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Finland

* camille.belanger-champagne@helsinki.fi

Abstract

The most common explosives can be uniquely identified by measuring the elemental H/N

ratio with a precision better than 10%. Monte Carlo simulations were used to design two var-

iants of a new prompt gamma neutron activation instrument that can achieve this precision.

The instrument features an intense pulsed neutron generator with precise timing. Measuring

the hydrogen peak from the target explosive is especially challenging because the instru-

ment itself contains hydrogen, which is needed for neutron moderation and shielding. By

iterative design optimization, the fraction of the hydrogen peak counts coming from the

explosive under interrogation increased from 53
þ7

�7
% to 74

þ8

�10
% (statistical only) for the

benchmark design. In the optimized design variants, the hydrogen signal from a high-explo-

sive shell can be measured to a statistics-only precision better than 1% in less than 30 min-

utes for an average neutron production yield of 109 n/s.

1 Introduction

Society faces many threats through the malicious use of CBRNE (Chemical, Biological, Radio-

logical, Nuclear and/or Explosive) materials. The detection of illicit trafficking or other crimi-

nal acts, as well as many security and safety applications, call for novel material analysis

techniques and instruments. These detection systems should be non-destructive but still be

able to detect and identify the threat objects, even from inside a shielding or masking enclo-

sure. Active interrogation methods that use penetrative particle beams can reveal the presence

of CBRNE materials.

In prompt gamma neutron activation analysis (PGNAA), an unknown object is exposed to

a high neutron flux and the outgoing prompt gamma radiation is measured with a high energy

resolution gamma spectrometer [1]. The emitted gamma rays are isotope-specific, so PGNAA

can be used to detect the presence of nearly all elements. The relative intensity of the gamma

ray peaks in the energy spectrum can be used to measure the relative fractions of elements

inside the unknown target. The prompt gamma-ray emissions can occur after neutron capture

on the atomic nucleus or via inelastic scattering. Thermal neutrons are most likely to interact

with the target via neutron capture. For an inelastic scattering event to result in gamma-ray
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emission, the interacting neutron must be a fast neutron with a kinetic energy larger than the

energy of the gamma emission of the target isotope.

Applications of the PGNAA technique exist in many contexts, and specialized systems are

designed based on the materials, elements and isotopes that must be identified in each applica-

tion. Some luggage handling and landmine detection systems rely specifically on the use of

thermal neutrons [2] while some cargo handling systems focus on the use of fast neutrons [3].

Neutron-based systems can also be used to detect special nuclear material [4].

The use of PGNAA for CBRNE safety applications is well established [5–7]. In the subset of

applications that focus on military ordnance, explosives and chemical weapons are the princi-

pal identification targets inside unknown objects. The ratio of the main gamma-ray peaks of

hydrogen and nitrogen can be used to identify the presence of high explosives. The gamma-

ray signal from As, F, P, S and Cl is needed to identify chemical weapons [5], while the addi-

tional detection of bromine and iodine is desirable, according to the Organisation for the Pro-

hibition of Chemical Weapons (OPCW) [8]. A few fully integrated commercial systems are

available, such as Ortec PINS3-CF [9] and PINS3-CW [10] and EADS SODERN NIPPS [11].

These systems use different types of neutron sources: the PINS3-CF system uses a Cf-252

spontaneous fission source while the PINS3-CW and NIPPS systems use deuterium-deute-

rium fusion neutron generators. The algorithm used by the Ortec systems to identify explo-

sives and chemical warfare agents (CWA) is described in [7]. These different source types

produce neutrons with very different energy spectra. The impact of the source neutron spec-

trum has been studied for both safety applications with explosives and CWA [12] and for bulk

sample characterisation instruments [13].

Isotope-specific prompt gamma radiation can arise from fast or thermal neutron interac-

tions, depending on the material of interest. Therefore, time separation of the fast neutron-

induced prompt gamma signal and the thermal neutron-induced prompt gamma signal

reduces the background in both measurements. The existing instruments that use continuous

sources cannot separate the two prompt gamma signals. Of the existing instruments, according

to their technical specifications, only the EADS SODERN NIPPS uses signal type separation,

but between prompt and delayed gamma emissions. The neutron generator is operated for a

preset number of pulses and then data acquisition continues during a longer period after the

last pulse [11]. Two spectra are collected, a prompt gamma spectrum for the duration of the

preset pulses, and a delayed gamma spectrum during the long pause. The two prompt gamma-

ray contributions, from fast neutron- and thermal neutron-induced reactions, are collected

together in the prompt spectrum. The delayed gamma spectrum arises from radioactive decays

after neutron activation of isotopes in the material, independently of the process that activated

the material.

