative controls for normalization enabled comparison of oligoribo-
nucleotide activity across assays. eCFP served as a control for efficiency
of plasmid transfection, eYFP-siRNA 12842 served to normalize for
oligonucleotide transfection efficiency and an anti-pGL3 luciferase
siRNA was used to control for nonspecific inhibition of eYFP. Data

from 2,431 siRNA sequences (see Supplementary Table 3 online)
passed quality control filters and produced an approximate Gaussian
distribution of potencies relative to positive and negative controls
(Fig. 2b). As this data set is unique to our knowledge, we examined
simple motifs in the 8% most active sequences, that is, the top 200
siRNAs, using stringent criteria for statistical significance. We studied
each position of the guide sequence of potent siRNAs for unambig-
uous mononucleotide motifs present in relatively high excess over
expected occurrence with significance P r 0.05%. For each motif
identified, we then examined the occurrence of nucleotides at the
same position in the 200 least potent siRNAs. Although it is not given
that a motif that contributes to the potency of an siRNA should
automatically be absent in inactive siRNAs, consistency between active
and inactive siRNAs for the occurrence of a motif at a given position
should help to minimize false positives. All motifs with Pr 0.05% are
shown in Supplementary Table 4 online. The most overrepresented
(‘dominant’) and most highly statistically significant mono-nucleotide
motifs in potent siRNAs were A and U at position 1, A at position 10
and U at position 2. The requirement for A/U at the 5¢-guide terminus
was discovered and rationalized previously5,6, and A at position 10
corresponds to a previously characterized U-cleavage site21. The high
occurrence of U at position 2 is new and does not reflect the need for
weak affinity close to the 5¢-end, as A was also not overrepresented at
this position. It may induce a favored interaction with the RNA-
induced silencing complex (RISC), or provide a reactive group
important for the RISC mechanism. Other mono-nucleotides were
overrepresented at positions 7 (U), 11 (U) and 19 (C) of active
siRNAs, while being underrepresented in inactive siRNAs. It should
also be noted that even higher levels of statistical significance and
overrepresentation were observed for alternative mono-nucleotides
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Figure 2 Management of data during the training and testing of artificial neural networks (ANN). (a) Experimental design for the generation and testing of

ANNs. siRNAs were selected randomly across each insert, excluding the first and terminal 50 nucleotides, with an average overlap of 9 nucleotides, at an

siRNA concentration of 50 nM; data were collected at two time points (b) Estimated density distribution of inhibitory activities from folding a Gaussian

kernel of width 0.10 with the measures of 2,431 randomly selected siRNAs targeted to 34 reporter plasmids; sequences of plasmid inserts, and sequences

of the siRNAs used in the investigation are given in Supplementary Tables 2 and 3, respectively. Y-axis normalized for correspondence to a 256-bin

histogram. The x-axis is normalized with the positive control set to 90.0% inhibition and the negative control is set to 35.4% inhibition, such that the least

active siRNA becomes 0%. (c) Plot of predicted inhibition of 249 siRNAs by the ANN against observed inhibitory activity obtained in the eYFP reporter

assay (Pearson correlation coefficient r ¼ 0.66). (d) Performance of ANNs on the test set ‘All’ as a function of size of the training set (218, 545, 727,

1,091 and 2,182 siRNAs).
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in the inactive siRNAs at each of these three individual positions
(7C, 11C and 19A). An excess of G at position 21 in the 3¢-overhang
of potent siRNAs was observed, and was confirmed by an excess of
no-G in weak siRNAs. This event was matched by an excess of
C in inactive sequences at a similar frequency and statistical signi-
ficance. This finding has not been reported previously, possibly in
part because siRNAs are often used with a dTdT 3¢- terminus. As
the overhangs in our sequences were DNA, it is not clear whether
there is a preference for ribo-G or for deoxyribo-G. Some motifs have
P values near the Hochberg threshold and may become insignificant
when the data subset is enlarged or decreased22, but they may be
important as part of more complex motifs. In summary, mining the
data with statistical methods identified previously known motifs in
potent siRNAs—which validates the data set—and also, new over-
represented motifs.

