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In this paper we study the ability of the Cokriging method to represent functions with

multiple local minima and sharp discontinuities for use in the multidimensional design of a

low-boom supersonic business jet wing-body-canard configuration. Cokriging approxima-

tion models are an extension of the original Kriging method which incorporate secondary

information such as the values of the gradients of the function being approximated. Pro-

vided that gradient information is available through inexpensive algorithms such as the

adjoint method, this approach greatly improves on the accuracy and efficiency of the

original Kriging method for high-dimensional design problems. In order to construct

Cokriging approximation models, an automated Euler and Navier-Stokes based method,

QSP107, has been developed to provide accurate performance and boom data with very

rapid turnaround. The resulting approximations are used with a simple gradient-based

optimizer to improve a multi-objective cost function with large variations in the design

space. Results of sample two-dimensional test problems, together with a 15-dimensional

test case are presented and discussed. The Cokriging method is a viable alternative to

quadratic response surface methods for preliminary design using a moderate number of

design variables, particularly when the cost function being optimized is very nonlinear.

Nomenclature

β constant underlying global portion of Kriging
model

CD drag coefficient

f constant vector used in Kriging model

fc constant vector used in Cokriging model

k number of design variables

ns number of sample points

r vector of correlation values for Kriging model

rc vector of correlation values for Cokriging model

R(.) correlation function for Kriging model

R correlation matrix for Kriging model

Rc correlation matrix for Cokriging model

x scalar component of x

xp vector denoting the pth location in the design
space

y(.) unknown function

ŷ(.) estimated model of y(.)
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� vector of correlation parameters for Kriging
model

σ̂2 estimated sample variance

1. Introduction

T
HE optimization of aerospace systems is an iter-
ative process that requires computational mod-

els embodied in complex and expensive analysis soft-
ware. This paradigm is well exemplified by the field of
Multidisciplinary Design Optimization (MDO) which
attempts to exploit the synergism of mutually inter-
acting disciplines in order to improve the performance
of a given design, while increasing the level of con-
fidence that the designer places on the outcome of
the design itself. MDO methods, particularly those
based on high-fidelity analyses, greatly increase the
computational burden and complexity of the design
process.1–4 For this reason, high-fidelity analysis soft-
ware typically used in single discipline designs may
not be suitable for direct use in MDO.2,5 Faced with
these problems, the alternative of using approximation
models of the actual analysis software has received in-
creased attention in recent years. A second advantage
of using approximation models during the optimiza-
tion process is that, since their evaluation is inexpen-
sive, they can be used with optimization algorithms
which do not rely on the computation of sensitivity
derivatives.

One of the most common methods for building an
approximate model is the Response Surface Method
(RSM) in which a polynomial function of varying order
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(usually a quadratic function) is fitted to a number of
sample data points using least squares regression. This
method has achieved popularity since it provides an
explicit functional representation of the sampled data,
and is both computationally inexpensive to run and
easy to use. However, response surface models have
several key limitations: their accuracy is only guaran-
teed within a small trust region, and, by design, they
are unable to predict multiple extrema. In addition,
these methods were originally developed to model data
resulting from physical experiments which had a ran-
dom error distribution. Since the nature of computer
experiments is such that random errors are not present
(a bias is much more common), the use of these meth-
ods for modeling deterministic data has resulted in
serious debate within the statistical community.6 In
order to overcome these problems, Sacks, et al.7 pro-
posed an interpolation modeling technique, known as
the Kriging method, developed in the fields of spatial
statistics and geostatistics, in order to approximate
the results of deterministic computer analyses. The
Kriging method is different from the RSM since the
interpolation of the sampled data is carried out using
a maximum likelihood estimation procedure,8 which
allows for the capturing of multiple local extrema.
The Kriging method, however, is more expensive to
evaluate than a traditional quadratic response surface,
although the cost of evaluation is still orders of mag-
nitude smaller than the costly CFD simulations that
it is attempting to approximate. In addition, it does
not provide an explicit equation for the approximation.
Finally, but most importantly, just as any approxima-
tion model, the accuracy of a Kriging model depends
greatly on the number of sample data points used and
their locations in multidimensional space. In order to
fully exploit the advantages of Kriging models, a large
number of sample data points must be distributed
within the design space. This sampling process can be
very costly and even impractical in high-dimensional
design optimization using high-fidelity methods.