This article presents results of Monte Carlo simulations that were used to design a new

PGNAA instrument. The design studies focus on the detection of explosives inside an artil-

lery shell. While CWA and smoke agents have specific elemental markers like Cl, P, F, etc.,

high explosives are all largely made up of a combination of H, C, N and O [6], which are also

present in everyday materials. High explosive identification relies on the measurements of

elemental ratios of these elements, where separation of the signal from background sources is

challenging. In the proposed instrument, the neutrons are generated using the deuterium-

deuterium fusion (D-D) reaction. The most relevant prompt gamma-ray emissions for the

elements of interest are listed in Table 1, along with signature elements of CWAs. The inelas-

tic scattering emissions from carbon and oxygen are not accessible using the 2.5 MeV neu-

trons from the D-D reaction. The hydrogen and nitrogen emission from thermal neutron

capture are accessible. The main focus is thus to measure the H/N ratio with high accuracy

and precision, which can provide discrimination as to the type of explosive present. If the
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H/N ratio can be determined with a precision better than 10%, the most common high explo-

sives in Table 2 can be uniquely identified. In turn, this requires accurate and precise mea-

surement of the H and N components of the prompt emission gamma-ray spectrum from the

explosive material. A precisely pulsed neutron generator is used. The timing profile and data

collection in different time windows relative to the beginning of each pulse are chosen to

maximise isotope identification efficiency by separating the fast- and thermal-neutron

induced signals during each pulse cycle [14, 15]. The neutron emission rate can be very large

(>>108 n/s for typical generators) when compared with portable spontaneous fission neu-

tron sources or sources containing an alpha emitter inside a low-Z element matrix (such as

americium-beryllium). Furthermore, they do not contain fissile material and they can be

switched completely off when not in operation.

2 Materials andmethods

The benchmark scenario for this study is the case where an old artillery shell is recovered but

the content (chemical agent, conventional explosive, incendiary, smoke, practice round) is

unknown. The object is interrogated via neutron activation analysis. There are two different

design concepts for the apparatus in this study, depending on the characteristics of the detector

it contains. The optimized instrument designs that were obtained in this study are shown in

Fig 1.

The neutron source is a pulsed generator that uses the deuterium-deuterium fusion reac-

tion to generate an intense pulsed flux of 2.5 MeV neutrons. A significant fraction of these ini-

tial neutrons is slowed down to the thermal energy range at the output of the generator via the

use of a neutron moderator material.

Table 2. Elemental ratio H/N for some common high explosives [18].

Explosive Elemental ratio

TNT 1.67

RDX 1.0

Comp. B 1.25

ANFO 2.2

https://doi.org/10.1371/journal.pone.0188959.t002

Table 1. Selected gamma-ray emission lines for the detection and identification of high explosives
and CWA [5, 16, 17].

High Explosives

Isotope Gamma ray energy [MeV] Process
1H 2.22 thermal neutron capture
12C 4.43 neutron inelastic scattering
14N 10.8 thermal neutron capture
16O 6.13 neutron inelastic scattering

Chemical Warfare Agents
19F 1.24, 1.35, 1.36 neutron inelastic scattering
31P 0.63, 1.07 thermal neutron capture
31P 1.27, 2.23 neutron inelastic scattering
32S 0.84, 3.2 thermal neutron capture
35Cl 0.52, 0.79, 1.16, 1.95 thermal neutron capture
75As 6.29, 6.81, 7.02 thermal neutron capture
75As 0.57 neutron inelastic scattering

https://doi.org/10.1371/journal.pone.0188959.t001
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The object under study is placed in an interrogation cavity surrounded by a neutron reflec-

tor for maximum interrogation efficiency. A high energy resolution gamma-ray detector is

located next to the interrogation cavity, at a 90˚ angle to the accelerator line of the neutron

generator. As an example, a cerium-doped lanthanum bromide detector in a commercially

available size is used. Such detectors have shown potential to be used in similar CBNRE detec-

tion applications [19]. The detector is enclosed in both neutron and gamma-ray shielding,

