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ABSTRACT This paper proposes an adaptive non-singular fast terminal sliding mode control (FTSMC)

with integral surface for the finite time tracking control of nonlinear systems with external disturbances.

An appropriate parameter-tuning adaptation law is derived to tackle the disturbances. A new fast terminal

sliding scheme with self-tuning algorithm is proposed to synthesize the adaptive non-singular fast integral

terminal sliding approach. The proposed approach has the following features: 1) It does not require the

derivative of the fractional power terms with respect to time, thereby eschewing the singularity problem

typically associated with TSMC; 2) It guarantees the existence of the switching phase under exogenous

disturbances with unknown bounds; 3) Because of the integral terms in the sliding surface, the power

functions are hidden behind the integrator; 4) It ensures chattering-free dynamics. The effectiveness of

the proposed approach is assessed using both a simulation and an experimental study. The obtained

results showed that the FTSM control technique guarantees that when the switching surface is reached,

tracking errors converge to zero at a fast convergence rate. Additionally, the integral term offers one extra

degree-of-freedom and since the time-derivative of fractional power terms is not needed in the controller,

the proposed switching surface provides a comprehensive framework for singularity avoidance.

INDEX TERMS Non-singular control, sliding mode control, integral sliding surface, adaptive control,

nonlinear system.

I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

Sliding Mode Control (SMC) is a powerful tool for solv-

ing the robust stability and tracking problem of nonlin-

ear dynamical systems operating under various kinds of

uncertainties and disturbances [1]–[7]. The key advan-

tages of SMC are robustness to parametric uncertainties,

low sensitivity to external disturbances, order reduction,

fast convergence, and ease of implementation [8]–[11].

Due to these advantages, SMC has been extensively used

in applications including robotics, chaotic systems, wind

The associate editor coordinating the review of this manuscript and

approving it for publication was Shihong Ding .

power systems, etc. [12]–[16]. Although SMC guarantees

robustness and performance, it suffers from the chatter-

ing phenomenon mainly caused by the high frequency

switching of the SMC exciting the system’s unmolded

dynamics [17], [18]. A number of approaches such as

the boundary-layer approach via sigmoid and saturation

functions [19], disturbance-estimation and observer-based

techniques [20], high-order SMC scheme [21], [22], and

artificial intelligence (AI) strategies [23] have been proposed

in the literature to either reduce or eliminate the chattering

phenomena.

An adaptive nonlinear SMC technique with fast chattering-

free and non-overshooting responses is developed in [24] for

nonlinear multi-input multi-output (MIMO) systems. In [25],
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an adaptive chattering-free SMC approach based on the

proportional-integral switching manifold is proposed to sta-

bilize MIMO systems with matched and mismatched uncer-

tainties. In [26], under the assumption that the bound of

parameter uncertainties and its first-derivative are unknown,

a chattering-free SMC for a perturbed chaotic system is

suggested. In [27], a chattering-free adaptive robust SMC is

proposed for the synchronization of two chaotic systems with

disturbances and unknown uncertainties. In [28], a dynamic

output-feedback SMC strategy which eschews the chattering

phenomenon and the high-gain control problem is devel-

oped for the stabilization of linear MIMO systems with

uncertainties. An adaptive fuzzy chattering-free SMC is pro-

posed in [29] for nonlinear single-input single-output (SISO)

systems. In [30], a chattering-free robust control scheme

based on the adaptive second-order SMC and resonant con-

trol laws is suggested for LCL shunt active power filters.

In [31], an augmented chattering-free proportional-integral

switching surface-based SMC design is proposed of a coal-

mine power grid with chaotic structure. In [32], an adaptive

chattering-free SMC technique is proposed for the precision

motion of a piezoelectric nano-positioning system subject to

perturbations.

In conventional SMC approaches, the employed switch-

ing manifold is often linear and guarantees the asymptotic

stabilization of the controlled system and the convergence

of the state trajectories to zero in infinite interval. Ter-

minal Sliding Mode (TSM) Control, on the other hand,

enables finite time convergence and a smaller steady-state

tracking error [33], [34]. However, the singularity problem

of TSM leads to unbounded control inputs. Additionally,

when the states/tracking errors are far away from zero, TSM

shows a slow convergence rate compared to conventional

SMC [35], [36]. Therefore, the singularity and chattering

problems of TSM method must be properly addressed. The

TSM control scheme is actually very sensitive around the

equilibrium point and due to the fractional power terms and

their negative fractional power derivatives, this method can

yield unexpectedly large values leading to the singularity

problem.

B. LITERATURE REVIEW

Various non-singular TSM approaches have been inves-

tigated in recent years to mitigate singularity problem.

