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This paper presents the design and implementation of an automatically generated mathematical unit, from a program developed
in Java that describes the VHDL circuit, ready to be synthesized with the Xilinx ISE tool. The core contains diverse complex
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sliding mode controller for a magnetic levitation system. This kind of systems is used in industrial applications requiring high level
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1. Introduction

Mathematical control equations in an FPGA reconfigurable
device is an important aspect in the design of arithmetic
blocks when implementing control algorithms [1]. A well-
known method utilized in the implementation of arithmetic
operations in FPGAs is based upon the coordinate rotation
digital computer (CORDIC) algorithm [2–6] which has
become the standard solution for the implementation of
complex operations in FPGAs.

This paper proposes the design of a mathematical unit
dedicated to the implementation of control algorithms that
involve several sequences of complex mathematical functions
calculations.

Traditionally, the development of complex arithmetic
functions in FPGA devices has resulted in difficulties to
implement such operations. Therefore, the elaboration of
mathematical operations in Xilinx FPGAs is proposed
through the core generator [7]. The objective of this paper is
to explain the development of a core capable of performing
mathematical operations such as trigonometric functions
in a clock cycle, using an alternative method of the core
generator suggested by the manufacturer.

In order to construct such cores, the architecture of
the mathematical unit is established by the user with Java
software, in which the input and output parameters are
defined as well as the functions needed to perform the
desired control algorithm. This tool facilitates the users’
implementation of mathematical blocks in FPGAs, simplify-
ing the flow design to the adjustment of the interconnection
of the required blocks in the main program described in
VHDL. This reduces the designer’s workload during the
implementation stage of control algorithms. The tool is
capable of implementing 16 different types of mathematical
functions which may be described according to the required
algorithm. The maximum number of functions that can
be implemented depends on the available resources of the
FPGA.

When the VHDL code generator is activated, a window
initially appears, asking the characteristic of the input-
output variables. The longitude of the input data indi-
cating integer and decimal bits must be specified. At
this point, selection of the functions to be implemented
according to the control algorithm is made, and finally
the code generator creates a file containing the description
of each block in VHDL language ready to be synthesized
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Figure 1: Block diagram of the FPGA control.

by the Xilinx ISE tool [8]. Each function might be an
independent module that can be interconnected with the
rest of the blocks in order to represent the equations
that describe the desired algorithm. Trigonometric func-
tions are implemented in the embedded memory of the
FPGA. The advantage of solving complex functions with
preloaded tables can be clearly seen in computing time,
simplifying the execution of a mathematical function to
the transfer of data from memory to the accumulator
register.

The control algorithm of a magnetic elevation system
is presented in order to provide an implementation study
for the proposed mathematical unit. This system deals
with the levitation of steel objects aided by a controlled
electromagnetic force that is equal and opposed to the
gravitational force acting on the steel object. This type of
control is actually applied in commercial magnetic levitation
(MAGLEV) trains [9].

2. Description of the Mathematical Unit

The mathematical unit has been developed with a Java
program that generates blocks of mathematical functions
in VHDL. The complete system is composed of 5 main
modules, as shown in Figure 1, (1) VHDL code genera-
tor, (2) RAM or ROM memory block for mathematical
operations, (3) control unit for instructions, (4) accu-
mulator registers for results, and (5) magnetic levitation
system.

The mathematical unit was functionally designed in
VHDL code with instantiation of RAM or ROM memories
that were created through the program generator functions,
elaborated in Java language, especially for this job which is
described in Section 2.1. The memories were programmed
with input parameters assigned by the user, allowing the data
input to have a suitable format according to the designers
needs.

2.1. VHDL Code Generator

As previously mentioned, the proposed mathematical unit
is capable of solving trigonometric functions in a clock
cycle by using preestablished data tables. To accomplish
this, a program was developed in Java language that cal-
culates the values of the trigonometric or mathematical
functions within the range of values defined by the user,
followed by the creation of tables with the calculated
values, and uses a RAM or ROM memory to store these
data values and then to translate them into the descrip-
tion hardware language VHDL. The program defines the
architecture, entity, and process which automatically adds
to the libraries, reducing user time and the definition of
each block to only the definition of ranges and precise
values of input and output data in its integer and decimal
parts.

