Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supporting Information

For

Design of A New Nanostructure Comprising Mesoporous ZrO₂ Shell and Magnetite Core (Fe₃O₄@mZrO₂) and Study of Its Phosphate Ion Separation Efficiency

Arpita Sarkar and Panchanan Pramanik *

Department of chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.

Fig. S1 shows the FTIR spectra of the surfactant (CTAB) and the $Fe_3O_4@mZrO_2$ core/shell material. Absence of any peak corresponds to the surfactant in the FTIR spectrum of $Fe_3O_4@mZrO_2$ exhibits that refluxing with acetone removes all the surfactant molecules from the as-synthesized material to give the desired $Fe_3O_4@mZrO_2$ core/shell compound.

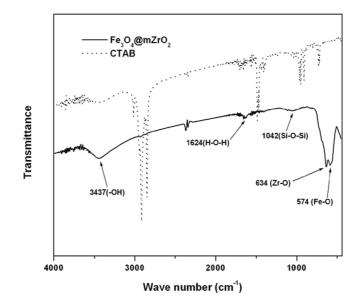


Fig. S1 FTIR spectra of the surfactant (CTAB) and the Fe₃O₄@mZrO₂ after surfactant removal.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010

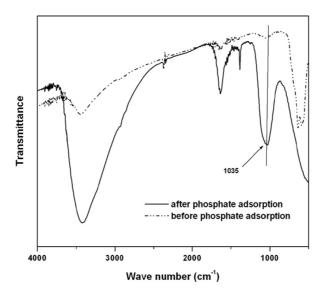


Fig. S2 FTIR spectra of the Fe₃O₄@mZrO₂ before and after phosphate adsorption.

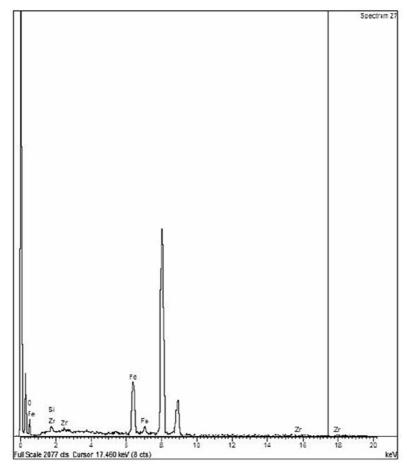


Fig. S3 EDX pattern of the Fe₃O₄@mZrO₂.