The Cokriging method is an extension of the Krig-
ing method that incorporates gradient information in
addition to primary function values when generating
approximation models. Provided that gradient in-
formation is available through inexpensive algorithms
such as the adjoint approach, the Cokriging method
can use this relatively cheap gradient information in
lieu of the computationally expensive functional eval-
uations (CFD analyses in our case). This was the
objective that we were trying to accomplish when the
Cokriging method was first used in aerospace appli-
cations. Using this approach one can approximate
the original function with a much smaller number of
samples, without significantly sacrificing the accuracy
of the approximation. The gradient information at
each sample point provides a wealth of information,
since it is calculated with respect to all the design

variables in the problem. This information can be di-
rectly built into the Cokriging formulation as we had
described in 9 in what we called the Direct Cokrig-

ing method. Alternatively, the gradient information
can be included in an augmented Kriging model by
adding new points to the sample database that are
obtained using a linear Taylor series expansion about
the points at which the gradients were computed. This
procedure was also followed by Liu and Batill10 who
called it Database Augmentation. In their work, an
assessment of the distances used to add new sam-
ple points was made, together with a study of three
methods to obtain the values of the Kriging approx-
imation parameters by minimizing different norms of
the approximation error. In our previous work, we had
only found small differences between the Direct Cok-
riging and Database Augmentation approaches for the
chosen sample functions. Our intent is to use these
approximations models for highly nonlinear cost func-
tions which may even include discontinuities. Since
the quality of the approximation is to a certain extent
dependent on both the number of sample data points
and their locations, both alternatives must be consid-
ered as potential candidates.

In this paper, our intention is to further explore the
suitability of Cokriging models for multidimensional
design cases where the cost functions being approxi-
mated can have both multiple local minima and dis-
continuities. For this purpose, we have chosen the
aerodynamic shape design of a low-boom supersonic
business jet. The purpose of this multi-objective de-
sign optimization problem is to reduce the sonic boom
signature at the ground by modifying the aircraft con-
figuration parameters while preserving or improving
aerodynamic performance. In order to make sure that
a number of local minima are present in the design,
we have setup a very large design space which allows
for significant variations in the configuration.All de-
signs and approximations are based on the solution of
the Euler equations of the fluid on meshes that are
properly resolved (3 × 106 nodes and above) for the
computation of near-field pressures that can be used to
compute ground boom distributions. A nonlinear in-
tegrated boom analysis tool, QSP107, which incorpo-
rates an automated mesh generation routine, a three-
dimensional Euler flow solver, and a boom propagation
procedure that is based on geometric acoustics and
nonlinear wave propagation has been developed and is
used for sonic boom prediction. Section 2 presents an
overview of the derivation of the Kriging and Cokriging
methods (in both of their forms). Section 3 describes
the 15-dimensional test case that we use in this work,
together with two different 2-dimensional simplifica-
tions that will be used to visually examine the nature
of the functions being approximated and the suitabil-
ity of Kriging and Cokriging methods for these types of
functions. Section 4 describes the fast turnaround non-

2 of 21

American Institute of Aeronautics and Astronautics Paper 2002–5598



linear analysis environment that we have developed to
provide sample data points and gradients for the ap-
proximations. Finally, Section 5 presents the results
of our 2- and 15-dimensional test cases with several
comparisons between Kriging and Cokriging approxi-
mations.

2. Overview of Kriging Method
2.1 Original Kriging Method

The Kriging technique uses a two component model
that can be expressed mathematically as

y(x) = f(x) + Z(x), (1)

where f(x) represents a global model and Z(x) is
the realization of a stationary Gaussian random func-
tion that creates a localized deviation from the global
model.11 If f(x) is taken to be an underlying con-
stant,8 β , Equation (1) becomes

y(x) = β + Z(x), (2)

which is used in this paper. The estimated model of
Equation (2) is given as

ŷ = β̂ + rT (x)R−1(y − f β̂), (3)

where y is the column vector of response data and f is
a column vector of length ns which is filled with ones.
R in Equation (3) is the correlation matrix which can
be obtained by computing R(xi, xj), the correlation
function between any two sampled data points. This
correlation function is specified by the user. In this
work, the authors use a Gaussian exponential correla-
tion function of the form provided by Giunta, et al.6

R(xi, xj) = exp

[

−

n
∑

k=1

θk|x
i
k − x

j
k|

2

]

. (4)

The correlation vector between x and the sampled
data points is expressed as

rT (x) = [R(x, x1), R(x,x2), ..., R(x,xn)]T . (5)

The value for β̂ is estimated using the generalized least
squares method as

β̂ = (fT R−1f)−1fT R−1y. (6)

Since R is a function of the unknown variable θ, β̂
is also a function of θ. Once θ is obtained, Equation
(3) is completely defined. The value of θ is obtained
by maximizing the following function over the interval
θ > 0

−
[ns ln(σ̂2) + ln |R|]

2
, (7)

where

σ̂2 =
(y − f β̂)T R−1(y − f β̂)

ns

. (8)

2.2 Direct Cokriging Method

In order to construct a Kriging approximation the
only data required are the function values at a number
of pre-specified sample locations. For many computa-
tional methods, secondary information such as gradi-
ent values may be available as a result of the analysis
procedure. Alternatively, the gradient vector can be
computed with very little additional cost, as is the
case in the adjoint method.3 Gradient information
is usually well cross-correlated with the function val-
ues and thus contains useful additional information.
The Cokriging method can approximate the unknown
primary function of interest more effectively by using
these secondary function values.12 This section briefly
describes the theory behind Cokriging approximations.