A non-singular TSM control method was proposed in [37]

for rigid manipulators; however, the adaptation law was

not designed in [37]. An adaptive Fast Terminal Sliding

Mode (FTSM) method which removes the singular problems

of the original TSM is proposed in [38] for an electro-

mechanical actuator system. Parametric uncertainties are

approximated in that method [38] using the integration of

the filtered states. In [39] and [40], using the non-singular

TSMconcept, a finite time attitude tracker is designed to drive

the angular velocity and attitude tracking errors of a space-

craft to the origin in finite time. However, those techniques

considered in [39] and [40] cannot adaptively estimate the

bounds of the perturbations. In [41], a modified time-varying

non-singular TSM approach is presented for rigid manip-

ulators with perturbations where the system’s performance

is enhanced by adding a time-varying gain in the sliding

manifold. In [42], a passive finite time fault-tolerant con-

troller according to the robust non-singular FTSM is planned

for robotic manipulators with actuator faults and paramet-

ric uncertainties. An online time-delay estimator-based fault

estimation algorithm is presented in [42] to approximate

the actuator faults. In [43], a non-singular FTSM is com-

bined with an adaptation technique for the stabilization of an

aircraft with varying gravity center. However, the designed

method [43] is only valid for a specific nonlinear model.

In [44], a non-singular FTSM control method based on the

tracker differentiator and extended state observer is pro-

posed for uncertain permanent magnet synchronous motor

systems. The approach [44], however, exhibits small chat-

tering dynamics. Xin et al. [45] studied the adaptive robust

non-singular FTSM control for second-order uncertain sys-

tems; however, the designed method of [45] is not presented

for high-order dynamic systems. In [46], a robust adaptive

gain non-singular TSM approach is provided for a tracker

design of formation flying of spacecraft in a framework

based on leader-follower approach, but some considerable

chattering can be observed in the results of [46]. The theory

of [47] studies non-singular adaptive TSM control technique

for an attitude tracker design of spacecraft with faults on

actuators; but again, the chattering phenomenon is obvious

in the presented outcomes. In [48], an adaptive non-singular

second-order FTSM controller is planned for n-link robotic

manipulators; however, some high-frequency oscillations are

experienced in the controller inputs. Nevertheless, to the best

of our knowledge, the non-singular switching manifolds had

been designed via a power function which is a ratio of odd

positive integers. By employing an integral term in the pro-

posed sliding surface, there is no restriction on the exponents

and the power functions are ‘hidden’ behind the integrator in

the sliding surface.

C. CONTRIBUTIONS

This paper proposes an adaptive non-singular fast terminal

sliding mode control (FTSMC) with integral surface for the

finite time tracking control of nonlinear systems with external

disturbances. Its main contributions are as follows:

• A non-singular FTSM strategy and proportional-integral

switching surface that guarantees the finite time con-

vergence of the switching surfaces to zero with fast

convergence rate.

• A design that does not require the time-derivative of

the fractional power terms in the controller, thereby

avoiding the singularity problem.

• By using a bipolar sigmoid function with tunable gains

instead of a signum function, an appropriate adaptation

law is derived to tackle the external disturbances without

any knowledge about the bounds of the perturbations.

• Anew adaptation law tomitigate the chattering problem.
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D. PAPER ORGANIZATION

The remainder of the paper is organized as follows. Section 2

formulates the control problem and describes the dynam-

ics of the disturbed nonlinear system under consideration.

The design process for the adaptive non-singular fast inte-

gral terminal sliding controller technique is provided in

Section 3. Simulation studies and experimental results are

presented in Section 4 to validate the efficiency of proposed

approach. Lastly, some concluding remarks are presented in

Section 5.

II. PROBLEM FORMULATION

Consider the nonlinear system with external disturbances

defined by:
ẋ1(t)=x2(t), ẋ2(t)= f (x, t) + b(x, t)u(t) + d(x, t), (1)

where time t ≥ 0, x = [x1, x2]
T , x1(t) ∈ R and x2(t) ∈ R

denote the states, u(t) ∈ R is control input, b(x, t) ∈ R,

(b(x, t) 6= 0) and f (x, t) ∈ R are two bounded known smooth

and nonlinear functions, and d(x, t) ∈ R is a nonlinear

function representing the uncertainties and disturbances, and

is assumed to fulfill |d(x, t)| ≤ D, where D denotes a known

constant scalar. The nonlinear dynamic system (1) is assumed

to track the references x1d (t) ∈ R and x2d (t) ∈ R, where

x2d (t) = ẋ1d (t), and x2d (t) denotes a time-differentiable

function. One can consider the tracking errors as:
[

e1(t)

ė1(t)

]

=
[

x1(t) − x1d (t)

x2(t) − x2d (t)

]

, (2)

with ė1(t) = e2(t). Considering (1) and (2), one obtains:
ė2(t) = −ẋ2d (t) + f (x, t) + b(x, t)u(t) + d(x, t) (3)

Ourmain objectives is to design a robust SMC-based track-

ing control approach that: 1) guarantees the convergence of

the states of (1) to the desired trajectory; 2) ensures that when

the switching surface is reached, the tracking errors converge

to zero at a fast convergence rate; 3) warrants the existence

of the switching phase in the presence of exogenous distur-

bances d(x, t) with unknown bounds; 4) properly mitigates

the singularity and chattering problems.

