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In the last few years, the importance of measuring gait characteristics has increased tenfold due to their direct relationship with
various neurological diseases. As patients suffering from Parkinson’s disease (PD) are more prone to a movement disorder, the
quantification of gait characteristics helps in personalizing the treatment. +e wearable sensors make the measurement process
more convenient as well as feasible in a practical environment. However, the question remains to be answered about the validation
of the wearable sensor-based measurement system in a real-world scenario. +is paper proposes a study that includes an al-
gorithmic approach based on collected data from the wearable accelerometers for the estimation of the gait characteristics and its
validation using the Tinetti mobility test and 3D motion capture system. It also proposes a machine learning-based approach to
classify the PD patients from the healthy older group (HOG) based on the estimated gait characteristics. +e results show a good
correlation between the proposed approach, the Tinetti mobility test, and the 3D motion capture system. It was found that
decision tree classifiers outperformed other classifiers with a classification accuracy of 88.46%. +e obtained results showed
enough evidence about the proposed approach that could be suitable for assessing PD in a home-based free-living real-
time environment.

1. Introduction

+emost important symptom of Parkinson’s disease (PD) is
the disturbances in gait that directly affects the daily ac-
tivities as well as the quality of life [1]. +e disturbances in
gait characteristics in PD patients are categorized into
continuous gait and episodic gait disturbances [2]. Typical

features of gait in PD are short-step, hypokinetic, slow gait
with decreased arm swing, and episodic gait, which includes
freezing of gait (FOG) and festinating gait [3]. Despite the
clinical importance, most clinicians usually depend on
neurological examination or self-questionnaire-based ex-
amination for a short period of time. +erefore, it is very
difficult to assess the PD patient’s gait status outside the
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clinic and in a real-world environment. Objective quanti-
fication of gait is crucial for the measurement of overall
condition as well as disease monitoring in PD. Several
clinical scales such as Tinetti mobility test (TMT), Timed Up
and Go (TUG), and Unified Parkinson’s Disease Rating
Scales (UPDRS) are widely used to assess the PD and its
severity. In the last decade, numerous studies have inves-
tigated the usefulness of gait analysis. Quantitative gait
analysis includes infrared-based motion capture (three-di-
mensional (3D) motion capture), pressure-based gait
analysis (GAITRite), and treadmill gait analysis [4–6]. De-
spite their strength of accurate quantification of gait, clinical
implication is still controversial due to high cost and large
space or laboratory required for system set up.

To overcome the previous limitations, an attempt has
been made in this study to quantify the gait characteristics
using the algorithmic-based approach with a wearable ac-
celerometer and its validation using a 3D motion capture
system as well as TMT. TMTis widely used for predicting the
fall risk of elderly people based on the balance and gait test
score. TMT test consists of two components such as the
Tinetti balance scale and the Tinetti gait scale. +e balance
scale consists of 9 parameters, and each parameter has
subparameters with a score of 0/1 or 0/1/2.+e total possible
score of the balance section is 16. +e gait scale consists of 8
parameters, and each parameter has subparameters with a
score of 0/1 or 0/1/2. +e total possible score of the gait
section is 12. Each patient has to be assessed based on these
two scores. +e combined score determines the risk of falls
in elderly people. According to Tinetti, a total score of ≤18 is
treated as high risk, 19–23 is treated as moderate risk, and
≥24 is treated as low risk [7]. Since the Korean version of
TMT has already been validated with the PD patients in the
laboratory [8], this version has been used in this study.

+e contributions of the proposed study are as follows:

(1) +is study includes enrolment of a large number of
participants with PD, higher than that recommended
by the movement disorder society [9]. While the
recommended minimum number of patients is 30,
this study involves 48 PD patients to provide proper
validity and reliability of the result. In addition, 40
healthy older patients’ group has been included in
the study for the classification of PD subjects from
healthy older group based on estimated gait char-
acteristics. Due to a large number of subjects, the
proposed study could be recommended for a real-life
scenario.

(2) +e proposed study focuses on the PD patients when
they are clinically in “on” state, i.e., after taking
dopaminergic medicine. “On” state is the state where
the effect of the medicine is present, and the im-
provement in the gait characteristics is closer to the
healthy older group.