The software function generator reduces the computa-
tional burden to the FPGA by using a standard computer to
calculate the possible results of mathematical functions that
require only one parameter in the instantiation of a RAM or
ROM memory.

The program creates the desired function as an entity
in VHDL with an input and an output of the selected size.
The VHDL has syntax standards, which are contained in
the libraries. The program generates the necessary lines for
use by the corresponding libraries. The entity block is also
created at the same time, along with the input data, ready
to be synthesized by the Xilinx ISE simulator. The list of
mathematical function values is calculated with the program
code generator.

An example is shown in Table 1. This table corresponds
to the calculation of the cosine function, which is imple-
mented in a ROM memory of 16 bits × 1024 lines. The
address bus is identified with the letters a9 to a0, where
a0 is the least significant bit. Before executing the program
generating code, the data format specifies the required bits
for the integer part and the decimal part.
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Table 1: Selection of preestablished data for a cosine function.

Address bus Data bus

a9-a8 a7-a4 a3-a0 d16 d15-d12 d11-d8 d7-d4 d3-d0

00 0000 0000 0 1000 0000 0000 0000

00 0000 0001 0 0111 1111 1111 1110

00 0000 0010 0 0111 1111 1111 1110

00 0000 0011 0 0111 1111 1111 1010

00 0000 0100 0 0111 1111 1111 1000

00 0000 0101 0 0111 1111 1111 0010

00 0000 0110 0 0111 1111 1110 1110

00 0000 0111 0 0111 1111 1110 0110

00 0000 1000 0 0111 1111 1110 0000

00 0000 1001 0 0111 1111 1101 0110

00 0000 1010 0 0111 1111 1100 1110

00 0000 1011 0 0111 1111 1100 0010

The value of the angle is defined in radians at an interval
from 0 to 3.99. In the example in Table 2, this quantity
may be defined by the user in the program generator. The
calculation of the cosine function is made considering the
bits from a6 to a0 as the decimals of the parameter and
the bits from a9 to a7 as the integer part. The result of the
function is located in the data bus where d0 is the sign bit, d1
to d13 is the decimal part, and from d14 to d16 is the integer
part of the data.

The following program code fragment is an example
of the result of the VHDL mathematical functions, where
numbers 9 and 16 are the defining entrance parameters that
were programmed:

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.std logic arith.all;

use IEEE.std Logic UNSIGNED.ALL;

entity block is

Port(angle:in std logic vector(9 downto 0);

result:out std logic vector(16 downto 0));

end block;

architecture behavior of block is

type func is array (0 to 1024) of std logic vector

(16 downto 0);

constant Content: func:=(

B“00000000000100000,”

B“00000000000100000,”

B“00000000000100000,”

B“00000000000100000,”

The critical functions programmed in C language turned a
floating chain of bits as well as the same operation in inverse
form. An example of the code follows:

acadena(Number to turning, chain of exit,

decimal of exit, size of exit)

adouble(Chain to turning,Number of decimal)

acadena(15.25,chain of exit,2,6) // chain of exit will
have the value of 111101

acadena(15.5,chain of exit,2,6) // chain of exit will
have the value of 111110

acadena(10.5,chain of exit,2,6) // chain of exit will
have the value of 101010

acadena(8.75,chain of exit,2,10) // chain of exit will
have the value of 0000100011

adouble(“100011,”2); // The result is 8.75

adouble(“100011,”1); // The result is 17.5

adouble(“100011,”0); // The result is 35

In the program, the “acadena” function transformed the
floating value of bits and the “adouble” function converted
a floating value of bits. A part of the second version which
was generated in Java language follows:

import java.io.∗;

#1 class seno

#2 {
#3 public static String acadena(double X,

int enteros,int longitud){
#4 double Y=0.0;

#5 if (X<0)

#6 {
#7 Y=Math.abs(Math.ceil(X));

#8 }else{
#9 Y=Math.abs(Math.floor(X));

#10 }
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Table 2: Results obtained from the mathematical unit.