Data were divided randomly into training and testing sets of 2,182
and 249 sequences, respectively. An ANN was trained and tested on the
full (‘All’) training and full (‘All’) testing set, respectively. A scatter plot
of experimentally determined activity versus predicted activity pro-
duced a Pearson coefficient of correlation r ¼ 0.66 (Fig. 2c: P ¼ 2.2 �
10�16) and only a slightly higher correlation of 0.67 when applied to
the training set itself (data not shown). This proves that computational
intelligence can be used to predict with accuracy siRNA potency based
upon nucleotide sequence alone. The fraction of siRNAs showing the
highest predicted inhibition (N ¼ 62; algorithm score of 0.75–0.85)
also returned the highest experimental inhibition (mean ¼ 84%; s.d. ¼
14.7%). Conversely, the fraction of siRNAs showing the lowest
predicted activity (N ¼ 29; algorithm score of 0.25–0.35) returned a
mean inhibition in the reporter assay of 47% (s.d. ¼ 14.9%). The two
standard deviations are similar and indicate that the algorithm does
not predict high activity more accurately than low activity. We
calculated a number of specificities and sensitivities for the ANN,
hereafter called BIOPREDsi (data from Fig 2c), with the view that
maximum algorithm specificity (at the expense of sensitivity) is usually
required during selection of siRNAs, so as to minimize the probability
of false positives. Thus, for an algorithm score (Biopred score) of
Z0.75, the top 10% most potent siRNAs (from the test set of 249
siRNAs) yield a specificity of 79% and a sensitivity of 53%, whereas the
top 33% provide a specificity of 83% and 43% sensitivity, respectively.

Subsets of the data were used to train and test additional ANNs to
probe the limits of algorithm performance (Table 1). This might have
revealed if bias had been introduced during selection of the 34 target
sequences, for example, from use of a large number of E2 sequences,
or from inclusion of rodent sequences. With a constant testing set
(‘All’), Pearson coefficients increased with training set size and reached
a plateau at B700 data points (Fig. 2d). Some predictive power was
available with only 218 siRNAs, probably indicating the dominance of
a few motifs. This was also observed with the other test sets. The best
performing predictor on all test sets was obtained from training with
the ‘All’ (2,182 siRNAs) group. Exclusion of rodent sequences from
training and testing sets did not unduly influence algorithm perfor-
mance, nor did a ‘Human E2’ predictor perform better with the ‘h E2’
set. The algorithms were particularly effective on the rodent test set,
perhaps a consequence of the relatively small size of the set
(51 siRNAs). Three ANNs were trained using nucleotides 1–19 of
the 21-nucleotide guide strand (Table 1); performance of the two
‘All-19’ predictors was inferior to that of their 21-nucleotide counter-
parts on the ‘All’ testing set, whereas that of ‘Rodent-19’ was equal to
its 21-nucleotide counterpart, suggesting that complementarity over
the full oligoribonucleotide guide length provides an improved
gene knock-down.