Fig 1. Instrument geometries.Cross-section drawings of the optimized geometries of the proposed
instruments for a case with (a) neutron-sensitive detectors (“shell-point” design) and (b) detectors that are not
affected by the presence of a large neutron flux (“shell-side design”). See Table 3 for the list of numbered
parts and Table 4 for their dimensions.

https://doi.org/10.1371/journal.pone.0188959.g001
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retaining only a window looking at the object under interrogation. The entire experimental

setup is surrounded by shielding materials to ensure the safety of the operation personnel. In

Fig 1(a), the gamma-ray detector is aligned with the point of the artillery shell under interro-

gation and it is located relatively far from the main neutron flux. This is the reference design

for use with a neutron-sensitive detector, which will be referred to as the “shell-point” design

in the rest of this paper. In Fig 1(b), the gamma-ray detector is pointed at the side wall at the

centre of the artillery shell and is much closer to the main neutron flux and the unknown

object. This is the reference design for an apparatus that uses a detector that is not unduly

affected by the presence of neutrons and can thus be located closer to the gamma-ray emission

volume within the unknown object, which we call the “shell-side” design. Thus, this configura-

tion benefits from a significant increase in solid angle coverage for the gamma-ray detector.

2.1 GEANT4 configuration

All data samples used in this paper were simulated using Monte Carlo methods in the

GEANT4 [20] software package, version 4.10.01p01. The data samples where simulated using

the QGSP_BERT_HP built-in physics list for GEANT4 in order to provide accurate results for

both electromagnetic and hadronic processes, and in particular for low-energy neutron phys-

ics. Neutron interaction data was taken from G4NDL4.5 [17], except in the case of 113Cd. We

observed that, by default, models and data included in GEANT4 resulted in a poor match with

the tabulated data for gamma emissions from thermal neutron capture on 113Cd [21]. So, for

this isotope, we wrote custom gamma-emission data files based on [21] for use with GEANT4.

The instrument’s geometry is imported into GEANT4 from a CAD drawing using CAD-

Mesh [22]. The neutron generator’s ion source and accelerating cavity are omitted from the

simulation. Each volume of the drawing is assigned a constituent material through which par-

ticle transport and interactions are calculated by GEANT4. The volumes and materials for the

designs of Fig 1 are given in Table 3. The table lists the materials used at the start of the study

as well as those selected after the optimization of the instrument design. Part #19 was not in

the starting design and the volume it occupies in Fig 1 was included in part #16. The final-

design dimensions of the components of the shell-point instrument are given in Table 4.

All the simulated data samples used in these studies are built from single neutron events.

The neutrons are generated isotropically and uniformly over a disk of 5 cm in diameter at the

centre of the beam-facing side of the copper target disk of the instrument’s neutron generator.

All neutrons are generated with an initial energy of 2.5, as would result from the deuterium-

deuterium fusion reaction in the neutron generator [23]. All neutrons are created in the simu-

lation at time t = 0 within their event. The simulated neutrons behave like a generator pulse

with a time spread of zero. The path of each initial neutron, and its interactions with the mate-

rial of the experimental apparatus, are tracked by GEANT4 until the neutron is captured or

escapes outside of the world volume of the simulation (a 2x2x2 m3 air-filled cube with the sim-

ulated instrument at the centre). All secondary particles created by interactions in the world

volume are also tracked. In the neutron flux optimisation studies described in Section 3.1, the

sample size is 25 million initial neutrons. For gamma-ray flux optimisation studies described

in Section 3.2, the sample size is 300 million initial neutrons.

3 Results

3.1 Optimization of neutron flux

The characteristics of the neutron flux in the unknown-object cavity depend mainly on the

geometry and material characteristics of the main neutron moderator, the cavity floor and

the neutron reflectors. They are however not strongly affected by the details of the detector
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assembly and shielding. So, to study and optimise the neutron flux, we generated data samples

based on our initial design geometry of the shell-point instrument design. The representation

of this starting geometry within the GEANT4 simulation is shown in Fig 2. We did not include

the ammunition shell object in the cavity. To record the neutron flux characteristics in the cav-

ity where the object would be located, we defined an infinitesimally thin scoring plane at the

centre of the unknown-object cavity (shown in red in Fig 2) and recorded the energy and time

distributions of the neutrons crossing this plane. This gives us a very good estimate of the neu-

tron flux onto the unknown object that is independent of the geometry and material composi-

tion of the unknown object.