For the original Kriging method, the covariance ma-
trix of Z(x) is defined as

Cov
[

y(xi), y(xj)
]

= σ2R
[

R
(

xi,xj
)]

, (9)

where R is the correlation matrix and R
(

xi,xj
)

is
the correlation function given by Equation (4). Since
the correlation matrix Rc and the correlation vector
rc for the Cokriging method are evaluated using not
only function values at the sample points, but also
with their gradient, the covariance can be modified as
follows

Cov
[

y(xi), y(xj)
]

= σ2R
[

R
(

xi, xj
)]

,(10)

Cov

[

y(xi),
∂y(xj)

∂xk

]

= σ2 ∂R(xi, xj)

∂xk

, (11)

Cov

[

∂y(xi)

∂xk

, y(xj)

]

= −σ2 ∂R(xi, xj)

∂xk

, (12)

Cov

[

∂y(xi)

∂xk

,
∂y(xj)

∂xl

]

= −σ2 ∂R(xi, xj)

∂xk∂xl

. (13)

Accordingly, the Cokriging model can be obtained by
modifying Equation (3) to yield

ŷc = β̂c + rT
c (x)R−1

c (yc − f cβ̂c), (14)

and
β̂c = (fT

c R−1
c f c)

−1fT
c R−1

c yc, (15)

where

yc =

[

y(x1), ..., y(xns),
∂y(x1)

∂x1

,
∂y(x1)

∂x2

, ...
∂y(xns)

∂xk

]

,

fc = [1, 1, ..., 1, 0, 0, ..., 0] ,

and fc contains ns ones and ns × k zeros. The reader
is referred to Refs7,11,12 for more details on the devel-
opment of the Kriging and Cokriging techniques.

2.3 Indirect Cokriging

Another way to include gradient information in the
Kriging method is to create additional function values
using the gradients available and a first order Tay-
lor series expansion in a close neighborhood of the
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sample point. In this approach, the original Kriging
formulation can be used with an increased number of
sample data values. These additional function values
play a similar role to the gradients since they tend
to have strong correlations with the original sample
points given the close distances to each other. The
authors have given this approach the name Indirect
Cokriging only to distinguish it from the Cokriging
(Direct Cokriging) method which uses the gradient in-
formation directly. Both of these approaches are used
in the results presented in this paper. Liu et al.10 re-
fer to the Indirect Cokriging method by the name of
Database Augmentation: although different error es-
timation criteria may be used, both approaches are
similar in nature.

3. Test Problem :
Low-Boom Supersonic Business Jet

(SBJ) Design
The design problem in question involves the ground

boom and drag minimization of a supersonic business
jet wing-body-canard configuration at a specified lift
coefficient, CL = 0.8885, which corresponds to a cruise
weight of 100, 000 lbs at a cruise flight altitude of
50, 000 ft. The aircraft geometry and flow conditions
were parameterized with a total of 70 potential design
variables. Three different test problems will be pre-
sented in the Results section. These problems include
two two-dimensional test cases used for validation and
demonstration and one 15-dimensional case used to
establish the feasibility of the method in higher di-
mensional spaces.

3.1 2-Dimensional Validation Case

For the initial validation test case, two geometric
design variables were chosen so that the actual objec-
tive function and its Cokriging approximation could
be graphically compared and validated. In this case,
we selected as design variables the streamwise position
of the wing along the surface of the fuselage mea-
sured from its nose, and the radius of the fuselage
station located halfway between the nose and the tail.
This choice of design variables was found to produce
a smoothly varying objective function (CD) with mul-
tiple local extrema. This design space was used as a
realistic test function for the visualization of Cokriging
models.

3.2 2-Dimensional Design Problem

In order to address the ability of Cokriging ap-
proximations to effectively deal with objective func-
tions with discontinuities, a 2-dimensional SBJ design
problem was set up in which both the coefficient of
drag, CD, and the ground boom overpressure were
minimized using successive Cokriging models and a
trust region methodology. The ground boom overpres-
sure was evaluated by simply measuring the strength

of the first pressure discontinuity in the signature.
More elaborate measures of overpressure (dBA, im-
pulse, etc.) could be easily incorporated. The chosen
design variables represent the following geometric pa-
rameters:

x1 = fuselage radius at 10% of fuselage length
x2 = fuselage radius at 20% of fuselage length

Variations in these design variables were used to
compute aerodynamic coefficients and ground boom
pressure distribution at 5 sample design points cho-
sen by incrementing and decrementing each variable
from the baseline value using a straightforward de-
sign of experiments approach. Two additional flow
solutions were calculated at each sample points to col-
lect finite-difference gradient information along each
design variable. The step size was chosen to be 0.1%
of the value of the corresponding design variable. In
a realistic design environment the gradient informa-
tion would be obtained using our adjoint approach.
Using 5 sample values and 10 gradient components
(two at each sample point), indirect Cokriging mod-
els for both CD and ground boom overpressure were
generated and used in design optimization. The ap-
proximation and optimization procedure was repeated
three times for the boom optimization case to graph-
ically demonstrate the feasibility of using Cokriging
models for sonic boom minimization.