The algorithms’ ability to rank siRNAs targeted to endogenously
expressed mRNAs was assessed using the three previously used data
sets (TC10, UBE2I, CDC34). For each siRNA, the Biopred score was
plotted against experimentally determined activity, and the following
correlation coefficients were returned: for TC10 siRNAs, r ¼ 0.60
(N ¼ 12, P ¼ 4.0 � 10�2; Fig. 3a) and for UBE2I and CDC34 siRNAs,
assayed at the protein level, r¼ 0.60 (N¼ 14, P¼ 2.4 � 10�2; Fig. 3b),
and r¼ 0.77 (N¼ 10, P¼ 9.9 � 10�3; Fig. 3c; (r¼ 0.36, P¼ 0.29 with
the outlier mentioned in the figure legend included), respectively.
Although proper evaluation of BIOPREDsi performance requires a
data set of appropriate size and unbiased content, in these three cases
(total 36 siRNAs), good to excellent Pearson correlation coefficients
were obtained (r ¼ 0.60–0.77). The performances of several siRNA
selection tools were recently cross-compared using three fairly large,
published data sets generated by different methods, in which inhibitory
activities are reported for 19-nt sequences, that is, 21-nt siRNAs most of
which bear noncomplementary dTdT overhangs11. Algorithm All-19,
(training set derived from 2,182 data points), returned Pearson
correlations of 0.55, 0.57 and 0.45 for the data sets of Reynolds (240
siRNAs)7, Vickers (76 siRNAs)23 and Horbarth (44 siRNAs)24, respec-
tively, scores superior to those of the other reported algorithms.
BIOPREDsi was then tested in its intended application: for six genes,
the two most active predicted, specific siRNAs (see Supplementary
Table 5 online) were identified and screened using Q-PCR at three
doses as single reagents, and also, as a mixture (Fig. 3d–i). In each case
an effective inhibition was observed at the maximum dose and in
general, the activity of the mixture was not significantly better than that
of single reagents.

Finally, BIOPREDsi was used in the design of a genome-wide
library of 48,746 siRNAs. A comprehensive description of library
design will be published elsewhere. Briefly, 24,373 target genes (con-
tigs) were selected from a proprietary database of predicted coding
transcripts based on mRNA and EST evidence and, also, on the
presence of splice sites. Transcript coverage for each contig was
prioritized and maximized by tiling candidate siRNAs across all
common exons of high-confidence transcripts. Where coverage of all
transcripts was not possible (B8%), another group of candidate
siRNAs was created, such that combination of the two candidate
siRNA groups targeted the maximal set of high-confidence transcripts.

Table 1 Pearson correlation coefficients of ANNs generated from data

sets of various sizes and compositions

Testing set (21-nt)

Training set (21-nt) All (249) All human (198) hE2 (139) Rodent (51)

All (2,182) 0.66 0.63 0.63 0.77

All human (1,744) 0.65 0.61 0.62 0.76

Human E2s (1,229) 0.65 0.62 0.62 0.76

Rodent (438) 0.55 0.54 0.53 0.57

Random all (1,091) 0.65 0.62 0.61 0.75

Random all (727) 0.65 0.63 0.63 0.76

Random all (545) 0.62 0.60 0.60 0.70

Random all (218) 0.47 0.47 0.46 0.46

All-19 0.64 – – –

All human-19 0.62 – – –

Rodent-19 0.55 – – –

Parenthetical numbers denote total number of siRNAs in given data sets. ‘all’ denotes
data from the parental set of siRNAs, ‘All human’ denotes data from human sequences,
‘Human E2s’ denotes data from human E2 genes, ‘Rodent’ means rodent data only,
‘Random all (n)’ means data points from a randomly selected set of n human sequences.
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siRNA sequences were then filtered according to predicted specificity;
for both guide and sense strands, a maximum number of mismatched
nucleotides and a minimum length of nucleotide identity to all other
likely alternative binding sites in the transcriptome were required.
Remaining candidates were then ranked according to the Biopred
score and the two predicted most potent siRNAs (score Z0.75 for
96% of cases) were acquired for the library. Published reports25 and
our experiments suggest that the gene silencing potential of a mixture
of two siRNAs is not inferior to that of the most potent of the
individual siRNAs. Therefore, we pooled two siRNAs for the 24,373
targets to interrogate the pathway mediated by the hypoxia-inducible
factor HIF-1A that allows mammalian cells to adapt to low oxygen
levels. Under hypoxic conditions HIF-1a levels increase, the protein
translocates to the nucleus and heterodimerizes with HIF-1b (ARNT).

