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Abstract: This paper presents the design, analysis, and fabrication of a new miniaturized microstrip
branch line coupler (BLC) with high harmonics suppression. The T-shaped resonators, open stubs
cross-shaped resonators and radial stubs are used in the proposed coupler design. The designed
BLC operates at 1 GHz frequency, which can suppress up to 5th spurious harmonics with a 20 dB
level of attenuation. High miniaturization of about 86% is obtained for the proposed BLC, which is
corresponding to the normalized size of 0.009 λg2. The measured values of isolation and return loss
are obtained 28 dB and 29 dB, respectively, while the measured insertion loss of better than 0.2 dB is
achieved at the operating frequency. Additionally, the operating bandwidth of the designed coupler
ranges from 0.905 GHz up to 1.105 GHz, which shows a 200 MHz operating bandwidth or a fractional
bandwidth (FBW) of 20%. The presented BLC is fabricated and measured, where the measurements
confirm the simulated results. The designed coupler shows desirable performance compared to the
recent designed couplers.

Keywords: branch line coupler (BLC); fractional bandwidth; harmonic suppression; resonators;
size reduction

1. Introduction

Millimeter and microwave wave communications are pioneer solutions for the high
traffic processing of data in the next generations of the communication systems [1]. The
couplers are widespread devices in the microwave and RF frequency applications [2].
Among the couplers, which have several types, branch line couplers (BLCs) are more
prevalent. The couplers are important devices in balanced power amplifier [3,4], balanced
mixer [5] and Doherty power amplifier [6] applications. The couplers can also be used for
power division in many applications [7].

A common technique to provide size reduction and harmonic suppression is using
stepped impedances [8] and open subs [9,10], which also have been used in the coupler
structure [11–17]. A BLC using discontinuous microstrip lines is presented in [11], which
obtained 60% size reduction. However, this BLC cannot suppress the unwanted harmonics.
A BLC using quasi-lumped and T-shaped structures is presented in [12]. This BLC is
designed to be nonsymmetrical, which shows 70% size reduction, but it cannot suppress
the unwanted harmonics. Another compact BLC is presented in [13] using resonant cells,
which achieved 80% size reduction. This BLC can suppress 3rd up to 7th harmonics. In [14],
a BLC using stepped impedances is presented, which obtained 50% size reduction, but
it has no harmonic suppression. A BLC with harmonics suppression is described in [15].
High impedance lines and internal shunt capacitors are used in this structure. The BLC
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in [15] shows about 74% size reduction, but it has a large insertion loss of about 1 dB and
only 2nd harmonic suppression. A squared coupler is presented in [16], which can suppress
only 2nd harmonic using the slow wave technique. In [17], a wide band three sections
BLC is presented. High size reduction was achieved in this coupler; however, only the 2nd
harmonic is suppressed in this work.

Using open subs in the main branches of the coupler is a technique which has been
widely used for harmonic suppression and size reduction [18–24]. In this technique, squared
or radial open stubs can be used in each main quarter wavelength lines. These open stubs
can produce transmission zeros and provide wide stopband for the coupler. Additionally,
the applied open stubs reduce the overall size of the coupler.

The presented coupler in [18] can suppress up to 5th harmonics, but it is not very
compact. Another H-shaped resonator coupler is designed in [19]. The applied H-shaped
resonators result in 64% size reduction, but the obtained stopband is not very wide. A
coupler with T-shaped resonators is presented in [20]. This coupler has harmonic sup-
pression up to 8th harmonics and good size reduction. However, the insertion loss of the
coupler is not acceptable. Radial subs are used to design a coupler in [21], which resulted
in harmonics suppression and acceptable size reduction, but the second harmonic is not
well attenuated. In [22], a compact microstrip coupler with good harmonic suppression
is introduced using eight open-ended stubs, placed inside the coupler structure, which
effectively reduces the circuit size about 80%. This structure works at 0.96 GHz and sup-
presses 2nd to 6th harmonics, but this device has complex structure and high insertion loss
(0.3 dB). In [23], a microstrip coupler is designed at 1 GHz, using spiral open stubs, which
resulted in 63% size reduction. This device only suppresses 2nd and 3rd harmonics and
has high insertion loss (0.3 dB), which is undesirable. In [24], a miniaturized coupler at
2.1 GHz is designed with 63% size reduction using the spiral T-shaped transmission line.
This device only suppresses 2nd and 3rd harmonics and has high insertion loss (0.9 dB),
which is not acceptable.