(3) +e good accuracy found by using only accelerometer
data for estimating spatiotemporal gait characteristics
indicates that the gyroscope data could be excluded
for these kinds of studies. +is will lead to low power

consumption in wearable devices and hence a longer
battery life for gait monitoring.

(4) +e validation study provides a low-cost alternative
for assessing gait characteristics in the “on” state of PD
patients for both indoor and outdoor environments.

(5) +e proposed study demonstrates that spatiotem-
poral gait characteristics estimated by using only
accelerometer data are highly correlated with those
obtained from a 3D motion capture system. Fur-
thermore, a high correlation was also found between
results obtained from the proposed approach and
those obtained from the clinical TMT test.

(6) +e proposed study proposed an automatic system
that can classify PD patients and HOG with machine
learning techniques based on gait characteristics.

+e structure of the paper is outlined in the following
way: Section 2 describes the past work related to this study.
Section 3 describes the data collection methods as well as the
proposed methodology. Section 4 presents the results and
outcomes of the proposed approach. Section 5 provides the
discussion. Section 6 describes the conclusion.

2. Related Work

+e gait analysis performed using a conventional way using a
qualitative analysis technique is usually performed in the
clinics, and it required a complete medical history of the
patients to determine the gait characteristics. +e conven-
tional method is relatively simple; however, it depends on
the expertise of the physicians, and it is relatively difficult to
measure the parameters in a quantitative manner with high
accuracy that could be useful for clinical applications. To
address this aforementioned problem, a new method has
been introduced in this paper to quantify the gait charac-
teristics in an objective way by using quantitative mea-
surement techniques [10, 11]. Wearable devices are now
used for a wide range of healthcare observations as well as
the measurement of gait.+e triaxial wearable accelerometer
is known to be a useful tool for assessing gait as well as
various motor symptoms in PD. It is not expensive as well as
can be used in a comfortable way by the user [12]. Beck et al.
proposed a new approach to quantify the gait smoothness
using accelerometer and gyroscope signals. +ey have
implemented this method in PD patients as well as healthy
controls, and they found clear differentiation in terms of
smoothness between two groups. For validation, they have
used the correlation technique by comparing their algorithm
spectral arc length measure (SPARC) with traditional gait
measures and the UPDRS scale. +is is one of the potential
use cases for using wearable sensors; however, their method
did not use 3D motion capture and TMT gait scale for
correlation [13]. Hausdorff et al. mentioned that quantifi-
cation of gait characteristics was possible using a wearable
device. +ey have collected the accelerometer data during
the tandem walking and also validated the method. +is
method also mentioned the potential of using wearable
devices for gait analysis. +ey have not implemented this
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method to the PD patients, and at the same time, they have
not used any other methods such as 3D motion capture or
clinical scale for correlation of their method [14]. Gazit et al.
proposed a method for quantifying gait initiations using
wearable sensors. +ey have used only one IMU sensor for
evaluating the gait initiations and found good results. +ey
have validated the method with the ground truth and found
that the interclass correlation coefficient with one wearable
sensor ranges from 0.75 to 0.96. +ey have tested this
method on the data collected from younger and older adults.
+ey have not used the 3D motion capture system for
validation of their results and also not implemented for PD
patients [15]. Anwary et al. proposed a method to find the
best location in the foot to place wearable sensors. +ey have
used accelerometer data and gyroscopic data for deter-
mining the gait features. For validation of this method, they
have used a quality motion capture system. +ey have done
this analysis for healthy groups andmentioned that wearable
sensors have the potential to quantify the gait characteristics
with high accuracy [16]. Qiu et al. proposed a method that
used body-worn sensors to collect the gait data for the as-
sessment of stroke patients. +ey have found that the gait
analysis has a huge contribution towards the diagnosis and
treatment of the stroke patients and mentioned that a
wearable sensor-based gait analysis system has the potential
for supporting rehabilitation in the clinics and hospitals [17].
Byun et al. have proposed a method that uses the wearable
accelerometer to measure the gait characteristics of older
people having normal cognition. +e gait characteristics are
quantified using the signal-processing algorithm. Validation
of the measurement method was carried out using the
GAITRite system. +e two methods show a good level of
correlation with a correlation coefficient that ranges from
0.91 to 0.96. +ey have not used the 3D motion capture
system, and this method was not tested for PD patients [18].
Pham et al. have proposed a technique that used an inertial
measurement system which consists of a gyroscope and an
accelerometer to detect the gait patterns such as toe-off and
heel strike in the patients with PD as well as older adults
when they were encountered with turning as well as straight
walking. An algorithm based on continuous wavelet
transform is used to detect the gait patterns, and the vali-
dation study was carried out using the optoelectronic sys-
tem. +ey have not used any clinical scale for comparing the
result. 3D motion capture has not been used in this research
[19]. Del Din et al. have used the wearable accelerometer for
measuring the gait characteristics of older adults as well as
PD patients. Signal processing of the collected accelerometer
data provides gait characteristics, and the validation was
carried out using the instrumented walkway. Fourteen gait
characteristics were compared; it was found that four
characteristics show a good amount of correlation, another
four gait characteristics show an agreement of moderate
level, and the rest six characteristics show an agreement of a
poor level. +is paper does not have any correlation analysis
of gait characteristics with the clinical scale, and they did not
use the 3D motion capture system [20]. Aich et al. proposed
a method that used a wearable accelerometer that can detect
FoG, and the validation study was performed that shows a