3.3 15-Dimensional Design Problem

The design problem was extended to a 15 design
variable problem to test the procedure in a more re-
alistic design environment. The list of geometric in-
fluences of the design variables is given below and in
Figure 9:

x1 = canard wing sweep angle at c/4 line
x2 = canard position along fuselage
x3 = canard linear twist angle
x4 = wing sweep angle at c/4 line
x5 = wing aspect ratio
x6 = wing taper ratio
x7 = wing dihedral angle
x8 = wing root thickness-to-chord(TOC) ratio
x9 = wing tip thickness-to-chord(TOC) ratio
x10 = wing tip linear twist angle
x11 = fuselage radius at 3% of fuselage length
x12 = fuselage radius at 10% of fuselage length
x13 = fuselage radius at 20% of fuselage length
x14 = fuselage radius at 30% of fuselage length
x15 = fuselage radius at 50% of fuselage length

The airfoil sections for the canard and main wing
were chosen to be simple biconvex airfoils of varying
thickness. The free-stream flow conditions were fixed
at M∞ = 2.0 and the coefficient of lift, based on a
wing planform area of 1, 650 ft2, a gross weight of
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100, 000 lbs and a cruise altitude of 50, 000 ft, was
fixed at CL = 0.08885. Once each CFD calculation
had converged a minimum of 4 orders of magnitude in
the average density residual, a near-field pressure dis-
tribution was extracted at a distance of 1.2 times the
fuselage length below of the body on the symmetry
plane. The pressure signature was then provided to
the boom propagation code to estimate ground sonic
boom characteristics. As in the previous test case,
the initial pressure rise at the ground was used as the
measure of overpressure.

The CD and boom overpressure Cokriging models
were incorporated into a nonlinear optimization pro-
cess using MATLAB’s fmincon to perform design op-
timizations. All design variables were allowed to span
a large design space. These large variations, when not
properly constrained, can lead to unrealistic designs.
As will be shown in the Results section, this is indeed
the case in this test case. However, our intention was
for this test case to serve as a demonstration of the ca-
pabilities of both our automated CFD system and the
Cokriging approximations and not as an actual usable
design.

4. Design Tools
In order to develop Kriging and Cokriging approxi-

mation models, a large number of CFD computations
for different geometries must be carried out automati-
cally. For this purpose, we have developed a nonlinear
integrated boom analysis tool, QSP107, that can pro-
vide both ground boom and aerodynamic performance
information for a small set of configuration variables
that are provided in an input file.

4.1 QSP107

A nonlinear integrated boom analysis tool has been
developed for sonic boom prediction based on fully
nonlinear CFD analyses. This tool couples the multi-
block Euler and Navier-Stokes flow solver FLO107-
MB13 to an H-mesh generator adapted from the
HFLO4 code of Jameson and Baker,14 and to the PC
Boom software for far-field propagation developed by
Wyle Associates.20 A flowchart of the automated anal-
ysis process can be seen in Figure 8.

The procedure starts with a geometry generation
module that automatically creates the necessary sur-
face meshes to describe the configuration in question.
This geometry module is simply based on a parametric
aircraft description with 67 design variables of which
a subset (either two or fifteen as discussed earlier)
are chosen for our optimization experiments. The H-
type mesh, which is generated automatically from the
parametric geometry definition, can handle arbitrary
wing-fuselage-canard configurations. The grid is then
adjusted to have higher resolution in the areas where
shock waves and expansions are present below the air-
craft, and its grid lines are slanted at the Mach angle

to maximize the resolution of the pressure signature
at distances of the order of one body length. The
user may specify the location of an arbitrary cylindri-
cal surface where the near-field signature is extracted
from the multiblock flow solution and provided as an
input to a modified version of PC Boom which propa-
gates a full three-dimensional signature along all rays
that reach the ground. This allows for the calcula-
tion of arbitrary cost functions (not only ground-track
initial overpressure) that may involve weighted inte-
gration of the complete sonic boom footprint. In
this work, however, only the ground track overpres-
sure has been considered. The flow solver combines
advanced multigrid procedures and a preconditioned
explicit multistage time stepping algorithm which al-
lows full parallelization.

Because of the advanced solution algorithms and
parallelization, the integrated tool provides fully non-
linear simulations with very rapid turnaround time.
Using typical meshes with over 3×106 mesh points we
can obtain a complete flow solution and ground signa-
ture prediction in under 5 minutes, using 16 processors
of a Beowulf cluster made up of 1.2Ghz AMD Athlon
processors. In this work, we have used QSP107 repeat-
edly to generate Kriging and Cokriging approximation
models which required 496 of these solutions for each
approximation step.