In the coupler design, dimensions of the applied lines have a direct effect on the
coupler performance. In order to find the best performance, the length and width of the
applied stubs should be obtained. To realize the best dimensions of the stubs, neural
networks and artificial intelligence can be used [25,26]. In [27], a neural network design
approach is presented for filters and resonators, which can be used for microwave couplers.
In [28], a compact band pass filter with 7th-order harmonics suppression is proposed,
which has a compact size and provides a wide rejection band. This filter can be used easily
in the coupler structure.

In this paper, the proposed BLC is designed, simulated and measured. The fabrication
is realized on a RT-Duroid substrate with a thickness of 0.508 mm and dielectric constant
of 2.2. Several different resonators are exploited to design the presented BLC with high
miniaturization and suppressing ability.

2. Design Procedure

This section explains how T-shaped stubs, radial subs, cross-shaped resonators and
open-ended stubs can be used to create the proposed branch line coupler (BLC). At the first
step, a conventional BLC is formed at the operating frequency of 1 GHz. The structure of
a conventional coupler is shown in Figure 1a, and its frequency response is depicted in
Figure 1b.

Design procedure of the proposed BLC is illustrated in Figure 2. In step 1, the circuit of
the initial resonator is presented. In step 2, the presented circuit is analyzed, and the related
equations are extracted. Then, the transmission zeros of the resonator can be tuned to form
the desired frequency response. The horizontal and vertical resonators, realized from the
initial resonator, are obtained as illustrated in steps 3.1 and 3.2. Finally, the horizontal and
vertical branches of the typical couplers are replaced with the proposed horizontal and
vertical resonators, respectively.
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Figure 1. BLC operating at 1 GHz: (a) conventional structure and (b) frequency response. All di-
mensions are in the millimeter unit. 

Design procedure of the proposed BLC is illustrated in Figure 2. In step 1, the circuit 
of the initial resonator is presented. In step 2, the presented circuit is analyzed, and the 
related equations are extracted. Then, the transmission zeros of the resonator can be tuned 
to form the desired frequency response. The horizontal and vertical resonators, realized 
from the initial resonator, are obtained as illustrated in steps 3.1 and 3.2. Finally, the hor-
izontal and vertical branches of the typical couplers are replaced with the proposed hori-
zontal and vertical resonators, respectively. 

2.1. Horizontal Resonator Design 
To add harmonics suppression in the designed coupler, several resonators should be 

added in the main conventional structure. At first, an initial horizontal resonator is pre-
sented to obtain initial suppression band. The LC equivalent circuit (LCEC) of the pro-
posed initial horizontal resonator is shown in Figure 3. Additionally, the frequency re-
sponse of the presented LC circuit is compared with the frequency response of the layout 
transmission line realization in Figure 4. The applied values of the LC components for the 
LCEC of the proposed initial horizontal resonator are listed in Table 1. 

Figure 1. BLC operating at 1 GHz: (a) conventional structure and (b) frequency response. All
dimensions are in the millimeter unit.

2.1. Horizontal Resonator Design

To add harmonics suppression in the designed coupler, several resonators should
be added in the main conventional structure. At first, an initial horizontal resonator is
presented to obtain initial suppression band. The LC equivalent circuit (LCEC) of the
proposed initial horizontal resonator is shown in Figure 3. Additionally, the frequency
response of the presented LC circuit is compared with the frequency response of the layout
transmission line realization in Figure 4. The applied values of the LC components for the
LCEC of the proposed initial horizontal resonator are listed in Table 1.
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Figure 2. Design procedure of the proposed BLC.

Table 1. LC components values for the LCEC of the proposed initial horizontal.