good level of correlation with a correlation coefficient that
ranges from 0.961 to 0.984. +e study also proposed a
machine learning-based approach to distinguish PD with
FoG from PD with no FoG, and an accuracy of 88% has been
found using SVM classifier. In this research, the effect of
dopaminergic medicine has not been considered, and the
correlation analysis has not been performed with clinical
scale [21]. Mikos et al. proposed a method for FoG detection
using a single sensor node. +ey have developed a system
using machine learning based on the extracted features from
the signals. +ey have found a classification accuracy of
92.9% in average of sensitivity and specificity when
exploiting its patient adaptive learning capability. +is re-
search has given enough evidence that a single sensor can be
used for the detection of FoG and machine learning systems
for the classification of FoG [22]. Jeon et al. proposed a study
that used the wearable device to detect the severity of tremor
in PD. +e wearable device used in this study consists of an
accelerometer and gyroscope. +is study also used machine
learning techniques to classify the severity of tremor based
on the score of UPDRS. It was found that the decision tree
outweighs other classifiers with an accuracy of 85.5%. +is
research has provided enough evidence that the wearable
sensors can be used for the diagnosis of PD, and machine
learning techniques can be used to automate the system [23].
Samà et al. proposed a study using wearable accelerometer
that can detect freezing of gait at real-time environment
using a set of features which are related to the previous
approaches mentioned by the previous researchers. +ese
features were trained using machine learning classifiers and
used to detect the FoG with an improvement over the
previous methods. +is research suggested that the wearable
sensor has the potential to be used for measuring the gait
characteristics, and machine learning techniques could be
used for the detection of the PD group [24].

+e past works mentioned above provide a strong
recommendation about the use of the wearable device in the
field of PD as well as the effective use of machine learning
techniques for autodetection of gait patterns in PD and
HOG. +e proposed approach has got a lot of inspiration
from the previous pieces of literature cited by different
researchers. In this study, an algorithmic-based approach
has been developed, and it was validated using clinical test
and well-known measuring instruments, and a machine
learning-based approach has been proposed to detect the PD
from the healthy older group using estimated gait charac-
teristics. +is system is developed by keeping in mind that it
can be used in the home environment as well as in clinical
environments.

3. Proposed Methodology

3.1. Data  ollection. +is study was performed clinically in
the “on” state, i.e., after taking dopaminergic medicine for
the PD group of patients. “On” state is the state where there
is an effect of the medicine. In this state, there is an im-
provement in gait characteristics. +e resulting gait char-
acteristics are very similar to those of the healthy older
group. +e accelerometer data for PD patients have been
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collected in the “on” state so as to study the difference
between two groups, i.e., PD patients and healthy older
group when they are in a similar state. +is study was
performed at Haeundae Paik Hospital located at Busan,
South Korea. +e approval was taken from the review board
of the institute (IRB No. 2017-01-028). Prior approval has
been taken from all participants before joining this study.
+e details about the PD group are shown in Table 1.

+e healthy older group comprises normal persons with
no signs of PD. No medication has been given to them prior
to this study. +e healthy group consists of 22 males and 18
females. All the subjects in the healthy group were age-
matched. +e details regarding the patients belonging to the
healthy group are shown in Table 2.

