
 

      
Abstract--The HRRT PET system has the potential to produce 

human brain images with resolution better than 3 mm. To achieve 
the best possible accuracy and precision, we have designed 
MOLAR, a Motion-compensation OSEM List-mode Algorithm 
for resolution-recovery Reconstruction on a computer cluster with 
the following features: direct use of list mode data with dynamic 
motion information (Polaris); exact reprojection of each line-of-
response (LOR); system matrix computed from voxel-to-LOR 
distances (radial and axial); spatially varying resolution model 
implemented for each event by selection from precomputed line 
spread functions based on factors including detector obliqueness, 
crystal layer, and block detector position; distribution of events to 
processors and to subsets based on order of arrival; removal of 
voxels and events outside a reduced field-of-view defined by the 
attenuation map; no pre-corrections to Poisson data, i.e., all 
physical effects are defined in the model; randoms estimation from 
singles; model-based scatter simulation incorporated into the 
iterations; and component-based normalization. Preliminary 
computation estimates suggest than reconstruction of a single 
frame in one hour is achievable. Careful evaluation of this system 
will define which factors play an important role in producing high 
resolution, low-noise images with quantitative accuracy. 

I. INTRODUCTION AND ALGORITHM OVERVIEW 
The ECAT HRRT [1] is a state-of-the-art PET system with 

the potential for extremely high resolution (< 3 mm) for human 
and large animal brain imaging. The use of phoswich detectors 
(10 mm LSO, 10 mm LYSO) provides the capability to achieve 
excellent uniformity in resolution across the field-of-view. The 
small aperture (46.9 cm diameter), long axial field-of-view 
(25.2 cm), and 20-mm crystal depth will provide high 
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sensitivity, allowing sufficient counts so that images with high 
resolution can have reasonable statistical quality. 

In the current generation of PET scanners, iterative 
maximum likelihood reconstruction has provided only small 
advantages for brain reconstructions. This has been the case 
because 1) the typical number of counts per line-of-response 
(LOR) is sufficient so that use of a Poisson model is not 
critical, and 2) the attenuation and normalization corrections 
are rather uniform so there is only a small statistical penalty 
caused by the use of precorrected data. These considerations 
change, however, for the HRRT. First, given the very large 
number of LORs (4.5 x109), even a high-count frame (2.0x108

 

counts) has very low occupancy of an uncompressed sinogram. 
Thus, the expected counts per LOR << 1, suggesting that 
inclusion of the Poisson characteristics of these data is likely to 
produce an improvement in reconstructed images. Secondly, 
the variation in efficiency between LORs due to the phoswich 
design and due to the gaps in the sinograms introduced by the 
octagonal detector panel arrangement, suggests that higher 
statistical precision can be achieved with an algorithm that 
does not pre-correct the projection data.  

In addition to the statistical considerations, because of the 
high resolution, motion of the patient’s head will seriously 
degrade image quality. Repositioning of events to account for 
subject motion can best be accomplished by online 
measurement of motion incorporated into the list mode 
acquisition  

Based on these motivations, we designed a Motion-
compensation OSEM List-mode Algorithm for Resolution-
recovery Reconstruction (MOLAR) for application to the 
HRRT. Events are acquired in list mode in conjunction with 
hardware measurement of object position using the Polaris 
system [2]. Individual events are repositioned in space. 
Reconstruction is performed directly from the list mode data 
with no pre-corrections, using an OSEM-type algorithm (see, 
e.g., [3]). The expected value for the number of counts along 
each LOR is determined from the forward projection through 
the voxel grid accounting for attenuation, normalization, 
randoms, and scatter. Resolution recovery is achieved by the 
use of a full line spread function model. The contributions of 
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each voxel to each LOR (system matrix) are determined by 
computing the radial and axial voxel-to-LOR distances, which 
are used as indices to the appropriate pre-computed line spread 
function applicable to that event. The algorithm is implemented 
on a parallel computer cluster [4, 5]. Events are distributed to 
processors and subsequently into subsets based on the order of 
arrival in the list mode stream. The software is designed for 
portability with the potential for application to other scanners 
in addition to the HRRT. 