The design item to be optimised is the size and thickness of the neutron moderator mate-

rial, which is shown as part #7 in Fig 1. In the instrument, this piece plays a double role as the

main neutron moderator and as electrical insulation at the end of the neutron generator. This

double role puts some constraints on the design choices: the material chosen must be an elec-

trical insulator, and the shape is constrained to be a disk of diameter matching that of the neu-

tron generator. Polyethylene was chosen as the moderating material, for its low cost, high

moderating power, ease of machining and electrical properties. The main geometrical parame-

ter to optimise is the thickness of the moderator disk. A thicker moderator is expected to ther-

malize a larger fraction of the fast neutron flux. However, it will also attenuate the overall

neutron flux through the unknown object via scattering and absorption. As the moderator is

structural in the instrument, its thickness also affects the distance between the neutron genera-

tion disk and the scoring plane and introduces a geometric distance effect into the observed

Table 3. List of volumes represented in GEANT4 for the instruments under study, along with their material composition at the start of the optimiza-
tion studies and after completion of the study.

# Name Starting Material Final designmaterial

Neutron generator and shield

1 Water tank Water Borated water (5%mass)

2 Water tank structural panel Borated polyethylene (5% mass) Borated polyethylene (5% mass)

3 Oil tank C5H12O4 Borated C5H12O4 (5%mass)

4 Neutron generator target Copper Copper

5 Ion source structural ring Stainless steel Stainless steel

6 Neutron generator window Aluminium Aluminium

7 Main neutron moderator Polyethylene Polyethylene

8 Neutron generator casing Stainless steel Stainless steel

Gamma detector and shield

9 Detector bunker Lead Lead

10 Detector neutron shield Cadmium Cadmium

11 Detector exterior shield Borax decahydrate Borax decahydrate

12 Gamma detector LaBr3:5%Ce LaBr3:5%Ce

13 Detector bunker window Li2CO3 Li2CO3

Unknown object and cavity

14 Object cavity neutron reflector Graphite Graphite

15 Object cavity exterior shield Borax decahydrate Borax decahydrate

16 Object cavity floor Polyethylene Graphite

17 Artillery shell casing Iron Iron

18 Artillery shell contents TNT TNT

19 Shielding floor plate — Lead

Parts numbers in the first column correspond to those of Fig 1.

https://doi.org/10.1371/journal.pone.0188959.t003

Design of a novel instrument for active neutron interrogation of artillery shells

PLOSONE | https://doi.org/10.1371/journal.pone.0188959 December 6, 2017 6 / 23

https://doi.org/10.1371/journal.pone.0188959.t003
https://doi.org/10.1371/journal.pone.0188959


neutron flux. We simulated data samples in GEANT4 varying the thickness of the main mod-

erator material, using thicknesses of 50, 70, 90 and 120 mm. A minimum thickness of 50 mm

is needed for adequate electrical insulation.

The energy distributions of fast (defined here to be within the energy window between 1

and 2.5 MeV) and thermal (defined here to have an energy less than 1 eV) neutrons in the

unknown-object cavity for the tested moderator configurations are shown in Fig 3. For each

neutron energy range, we define 2 types of distributions. “Direct” neutron distributions record

the energy of each neutron the first time it crosses the neutron scoring plane at the centre of

the unknown-object cavity. “Integrated” neutron distributions record the energy of all

instances of a neutron crossing the scoring plane, including multiple entries per neutron if the

neutron is backscattered toward the scoring plane one or more times. The deficit of neutrons

below 2.1 MeV in the fast neutron spectra is due to a carbon elastic scattering resonance at

2.075 MeV [17]. The broad, asymmetrical peak between 1.8 and 2 MeV in the integrated fast

neutron distribution is due to the presence of neutrons reflected by the graphite shield located

around the unknown-object cavity. The main effect of the change of moderator thickness is on

the number of fast neutrons, which decreases steadily with increased moderator thickness.

The number of thermal neutrons present in the unknown-object cavity also decreases with

increased moderator thickness, but not as strongly.

Table 4. List of volumes represented in GEANT4 for the instruments under study, along with their final dimension at the end of the study, for the
“shell-point” design.