UPDRS and H&Y represent Unified Parkinson’s Disease
Rating Scale and Hoehn and Yahr scale, respectively.
UPDRS is widely used for checking the severity of the disease
[25]. H&Y scale is a clinical rating scale, which is used to
define different categories of motor functions in the PD [26].
Tinetti gait scale is widely used for predicting the fall risk of
elderly people.

+e participants were asked to wear the accelerometer on
the left knee as well as the right knee. Two wearable triaxial
accelerometers with a sampling frequency of 32Hz (Fit
Meter, Fit. Life, Suwon, Korea) were used. +e triaxial ac-
celerometer measures body movements in all directions:
anterior-posterior, mediolateral, and vertical. It is small and
lightweight (35mm× 35mm× 13mm and 13.7 gm). It is
sensitive to acceleration from − 8 g to 8 g, allowing for
monitoring of almost all human physical activities. All the
participants wore the accelerometers at a distance of 34 cm
from the ground, as shown in Figure 1. All the participants
were asked to walk along a six-meter track. For validation of
the proposed approach, the gait characteristics were also
measured by using the 3D motion analysis system (VICON,
Oxford, UK). +e motion was captured during the walking
process. Five important gait characteristics were measured
that include step time, stride time, step length, stride length,
and walking speed. For estimating gait status more objec-
tively, the Korean version of the Tinetti gait scale [7] was
used. +e gait characteristics obtained from the 3D motion
system and the Tinetti gait scale were used for validation of
the proposed approach.

3.2. Estimation of Gait  haracteristics. A variant of the
method proposed by Del Din et al. [12] was used to detect the
gait cycle. +e measured acceleration values along X-, Y-,
and Z-axes represent linear accelerations along the medial-
lateral (ML), anterior-posterior (AP), and vertical (V) di-
rections, respectively. +e corrections are needed to over-
come the effect of gravitational component, error due to
imprecise position of wearable accelerometer, etc. [27]. +e
dynamic tilt correction approach proposed in [27] was used
to transform the acceleration from ML and AP directions to
a global horizontal-vertical coordinate system. +e resulting
vertical acceleration signal was used hereafter for gait event
identification. A low-pass fourth-order Butterworth filter
with a cutoff frequency of 15Hz was used to filter the vertical

acceleration signal. +e filtered signal was integrated for gait
event detection. +e objective was to detect the initial
contacts (ICs) of the leg, which are also termed as the heel-
strike event in a gait cycle.+e locations of ICs were detected
from the points of minima in the smoothed signal by de-
termining the first-order derivative using the Gaussian
continuous wavelet transform. +e flowchart of the pro-
posed algorithmic approach based on the accelerometer data
is shown in Figure 2.

In this study, five gait characteristics such as step time,
stride time, step length, stride length, and walking speed were
estimated for the feasibility study of objective assessment of
PD using wearable accelerometer data. +ese five charac-
teristics have received great attention from the researchers in
gait-related study and its effectiveness for the assessment of
PD. Five major domains of gait study have been proposed by
Hollman et al. using the factor analysis: (1) step time and
stride time represented by the rhythm domain; (2) tempor-
ophasic domain of gait cycle represented by the phase do-
main; (3) step variability represented by the variability
domain; (4) step length, stride length, and gait speed rep-
resented by the pace domain; (5) step width represented by
the base of the support domain [28]. +e aforementioned five
characteristics have also been used recently to detect the FoG
[20]. Walking speed, stride length, and stride time have been
given high importance by Schlachetzki et al. [29] for the
discrimination of healthy subjects from the PD subjects.

Table 1: Details of the PD group.

M/F (n� 48) 25/23
Age 70.61± 9.51
UPDRS part III 20.9± 12.31
H&Y stage 2.10± 0.74
Disease duration (months) 35.49± 27.07
Timed-up and go 20.87± 15.78
Tinetti gait scale 9.86± 2.56

Table 2: Details of the healthy group.

M/F (n� 40) 22/18
Age 69.36± 7.42
UPDRS part III 0
Disease duration (months) 0

Figure 1: Location of the accelerometers specified for the proposed
study.
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Bertoli et al. estimated the spatiotemporal parameters such as
stride time, step time, swing time, stance time, stride length,
and gait velocity for the quantitative assessment of PD, mild
cognitive impairment patients, and healthy older adults [30].