II. THEORETICAL FRAMEWORK 

The activity λ (Bq/mL) in voxel j is defined in an object 
space which is considered to be stationary. The detector LORs 
are indexed by k = 1,…,K, with the geometric relationship of 
detector LORs to the voxel space varying with time according 
to the subject motion. Divide the time frame T into nT time bins 
of duration ∆t, defined by the Polaris sampling rate. Let i(k,t) 
be the mapping from the detector LOR k at time t into the 
appropriate image chord i using the motion information. Let 
Yk,t equal the number of counts acquired in detector LOR k in 
time bin t, with expected value based on the image at iteration 
n : 

 E(Yk ,t
(n) ) = ∆t ci (k ,t ), j Ai (k ,t ) N k

j
∑ λ j

(n) + Rk + Si (k ,t )

 

 
 

 

 
  (1) 

In (1), detector LOR-based factors (indexed by k) are 
normalization (Nk, actually a sensitivity factor with units of 
(counts/sec)/(Bq/mL·mm)) and randoms (Rk, estimated from 
the measured singles rates, counts/sec). The image chord-based 
factors (indexed by i) are attenuation (Ai, dimensionless) and 
Scatter (Si, counts/sec). The system matrix ci(k,t),j (mm) is the 
contribution of voxel j to chord i defined by detector LOR k in 
time bin t. The geometry of this LOR is defined by the motion 
mapping function i(k,t). In specifying the resolution of each 
chord, we assume that resolution components can be 
decomposed into separable transverse and axial line spread 
functions, f r(∆r) and f z(∆z), respectively. These functions are 
indexed by the perpendicular distances (∆r and ∆z) from voxel 
j to chord i: 

     ci (k ,t ), j = f k
r (∆ri (k ,t ), j ) f k

z (∆zi (k ,t ), j )  (2) 

The choice of line spread function for each event is based on 
the detector LOR geometry (see III.B).  

For list mode acquisition, the data stream is indexed by i = 
1,…,I. For ease of notation, we use i to index the image chord 
associated with event i (for ci,,j, Ai, and Si) and for the detector 
LOR associated with event i (for Ni and Ri). The EM equation 
[6, 7] at iteration n is, thus: 

  λ j
(n+1) =

λ j
n

TQj

ci, j AiNi

ci, ′ j AiNi
′ j 

∑ λ ′ j 
(n) + Ri + Sii=1

I

∑  (3) 

Qj in the denominator of the leading term of (3) is the global 
sensitivity image, which is quite complex in the case of motion: 

  Qj = 1
T

ci(k ,t ), j Ai( k ,t )Nk
k=1

K

∑ dt
0

T

∫  (4) 

An ideal calculation of Qj would account for the position of all 
detector LORs at all times in the scan frame. As written, (4) is 
computationally impractical (see III.G). 

III. IMPLEMENTATION 

A. Chords 
A primary consideration is the cost of computing the system 

matrix, ci,j. We have devised and tested an approximation 
method that computes the perpendicular distances in transverse 
and axial directions from the center of each voxel to its 
corresponding nearest point in the central axis of the chord, 
and then imposes a separable resolution model (2) using these 
distances as indices. The line spread functions are precomputed 
with much finer sampling than the voxel grid for accurate 
interpolation. This approximation method results in a 63-fold 
reduction in the cost of computing ci,j compared with 
resolution-based ray tracing. For each event, the trajectory 
through the image voxels is determined and saved. For forward 
and backprojection, the transverse and axial “widths” of the 
chord are defined by the line spread function chosen for each 
event, i.e., lower resolution chords include more voxels in the 
projection calculation. Furthermore, since the “sign” of the 
chord-to-voxel distance is known, e.g., positive for distance to 
the left, asymmetric line spread functions are permitted.  

Preliminary timing estimates have been performed to 
determine the computation time for forward and 
backprojections. For a high-count frame of 200 million events 
on a 24-node dual processor system (AMD 1800+ processors 
with 2 GB memory per node), the expected computation time 
for a forward and backprojection is less than 10 min. This 
suggests that a complete reconstruction of a single frame can 
be achieved in one hour using a subset-based algorithm. 