Coactivators CBP and p300 are recruited to the complex and increase
the transcription of genes involved in glucose metabolism, angiogen-
esis and erythropoiesis. HIF-1A activity was measured by the use of a
firefly luciferase reporter gene bearing three copies of the erythro-
poietin enhancer containing the core hypoxia-response element
(HRE). The activity of this reporter is increased up to 50-fold after
exposure to 1% oxygen or 100 mM desferioxamine mesylate, which
mimics hypoxia by inactivating HIF-1A-modifying prolyl hydroxlases.
The screen was done in duplicate in HeLa cells. siRNAs targeted to the
GL3 luciferase reporter gene, present on each of the microtiter-plates,
inhibited Z70% of enzymatic activity in B99% of these wells, as
compared to the median of the noncontrol samples on each plate.
siRNAs targeting the two essential mediators of the response to
hypoxia, HIF1a and ARNT, scored among the top 24,373 siRNA
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Figure 3 Performance of the algorithm with respect to both ranking 36 siRNAs of various potencies and selecting potent siRNAs. (a) Two-dimensional plot

with linear regression line of predicted activity of twelve siRNAs targeted to TC10 ras-like gene against observed normalized inhibition of mRNA (least potent
siRNA set to 0% mRNA inhibition): Pearson coefficient: r ¼ 0.60. (b) Two-dimensional plot with linear regression line of predicted activity of fourteen

siRNAs targeted to UBE2I against observed inhibition of protein (western blot measurements were normalized to the weakest siRNA, arbitrarily set to 0%

inhibition): Pearson correlation coefficient: r ¼ 0.60. (c) Two-dimensional plot with linear regression line of predicted activity of ten siRNAs targeted to

CDC34 against observed inhibition of protein (western blot measurements were normalized to the weakest siRNA, arbitrarily set to 0% inhibition): Pearson

correlation coefficient: r ¼ 0.77. The algorithm was used to select the top two predicted siRNAs against six human genes. siRNAs were assayed for

downregulation of target siRNA by Q-PCR separately and also as an equimolar mixture at three concentrations, and normalized to luciferase siRNA (see

Supplementary Tables 5–7 online). Individual algorithm scores are marked below the bars. (d) Inhibition of RFWD1 (NM_032271) at 5, 15, 45 nM

concentrations in HeLa cells. (e) Inhibition of TRAF6 (NM_004620) at 5, 15, 45 nM concentrations in HeLa cells. (f) Inhibition of VEGF (NM_003376) at

20, 40, 60 nM concentrations in H1299 cells. (g) Inhibition of GAPD (NM_002046) at 5, 15, 45 nM concentrations in HeLa cells. (h) Inhibition of HIF1A

(NM_001530) at 20, 40, 60 nM concentrations in H1299 cells. (i) Inhibition of UBE2S (NM_014501) at 20, 40, 60 nM concentrations in H1299 cells

(j) Inhibition of HRE-luciferase activity by eight siRNAs targeted to HIF1A (NM_001530), in HeLa cells (including the two siRNA sequences employed in

the primary screen). (k) Inhibition of HRE-luciferase activity by eight siRNAs targeted to ARNT (NM_001668) in HeLa cells (including the two siRNA

sequences employed in the primary screen).
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pools (ranking positions 6 and 168, respectively), reproducibly inhi-
biting HRE-Luc activity by Z74% compared to plate median. For
both genes, inhibition of HRE luciferase activity and expression of
endogenous mRNAs and proteins was confirmed with each of the
eight most potent predicted siRNAs (Biopred scores of 0.86–0.75 and
0.86–0.84 respectively; Fig. 3j,k). In summary, the validated results of
the high-throughput reporter gene assay of siRNA function have
provided a sound empirical basis for training ANNs and for the
development of a powerful siRNA design system. This has proven its
potency in guiding genome-wide screening operations. Application of
the reporter assay facilitates identification of oligonucleotide proper-
ties that are only revealed through analysis of large data sets26.

METHODS
siRNAs. siRNAs were provided by Qiagen AG as 21-nt oligoribonucleotides

with a 19 base pair duplex region and two deoxynucleotide overhangs on the

3¢-terminus of each strand. The DNA of the sense strand was a dTdT, whereas

the overhang of the antisense strand was complementary to the target mRNA.