+e step time can be calculated based on the IC events
[9] as follows:

step time(i) � IC(i + 1) − IC(i). (1)

Similarly, the stride time can also be computed based on
the IC events [9] as follows:

stride time(i) � IC(i + 2) − IC(i), (2)

where i denotes the index of the IC event in the signal. In the
proposed approach, the step length has been estimated using

the inverted pendulum model [21, 31], as shown in Figure 3.
+e step length and stride length can be computed as
follows:

step length � KI ∗ 2
������������
2WhH − H2( )

√
,

stride length � 2∗ step length,
(3)

where Wh represents the distance from the ground to the
wearable accelerometer and H represents the change in
height of the wearable sensor between two consecutive IC
events. +is is computed by finding the difference between
the maximum and minimum values of the double integrated
vertical acceleration signal between two IC events. +e
generic multiplying factorKI is used for mapping the center
of mass in an inverted pendulum model with that of the

Collection of acceleration data using triaxial
wearable accelerometer at knee of left and

right legs

Preprocessing of raw acceleration
data to eliminate the offsets and

misalignments

Filtering of acceleration data for the
left leg to remove noise

Detection of peaks (minima)
representing initial contact (IC) of the

left leg using continuous wavelet
transform

Calculation of spatiotemporal
parameters for the left leg using the

above data for left leg

Calculation of spatiotemporal
parameters for the right leg using

the above data for right leg

Comparison of result with
 3D motion analysis system

(gold standard)

Data Interpretation and validation of
results using statistical analysis

Filtering of acceleration data for the
right leg to remove noise

Detection of peaks (minima)
representing initial contact (IC)
of the right leg using continuous

wavelet transform

Figure 2: Flowchart of the algorithmic approach for the estimation of gait characteristics.
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wearable sensor. +e value of KI will change based on the
value ofWh. +erefore, to avoid the time-consuming task of
mapping for each participant that requires determining KI

for each participant, Wh has been fixed at 34 cm, and cor-
respondingly,KI � 4 has been chosen for this study.Walking
speed is calculated as follows [21]:

walking speed �
mean step length

mean step time
. (4)

+ese aforementioned five estimated gait characteristics
were used as features for the classification of PD groups and
healthy older group.

3.3. Machine Learning  lassifiers and Its Effectiveness for8is
Study. In this study, comparative performance analysis has
been carried out between four machine learning classifiers
that have been employed to perform the classification task
between the PD patients and the healthy control adults.

3.3.1. 8e k-Nearest Neighbour  lassifier (k-NN). +e k-NN
classifier performs the classification process based on the
proximity of a data point to the nearest training data points.
It generally measures the Euclidean distance to measure the
closeness between them.+e local data structure has a strong
influence on the k-NN algorithm. +ere is no standardized
rule to define the value of k. +e classes are selected based on
the majority rule from among the selected number of k-
nearest neighbors, where k is always greater than zero and an
integer. +e instability in the result, as well as an increase in
the variance, can be seen with the smaller values of k. +e
reduction in sensitivity, as well as increasing bias, can be seen
with the higher values of k. In general, the k values are
chosen depending on the dataset. In this study, a value of
k� 5 is chosen as it provides good accuracy [32, 33].

3.3.2. Support Vector Machine (SVM)  lassifier. SVM is one
of the classifiers suitable to deal with binary classification
problems. +e classifier tries to maximize the margin ar-
ithmetically between two input datasets by defining a surface
in an input space, which is multidimensional in nature [34].
In another way, SVM selects the hyperplane with the highest
possible margin between two classes while separating them.
It is impossible for a hyperplane to separate the data between
two classes, but it tries to separate as much data as possible to
provide good accuracy [35]. In this study, the radial basis
kernel function is used, which provides good accuracy
compared to other available kernel functions.

3.3.3. Naı̈ve Bayes (NB)  lassifier. NB classifier is one of the
simple probabilistic classifiers based on the Bayes’ theorem.
+is classifier selects mutually independent variables. +is
kind of classifier can be employed in the complex real-life
scenario as it can be trained efficiently using the supervised
learning technique. +e advantage of this algorithm is that it
needs less amount of data for training purposes to perform
the classification task. In this study, the classification task has
been performed by using the Bayes’ rule to calculate the
probability of class label PD or a healthy group [36].