Angle degrees Angle radians Math unit result Matlab result Error obtained

0.00000 0.00000 1.00000 1.00000 0.00000

9.84771 0.17188 0.98527 0.98510 0.00017

14.77157 0.25781 0.96695 0.96692 0.00003

19.69542 0.34375 0.94150 0.94141 0.00009

24.61928 0.42969 0.90910 0.90906 0.00004

29.99076 0.52344 0.86611 0.86609 0.00002

34.91462 0.60938 0.82001 0.81995 0.00006

39.83847 0.69531 0.76785 0.76782 0.00003

95.79138 1.67188 −.10091 −.10083 0.00008

210.38294 3.67188 −.86266 −.86255 0.00012

In order to complete the conversion of the floating value to
chain of bits, we followed a 2-stage process; firstly, the whole
part becomes a chain of bits, and after the part decimal is
turned into a chain of bits. Later they are united in a single
decimal number in binary code.

The conversion process starts with the whole part of the
function; this requires rounding the smallest number (when
positive) or rounding the largest number (when negative).
Using the “ceil” function one can obtain the rounding of
the number and using the “floor” function one can round
the whole part. Since the conversion algorithm uses positive
numbers, the “abs” function is used to take the absolute value
from the rounded number. The variable “res” keeps the final
result from the conversion.

The code generator program allows the usage of RAM
or ROM memories and selection of these will depend on
the application required. For example, when using ROM
memories, these are implemented with the internal resources
of the FPGA augmenting the utilization of the circuit;
the flexibility of using these memories is their facility to
adjust the size of the word and required address for the
precise calculations that will be stored in them. When RAM
memories are selected, as these are embedded, they do
not impact the available resources in the FPGA, allowing
a huge logic capacity for other circuit implementation, the
disadvantage that it is limited to the implementation of
variable arrays in the word longitude and address bus.

With the objective of observing the units behavior
during the calculation of different trigonometric functions,
a sequence of operations was established for the resolution
of the functions with different angles. The obtained results
are shown in Table 2. The first column corresponds to the
evaluation angles; the second column is equivalent to the
first column in radians; the third column shows the results
of the cosine function obtained with the mathematical unit
presented; the fourth column has the results obtained with
Matlab; the last column presents the difference between the
value calculated with Matlab and the value obtained with the
mathematical unit.

It is important to emphasize that the mathematical
function sequence can be carried out to form complete
equations which are calculated and stored in a ROM or RAM
memory, to be used later in the implementation of individual

Table 3: Utilization of the mathematical unit blocks.

Function
Utilization

Sel. Slices LUTs TEGs

Cosine 0 11% 8% 6 121

Sine 1 11% 8% 6 282

Square root 2 1% 1% 50

Tangent 3 8% 6% 5 230

Arc cosine 4 3% 3% 2 799

Arc sine 5 3% 3% 2 807

Arc tangent 6 3% 3% 2 952

Exponential 7 5% 4% 3 956

Radians 8 4% 3% 3 303

Hyperbolic tangent 9 2% 1% 1 571

Hyperbolic cosine 10 5% 4% 4 375

Hyperbolic sine 11 5% 4% 4 391

Natural log 12 1% 1% 80

Inverse 13 1% 1% 1 345

Log base 10 14 1% 1% 671

Degrees 15 3% 3% 3 082

block control equations, that are capable of being calculated
in a clock pulse, optimizing the calculation time.

2.2. Description of the Mathematical
Unit Operation

The mathematical unit was implemented in a FPGA Virtex
II. The results of the utilization are shown in Table 3. The
utilization of slices, LUTs, and total equivalent gate (TEG) is
presented in independent columns. The column “sel” refers
to the instruction code that mathematical unit executes. This
makes 16 trigonometric and mathematical functions which
may be selected through a control word of 4 bits.

The total circuit utilization is 95% of the available slices
in the FPGA and 74% of LUTs, being equivalent in TEG to
58 157 out of 1 000 000 of the available total on the Xilinx
Virtex II.
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3. Application to the Control of a Magnetic
Levitation System