III. CONTROLLER DESIGN

Define the following switching surface for the nonlinear

system (1):

s(t) = e2(t) +
∫ t

0

(c1S1(e1(τ )) + c2S2(e2(τ ))) dτ , (4)

where S1(e1(τ )) and S2(e2(τ )) are specified by

Si(ei(t)) =
{

sgn(ei(t)) |ei (t)|γi , if |ei(t)| ≤ εi

ε
γi−ρi
i sgn(ei(t)) |ei (t)|ρi , if |ei(t)| > εi

(5)

for i = 1, 2, where the time t is bounded, and the constant

coefficients γi, ρi, ci and εi satisfy γ1 = γ2
2−γ2 , 0 < γ2 < 1,

ρ1, ρ2 ≥ 1, 1 > ε1, ε2 > 0 and c1, c2 > 0.

Remark 1:The condition (5) has a structure like a boundary

layer, which is an extension of the sliding function described

in [49]. For |ei(t)| ≤ εi, the term Si(t) is similar to a

fractional power term. If |ei(t)| > εi, then |ei(t)|ρi >

ε
ρi
i and if |ei(t)| ≤ εi, then |ei(t)|γi ≤ ε

γi
i . As a result,

one obtains ε
γi−ρi
i |ei(t)|ρi > ε

γi−ρi
i ε

ρi
i = ε

γi
i ≥ |ei(t)|γi

and

∣

∣

∣
ε
γi−ρi
i sgn(ei(t))

∣

∣

∣
|ei(t)|ρi > |sgn(ei(t))| |ei(t)|γi . Hence,

when |ei(t)| > εi, the absolute value of the term Si(t) is bigger

than the fractional power term of |ei(t)| ≤ εi. Then, a fast

convergence rate in both cases is achieved by increasing the

magnitude of the parameters εi and ρi.

Theorem 1: Consider the second-order nonlinear dynamic

system (1) and the switching surface (4). Assume that the

equivalent controller is proposed as:

ueq(t) = −b(x, t)−1{f (x, t) + c1S1(e1(t))

+ c2S2(e2(t)) − ẋ2d (t) + d(x, t)}. (6)

Then, the state trajectories of (1) converge to the desired

trajectory along the sliding mode s(t) = 0.

Proof: The time-derivative of the switching curve (4) is set

equal to zero as follows:

ṡ(t) = ė2(t) + c1S1(e1(t)) + c2S2(e2(t)) = 0. (7)

Substituting the equivalent control signal (6) into (3),

yields the equivalent dynamics:

ė1(t) = e2(t), ė2(t) = −c1S1(e1(t)) − c2S2(e2(t)). (8)

Consider the positive-definite Lyapunov function:

V1 (e1 (t) , e2 (t)) =
∫ e1(t)

0

c1S1 (e1 (τ )) de1 (τ )+ 1

2
e22(t),

(9)

Differentiating V1(t) along the trajectories of system (8)

gives:

V̇1(t) =
[

c1S1(t) e2(t)
]

[

ė1(t)

ė2(t)

]

= c1S1(t)e2(t) − c1S1(t)e2(t) − c2S2(t)e2(t)

= −c2S2(t)e2(t) ≤ 0. (10)

Using Lasalle’s invariance theorem [50], the set {(e1(t),
e2(t)) : V̇1(t) = 0

}

involves e2(t) = 0, and the invariant

set inside e2(t) = 0 is e1(t) = e2(t) = 0. Hence,

the asymptotic convergence of the errors to zero is satisfied.

It is obvious that if |e2(t)| > ε2, then V̇1(t) < 0, and

therefore |e2(t)| is reduced. The tracking errors converge to

� = {(e1(t), e2(t)) : |e1(t)| ≤ ε1, |e2(t)| ≤ ε2}.
When (e1(t), e2(t)) ∈ �, according to the definition of

Si(t), i = 1, 2 in (5), the system (8) is written as

ė1(t)= e2(t),

ė2(t)= −c1sgn(e1(t)) |e1(t)|γ1 − c2sgn(e2(t)) |e2(t)|γ2 ,
(11)

where substituting (11) into (10), one obtains

V̇1(t) = −c2 |e2(t)|γ2+1 ≤ 0. (12)

VOLUME 9, 2021 102093
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Therefore, the error dynamic system (8) converges to the

origin from any initial condition. �

Remark 2: It should be stated that the design of equiv-

alent controller (6) is inspired by the work of [51].

However, that paper considered a stabilization control

problem whereas here we consider a tracking control pro-

cedure and the term ẋ2d (t) is considered in the equivalent

control law (6).

Theorem 2: Consider the disturbed nonlinear second-order

dynamics (1) and the switching surface (4). Assume that the

controller is described as

u(t) = −b(x, t)−1{f (x, t) − ẋ2d (t) + c1S1(e1(t)) + γ s(t)

+ c2S2(e2(t)) + κsgn(s(t)) |s(t)|η + χsgn(s(t))},
(13)

where κ and γ are two arbitrary positive scalars and χ is a

constant which fulfils χ ≥ D. Then, the tracking purpose of

a reference signal xd (t) is satisfied and the switching surface

s(t) converges to the origin within a finite time.