LC Horizontal

L0 L1 L2 L3 C1 C2 C3

4.1 nH 0.6 nH 0.4 nH 0.3 nH 0.5 pF 0.4 pF 0.2 pF
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Figure 4. Frequency response of the presented LC circuit, as compared with the frequency response
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To determine the transmission zeros of the presented LCEC, the transfer function of
the proposed initial horizontal resonator should be obtained. The extraction of the transfer
function of the presented resonator is explained as follows. At first, the value of the ZP
impedance can be written as shown in (1).
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By obtaining the value of ZP, the transfer function of H(S) can be calculated as written
in (2).

H(S) =
R Zp(

L0 S + Zp (R+L0 S)
R+Zp+L0 S

)
(R + Zp + L0 S)

(2)

where in (2), the parameter ‘R’ represents the 50 Ω impedance of the port. The magnitude
of the extracted transfer function, H(S), is illustrated in Figure 5. As seen, the main
transmission zero, which is extracted using analyses, equal to 5.5 GHz, is identical to the
obtained one by circuit and EM simulations.
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After obtaining the LCEC of the initial resonator, the microstrip transmission line
realization can be achieved. The layout structure and frequency response of the initial
horizontal resonator is depicted in Figure 6a,b.
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As seen in Figure 6b, the frequency response of the initial horizontal resonator is not
perfect in the passband and suppression band, so the initial horizontal resonator should
be improved. The structure of the improved initial horizontal resonator and its frequency
response are shown in Figure 7a,b.
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are in the millimeter unit.

To increase the suppression band and to modify the cut-off frequency, a stepped
impedance resonator is added into the improved initial horizontal resonator structure,
which forms the final horizontal resonator. The layout and frequency response of final
horizontal resonator are shown in Figure 8a,b. As can be seen, the frequency response of the
initial horizontal resonator is improved and optimized by adding the stepped impedance
resonators in two steps, which finally have formed the final horizontal resonator. These
added stepped impedance resonators in the first and second steps are shown by Resonator1
and Resonator2 in Figure 8. Resonator1 is added in the first step to form the improved
initial horizontal resonator, and Resonator2 is added in the second step to form the final
horizontal resonator. The stepped impedance resonators can create poles and zeros in the
frequency response. The added poles improve the pass band, flatten the S21 parameter and
decrease the return loss parameters. In addition, the added zeros widen the suppression
band and improve the harmonic suppression ability of the resonator.
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2.2. Vertical Resonator Design

The vertical resonators can be designed similar to horizontal resonators. The initial
vertical resonator is designed based on the horizontal one. The layout and frequency
responses of the initial vertical resonator are shown in Figure 9a,b.
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To improve the frequency response, the layout of initial vertical resonator is improved,
which the improved initial vertical resonator is obtained by adding a stepped impedance
resonator. The layout and frequency response of the improved initial vertical resonator is
illustrated in Figure 10a,b.
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The final vertical resonator can be obtained by adding another stepped impedance
resonator to the improved initial vertical resonator. The layout and frequency response of
the final vertical resonator is shown in Figure 11.
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3. Design of The Proposed BLC

The proposed BLC is designed at 1 GHz. In this design, the dimensions of the
transmission lines and open stubs are modified to reach the desired performances. The
structure of the proposed BLC is depicted in Figure 12. Size reduction of the proposed
microstrip coupler is 86%, compared to the conventional BLC.
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The structures of the proposed and the conventional BLCs are compared in Figure 13.
As seen, the proposed BLC only occupies 20.7 mm × 20.7 mm (0.093λ × 0.093λ), where
the conventional one occupies 56.3 mm × 57.2 mm (0.25λ × 0.25λ). The proposed cou-
pler only occupies less than 14% of the conventional coupler and shows more than 86%
size reduction.
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Figure 13. Structure of the proposed and the conventional BLCs.

Results of The Proposed BLC

The measured and simulated scattering parameters of the proposed BLC are depicted
in Figures 14 and 15. The harmonics are attenuated in this design example with the
respectively measured suppression levels of 15 dB, 21 dB, 28 dB, 35 dB, 32 dB, 25 dB, and
17 dB for the S21 parameter, while the corresponding attenuations are 26 dB, 43 dB, 44 dB,
35 dB, 50 dB, 55 dB, and 39 dB for the S31 parameter. Additionally, the obtained measured
isolation and return loss are 28 dB and 29 dB, respectively.
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The EM simulation in Advance Design System (ADS) software with adaptive step
used is performed for simulation and the Hewlett Packard 8720B network analyzer with a
linear measurement process with 22 MHz steps is used for measurement. The measurement
and simulations results have good agreement, and a slight difference between these curves
is normal.