4.2 Optimization Algorithm

Given that both Kriging and Cokriging approxima-
tion models can handle cost functions with multiple
local minima and discontinuities, the logical choice of
optimization algorithm would be one that can per-
form global searches in a robust fashion. It is our
intention to use this kind of methods in the near fu-
ture, but for the time being we have chosen to use
a constrained gradient-based optimizer to perform all
computations. The medium-scale optimization algo-
rithm we have used is the fmincon algorithm in the
optimization toolbox of MATLAB.21 fmincon uses a
Sequential Quadratic Programming algorithm. In this
method, a Quadratic Programming (QP) subproblem
is solved at each major iteration. An estimate of the
Hessian of the augmented Lagrangian is updated at
each iteration using the BFGS formula. Line searches
are used, and the QP subproblem is solved using an
active set solution strategy.

In order to avoid getting trapped in a local mini-
mum, for each Cokriging approximation, a number of
optimizations are performed starting from randomly
chosen initial conditions within the design space, in-
cluding the baseline point. Although this is no guar-
antee of having arrived at the global optimum, the
minimum of all these optimizations is considered to
be the global optimum for the current approximation
model. This procedure is repeated as the trust region
size is decreased and the Cokriging approximations are
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refined.

5. Results
5.1 Graphical Validation of Cokriging Method

Two-dimensional Cokriging models were created for
the CD of the supersonic business jet test problem us-
ing sample data obtained from CFD analyses in order
to validate and investigate their ability to approximate
the results of the original CFD code. The two de-
sign parameters of the wing-body configuration chosen
as design variables were the wing streamwise location
along fuselage and the radius of the fuselage at its
mid-point. 400 CFD calculations were performed by
varying the design variables to obtain a graphical rep-
resentation of the actual CFD analyses. The results
are shown in Figure 1 (a). The design variables were
chosen so as to generate a realistic test function having
multiple local extrema to check the ability of Cokriging
models to simulate this feature. One important point
to note from the Figure is that the actual drag coef-
ficient varies smoothly with respect to the geometric
design variables. The selection of Gaussian exponen-
tial correlation function for the Kriging method was
based on the assumption that the response function to
be modeled was very smooth in nature. Thus, Figure 1
(a) provides the validation of the assumption and the
rationale for using the Gaussian correlation function
in this problem.

A total of 9 sample points were used to generate the
original Kriging model, and the 9 sample points to-
gether with gradient information at these points were
used for the Cokriging models. From the comparisons
in Figure 1, it is clear that Cokriging models performed
much better than the Kriging model in predicting
the objective function for both its general shape and
magnitude. The discrepancies of the original Kriging
model were caused by under-sampling.

Very little difference was found between the direct
and indirect Cokriging methods at least in this test
case and therefore, we feel comfortable that we can
use either of the two Cokriging approaches with sim-
ilar accuracy. The indirect Cokriging method has
the advantage of having a simpler formulation, but
there is a chance for numerical errors to be introduced
while estimating the additional function values from
the gradients. The direct method can be more accu-
rate because it uses gradient information directly, but
the formulation becomes more complex as the dimen-
sionality of the problem increases.

In order to investigate the applicability of the Cok-
riging models in 2-dimensional design spaces, CD op-
timizations were performed using each of the approx-
imation models generated above. Figure 2 (a) shows
the CD optimization results using the database con-
structed from 400 CFD calculations over the design
space. The optimization was repeated five different
times by changing the starting points. Four of them

converged to one local minimum point and one con-
verged to a different one. The optimizations were
again repeated using different approximation models
generated from Kriging and Cokriging methods, and
the results are compared in the subsequent figures.
As shown, the predicted optimum design point and
optimum value of CD for these cases were nearly iden-
tical. The predicted CD from the CFD database was
0.0059708 whereas those for the Cokriging models with
5 and 9 sample points (and gradients) were 0.0059759
and 0.0059758 respectively with almost the same op-
timum design point locations. The relative error for
the optimized CD value is within 0.086%. As we can
observe from Figure 2 (b), the ability of the original
Kriging method to simulate the unknown function was
clearly limited without an extensive set of sampled
data. The optimum point and the predicted CD value
were far off from the actual ones.

5.2 Two-Dimensional Optimization Problem

CD Optimization using Cokriging Model

The procedure used in the validation test case was
repeated for this two-dimensional design problem with
a different set of design variables. This time, the design
variables and their range of variation were specifically
selected to present a challenging boom minimization
case. The two design variables selected represent the
radii of two fuselage sections located at 10% and 20%
of the length of the fuselage. A total of 121 CFD cal-
culations were carried out and the results of the CD

variation over the design space are shown in Figure 3
(a). Even for this relatively simple function, the orig-
inal Kriging model with 5 samples performed poorly
in approximating the CFD calculations, whereas the
two Cokriging approaches augmented by gradient in-
formation at the sample points were more successful in
approximating the function. As in the test case, the
CD optimizations using Cokriging models were much
more accurate than that using the original Kriging
model in terms of both the ability to find the local
minimum and to estimate the actual function values.
Figure 4 shows the graphical representation of the op-
timization results.