Proof: Construct the Lyapunov function as:

V2(s(t)) = 0.5s(t)2. (14)

Differentiating the Lyapunov function along the trajectory

of (3) and (4), it follows:

V̇2(t) = s(t)[d(x, t) + b(x, t)u(t) + f (x, t)

− ẋ2d (t) + c1S1(e1(t)) + c2S2(e2(t))]. (15)

Substituting (13) into (15), one finds

V̇2 (t) = s (t)
[

b (x, t)
(

−b(x, t)−1{f (x, t)−ẋ2d+c1S1(t)

+ κ |s (t)|η sgn(s) + c2S2 (t)+γ s (t)+ χsgn(s)}
)

+ f (x, t) + d(x, t) − ẋ2d (t) + c1S1(t) + c2S2(t)
]

= s(t)
[

−κ |s(t)|η sgn(s(t)) − χsgn(s(t))

+ d(x, t) − γ s(t)
]

≤ − γ |s(t)|2 − κ |s(t)|η+1 − χ |s(t)|
+ |d(x, t)| |s(t)|

≤ − κ |s(t)|η+1 − γ |s(t)|2 + {D− χ} |s(t)|
≤ − γ |s(t)|2 − κ |s(t)|η+1

= −�1V2(t) −�2V2(t)
η̄ (16)

where �1 = 2γ > 0, �2 = 2η̄κ > 0 and η̄ = 0.5(η +
1) < 1. Thus, in relation to the finite time stability theory,

the manifold s(t) converges to zero and the tracking errors

approach to the origin in a finite time. �

In practice, the upper bound of d(x, t) is unknown and the

consequent determination ofχ is hard. In the next theorem, an

adaptationmethod is planned to approximate the disturbances

unknown bounds.

Theorem 3: Consider the nonlinear system (1) and the slid-

ing surface (4). Assume that the bound χ on the disturbance

term d(x, t) is unknown, where χ is an unknown (positive)

scalar. Then, using the adaptive controller as:

u(t) = −b(x, t)−1{f (x, t) − ẋ2d (t) + c1S1(e1(t))

+ γ s(t) + c2S2(e2(t)) + κsgn(s(t)) |s(t)|η

+ χ̂ (t)sgn(s(t))}, (17)

˙̂χ (t) = ψ |s(t)| , (18)

whereψ is a positive scalar, the switching surface s(t) and the

tracking errors converge to the origin.

Proof: Define the following Lyapunov function:

V3(s(t), χ̃ ) = 0.5
(

s(t)2 + µχ̃ (t)2
)

, (19)

where χ̃ (t) = χ̂ (t) − χ and µ is a positive scalar satisfying

µ < ψ−1.

Differentiating (19) along the trajectory of (1), and

using (7), yields:

V̇3(t) = s(t) [ė2 + c1S1(e1(t)) + c2S2(e2(t))]

+µψ
(

χ̂ (t) − χ
)

|s(t)|
= s(t)[f (x, t) + d(x, t) − ẋ2d (t) + b(x, t)u(t)

+ c1S1(e1(t)) + c2S2(e2(t))]

+µψ
(

χ̂ (t) − χ
)

|s(t)| , (20)

where substituting (17) into (20) gives

V̇3(t) = s(t) (f (x, t) + d(x, t) − ẋ2d (t) + c1S1(e1(t))

+ c2S2(e2(t))

− f (x, t) + ẋ2d (t) − c1S1(e1(t))

− c2S2(e2(t)) − γ s(t) − κ |s(t)|η sgn(s(t))
− χ̂ (t)sgn(s(t))

)

+ µψ
(

χ̂ (t) − χ
)

|s(t)|
= s(t)

(

−κ |s(t)|η sgn(s(t)) − γ s(t) − χ̂ (t)sgn(s(t))

+ d(x, t))+ µψ
(

χ̂ (t) − χ
)

|s(t)|
≤ −γ |s(t)|2 − κ |s(t)|η+1 − χ̂ (t) |s(t)|

+ |d(x, t)| |s(t)| + µψ
(

χ̂ (t) − χ
)

|s(t)|
= −κ |s(t)|η+1 − γ |s(t)|2 − χ̂ (t) |s(t)|

+ |d(x, t)| |s(t)|
+µψ

(

χ̂ (t) − χ
)

|s(t)| + χ |s(t)| − χ |s(t)|
= −γ |s(t)|2 − (χ − |d(x, t)|) |s(t)| − κ |s(t)|η+1

− (1 − µψ)
(

χ̂ (t) − χ
)

|s(t)| . (21)

Since χ > |d(x, t)| and µ < ψ−1, we can re-write (21) as:

V̇3(t) ≤ −κ |s(t)|η+1 − γ |s(t)|2 −
√
2 (χ − |d(x, t)|)

× |s(t)|√
2

−
√

2/µ (1 − µψ)
χ̃ (t)√
2/µ

|s(t)|

≤ −κ |s(t)|η+1 − γ |s(t)|2

− min
{√

2 (χ − |d(x, t)|) ,

×
√

2/µ (1 − µψ) |s(t)|
}

( |s(t)|√
2

+ |χ̃ (t)|√
2/µ

)

≤ −5
( |s(t)|√

2
+ |χ̃ (t)|√

2/µ

)

, (22)
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FIGURE 1. Function tanh(with different values of φ̂).