Additionally, to show the performance of the designed BLC near the operating fre-
quency, the in-band frequency response is illustrated in Figure 16. As seen, the fractional
bandwidth (FBW) of the designed coupler is from 0.905 GHz up to 1.105 GHz, which show
a 200 MHz operating bandwidth or FBW of 20%. The magnitudes of S21 and S31 in the
FBW are located in the upper −4 dB line. The results show that the measured insertion loss
of better than 0.2 dB is achieved at operating frequency.
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The result of the in-band phase difference is depicted in Figure 17. The measured phase
difference of the presented BLC is less than 90 ± 0.5◦ at the main frequency. Moreover, the
phase difference is flat, and its value is near 90◦ at the operating bandwidth.
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The photos of the fabricated BLC under test are depicted in Figure 18. The Hewlett
Packard 8720 B network analyzer is used to measure the fabricated device, the applied
network analyzer has a linear measurement process with 22 MHz step.
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Table 2 shows the performance comparison between the proposed microstrip coupler
and the recent ones. As can be seen from the table, the proposed BLC has the best perfor-
mance in terms of insertion loss, harmonic suppression and size reduction between the
cited research.

Table 2. Performance comparison between the proposed BLC and the recent ones.

Refs. Frequency
(GHz)

Insertion
Loss (dB)

Harmonic
Suppression

Size
Reduction Advantage Technique

[11] 1 N/A No 60% Size reduction Discontinuous microstrip lines

[12] 2.4 N/A No 70% Size Reduction Quasi-lumped elements approach

[14] 1 0.33 No 50% Size reduction Step impedance transmission line

[15] 0.836 0.9 No 74% Size reduction Branch-line hybrid coupler

[16] 2 0.36 2ƒ0 72% Size reduction
Wideband Slow wave

[18] 2.45 0.45 2ƒ0 to 5ƒ0 55% Harmonic
suppression

L-shaped
Open stubs

[19] 0.9 0.3 2ƒ0 to 4ƒ0 64% Size reduction
Wideband H-shaped microstrip line

[22] 0.96 0.3 2ƒ0 to 6ƒ0 80% Size reduction Eight open ended stubs

[23] 1 0.3 2ƒ0 and 3ƒ0 63% Size reduction Spiral open stubs

[24] 2.1 0.9 2ƒ0 and 3ƒ0 63% Size reduction Spiral T-shaped lines

[29] 3.5 GHz 0.5 2ƒ0 No Wideband
Filtering

Coupled lines
Open Stubs

[30] 3.5 GHz 0.5 No 35% Size reduction Pi-Network

[31] 0.9 0.76 No 36% Size reduction
Flexible

Open stub
Meander lines

This
work 1 0.2 2ƒ0 to 5ƒ0 86%

Size reduction
harmonic

suppression

T-shaped resonators, Open stubs,
Step impedance, and Radial stubs

4. Conclusions

A new BLC is designed, simulated and fabricated in this paper. The T-shaped res-
onators, open stubs, cross-shaped resonators, stepped impedance resonators, and radial
stubs are used in the designed coupler. A design procedure for the proposed BLC is pro-
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vided and explained. The proposed resonator is analyzed, and the related equations are
extracted. The microstrip realization of the proposed resonators are provided, which are fi-
nally incorporated in the typical BLC structure to form the proposed coupler. The designed
BLC is very compact and has the harmonics suppression ability. The simulated results
are confirmed by the measured results. The results show more than 86% size reduction
of the proposed device, compared with the conventional one, which make the proposed
device suitable for modern communication systems applications. Finally, the performance
of the designed coupler is compared with several state-of-the-art couplers, which show the
advantages of the proposed coupler. In the future work, the design process of the proposed
coupler will be improved with the help of artificial intelligence and deep learning methods.
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