In order to prove the capacities of the mathematical unit,
a sliding mode controller [10] was used to regulate a
magnetic levitation system. This type of system is used in
several applications such as frictionless bearings [11], high-
speed MAGLEV passenger trains [12], wind tunnel levitation
models [13], molten metal levitation [14], and the levitation
of metal slabs during industrial manufacturing process [15].
These systems have natural unstable nonlinear dynamics
requiring closed-loop control designs for stabilization. Sev-
eral control techniques have been applied to the stabilization
of MAGLEV systems, such as I/O linearization [16, 17],
backstepping [18], and sliding mode control [19], among
others. The sliding mode control [10] has been extensively
used in electromechanical systems due to its robustness
to unknown bounded perturbations. Another characteristic
of sliding mode control is the discontinuous nature of its
control signal which switches from two states. This is an
advantage because it avoids using pulse width modulation
(PWM). The drawback of sliding mode control is that
the switching signal has an infinite frequency and when
implemented with common switching power devices with a
frequency around 20 KHz, produces an output phenomenon
called chattering; small oscillations around the set-point.
Nowadays, there are power devices available with a switching
frequency of at least 150 KHz, which common digital signal
processor boards cannot support. To take full advantage
of such switching devices, one needs high speed digital
media such as FPGAs that can support and match high
switching frequencies. In this case, the chattering problem is
considerably reduced.

3.1. Mathematical Model and Problem
Formulation for the MAGLEV System

Figure 2 shows an schematic diagram of a MAGLEV system.
The mathematical model of the MAGLEV system is given

in the following equations [17]:

ẋ1 = x2,

ẋ2 = g − km
M

x2
3

x2
1

,

ẋ3 = −
R

L
x3 +

1

L
v,

y = x1

(1)

with state vector defined as x = (x1, x2, x3)T , where x1

represents the position of the steel ball of mass M which
is positively increasing in the downward position, x2 is the
velocity of the steel ball, x3 is the current through the coil, v
is the input voltage applied to the coil, and y is the output
of the system. The constant parameters are the resistance of
the coil denoted by R, the inductance denoted by L, g which
is the gravitational constant and is considered as a known

R L x3
+

v

−
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Figure 2: Block diagram of the FPGA control.

perturbation term, finally km which is the magnetic constant
of the electromagnet.

The control problem is based upon forcing the output
y = x1 to track a reference signal q(w). Therefore, one can
consider the following output tracking error:

e = x1 − q(w). (2)

3.2. Sliding Mode Output Regulation for
the MAGLEV System

The applied control design methodology is a combination of
two important control techniques, output regulation theory
(ORT) [20] and sliding mode control (SMC) [10]. The
advantage of using ORT is that it plays an important role
in trajectory output tracking and in the rejection of known
disturbances. ORT deals with the problem of finding a
control law such that the output of the controlled system
can asymptotically track a signal generated by an exosystem
and at the same time reject perturbations possible generated
by the same exosystem. The nature of the control signal is
continuous or smooth, and in this case PWM is required
for implementation. When ORT is combined with SMC one
obtains a control methodology commonly known as sliding
mode output regulation (SMOR) [10] resulting in robust
protection against unknown perturbations and avoids the
use of PWM as just mentioned before.

The exosystem is proposed as follows:

ẇ1 = −αw2,

ẇ2 = αw1,

ẇ3 = 0,

ẇ4 = 0

(3)

with initial conditions w1(0) = w2(0) = a, w3(0) = b, and
w4(0) = c, such that, the exosystem generates a reference
output tracking signal for an MAGLEV system, which is
chosen as q(w) = w1 + w3, that is, a sinusoidal shape signal
with frequency α, peak value of

√
2a, and a dc bias value b.
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The reference signal is chosen in this way in order to test
some trigonometric functions of the mathematical unit. In
this case, the steel ball will move upward and downward
as dictated by the amplitude and frequency of the reference
signal.

What follows is the ideal steady state of operation for the

MAGLEV system, that is, π(w) = (π1(w),π2(w),π3(w))T ;
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this state is such that, if the original states of the MAGLEV,

x = (x1, x2, x3)T , are driven to the ideal steady-state, then
the output tracking error will asymptotically decay to zero,
accomplishing the control objective. In order to find the
steady state of operation one must solve the well-known
Francis-Isidori-Byrnes [20] equations. In the case of the
MAGLEV system results are as follows:

∂π1(w)

∂w
s(w) = π2(w), (4)

∂π2(w)

∂w
s(w) = d(w)− km

M

π2
3 (w)

π2
1 (w)

, (5)

∂π3(w)

∂w
s(w) = −R

L
π3(w) +

1

L
c(w),

0 = π1(w)− q(w)