where 5 = min
{√

2 (χ − |d(x, t)|) ,
√
2/µ (1 − µψ)

|s(t)|} > 0. Now,considering the fact that:
( |s(t)|√

2
+ |χ̃ (t)|√

2/µ

)

=

√

s(t)2

2
+ χ̃ (t)2

(2/µ)
+ √

µ |s(t)| χ̃ (t)

≥

√

s(t)2

2
+ χ̃ (t)2

(2/µ)
= V3(t)

1
2 , (23)

where the last term in (22) becomes less than −5V3(t)
1
2 ,

it follows that

V̇3(t) ≤ −5V3(t)
1
2 . (24)

Then, using the adaptive tuning controller (17), the condi-

tion s(t) = 0 is assured and the states of (1) converge to the

desired trajectory. �

Note that the discontinuous sign function proposed in con-

troller (17) causes the chattering phenomenon and results in

unwanted responses in the controlled dynamics. Hence, the

function sgn in (17) is replaced by a continuous hyperbolic

tangent function tanh with adaptive law to enable the modifi-

cation of the steepness and amplitude of the control law. As it

is displayed in FIGURE 1, the steepness of the hyperbolic

tangent function governs how it approximates the sign func-

tion. That is, if the steepness constant increases, the obtained

function will approach the sign function thereby giving rise to

the chattering problem. However, if the steepness and the gain

of tanh is decreased, then we have chattering-free dynamics.

Therefore, the adaptive chattering-free continuous controller

is defined by:

u(t) = −b(x, t)−1f (x, t) − ẋ2d + c1S1(e1(t))

+ c2S2(e2(t)) + γ s(t) + κsgn(s(t)) |s(t)|η

+ χ̂ (t)tanh(ϕ̂(t)s(t))}, (25)

where ϕ̂(t) is the adaptive steepness coefficient of tanhwhich

is considered as

tanh(ϕ̂(t)s(t)) = exp(ϕ̂(t)s(t)) − exp(−ϕ̂(t)s(t))
exp(ϕ̂(t)s(t)) + exp(−ϕ̂(t)s(t)) (26)

where the constant control parameters are arbitrary positive

scalars which are selected by trial and error approach.

Theorem 4: Consider the dynamics (1) and the switching

manifold (4). If the controller signal is chosen as (25) and the

adaptation rules are designed as

˙̂ϕ(t) = 0.25αb(x, t)
(

exp(−ϕ̂(t)s(t)) + exp(ϕ̂(t)s(t))
)2

× χ̂ (t)−1 ṡ(t)

s(t)
sgn

(

∂ ṡ(t)

∂u(t)

)

(27)

˙̂χ (t) = βb(x, t)
exp(−ϕ̂(t)s(t)) + exp(ϕ̂(t)s(t))

exp(ϕ̂(t)s(t)) − exp(−ϕ̂(t)s(t))

× ṡ(t)ηsgn

(

∂ ṡ(t)

∂u(t)

)

(28)

where α, β > 0, as a result, the error states are forced to

switching curve and the convergence to zero in a finite time

is obtained.

Proof: Construct the positive-definite Lyapunov func-

tion as

V4(s(t)) = 0.5ṡ(t)2, (29)

where differentiating V4(t) results in

V̇4(t) = ∂V4(s(t))

∂ ṡ(t)

∂ ṡ(t)

∂u(t)

(

∂u(t)

∂χ̂ (t)

∂χ̂ (t)

∂t
+ ∂u(t)

∂ϕ̂(t)

∂ϕ̂(t)

∂t

)

.

(30)

Now, manipulating the above equation, we get:

V̇4(t) = ∂V4

∂ ṡ(t)

∂ ṡ(t)

∂u(t)

∂u(t)

∂χ̂ (t)

∂χ̂ (t)

∂t

+ , ∂V4
∂ ṡ(t)

∂ ṡ(t)

∂u(t)

∂u(t)

∂ϕ̂(t)

∂ϕ̂(t)

∂t

= ṡ(t)
∂ ṡ(t)

∂u(t)

∂

∂χ̂ (t)

(

−b(x, t)−1 {f (x, t) − ẋ2d

+ c1S1(e1(t)) + c2S2(e2(t))

+ κ |s(t)|η sgn(s(t)) + γ s(t)

+ χ̂ exp(s(t)ϕ̂(t)) − exp(−s(t)ϕ̂(t))
exp(s(t)ϕ̂(t)) + exp(−s(t)ϕ̂(t))

})

˙̂χ (t)

+ ṡ(t)
∂ ṡ(t)

∂u(t)

∂

∂ϕ̂(t)

(

−b(x, t)−1 {f (x, t) − ẋ2d (t)

+ c1S1(e1(t)) + c2S2(e2(t)) + γ s(t)

+ κ |s(t)|η sgn(s(t))

+ χ̂ (t)exp(s(t)ϕ̂(t)) − exp(−s(t)ϕ̂(t))
exp(s(t)ϕ̂(t)) + exp(−s(t)ϕ̂(t))

})

˙̂ϕ(t)

(31)

where substituting the differentiation of u(t) with respect to

χ̂ (t) and ϕ̂(t) into V̇4(t), it gives

V̇4(t) = −ṡ(t) ∂ ṡ(t)
∂u(t)

b(x, t)−1

×
(

χ̂ (t)
4s(t)

(

exp(−ϕ̂(t)s) + exp(ϕ̂(t)s)
)2

˙̂ϕ(t)

+ exp(ϕ̂(t)s(t)) − exp(−ϕ̂(t)s(t))
exp(−ϕ̂(t)s(t)) + exp(ϕ̂(t)s(t))

˙̂χ (t)
)

. (32)
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FIGURE 2. Time trajectory of x1(t), t ≥ 0.