B. Line Spread Functions 
 Initially, line spread functions are defined as Gaussian 

functions with varying FWHM as a function of the 2 detectors 
associated with each event. Ultimately, the resolution kernels 
will be based on measured line spread functions. Adjustments 
to the resolution for average effects of the obliqueness of the 
LOR with respect to primary axes of the crystals, the detector 
layer (front/back), the crystal position within the block, and the 
block position within the panel are applied. Additional 
secondary effects can easily be incorporated in these functions. 
These include blur due to uncertainty in the motion correction 
data (e.g., based on the standard deviation of the Polaris 
measurements within a short time window of each event), 
definition of a voxel shape (i.e., blobs), and positron range and 
noncollinearity effects. On the first pass through the list mode 
file, transverse and axial line spread functions are selected 
from the pre-computed sets for each event. 
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C. Normalization 
Normalization based on each LOR is the most obvious and 

accurate approach. However, as currently implemented, these 
data are only available for compressed sinograms (span 3 or 9). 
Furthermore, a very long scan is required to collect sufficient 
statistics for the large number of LORs. Component based 
normalization [8] expresses the normalization factor as the 
product of individual detector efficiencies, transverse 
geometrical effects, and axial geometrical effects. The 
geometric effects are stored as tables based on the incident 
angle of the LOR to the surface of the detector, the position of 
the detector within the block, and the detector layer 
(front/back). In addition, in this model (1), normalization 
includes calibration, i.e., the normalization terms Ni has 
absolute sensitivity units to relate voxel activities in Bq/mL to 
LOR counts per second.  

D. Attenuation 
The attenuation factor Ai is computed per list mode event by 

forward projecting through an attenuation image volume, 
produced by a preliminary reconstruction of a transmission 
scan. Preliminary masking of the attenuation volume defines 
the voxels to be reconstructed, thus in performing this forward 
projection, the intersection of each chord with the relevant 
portion of voxel grid is defined. All events that do not intersect 
the attenuation object are eliminated from the primary list of 
events to reduce computation time for forward and 
backprojection. These out-of-object events are retained for 
possible scaling of the scatter estimate.  

E. Scatter 
Scatter estimation is performed using the single-scatter 

simulation method [9]. The chord scatter rate is proportional to 
the sum of the contributions from scatter points randomly 
distributed in the attenuation volume. Scatter estimates are first 
determined along a set of chords connecting an idealized group 
of detectors arranged on a cylinder of approximate dimensions 
of the actual detectors. For computational speed and because 
scatter is slowly varying in space, the sampling in this space is 
coarse and the estimate for each chord (Si) is interpolated from 
this low resolution space.  

An exact computation of scatter would require precise 
tracking of absolute detector positions with respect to the 
moving scatter points, to properly normalize the scatter 
estimate for distance effects and to account for altered photon 
angles of incidence relative to the detectors, particularly for the 
non-cylindrical HRRT. This is too computationally expensive, 
so motion effects on scatter are approximated by using the 
average position of the detector panels during each scan frame, 
computed on first pass through the list mode data. 

For iterative reconstruction, the initial activity distribution 
used for scatter computation is uniform with its boundary 
defined by the attenuation volume. This activity distribution is 
subsequently replaced by that iteratively determined by the 

reconstruction algorithm and the scatter estimate is updated as 
needed. Computational efficiency is improved by using a very 
coarse spatial sampling for both the scatter points and scatter 
chords during early iterations when spatial resolution is low, 
with progressively increased spatial sampling with iterations. 
Also, the computations are distributed across the computer 
cluster where each node processes a subset of the scatter points 
and the final scatter estimate is determined by a global sum 
across the cluster. These factors combine to limit the total 
computational cost for the final scatter estimate to be on the 
order of that of a single forward/backprojection. 

F. Randoms  
The random rate (Ri) is estimated from the timing window 

and the block singles rates, stored in the list mode file. The 
conversion from block to crystal singles rates uses the crystal 
efficiency data from the normalization. Delayed coincidences 
in the list mode stream are not used in the reconstruction, 
except to validate the randoms estimates 

G. Global Sensitivity Image 
A particularly difficult aspect of performing iterative 

reconstructions on the full HRRT projection space is the 
computation of the global sensitivity image, denoted Q (4). 
Exact calculation of Q requires an integration over the duration 
of the scan of the back-projections of all LORs, including 
motion correction. This calculation accounts for the possibility 
that the gaps in the projection data are “filled in” by subject 
motion. Since the exact formula is computational unworkable, 
Q is estimated by a random sampling of detector LORs 
accounting for subject motion. This involves building a 
preliminary “randomized” event list with nQ random detector 
LORs (k’) chosen for each time bin ∆t, motion corrected based 
on the Polaris data associated with that bin. Then, Q is 
estimated as follows: 

  Qj = K
nQnT

ci( ′ k ,t ), j Ai( ′ k ,t )N ′ k 
′ k =1

nQ

∑
t=1

nT

∑  (5) 

The leading scale factor in (5) corrects for the undersampling. 
Q is computed once and used by all subsets. Care must be 
taken with respect to the randomization strategy. In particular, 
the seed to the random number generator is keyed to the data, 
so that identical inputs will produce identical results. 