Ground Boom Optimization using Cokriging
Model

The general shape of the ground boom overpressure
across the design space computed using the same 121
CFD calculations is shown in Figure 5 (a). Unlike the
CD objective function case, the values of the initial
shock jump at the ground varies almost linearly with
each design variable until sharp discontinuities are
found for lower values of both design variables. This
kind of functional variation is considered to be quite
difficult to capture with a small number of sample data
points. Subsequent Figures show the approximations
of the exact boom overpressure values using both Krig-
ing and Cokriging models with 5 sample data points.
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Similarly to the previous test case, the accuracy of the
Kriging model was greatly improved by the addition
of gradient information.

Even though Cokriging models had some difficulty
to capture the exact variation of the overpressures over
the entire design space, three successive design itera-
tions using a trust region methodology produced quite
satisfactory results. Figure 6 (a) shows the history of
sample points computed for all three design iterations
as well as the evolution of the optimum design point
superimposed on the exact CFD contour plot (for ref-
erence purposes only). Figures 6 (b),(c),(d) represent
Cokriging models and the location of the sample points
for each design iteration as well as the true and esti-
mated optima for the Cokriging models. After three
design iterations the actual location and the function
value of the local minimum was achieved fairly accu-
rately.

Figure 7 shows the result of a test case in which the
effect of accumulating sample points was examined.
As can be seen in Figure 7 (a), accumulating the 1st

and 2nd sample sets greatly improved the ability of
the Cokriging model to capture the general features
of the target function over the complete design space.
However, combining the 2nd and 3rd sets did not help
the accuracy of the Cokriging model much. This is
a consequence of the fact that a sharp discontinuity
existed around the region of interest and the Cokriging
model could not find accurate correlation parameters
between all sample points. By retaining the sample
points from the 1st set, global information is used to
model the discontinuity more accurately. These results
are also repeated for the case of accumulating all three
sample sets, which are shown in Figure 7 (d).

5.3 15-Dimensional Design Case

The last test case corresponds to the demonstration
of the Cokriging method in a high-dimensional prob-
lem. In all the results that follow, the 15-dimensional
parameterization of Section 3.3 will be used. The ob-
jective is to minimize a weighted combination of the
drag coefficient, CD, and the ground boom overpres-
sure, ∆p,

I = αCD + β∆p, (16)

by varying the values of 15 configuration design vari-
ables. The only constraints imposed on the problem
are upper and lower bounds on the design variables.

At each design iteration, Cokriging approximations
of the CD and ∆p are constructed by running QSP107
at 31 sample points distributed in a star design. The
star design consists of a central point and variations
±∆xi along each of the design variables. In the first
iteration of the procedure, the ∆xi values were cho-
sen so that they had relatively high magnitude and
the sampling spanned a large design space. For ex-
ample, for the sweep angle of the wing, ∆xi = ±10◦.
In subsequent iterations, ∆xi were monotonically de-

creased according to the bounds of the corresponding
trust region.

Additional CFD computations using QSP107 were
carried out to obtain the necessary finite-difference
gradient information. This requirement resulted in
a total of 496 CFD and boom propagation solutions.
It must be mentioned that this approach was simply
followed to accomplish our goals in a straightforward
fashion. The proper way of obtaining gradient in-
formation would be by using the adjoint solver for
QSP107. This would have resulted, instead, in an ad-
ditional 31 CFD solutions, for a total of 62 solutions.
This is quite a small number compared with the 496
actually used. As the number of design variables in-
creases, the trade-off is even more compelling.

Figure 9 details the geometric meaning of all 15 de-
sign variables. Table 1 summarizes the results of all
optimizations that were carried out. Although the pri-
mary results are those of the last row (CD + Boom
Optimization), we also conducted optimizations based
on the CD and boom overpressure alone for compar-
ison purposes. The baseline design drag coefficient
was found to be CD = 0.0088 and the overpressure,
∆p = 0.77569 psf.

CD + Boom Optimization

In the last row of Table 1 we can see the results of
three major iterations of the design procedure. At each
iteration, a Cokriging approximation was constructed
and a search for the global optimum was conducted
by multiple runs of the fmincon algorithm. Once the
global optimum had been found, a single CFD compu-
tation was carried out to identify the error in between
the approximated and actual results. At that point,
the trust region size was adjusted, and the procedure
was repeated for a new Cokriging approximation cen-
tered about the location of the optimum of the previ-
ous iteration. The values for the weights were selected
to be α = 50, and β = 1.