(6)

with s(w) = (−αw2,αw1, 0, 0)T . Note that the ideal steady-
state value for e is obviously zero. Using this fact, one easily
calculates from (6) π1(w) = w1 + w3, replacing π1(w)
in (4) one finds that π2(w) = −αw2. Substituting π2(w)
in (5), one reckons the expression for π3(w) as π3(w) =
(w1 + w3)

√

(M/km)(w4 + α2w1). The c(w) variable represents
the steady-state value for the control input v, but it is not
neccesary to calculate such expression when using SMC
actions. Let us define the steady-state error as

z =
(

x − π(w)
)

=
(

z1 z2 z3
)T

=
(

x1 − π1(w) x2 − π2(w) x3 − π3(w)
)T
.

(7)

The dynamic equation for (7) with tracking error e (2) can
be obtained from (1) as

ż1 = z2 + π2(w)− ∂π1(w)

∂w
s(w), (8)

ż2 = d(w)− km
M

(

z3 + π3(w)
)2

(

z1 + π1(w)
)2 −

∂π2(w)

∂w
s(w), (9)

ż3 = −
R

L

(

z3 + π3(w)
)

+
1

L
u− ∂π3(w)

∂w
s(w),

e = z1 + π1 − q(w).

(10)

Now, one defines the sliding function and control as

u = −kL sign(σ), σ = z3 + Σ1z
1, k > 0, (11)

where sign is the typical signum function, with Σ1 =
(Σ1,1Σ1,2) and z1 = (z1, z2)T .

Making use of a rigorous stability analysis by means of a
Lyapunov function [10], one finds a stability condition for
gain k:

k >

∣

∣

∣

∣

(

1

L

)

veq(z,w)

∣

∣

∣

∣

, (12)



International Journal of Reconfigurable Computing 7

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

(Ω
)

0 10 20

(s)

(a)

2.5

3

3.5

4

4.5

5

5.5

6

6.5

(k
g3

/(
s2

A
2
))

0 10 20

(s)

(b)

Figure 6: (a) Resistance variation, (b) magnetic constant variation.

0.035

0.04

0.045

0.05

0.055

0.06

(m
)

0 5 10 15 20

(s)

π1

x1

Figure 7: Output tracking signal.

where veq(z,w) is a solution of σ̇ = 0, namely,

veq = R
(

z3 + π3

)

+ L

(

∂π3

∂ω

)

s(ω)

− L
∑

1,1

(

z2 + π2 −
(

∂π1

∂ω

)

s(ω)

)

− L
∑

1,2

(

d(ω)−
(

km
M

)

(z3 + π3)2

(z1 + π1)2 −
(

∂π2

∂ω

)

s(ω)

)

.

(13)

If condition (12) is satisfied then σ = 0 is guaranteed,
implying that z3 can be calculated from (11) as

z3 = −Σ1z
1. (14)
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That is, the differential equation (10) is unnecessary as
its solution (14) is now known. The remaining differential
equations for z1 and z2 are obtained by replacing (14) in (8)
and (9). This residual dynamic is known as the sliding mode
dynamic. This dynamic is made stable by the proper choice
of Σ1. An easy way to stabilize the sliding mode dynamic is by
using its linear approximation at the origin as shown here:

ż1 =
(

A11 − A12Σ1

)

z1 + H.O.T,

ẇ = Sw,

e = z1 + π1(w)− q(w)

(15)

with A11 and A12 being as proper dimensions matrices
obtained from linear approximation, and where H.O.T.
stands for higher-order terms, that vanish at the origin. Now,
Σ1 is chosen so that the matrix (A11−A12Σ1) is Hurwitz or has



8 International Journal of Reconfigurable Computing

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(A
)

0 5 10 15 20

(s)

π3

x3

Figure 9: Current signals.

negative real part poles. In this case limt→∞z1(t) = 0 and as a
consequence by (14) z3 tends to zero too. By continuity, using
π1(w) = w1 + w3 one finally finds that the output tracking
error e asymptotically tends to zero, satisfying the control
objective. Finally a closed-loop block diagram is presented
in Figure 3.