Finally, using the adaptation laws (27) and (28) in the above

equation yields

V̇4(t) = −αṡ(t)2
∣

∣

∣

∣

∂ ṡ(t)

∂u(t)

∣

∣

∣

∣

− β ṡ(t)η+1

∣

∣

∣

∣

∂ ṡ(t)

∂u(t)

∣

∣

∣

∣

≤ −31V4(t) −32V4(t)
η̄ (33)

where η̄ = η+1
2

, 31 ≤ 2α

∣

∣

∣

∂ ṡ(t)
∂u(t)

∣

∣

∣
and 32 ≤ 2η̄β

∣

∣

∣

∂ ṡ(t)
∂u(t)

∣

∣

∣
. This

finalizes the proof. �

Remark 3: In order to completely eliminate the chatter-

ing problem resulting from the discontinuous sign function

(sgn(s(t))), the control signal (25) and the adaptation tuning

equations (27)-(28) are adapted via a hyperbolic tangent.

Hence, the controller input and adaptation tuning equations

are obtained as:

u(t) = −b(x, t)−1f (x, t) − ẋ2d (t) + c1S1(e1(t))

+ c2S2(e2(t)) + γ s(t) + κtanh(Is(t)) |s(t)|η

+ χ̂ (t)tanh(ϕ̂(t)s(t))}, (34)

and

˙̂ϕ (t) = 0.25αb (x, t)
(

exp(s (t) ϕ̂
)

+ exp(−s(t)ϕ̂))2χ̂ (t)−1ṡ(t)s(t)−1tanh

(

I
∂ ṡ

∂u

)

,

(35)

˙̂χ (t) = βb(x, t)
exp(−ϕ̂s(t)) + exp(s(t)ϕ̂)

exp(s(t)ϕ̂) − exp(−s(t)ϕ̂)

× ṡ(t)ηtanh

(

I
∂ ṡ(t)

∂u(t)

)

, (36)

where I is the steepness constant of the hyperbolic tangent.

Note selecting a I to be very small can lead to steady-state

errors, whereas assigning too large of a value for I can give

rise to the chattering problem. Thus, the value of I is required

to be chosen suitably based on each specific system.

Considering the tracking control problem, the performance

indices are presented as the objective functions which will be

used in the next section:

(I) Integral of Absolute of Error (IAE): J1i (t) =
∫ t
0

|ei(τ )| dτ , i = 1, . . . , n,

(II) Integral of Time-multiplied Absolute of Error (ITAE):

J2i (t) =
∫ t
0 τ |ei(τ )| dτ , i = 1, . . . , n,

FIGURE 3. Time history of x2(t), t ≥ 0.

FIGURE 4. The control signal u(t), t ≥ 0 (Eq. (34)).

FIGURE 5. Sliding surface s(t), t ≥ 0 (Eq.(4)).

(III) Integral of Square Value of control signal (ISV):

J3(t) =
∫ t
0 u(τ )

2dτ .

IV. SIMULATION AND EXPERIMENTAL RESULTS

To assess the performance of the proposed approach, we carry

out a simulation and experimental study. Additionally, for

comparison purposes, we consider the approach proposed

in [14].

A. EXAMPLE 1: VAN DER POL CIRCUIT SYSTEM

Van der Pol (VDP) circuits are often considered in analysing

nonlinear systems, to highlight many phenomena includ-

ing stability, limit-cycle, relaxation oscillation, and Hopf-

bifurcation. This system is extremely nonlinear and displays

both stable and unstable limit cycles. The VDP oscillator is

introduced by the equation [52]:

ẍ(t) + µ0(x(t)
2 − 1)ẋ(t) + x(t) = 0, (37)
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FIGURE 6. Phase plot of the states and sliding surfaces; (a) method of [14], (b) proposed method.

whereµ0 is a positive constant. Eq. (37) is a simple harmonic

oscillator, with the nonlinear damping µ0(x(t)
2 − 1)ẋ(t).

When |x(t)| > 1, the nonlinear term causes large amplitude

to decay. When |x(t)| < 1, the nonlinear damping term

increases. Consequently, this circuit reaches a self-sustained

oscillation and has a unique stable limit cycle. The dynamic

equation of a forced VDP circuit is presented as [53]:

ẍ(t) + 3(x(t)2 − 1)ẋ(t) + 2x(t) = u(t) + d(t), (38)

where x(t) denotes the system state; u(t) represents the

control signal, and d(t) indicates the external disturbances.