3.3.4. Decision Tree  lassifier. +e decision tree classifier
works on the basis of conditional statements and its possible
consequences. It is a tree-like model. Nodes and branches
are the primary components to build a decision tree model.
+ree steps are followed for building a well-designed de-
cision tree model. +e first step is splitting, followed by
stopping, and then finally pruning. +e continuation of the
splitting process stops when the model reaches the desired
stopping criteria. +e stopping rule is used to avoid the
problem of overfitting and underfitting. If the stopping rule
does not work well, the pruning method is used to improve
the overall classification accuracy [37].

A planned-designed PD detection framework should be
efficient and quick enough to perform the binary classifi-
cation for the classification of PD patients from the healthy
older group. Accuracy, sensitivity, and specificity are widely
used to measure the effectiveness of the system. +e amount
of correctness required for the distinction of PD patients
from the healthy older group could be measured using the
term accuracy. +e potential to identify PD is measured by
sensitivity, and it is usually expressed as the ratio of true
positives to the total number of PD patients [21]. +e po-
tential to identify PD when the system identifies the PD can
be measured by the term specificity. +e subjects belong to
the PD group, correctly identified as PD subject, and are
represented as true positives. +e subjects belong to a
healthy older group, correctly identified as healthy older
groups, and are represented as true negatives. +e subjects
belong to the healthy older group but wrongly identified as
PD subjects are represented as false positives. +e subjects
belong to the PD group but wrongly identified as the healthy
older group are represented as false negatives. In this study,
the objective is to reduce the false negatives as it affects the
effectiveness of the system.

H

W h

K
1W

h

IC rightStep lengthIC le�

Figure 3: Extended inverted pendulum model [20] for estimation
of step length.
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4. Results

+e mean value of five estimated gait characteristics based
on the accelerometer data as well as the mean error rate
between the algorithmic approach and the 3D motion
capture system are highlighted in Table 3. +e correlation

plots between the algorithmic approach as well as a 3D
motion capture system are shown in Figures 4–8. +e mean
error rate was calculated based on the formula [21] as
follows:

average error rate(%) �
(value estimated from acc) − (value estimated from3D capture)

(value estimated from3D capture)
∗ 100. (5)

In this paper, Tinetti mobility test (TMT) gait scale is
used to assess the spatiotemporal gait characteristics such
as step time, stride time, step length, stride length, and
walking speed and its importance in terms of clinical
practices by comparing the score with the result obtained
using other methods, in this case, computerized gait
analysis using accelerometer data and 3D motion capture
system. +e true changes in the gait characteristics can be
easily understand based on the accuracy of the clinical
observation measures, and it is an important step in clinical
practices. So, in this paper, we have used Pearson’s cor-
relation coefficient to analyze the relationship between the
TMT gait scale score, and spatiotemporal gait character-
istics derived objectively used computerized gait analysis
using accelerometer data and 3D motion capture system.
+e correlation plots between TMT gait scale and gait
characteristics measured from the 3D motion capture
system are shown in Figures 4–8. We have found strong
correlations between them, and the results were mentioned
as follows: step time (0.96, p< 0.01), stride time (0.97,
p< 0.01), step length (0.98, p< 0.01), stride length (0.99,
p< 0.01), and walking speed (0.99, p< 0.01). Similarly, the
correlation plots between TMT gait scale and gait char-
acteristics obtained from the wearable accelerometer data
are shown in Figures 9–13. We have found moderate to
strong correlations between them, and the results were
mentioned as follows: step time (0.57, p< 0.01), stride time
(0.54, p< 0.01), step length (0.84, p< 0.01), stride length
(0.84, p< 0.01), and walking speed (0.75, p< 0.01).

+is study used the split named as stratified train-vali-
dation [21] with a ratio of 70 : 30 for training and validation.