An siRNA targeting the 5¢-UTR region of eYFP mRNA (NAS-12842) was used

as a positive control, and NAS-8549 was used as a common negative control.

The sequences of all siRNAs are listed in Supplementary Table 3.

Cell culture. Human NCI-H1299 and HeLa cells obtained from ATCC were

maintained in 5% humidified CO2 atmosphere at 37 1C in RPMI1640

and DMEM medium (Life Technologies), respectively, supplemented with

10% (vol/vol) fetal bovine serum (FBS). Subconfluent cells were washed,

trypsinized and plated into the assay plates in media without antibiotics

24 h before transfection.

Reporter expression clones. The eCFP-eYFP dual reporter vector pNAS-092

was described previously20. It contains a multiple cloning site after the stop

codon of the eYFP for inserting the appropriate cDNAs of interest. pNAS-092

was converted to the GATEWAY destination vector pNAS-156 by inserting the

attR1 and attR2 cloning sites after the YFP stop codon as recommended by the

manufacturers (Invitrogen). Subsequently, cDNA target segments were inserted

by ligation (pNAS-092) or recombination (pNAS-156) and verified by sequen-

cing. The inserts were 344–3,784 nucleotides in length and were in most cases

from coding regions; the remainder were UTR. The sequences of the cDNA

inserts in the reporter plasmids are listed in Supplementary Table 2.

siRNA transfection and dual-reporter assay. H1299 cells were seeded in

Costar 96-well assay plates and cotransfected with the reporter plasmid using

Lipofectamine/Plus reagent according to the manufacturer’s instructions (Invi-

trogen; final concentration: 1 ng/ml plasmid, 1.3 ml/ml Lipofectamine). After

2 h, siRNAs were added in the presence of Oligofectamine (Invitrogen; final

concentration: 8 ml/ml Oligofectamine/50 nM siRNA). After a further 2-h

incubation at 37 1C the medium was removed and replaced with 100 ml RPMI

medium without phenol red supplemented with 10% (vol/vol) FBS and

incubated for 3 d at 37 1C. The fluorescent read-out was measured in 24 h

intervals over 3 d in a plate reader (Victor, Berthold Technologies) as described

previously. Fluorescence of eCFP and eYFP was measured with the excitation

filter of 436/20 nm and 500/25 nm and with the emission filter of 480/30 nm

and 535/30 nm respectively. The quotient of eYFP/eCFP fluorescence counts

represents inhibition of eYFP.

Western blot analysis. Western blot analysis was performed as described27.

Protein quantification was conducted with the BCA method (PIERCE).

Gel electrophoresis was performed on a 4–12% NuPAGE bis-Tris gel

(Invitrogen) with 10 mg protein per slot. Proteins were electro-blotted to

PVDF Immobilon-P membranes (Millipore) and developed using the

mouse monoclonal antibodies against CDC-34 (ref. 28) and uBE21 (1:500;

Pharmingen, #610748) in combination with anti-alpha-tubulin (1:10,000,

Sigma, #T-5168), which served as a loading control. Horseradish peroxidase-

coupled goat anti-mouse IgG secondary antibody (Sigma, #A2304) was used

at a 1:1,000 dilution.

mRNA analysis with Q-PCR. Total RNA was prepared using the RNeasy 96 kit

(Qiagen #74183) according to the manufacturer’s instructions and quantified

by OD260 measurement (Spectramax). Primer pairs and FAM-labeled TaqMan

probes for real time PCR were designed using the Primer Express v1.0 program

(ABI PRISM, PE Biosystems) and purchased from Microsynth (Switzerland).

Alternatively, ‘‘Assays-on-demand’’ primers were purchased from Applied

Biosystems. The primer sequences are listed in Supplementary Table 6. RNA

samples were assayed either with the Reverse Transcriptase Q-PCR Mastermix

kit (RT-QPRT-032X, Eurogentec) or, for ‘‘assay on-demand’’ kits, with the RT-

PCR Mastermix (Applied Biosystems, #4309169) using an ABI PRISM 5700

(Applied Biosystems).