In three design iterations, the CD has decreased
by 37.43%, while the boom has been attenuated by
18.57%. Since the design is not properly constrained,
these numbers do not carry much meaning other than
the fact that the optimization is lowering the value of
the composite objective function. What is more rele-
vant is the fact that the Cokriging approximation, at
each design iteration is able to approximate both the
CD and ∆p with relative errors that are always less
than 5%. As the size of the trust region decreases, so
do the errors, although not monotonically.

Figure 10 shows several views of the initial and opti-
mized configurations. The main cause of the reduction
of both the drag and the overpressures can be seen to
be the increase in wing sweep to a rather large amount.
This increase in sweep has the effect of spreading the
lift over a longer distance which has beneficial effects
for both sonic boom and performance. In addition, al-
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though not clearly visible from the Figure, the fuselage
area distribution has been tailored at all 5 design lo-
cations, the sweep of the canard has increased slightly.
It must be noted that, although the wing sweep and
location are rather extreme, they are not against the
bounds of the design space. Finally, notice that the
front portion of the fuselage has changed in shape sig-
nificantly: the included angle at the nose decreases to
weaken the leading shock, while a bump is formed right
behind that causes a smooth recompression, followed
by an expansion to weaken the overall effect on the
overpressure.

Figure 11 shows both the near-field and ground pres-
sure signatures for the original and optimized designs.
It is found that the modifications to the fuselage shape,
together with the location of the canard and the wing
position and sweep cooperate to decrease the intensity
of the initial shock and to prevent the coalescence of
the wing leading edge shock.

CD Optimization and ∆p Optimization

The procedure followed for this CD optimization is
identical to that described previously, but the weight
on ∆p is β = 0. The results in the Table show the
evolution of the design to the minimum at the third
design iteration.

The results for the boom optimization are fairly
similar. The ground overpressure decreases monoton-
ically this time from an initial value of 0.77569 psf to
0.63858 psf. The geometries corresponding to both
optimized results are relatively similar, with the wing
sweep being again the dominant configuration vari-
able.

It must be noted that in all three optimizations, the
main stumbling block in the development of accurate
Cokriging approximations is still the calculation of θ.
This is particularly the case in the Indirect Cokrig-
ing method because, as the sample points get closer
to each other, the correlation matrix may become ill-
conditioned. Further research is needed to devise more
robust methods for the computation of this parameter.

6. Conclusions
This paper explores the use of Cokriging approxi-

mate models for cost functions with multiple local min-
ima and discontinuities in multi-dimensional space.
If gradient information is available inexpensively, the
Cokriging method is found to be superior to the origi-
nal Kriging method for representation of complicated
cost functions. Cokriging models depend heavily on
the choice of the parameter θ, which normally results
from an unconstrained optimization problem. More
appropriate alternatives to the choice of θ need to be
investigated. Results are presented for sample two-
dimensional test cases in order to visually validate the
approximation functions. It is shown that reuse of in-
formation in the Cokriging approximation may both

be beneficial and detrimental. Finally, design opti-
mization based on a 15-dimensional academic test case
is performed in order to minimize a weighted combi-
nation of the CD and the ground boom overpressures.
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(d) Indirect Cokriging Model with 9 Samples and 18
Additional Values Obtained from Gradients

Fig. 1 Validation Problem. CD Cokriging Models for 2-D SBJ Test Case Using Two Design Variables:
Wing Position and Fuselage Radius at 50% Location
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Fig. 2 CD Optimization Results for 2-D SBJ Test Case
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(d) Indirect Cokriging Model with 5 Samples and 10
Additional Values Obtained from Gradients

Fig. 3 CD Cokriging Models for 2-D SBJ Design Problem Using Two Design Variables: Fuselage Radii
at 10% and 20% Locations
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Fig. 4 CD Optimization Results for 2-D SBJ Design Problem
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(d) Cokriging Model with 5 Samples and 10 Additional
Values Obtained from Gradients

Fig. 5 Boom Overpressure Cokriging Models for 2-D SBJ Design Problem Using Two Design Variables:
Fuselage Radii at 10% and 20% Locations
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Fig. 6 Boom Overpressure Optimization Results using Indirect Cokriging Method for 2-D SBJ Design
Problem
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Fig. 7 Boom Overpressure Contour Plots of Indirect Cokriging Models for 2-D SBJ Design Problem
Using Different Amount and Locations of Sample Values
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X1 : Canard Sweep Angle
X2 : Canard X−Position
X3 : Canard Twist Angle

X10: Wing Tip Twist

X4  : Wing Sweep Angle
X5  : Wing Aspect Ratio
X6  : Wing Taper Ratio
X7  : Wing Dihedral Angle
X8  : Wing Root TOC
X9  : Wing Tip TOC