4. Control Algorithm Implementation Results

The control algorithm was tested using an FPGA virtexII
XE2V1000-4fg256, and the plant dynamic was simulated
using the DSP board DS1104 from DSPACE. This type
of simulation is known as hardware-in-the-Loop (HIL)
simulation [21]. HIL simulation is a real-time simulation
form. It differs from real-time simulation by the addition of a
hardware component in the loop as an FPGA. This technique
is increasingly being used in the development and testing
of complex real-time embedded systems. Moreover, the
complexity of the plant dynamic under control is commonly
simulated in a graphical environment as SIMULINK from
Matlab. In our case the plant dynamic was created in
SIMULINK and then downloaded to the DSP board DS1104
in order to arrange the I/O ports. Figure 4 shows a simple
diagram of the HIL simulation that was performed.

4.1. FPGA Implementation Results

The system is declared as an entity of three inputs that
represents the position of the ball x1, the velocity of the
ball x2, the current through the coil x3, and the output
voltage v closed loop with the MAGLEV system. The internal
variables used for the calculation of the equations use a
word of 32 longitude bits—15 bits to represent the integer
part, 16 bits for the decimal part, and 1 bit to represent
the sign. The variable υ corresponds to the final calculation
of the system and has a word longitude of 64 bits—4 for
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integers, 1 for signs, and 59 for decimals, providing the
necessary accuracy for the stability of the system. The total
processing time of the calculations of one cycle in the FPGA is
202 nanoseconds, representing maximum processing speed
of up to 21 nanoseconds. Figure 5 shows the utilization of
the components in the FPGA virtexII XE2V1000-4fg256,
with 3% of slices, 3% of LUTs, 7% of RAMs, and 20% of
multipliers. The device has sufficient resources available to
implement additional circuits.

4.2. Closed-Loop System in
Implementation Results

The nominal parameters of the MAGLEV system are km =
3 kgm3/s2A2, M = 0.14 kg, g = 9.8 m/s2, R = 1.2Ω, L = 1×
10−3 H. The constant values of the exogenous signals (2) are
a = 0.0070716, b = 0.05 m, and c = 9.8. Taking the nominal
parameters of the MAGLEV system, the following pairs of
matrices are calculated:

A11 = 013920, A12 = 0− 579.6551. (16)

The control parameters that appear in (11) are as follows:

k = 100, Σ1,1 = −12.9423, Σ1,2 = −12.2492. (17)

The matrix Σ1 in (11) is calculated using the LQR function
provided in Matlab.

To verify the robustness properties, some plant parame-
ter variations are introduced which can be seen in Figure 6,
where R and km may change up to 100% from their
nominal values. It is worth to mention that the perturbation
term generated by the variation of R satisfies the matching
condition [10], but not the variations on km.

Figure 7 shows the tracking of the output signal where
can be appreciated a good performance for 0 ≤ t < 5. But for
5 ≤ t < 10 where the perturbation term due to the variation
in R is present, and the output still performs well due to the
matching conditions. Finally, the unmatched perturbation
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term due to the variation of km, appearing at t ≥ 10 adversely
affects the MAGLEV system but the output still performs
well.

Figure 8 shows the output tracking error where can be
appreciated the transient and steady-state responses can be
observed.

Figure 9 shows π3, which represents the ideal steady-
state behavior of the current. It can be seen that the current
becomes different to π3 for t ≥ 10 due to the unmatched
perturbation.

Finally, Figure 10 shows the voltage input signals where
the discontinuous nature of the control signal can be appre-
ciated. The main advantage of having discontinuous control
signals is that it avoids the use of PWM as mentioned in
[10], therefore, facilitating a straightforward implementation
of the control action.

5. Conclusion

This work has presented the results of a program gen-
erator for VHDL code developed in Java language and
designed to implement a mathematical unit prototyped and
implemented in reconfigurable FPGA circuits from Xilinx.
The mathematical unit was used to implement the control
algorithm of a magnetic levitation system, accomplishing the
requirements of speed and precision necessary to operate
under nominal conditions. The code generator tool allows
the implementation of blocks containing complex operations
which may be grouped in the same memory, letting oper-
ations to run in a clock pulse, based on the calculation of
functions through preestablished tables. Moreover, the HIL
simulation test platformed has facilitated the verification of
the results obtained when the physical plant is not available.
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