Eq. (38) can be written in state-space form as [54]:

ẋ1(t) = x2(t)

ẋ2(t) = −2x1(t) + 3(1 − x1(t)
2)x2(t) + u(t) + d(t),

(39)

where x1(t), x2(t) are the state variables. The disturbance term

is considered as d(t) = 0.3 sin(0.2π
√
t + 1)+0.2 sin(0.1π t).

The system states must track the desired trajectories x1d (t) =
2 sin(5t) and x2d (t) = 10 cos(5t). The initial condition is

selected as x(0) =
[

1.5, 4
]T
. The controller parameters are

determined by trial and error and are obtained as follows: κ =
5, γ = η = 0.3, ψ = 0.7, γ1 = 1

3
, γ2 = 0.5, ε1 = 0.05,

ε2 = 0.08, ρ1 = 1.1, ρ2 = 1.05, c1 = 0.5, c2 = 1.2.

The time histories of the system state variables x1 and

x2 are displayed in FIGURE 2 and FIGURE 3. It can be

seen from these two figures that the suggested approach

offers more accurate and much fast transient response than

the approach in [14]. The comparison of the control signals

is exhibited in FIGURE 4 which indicates that the planned

controller yields superior vibration control. The time histories

of the switching surfaces are shown in FIGURE 5. Evidently,

the quick convergence of the proposed switching curve to

zero in comparison with the switching surface of [14] can

be observed. FIGURE 6 shows the phase plots of the states

FIGURE 7. Control inputs in the presence of (a) triangle wave
disturbance, (b) square wave disturbance.

and sliding surfaces, which demonstrates that the proposed

sliding surface and the system states have faster transient

response compared to the method of [14]. Table 1 presents

the IAE, ITAE and ISV numerical results. Using the proposed

control technique, the performance indices of tracking errors

and control signals are smaller compared to results of the

technique of [14]. This result demonstrates the enhanced

tracking performance of the proposed technique over the

other existing ones. In summary, the simulation results on

the VDP circuit validate the efficiency and usefulness of the

newly introduced control scheme.

Two other simulations are conducted to examine the

robustness of the suggested control method to different
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TABLE 1. Performance indices (IAE, ITAE, ISV) of the VDP circuit system.

FIGURE 8. Mechanical model of inverted pendulum.

FIGURE 9. Angular position.

external disturbances. To that end, the external disturbances

are set to triangle and square waveforms with d(t) =
{

−0.5 (t − 1) , 0 ≤ t < 2

0.5 (t − 3) , 2 ≤ t < 4
and d(t) =

{

0.5, 0 ≤ t < 1

−0.5, 1 ≤ t < 2
,

respectively. The simulations are rerun without retuning the

controller gains. In both cases, the simulation results of

the tracking performance and sliding surfaces are nearly

identical to the ones for the sinusoidal disturbance d(t) =
0.3 sin(0.2π

√
t + 1)+0.2 sin(0.1π t), and thus are not repro-

duced here. Time responses of the control inputs are given in

FIGURE 7, which shows some chattering issues in the new

conditions.

B. EXAMPLE 2: INVERTED PENDULUM SYSTEM

The inverted pendulum is a famous test system for assessing

control strategies [55], [56]. This system is widely used for

educational goals, and belongs to the under-actuated mechan-

ical systems. It also has specific various real-life usages

such as robotics, position control, aerospace vehicles control,

etc. [55]. The main control objective is to balance or stabi-

lize the pendulum in the inverted position. The schematic

representation of the inverted pendulum system is shown

FIGURE 10. Angular velocity.

FIGURE 11. Control input.

FIGURE 12. Sliding surface s(t).

in FIGURE 8. In that figure, lp, mc, mp, θ , x and u repre-

sent respectively the pendulum length, cart mass, pendulum

mass, pendulum angular position, cart position and horizontal

driving force. The nonlinear motion equations are found by

means of Lagrangian equations [57], [58], from which the

‘‘cyclic’’ coordinate x can simply be removed to be left with

the second-order equation as [57], [59], and:
(

1 − 3mp

4(mp + mc)
cos2θ

)

θ̈

+ 3mp

8(mp + mc)
θ̇2 sin(2θ) − 3g

2lp
sin θ

− 3u(t)

2lp(mp + mc)
cosθ = 0 (40)
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FIGURE 13. Phase plot of the states and sliding surfaces; (a) method of [14], (b) proposed method.

or equivalently:

lp

(

4

3
(mp + mc) − mp cos

2θ

)

θ̈

= 2g(mp + mc) sin θ

− 1

2
mplpθ̇

2 sin(2θ) + 2u(t) cos θ. (41)

Defining x1 = θ and x2 = θ̇ , yields the following

state-space presentation [60]:

ẋ1 = x2,

ẋ2 =
2g(mc + mp) sin(x1) − mplpx

2
2 sin(x1) cos(x1)

lp

(

4
3
(mc + mp) − mp cos2(x1)

)

+ 2 cos(x1)

lp

(

4
3
(mc + mp) − mp cos2(x1)

)u(t) + d(x, t),

(42)

where x1, x2, g are the pendulum angular position, pendulum

angular velocity and gravitational acceleration, respectively.