# Name Shape Dimensions [mm]
(height×width×length or height×diameter)

Neutron generator and shield

1 Water tank rectangular prism 730×970×1150
2 Water tank structural panel rectangular prism† 220×1000×1200
3 Oil tank hollow cylinder 600×500(outer)×280(inner)
4 Neutron generator target cylinder 10×280
5 Ion source structural ring ring 30×600(outer)×250(inner)
6 Neutron generator window cylinder 6×600
7 Main neutron moderator cylinder 50×500
8 Neutron generator casing ring 25×600(outer)×500(inner)
Gamma detector and shield

9 Detector bunker cylinder† 400×208
10 Detector neutron shield cylinder† 406×212
11 Detector exterior shield rectangular prism† 486.5×650×615
12 Gamma detector cylinder 140×50.8
13 Detector bunker window cylinder† 121×215
Unknown object and cavity

14 Object cavity neutron reflector rectangular prism† 200×749×300
15 Object cavity exterior shield rectangular prism† 405×838×580
16 Object cavity floor rectangular prism

with circular hole†
100×745×300
250 (hole diameter)

17 Artillery shell casing cylinder† 655×154.4
18 Artillery shell contents cylinder† 540×132
19 Shielding floor plate rectangular prism 20×590×300

Parts numbers in the first column correspond to those of Fig 1. For simplicity, the shape and dimensions of an enclosing shape are listed for parts marked

with †.

https://doi.org/10.1371/journal.pone.0188959.t004
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The time distributions of fast (1-2.5 MeV) and thermal (<1 eV) neutrons in the unknown-

object cavity for the tested moderator configurations are shown in Fig 4. The start of the time

distribution of fast neutrons changes with moderator thickness, and is consistent with the

time-of-flight of 2.5 MeV neutrons between the generation plane and scoring plane as the dis-

tance increases between the neutron generation target and the unknown-object cavity. The

integrated fast-neutron distribution has a larger contribution at longer times relative to the

direct-neutron time distribution, but in both cases>99.9% of the fast neutrons travel through

the cavity within the first 0.1 μs of the neutron’s lifetime. The time distribution of thermal neu-

trons rises fast starting around 10 μs and extends up to a few milliseconds, as shown in Fig 4

(e). It is important to note that this means the thermal neutron survival time is longer than the

neutron generator’s period when operating at the design frequency of at least 1 kHz. The direct

thermal neutron distribution features a minimum around 30 μs and a broad peak at 70–90 μs,

depending on moderator thickness. The integrated distribution is somewhat broader, with a

high multiplicity of recorded neutron crossings until around 100 μs.

We selected 50 mm of polyethylene as the design variant that provided the highest overall

neutron flux, while generating a sufficient amount of thermal neutrons. As the moderator

layer also acts as an electrical insulator, the thickness cannot be decreased further.

3.1.1 Effect of the moderator volume on the thermal neutron flux. To emphasize the

importance of the neutron moderator in providing a significant thermal neutron flux in the

instrument’s cavity, we simulated 4 samples of 1 million initial neutrons in the final instrument

Fig 2. GEANT4model of the instrument.GEANT4 cutaway image of the initial geometry used to study
neutron flux characteristics in the unknown-object cavity. The shell-point design is used, with the detector and
artillery shell omitted. The neutron scoring plane is shown in solid red.

https://doi.org/10.1371/journal.pone.0188959.g002
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design. In the 4 samples, the cavity is either empty or filled with a TNT ammunition shell, and

the moderator volume is either polyethylene (an efficient moderator and our material of

choice) or Teflon, a poor neutron moderator. The energy distribution of integrated thermal

neutrons crossing at the centre of the cavity for the 4 scenarios is shown in Fig 5. The self-mod-

erating power of the artillery shell is clearly visible when comparing pairs of distributions with

the cavity empty and filled for the same material in the moderator volume. The presence of the

polyethylene moderator volume results in 10.4 times higher thermal neutron flux at the centre

of the shell-filled cavity, compared to Teflon.

3.2 Gamma-ray emission and detection

After optimization of the neutron flux to the unknown-object cavity, data samples of 300 mil-

lion initial neutrons were generated to study the details of gamma-ray emission by the refer-

ence object (a TNT-filled iron artillery shell) and gamma-ray flux to the gamma detector. The

uncertainty on all results shown is only the statistical uncertainty from the Monte Carlo statis-

tics, unless stated otherwise.