H. Software Design 
The controlling element of the reconstruction process is 

called the “dealer” which executes on the master node of the 
cluster. The dealer retrieves events one by one from an HRRT-
specific module (the “house”) which reads and pre-processes 
the list mode file, including motion correction, normalization, 
and randoms. The dealer then distributes events to the 
processing nodes. Each processor stores in memory a set of 
event lists, one list per subset. As events “arrive” at each node, 
they are concatenated to the appropriate subset-list. Linked lists 
are used to facilitate easy removal of out-of-object events. The 
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list stores all information required by the reconstruction 
algorithm to represent every event, a maximum of 100 bytes 
each. Thus, a 24-node cluster with 1 GB of memory per node 
can maintain a total list of 240 million events.  

The algorithm requires relatively little interprocessor 
communication. The majority of processing time is spent in 
forward and backprojection of the events stored in that 
processor’s event lists. Interprocessor computation (global 
array summing) is performed in the calculations of Q (5), the 
correction matrix for λ (3), and the scatter estimation.  

One aspect of algorithm evaluation involves the recon-
struction of simulated list mode data that include subject 
motion. Using a “true” image and motion information derived 
from a template list mode file, the modules that comprise the 
forward projection engine of the reconstruction algorithm are 
used to calculate the expected number of events per LOR (1), 
from which random realizations of list mode files are produced. 

As a major software development effort with multiple 
contributors, application programming interfaces (APIs) are 
defined for the major components of the code. The interface 
serves as an agreement between the developers regarding the 
functionality of the affected modules. Another benefit of 
defining these APIs is that it provides an interface for members 
of the HRRT research community to make contributions. The 
APIs define C++ classes, constants, class variables, instance 
variables, and functions.  

The HRRT reconstruction software is designed for 
portability. The reconstruction codes are written in C++ and 
MPI is used for message passing. Thus, the reconstruction 
codes will be able to run on symmetric multiprocessor (SMP) 
systems, as well as clusters.  

IV. SUMMARY AND FUTURE WORK 
This design provides the framework to achieve the highest 

possible resolution for the HRRT. Every aspect of the 
implementation has tradeoffs in terms of ultimate image 
accuracy and precision versus computational cost. With an 
ultimate goal of reconstruction of a single frame in one hour or 
less, ideal accuracy in the implementation of each factor cannot 
be achieved. Thus, careful evaluation of this system will define 
which of these factors play an important role in producing 
quantitative, high resolution, low-noise images in a reasonable 
computation time. 

The initial evaluation will concentrate on simulated list-
mode data of a variety of phantom-like objects. These studies 
will be used to validate the algorithms, optimize parameters 
such as number of iterations and subsets, determine the 
achievable resolution and noise characteristics of the images, 
and assess the sensitivity of these characteristics to randoms, 
scatter, and motion. As actual data from the scanner become 
available, a careful physics characterization will be undertaken, 
focusing on the line spread function models, normalization, 
randoms, and scatter correction. With the advent of combined 

list mode and Polaris data, the motion correction aspects of the 
algorithm will be validated using phantom measurements with 
and without motion. These data will also be used to investigate 
the utility of incorporating time-dependent uncertainty of the 
motion data into the line spread functions.  

Subsequently, biologically relevant radioactivity 
distributions will be evaluated, first by simulation. These 
studies will be used to determine optimal reconstruction 
parameters and characterize the quantitative accuracy of small 
brain regions with focal activity. The inclusion of Bayesian 
priors in the algorithm will be evaluated, particularly for data 
sets with insufficient counts to support unconstrained 
resolution recovery. Reconstructions of actual PET data will be 
performed to assess the effects of improved resolution on 
quantification of small structures and physiological model 
parameters determined from kinetic analysis.  

The ultimate direction of this development is 4D 
reconstruction, i.e., direct reconstruction of parametric images 
of kinetic model parameters [10-12]. Based on the initial 
timing estimates, ~1 day of computation are required for 
reconstruction of a 2-hour multi-frame dynamic study. Since 
the purpose of the multi-frame reconstruction is to perform 
voxel-by-voxel kinetic analysis, the direct calculation of such 
images has the potential to provide a large reduction in 
computation time, possibly with increased statistical accuracy.  
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