+e total number of subjects including both the groups is 88.
Out of 88 subjects, 62 subjects belong to the training group,
and the rest 26 belong to the validation group. Out of 26
subjects, which belong to the validation group, 14 subjects
belong to the PD group (PDG) and 12 subjects belong to the
healthy older group (HOG). Moreover, a 5 split cross-vali-
dation was also performed based on the subject’s data to check
the generalizability of the model. +e cross-validation was
performed in such a way where the data of 62 random subjects
were used to train a classifier and the rest data of 26 subjects
were used for checking the testing accuracy. Test set 1, test set
2, test set 3, and test set 4 consist of 26 subjects each. +e
cross-validation was performed using 4 different classifiers,
namely, KNN, SVM, Naive Bayes, and decision tree. +e
implementation of four different algorithms was done to
perform a comparative analysis between the classifiers. After
successful cross-validation, it was found that the decision tree
plotted the best set of results by prompting a maximum
accuracy of 88.46%, sensitivity of 92.86%, and specificity of
90.91%, respectively. Table 4 shows the results for the cross-
validation.

+e classifiers’ performance has been evaluated using
three parameters such as accuracy, sensitivity, and speci-
ficity. +e classification results are shown in Table 5. +e
decision tree classifier could able to provide the highest
accuracy of 88.46%with a sensitivity of 0.9286 and specificity
of 0.9091. From 14 subjects belonging to PDG, the proposed
model correctly identified 13 as PDG. Similarly, from the 12
subjects belonging to HOG, the proposed model correctly
identified 10 as HOG. +e confusion matrix is shown in
Figure 14.

Table 3: Mean value of gait characteristics and average error rate for the left and right legs.

Sl. no. Parameters Mean value (3D motion capture) Mean value (algorithm) Mean error rate (%)

Left leg
1 Step time (s) 0.57 0.54 6.94± 2.82
2 Stride time (s) 1.17 1.13 4.76± 3.55
3 Step length (m) 0.37 0.34 6.35± 2.85
4 Stride length (m) 0.74 0.71 6.51± 2.92
5 Walking speed (m/s) 0.64 0.61 7.12± 2.74
Right leg
1 Step time (s) 0.54 0.56 7.14± 2.52
2 Stride time (s) 1.18 1.14 5.25± 3.62
3 Step length (m) 0.37 0.34 6.15± 2.81
4 Stride length (m) 0.74 0.70 6.35± 2.71
5 Walking speed (m/s) 0.69 0.66 6.72± 3.14
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5. Discussion

+is study proposes an algorithmic approach to estimate the
gait characteristics of PD subjects as well as the healthy older
groups. +e approach is validated using measuring instru-
ments and clinical scale. It is also proposed that the machine

learning approach can be used for automatic detection and
differentiation of PD patients from the healthy older group.

Although wearable sensors have been widely used in
many fields, these have not been given enough importance in
PD-related assessment due to distorted gait pattern. Sijobert
et al. [38] have proposed a technique that provides a mean
error rate of 10.3% for the PD group and 6% for the healthy
group. +e comparison has been made based on the esti-
mated stride length calculated using wearable sensor data
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Figure 4: Step time correlation plot between the accelerometer-
based approach and 3D motion system (∗p< 0.01).
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Figure 5: Stride time correlation plot between the accelerometer-
based approach and 3D motion system (∗p< 0.01).
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Figure 6: Step length correlation plot between the accelerometer-
based approach and 3D motion system (∗p< 0.01).

0 0.2 0.4 0.6 0.8 1 1.2

Stride length, accelerometer

0

0.2

0.4

0.6

0.8

1

1.2

1.4

St
ri

d
e 

le
n

gt
h

, 3
D

 m
o

ti
o

n
 c

ap
tu

re r = 0.99∗

Figure 7: Stride length correlation plot between the accelerometer-
based approach and 3D motion system (∗p< 0.01).
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Figure 8: Walking speed correlation plot between the acceler-
ometer-based approach and 3D motion system (∗p< 0.01).
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based approach and Tinetti gait scale (∗p< 0.01).
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Figure 10: Stride time correlation plot between the accelerometer-
based approach and Tinetti gait scale (∗p< 0.01).
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Figure 11: Step length correlation plot between the accelerometer-
based approach and Tinetti gait scale (∗p< 0.01).
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Figure 12: Stride length correlation plot between the accelerom-
eter-based approach and Tinetti gait scale (∗p< 0.01).
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Figure 13: Walking speed correlation plot between the acceler-
ometer-based approach and Tinetti gait scale (∗p< 0.01).

Table 4: 5 split cross-validation.