Fig 6 shows the simulated neutron-induced gamma-ray emission spectrum of an iron artil-

lery shell filled with TNT. The shell-point instrument configuration, shown in Fig 1(a), was

used, with a 50 mm thick neutron moderator. This configuration is used to illustrate all results

Fig 3. Neutron energy distributions in the unknown-object cavity with varyingmoderator
thicknesses. Effect of the thickness of the polyethylene moderator on the energy distribution of (a) direct fast
neutrons, (b) integrated fast neutrons, (c) direct thermal neutrons and (d) integrated thermal neutrons in the
unknown-object cavity. A carbon elastic scattering resonance can be observed just below 2.1 MeV. In (b), the
broad, asymmetrical peak between 1.8 and 2 MeV is due to neutrons reflected by the graphite shield located
around the unknown-object cavity, shown as part #14 in Fig 1.

https://doi.org/10.1371/journal.pone.0188959.g003

Design of a novel instrument for active neutron interrogation of artillery shells

PLOSONE | https://doi.org/10.1371/journal.pone.0188959 December 6, 2017 9 / 23

https://doi.org/10.1371/journal.pone.0188959.g003
https://doi.org/10.1371/journal.pone.0188959


Fig 4. Neutron time distributions in the unknown-object cavity with varyingmoderator thicknesses. Effect of the thickness
of the polyethylene moderator on the time distribution of (a) direct fast neutrons, (b) integrated fast neutrons, (c) direct thermal
neutrons and (d-e) integrated thermal neutrons in the unknown-object cavity, shown for two different time ranges.

https://doi.org/10.1371/journal.pone.0188959.g004
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in this section, but they are general results that also apply to the configuration shown in

Fig 1(b).

The emitted gamma rays are transported through the simulated instrument by GEANT4,

along with all gamma-ray emissions occurring in other volumes of the shell-point experimen-

tal setup. Fig 7 shows the energy spectrum of the incident gamma rays, from all materials and

all volumes in the experimental setup, on a cylindrical detector of 5 cm in diameter and 7.5 cm

in length. It also shows the signal contribution from the simulated artillery shell. Detector effi-

ciency and resolution effects are not folded into the spectra.

The 2.22 MeV gamma rays thermal-neutron capture on hydrogen originate predominantly

from sources other than the artillery shell. We define the hydrogen signal fraction SFH of

gamma rays incident on the detector as:

SF
H
¼

Number of gamma rays from unknown object

Total number of gamma rays
ð1Þ

in the gamma-ray energy range 2.16–2.28 MeV. The value of SFH is a measure of the explo-

sive-identification capability of the instrument. The design of the instrument was modified in

successive design steps to maximize the value of SFH. A larger value of SFHmeans that fewer

Fig 5. Energy distribution of the integrated thermal neutrons at the centre of the unknown-object cavity for different moderation
scenarios. Two distributions are the result of simulations where the moderator volume is made up of polyethylene, with (red) and without
(green) an artillery shell in the cavity. The other two distributions use Teflon in the moderator volume, with (brown) and without (blue) an
artillery shell in the cavity.

https://doi.org/10.1371/journal.pone.0188959.g005
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total counts are necessary, in the 2.16–2.28 MeV energy bins of the gamma-ray spectrum, to

ascertain the presence of hydrogen in the unknown object or precisely measure the number of

counts from the unknown object.

In the gamma-ray energy spectra shown in Fig 7, SF
H
¼ 2:8

þ0:5

�0:4
%. For our simulated sam-

ple, this is comparable to the size of the Poisson uncertainty on the number of counts in the

gamma-ray energy range of interest. Thus, the H/N ratio could not be used to identify explo-

sive material for a real data sample of equivalent statistical power. Fig 8 shows the gamma-ray

spectrum from the volumes that contribute significantly to the background hydrogen gamma

rays in the shell-point configuration. The main background contributions are observed to

arise from the shielding water tank, the polyethylene neutron moderator and the polyethylene

floor of the cavity.