X7

X12 : Fuselage Radius at 10% Fuselage Length

X14 : Fuselage Radius at 30% Fuselage Length
X15 : Fuselage Radius at 55% Fuselage Length

X13 : Fuselage Radius at 20% Fuselage Length
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Fig. 9 Definition of Design Variables for 15-Dimensional SBJ Design Problem
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1st Design 2nd Design 3rd Design
Cycle Cycle Cycle

x1 = 44.30 x2 = 0.400 x1 = 45.94 x2 = 0.410 x1 = 45.05 x2 = 0.395
x3 =-0.216 x4 = 70.64 x3 =-0.460 x4 = 70.10 x3 =-0.217 x4 = 70.26
x5 = 4.034 x6 = 0.200 x5 = 4.514 x6 = 0.227 x5 = 4.439 x6 = 0.237

Optimum x7 =-0.013 x8 = 3.906 x7 = 0.182 x8 = 3.574 x7 = 0.191 x8 = 3.625
Design x9 = 3.928 x10=-1.201 x9 = 3.744 x10=-1.454 x9 = 3.790 x10=-0.532

x11= 0.459 x12= 1.684 x11= 0.523 x12= 1.694 x11= 0.478 x12= 1.767
CD x13= 2.941 x14= 3.493 x13= 2.837 x14= 3.517 x13= 2.809 x14= 3.415

Optimization x15= 4.458 x15= 4.422 x15= 4.329
Predicted 0.0054456 0.0051252 0.0052336
Optimum
Verified 0.0053675 0.0049775 0.0051196

Optimum∗

% Error 1.455 2.967 2.230
x1 = 46.82 x2 = 0.407 x1 = 45.77 x2 = 0.394 x1 = 45.46 x2 = 0.387
x3 = 0.258 x4 = 60.71 x3 = 0.014 x4 = 69.90 x3 =-0.023 x4 = 70.15
x5 = 4.091 x6 = 0.212 x5 = 4.100 x6 = 0.221 x5 = 4.233 x6 = 0.229

Optimum x7 = 0.121 x8 = 4.094 x7 = 0.173 x8 = 3.984 x7 = 0.204 x8 = 3.855
Design x9 = 4.098 x10= 1.036 x9 = 4.004 x10= 0.104 x9 = 3.922 x10=-0.159

x11= 0.452 x12= 1.915 x11= 0.426 x12= 1.865 x11= 0.441 x12= 1.857
Sonic Boom x13= 2.952 x14= 3.491 x13= 2.848 x14= 3.440 x13= 2.684 x14= 3.424
Optimization x15= 4.592 x15= 4.664 x15= 4.395

Predicted 0.70278 0.64847 0.62872
Optimum
Verified 0.69947 0.68337 0.63858

Optimum∗

% Error 0.473 0.718 1.544
x1 = 45.92 x2 = 0.404 x1 = 45.04 x2 = 0.393 x1 = 45.50 x2 = 0.387
x3 =-0.050 x4 = 70.00 x3 =-0.051 x4 = 70.14 x3 =-0.040 x4 = 70.33
x5 = 4.068 x6 = 0.207 x5 = 4.226 x6 = 0.228 x5 = 4.235 x6 = 0.230

Optimum x7 = 0.016 x8 = 3.952 x7 = 0.151 x8 = 3.844 x7 = 0.204 x8 = 3.838
Design x9 = 3.954 x10=-1.094 x9 = 3.914 x10=-0.193 x9 = 3.915 x10=-0.182

x11= 0.448 x12= 1.814 x11= 0.437 x12= 1.840 x11= 0.445 x12= 1.844
CD + Boom x13= 2.829 x14= 3.487 x13= 2.839 x14= 3.418 x13= 2.685 x14= 3.422

Multi-Objective x15= 4.540 x15= 4.390 x15= 4.388
Optimization Predicted CD = 0.0060186 CD = 0.0056938 CD = 0.0055236

Optimum Boom = 0.74181 Boom = 0.68679 Boom = 0.63164
Verified CD = 0.0057324 CD = 0.0055761 CD = 0.0055115

Optimum∗
Boom = 0.71980 Boom = 0.68615 Boom = 0.63794

% Error Error CD = 4.990 Error CD = 2.110 Error CD = 0.220
Error Boom = 3.058 Error Boom = 0.093 Error Boom = 0.988

Table 1 Summary of Results for 15-Dimensional Optimization Case (* Calculated using CFD analysis
code with predicted optimum design
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(a) Base(Grey) and Final Design(Green) Configuration
Comparison : Top View

(b) Base(Grey) and Final Design(Green) Configuration
Comparison : Front View

(c) Final Design Configuration (d) Final Design Configuration

Fig. 10 Final Design Configuration Drawings
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(a) Near-Field Pressure Distribution Comparison
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(b) Ground Boom Comparison

Fig. 11 Comparison Between Base and Final Design Configurations for 15-Dimensional SBJ Design
Problem
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