Performance (%) KNN SVM NB Decision tree

Accuracy test set 1 82.11 81.36 84.52 86.28
Sensitivity test set 1 0.8746 0.7801 0.8225 0.9152
Specificity test set 1 0.8452 0.725 0.8654 0.8833
Accuracy test set 2 83.64 84.25 81.20 84.31
Sensitivity test set 2 0.8055 0.8139 0.8558 0.8631
Specificity test set 2 0.8519 0.8687 0.8411 0.8551
Accuracy test set 3 86.32 84.93 85.31 82.28
Sensitivity test set 3 0.9025 0.8755 0.9032 0.8111
Specificity test set 3 0.8947 0.9054 0.8748 0.8364
Accuracy test set 4 85.57 87.23 84.41 88.46
Sensitivity test set 4 0.9125 0.9189 0.8956 0.9286
Specificity test set 4 0.8836 0.8997 0.8735 0.9091
Accuracy test set 5 87.26 84.39 79.32 87.32
Sensitivity test set 5 0.8568 0.8793 0.8178 0.9025
Specificity test set 5 0.9034 0.8998 0.8227 0.9131

Table 5: Classification results.

Performance k-NN SVM NB Decision tree

Accuracy (%) 85.57 87.23 84.41 88.46
Sensitivity (%) 0.9125 0.9189 0.8956 0.9286
Specificity (%) 0.8836 0.8997 0.8735 0.9091
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Figure 14: Confusion matrix.
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and further validated using the GAITRite-based walkway sys-
tem. +e estimated mean error rate for the five gait charac-
teristics is found to be less than 8%with our proposed approach,
which used the wearable accelerometer to collect the data. +e
results of our proposed approach provide the feasibility of our
approach when compared with the previous study. +e pro-
posed study provides some new ideas that are as follows:

(i) +e results obtained in this study include various
phenotypes and severity of PD due to the large
sample size.

(ii) +is study uses the Tinetti gait scale [7] and the 3D
motion capture system [39] for validation of gait
status. +e previous report [38] has demonstrated
the validation using GAITRite that can assess
spatiotemporal data by using pressure parameters.

(iii) +e gait characteristics estimated using our pro-
posed approach have been compared with the
clinical scale, and the result shows a good level of
agreement, which makes the method feasible to be
implemented in the real-life environment.

(iii) It is observed from the study that only acceler-
ometer data can provide enough information for
performing the gait analysis, which leads to re-
dundancy of gyroscopic data, which indirectly saves
battery power, time, and cost.

+e strength and possibility of the wearable sensor-based
PD assessment are aimed at long-term monitoring of gait.
Gait disturbance usually gets aggravated in specific cases
such as starting time, meeting narrow space, or obstacle [40].
+e hospital has limited space, and therefore, it is difficult to
replicate gait disturbance observed in a real-world scenario.
+e battery mounted in our device lasts up to 72 hours. +e
limitation of this study is that the patients in the relatively
early stage of PD were not enrolled, and therefore, this study
is not intended at assessing various balance status in PD such
as a freeze of gait (FOG) or hypokinetic and short-step gait.
+e classifiers used in this study have shown good accuracy.
All the classifiers showed the acceptable results in terms of
performance parameters such as accuracy, sensitivity, and
specificity.

6. Conclusion

+e proposed study highlights the feasibility of wearable
accelerometers for gait analysis of PD patients. +e algo-
rithmic approach used in this study is able to estimate the
gait characteristics with an acceptable mean error rate. +e
validation study was performed to compare the estimated
values from the algorithmic approach with those obtained
from the 3Dmotion capture system and TMT.+e proposed
approach is a low-cost approach for the detection of PD as
well as able to distinguish PD subjects from the healthy older
group. It is also observed that the proposed classification
model could able to achieve an accuracy of 88.46% with a
sensitivity of 0.9286 and a specificity of 0.9091. +e objective
of reducing the false negatives as much as possible could be
achieved. +e proposed approach showed enough potential

to get recommended for the clinicians to use in the labo-
ratory as well as in the home environment.

In the future, we will collect gait data from a large
number of PD patients to summarize the gait characteristics
in a better way so that it could be promoted for clinical ap-
plications. We would also like to combine brain EEG signals
with the gait data to understand more about the relation and
detect the symptoms like freezing of gait before it happens.We
would like to combine the MRI image with the gait data for
more accurate diagnosis and early detection of PD.
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