3.2.1 Material composition. To reduce the intensity of the 2.22 MeV hydrogen-capture

gamma rays from sources other than the unknown object, material substitutions were made to

the main contributing volumes, where they did not affect the basic functionality of the experi-

mental setup. The material of the cavity floor was changed from polyethylene to graphite and

we added 5% by mass boron, as a thermal neutron absorber, to the water and oil tanks. This

also reduces the Compton background from hydrogen of other signal peaks located below 2.22

MeV. As is shown in Fig 9(a), the gamma-ray emission spectrum of the artillery shell is not

affected by the material changes. Fig 9(b) shows the effect of the change on the energy spec-

trum of the gamma rays incident on the detector. The value of SFH obtained from the gamma-

ray spectra of Fig 9(b) is 19þ4

�4
%, an improvement of close to an order of magnitude relative to

Fig 6. Neutron-activated gamma-ray emission spectrum of a TNT-filled iron artillery shell. The spectrum is obtained using the
instrument configuration shown in Fig 1(a), after optimisation of the neutron flux. Some of the highest-intensity peaks are labelled with their
isotopic source.

https://doi.org/10.1371/journal.pone.0188959.g006
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Fig 7. The polyethylene neutron moderator is the only volume where the material can’t be

changed without affecting the instrument’s performance.

3.2.2 Lead shielding for gamma detector. To suppress the background contribution

from hydrogen in the polyethylene volume of the main neutron moderator, we introduced a

new lead volume that completely shadows the gamma detector from straight-line emissions

from the neutron moderator, shown as part #19 in Fig 1. We also increased the thickness of

the lead bunker around the gamma detector (part #9 in Fig 1) on all sides except in the direc-

tion facing the unknown-object cavity. The effect of the inclusion of the modified lead shield-

ing on the gamma-ray emissions of the artillery shell and the gamma-ray flux incident on

the detector is shown in Figs 10 and 11(a). The presence of the lead plate results in a small

attenuation of the neutron flux, which in turn reduces the number of gamma rays emitted by

the artillery shell by 3%, uniformly over the whole gamma-ray energy range, see Fig 10. It also

efficiently shields the gamma rays emitted inside the copper target of the neutron generator.

The positioning of the new and modified lead components relative to hydrogen gamma-ray

sources improves the hydrogen signal fraction to SF
H
¼ 53

þ7

�7
%.

3.3 Gamma-ray flux in optimized instrument geometry

After full design optimization of the instrumental apparatus, the gamma-ray flux onto the

detector is shown in Fig 11 for both experimental configurations under study (see Fig 1). The

dramatic difference in total gamma-ray flux is primarily due to the difference in the distance

Fig 7. Energy spectrum of gamma rays incident on the active detector material in the initial design of the shell-point instrument
configuration. The total incident spectrum is shown in blue, while gamma rays from the artillery shell and TNT payload are shown in red.
The most important peaks for identification of explosives, H and N, are labelled, as well as other large peaks from iron in the shell and copper
in the neutron generator target.

https://doi.org/10.1371/journal.pone.0188959.g007
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between the object under investigation and the gamma-ray detector between the two geome-

tries. For the shell-point design, gamma rays account for 2.12±0.04% of the total particle flux

on the detector volume, while in the shell-side configuration they account for 5.67±0.02%.

Neutrons make up the rest of the flux, and the total flux on the detector in the shell-side config-

uration is 14 times larger than in the shell-point configuration. Thus, this configuration is only

suitable if the gamma-ray detector used is unaffected by the presence of a large neutron flux

and if the data acquisition chain can tolerate the high count rate. In the optimized shell-side

configuration, SF
H
¼ 45:9

þ0:8

�0:8
%.

3.4 Effect of timing on observed gamma flux

The gamma-ray energy spectrum can be split into a fast neutron-induced spectrum and a ther-

mal neutron-induced spectrum to enhance the isotope identification power. As can be seen in

Fig 4, the fast neutrons travel through the cavity within the first 0.1 μs after their creation,

while the first thermal neutrons reach the cavity after around 10. A fast neutron-dominant

window can be defined as t<1 μs from neutron creation, where only thermal neutrons from

the previous pulses are present in the cavity. The neutron generator that will be used for the

instrument has a pulse fall-off time in the range 10–30 μs [23]. Thus, in the simulated data, we

can define a the time window t<30 μs from neutron creation, containing all the fast neutrons

and a significant contribution of thermal neutrons, to provide an approximate representation

of the neutron flux and gamma emissions in the instrument as the pulse switches off. A