Screening and normalization of data for ANN training. YFP fluorescence for

each siRNA was assayed on duplicate plates and at two time points. The whole

plate was discarded if for any time point the duplicate plates did not show a

Pearson coefficient of correlation of Z0.7 or when the positive control siRNA

did not inhibit YFP expression by Z60%, compared to negative control. Data

for 2,675 siRNA sequences passed this filter. Subsequently, 9% of the data was

discarded, because duplicate measurements of two time points for individual

siRNAs showed a standard deviation of Z30% inhibition. The remaining

duplicate data points were averaged and used for neural net training and

testing. The final data set contained 2,431 sequences. For the training all data

were normalized against the negative control (set at 10% activity) and the

positive control (at 90% activity) which differs from the normalization used for

reporter data plots and directly mentioned in the text. Correlation is invariant

under these two normalization variants. For the network training, excess

activity outside of a 0–100% range was dampened down to fit this activity

range. The output of the network is given as a fraction between 0–1.

Generation of training and testing sets. The training/testing division was

performed with [pseudo-] random numbers picked for each siRNA with a

chance of 1:9 of assignment to the training set (2182 siRNA) or testing set (249

siRNA). Four differently sized subsets were constructed by randomly picking

siRNAs from the largest training set. Additional subsets were constructed

by separating the full size sets of training and testing by their target origin

(that is, human, rodent, E2).

Method of training ANNs. Data from a given training set were submitted to

network training using the Stuttgart Neural Net Simulator (SNNS) (http://

www-ra.informatik.uni-tuebingen.de/SNNS/). The siRNA sequence was pre-

sented to the input layer and the reporter data were used to adjust the weights

between the network nodes. Each siRNA sequence and its target inhibition value

were presented a total of ten times. After a one time presentation of all data

points the weights of the network were updated synchronously with a learning

rate of 0.1. Based on five different initializations of weights, the resulting weights

of five trained networks differed but all five networks consistently showed only

slightly varying prediction output. A final output was achieved by averaging the

signals of the respective output node of all five networks.

High-throughput siRNA transfection for luciferase reporter gene assay. Each

of nine 150 cm2 flasks of HeLa cells were transfected with 50 mg of HRE-Luc

reporter plasmid (a gift of David M. Livingston, Dana-Farber Cancer Institute)

and 10 mg of pRL-SV40 Renilla Luciferase plasmid (Promega), using 180 ml

FuGENE6 transfection reagent (Roche), according to manufacturer’s instruc-

tions. Plasmid-transfected cells were trypsinized, counted using a ViCell XR

(Beckman Coulter) and diluted in medium to a concentration of 50,000 cells/

ml; 25 ml of the cell suspension, containing 1,250 cells, was then dispensed to

each well of an opaque, white, 384-well microtiter plate (Nalge Nunc) using a

Multidrop (Thermo) and cultured for 24 h. For siRNA transfection, Oligo-

fectamine (Invitrogen) was diluted to a concentration of 0.07 ml oligofectamine

per 4 ml Opti-MEM I, and incubated for 5 min. Following the incubation, 4 ml

of diluted transfection reagent was added to 4 ml of a 375 nM siRNA pool of

two duplexes, diluted in Opti-MEM I, in a 384-well storage plate (Nalge Nunc).

The 8 ml siRNA transfection mixture was incubated for 20 minutes and then

transferred to a 384-well microtiter plate of HeLa cells. HeLa cells were treated

with 100 mM Deferoxamine Mesylate (Sigma) 48 h after siRNA trans-

fection. After 24 h, cells were assayed for Firefly and Renilla luciferase activity

using the Dual-Glo Luciferase Assay System (Promega), per manufacturer
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instructions, and an EnVision Reader, with 100 millisecond integration per well

(Perkin Elmer). BIOPREDsi is available at http://www.biopredsi.org/.

Note: Supplementary information is available on the Nature Biotechnology website.
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