The parameters of the inverted pendulum are set as: lp =
0.5m, mp = 0.1kg, mc = 1kg, g = 9.8m/s2. The distur-

bance is given as: d(x, t) = 0.3 cos(x1) + 0.2 cos(π t) +
0.1 sin(1.5t)u. Using (1) and (42), the nonlinear functions

are specified as: f (x, t) = 2g(mc+mp) sin(x1)−mplpx22 sin(x1) cos(x1)
lp

(

4
3 (mc+mp)−mp cos2(x1)

)

and b(x, t) = 2 cos(x1)

lp

(

4
3 (mc+mp)−mp cos2(x1)

) .

The initial states are given by: x(0) =
[

0.5 −1
]T

and

the desired trajectory is chosen as: xd (t) = 0.5 sin(t). The

constant parameters are chosen by trial and error as γ1 = 1
3
,

γ2 = 0.5, ε1 = 0.04, ε2 = 0.07, ρ1 = 1.1, ρ2 = 1.05,

c1 = 0.5, c2 = 1.2, ψ = 7, γ = 0.5, κ = 15, and η = 0.3.

The trajectories of the angular position and angular velocity

are depicted in FIGURE 9 and FIGURE 10, respectively.

TABLE 2. Performance indices (IAE, ITAE, ISV) of the pendulum system.

It can be inferred from these figures that the position and

velocity states suitably track the reference signals using the

proposedmethod. The control input of the system is displayed

in FIGURE 11, which shows smooth and fchattering-free

dynamics. From FIGURE 12, it can be observed that the

planned sliding surface is smooth and approaches to zero

quickly. FIGURE 13 demonstrates the phase plots of the

states and sliding surfaces. It can be obviously seen that

the proposed sliding surface and system states converge to

the equilibrium faster than those of the method of [14]. All

these figures verify that the offered control technique has

much better robust performance compared to the method

of [14]. The IAE, ITAE and ISV comparative results are

given in Table 2. It can be observed from Table 2 that the

performance indices values are much less for the proposed

control technique in comparison with the other method. Then,

by comparing the simulation results, one can conclude that

the tracking performance of the suggested control method is

superior to that of the method of [14].

Two other simulations are executed to study the robustness

of the proposed method to various external disturbances. For

this purpose, the exterior disturbances are set to triangle and

square waveforms with d(t) =
{

−0.5 (t − 1) , 0 ≤ t < 2

0.5 (t − 3) , 2 ≤ t < 4
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FIGURE 14. Control signals in the presence of (a) triangle wave
disturbance, (b) square wave disturbance.

FIGURE 15. Built in cart-inverted pendulum system.

and d(t) =
{

0.5, 0 ≤ t < 1

−0.5, 1 ≤ t < 2
, correspondingly. Simulation

results are obtained without retuning the gains of the con-

trol signal. In both cases, the time responses of the angular

positions, angular velocities and sliding surfaces are simi-

lar to the results for the sinusoidal disturbance d(x, t) =
0.3 cos(x1) + 0.2 cos(π t) + 0.1 sin(1.5t)u, and thus are not

repeated here. Time trajectories of the control signals for

both cases are given in FIGURE 14, which demonstrates the

chattering problem in the new cases.

An experimental verification of the proposed approach

is carried out via MATLABr Simulinkr and Real-Time

FIGURE 16. Time response of the pendulum angle.

FIGURE 17. Time response of the cart position.

FIGURE 18. Control input of built in system.

toolboxes. We execute experiments on the practical cart-

inverted pendulum system depicted in FIGURE15. The angu-

lar position of the pendulum and the linear position of the

cart are measured using two E40S encoders by Autonics

Company. The employed card in this practical system is the

PCI-1751, which is connected to the computer via D/A and

A/D converters. The obtained pendulum’s angular position

and cart’s linear position are shown in FIGURE 16 and

FIGURE 17, respectively. The position of the inverted pen-

dulum is changes from π to 0, and stabilizes around the equi-

librium. These experimental results prove the performance

of the proposed approach. The control signal is illustrated

in FIGURE 18.

The above practical results confirm the good tracking per-

formance and effectiveness of the proposed control scheme.

V. CONCLUSION

This paper proposed an adaptive non-singular fast terminal

sliding mode control (FTSMC) with integral surface for the
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finite time tracking control of nonlinear systems with external

disturbances. It main objective is to establish strong robust

performance, fast finite time convergence and chattering-free

dynamics. The proposed approach substitutes the signum

function with a bipolar function with tunable coefficients

and derives an appropriate adaptive parameter-tuning law

to tackle the unknown bounded disturbances and alleviate

the undesired chattering problem. It also does not require

the time-derivative of the fractional power terms in the con-

troller, thereby eschewing the singularity problem. Imple-

mentation of the proposed approach to a VDP circuit and

an inverted pendulum confirmed its good tracking perfor-

mance. Additionally, a comparison study to the approach

proposed in [14] highlighted its superior performance and

dynamic response. Our future work will focus on aug-

menting the proposed approach with continuous finite time

convergence differentiators and implementing the proposed

design for chaos suppression, chaotic synchronization and

filter design.
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