Fig 8. Number of gamma rays incident on the detector originating from each simulated volume that contributes significantly to
the hydrogen gamma ray background, as a function of gamma ray energy. The histograms are drawn in a stack such that each
histogram presents the contribution of a given volume on top of all volumes drawn below it.

https://doi.org/10.1371/journal.pone.0188959.g008
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Fig 9. Number of gamma rays (a) emitted by the artillery shell and TNT payload and (b) incident on the detector
after material substitutions in the instrument design.

https://doi.org/10.1371/journal.pone.0188959.g009
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thermal-only time window can be defined with a starting time larger than 30 μs, and ending

when the next pulse starts. Fig 12 shows the hydrogen signal fraction SFH as a function of the

start time ts of a time integration window for both instrument configurations. The window

goes from ts to 1 ms, corresponding to a neutron generator pulsing frequency of 1. This can be

Fig 10. Number of gamma rays emitted by the artillery shell and TNT payload after updatingmaterial choices in the instrument
design and after adding lead shielding.

https://doi.org/10.1371/journal.pone.0188959.g010

Fig 11. Energy spectrum of the gamma rays incident on the detectorin the fully optimized instrument design. The total incident
spectrum is shown in blue, while gamma rays from the artillery shell and TNT payload are shown in red. The spectra for the shell-point
configuration of Fig 1(a) are shown in (a) while the spectra for the shell-side configuration of Fig 1(b) are shown in (b).

https://doi.org/10.1371/journal.pone.0188959.g011

Design of a novel instrument for active neutron interrogation of artillery shells

PLOSONE | https://doi.org/10.1371/journal.pone.0188959 December 6, 2017 16 / 23

https://doi.org/10.1371/journal.pone.0188959.g010
https://doi.org/10.1371/journal.pone.0188959.g011
https://doi.org/10.1371/journal.pone.0188959


used to select the optimal boundary for the thermal-only time region. The value of SFH reaches

a plateau at around ts = 50 μs in both configurations.

Thus, three time regions of interest are identified: t<1 μs, t<30 μs and t>50 μs. For the

shell-side instrument configuration, the total gamma-ray spectrum on the gamma-ray detector

and the spectrum from the artillery shell only are shown in Fig 13, for those three time win-

dows. The energy spectra of gamma rays incident on the detector in the thermal neutron-only

window for both design configurations is shown in Fig 14.

3.5 Effect of detector resolution

A realistic gamma-ray energy spectrum was obtained by a Gaussian smear of the spectrum of

simulated detector hits in the thermal-only time window for a LaBr3:5%Ce detector. We used

Fig 12. Hydrogen signal fraction SFH as a function of the start time of the thermal-neutron only timing window. The shell-point
instrument design is shown in (a) and the shell-side instrument design is shown in (b). The error bars correspond to the 1σ statistical
uncertainty resulting from the size of the Monte Carlo simulated data samples.

https://doi.org/10.1371/journal.pone.0188959.g012

Fig 13. Energy spectrum of gamma rays incident on the detector for the time windows t <1 μs, t <30 μs and t >50 μs. The fully
optimized instrument design in the shell-side configuration is used. The total gamma ray spectrum is shown in (a), while gamma rays from
the artillery shell and TNT payload are shown in (b).

https://doi.org/10.1371/journal.pone.0188959.g013
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the manufacturer-specified energy resolution of a BriLanCe 380 detector from Saint-Gobain

Crystals [24]. Hits from neutrons, gamma rays and secondary particles are included in these

energy spectra, which are shown in Fig 15.

In the shell-side configuration, the peak area for the 2.22 hydrogen peak is obtained from

the fit of a Gaussian peak over a linear background. The fit result is shown in the inset of Fig

15(b). The obtained peak area is 64±11 counts per 108 initial neutrons. The limited statistics

from the simulation of the shell-side configuration are not sufficient to perform a similar fit on

the spectrum of Fig 15(a). By combining the result of the peak fit with the estimate of SFH, the

estimated number of hydrogen peak counts from the artillery shell is 31±5 counts per 108 ini-

tial neutrons in the shell-point configuration.

Fig 14. Energy spectrum of the gamma rays incident on the detector in the fully optimized instrument design in the thermal-only
time window. The total incident spectrum is shown in blue, while gamma rays from the artillery shell and TNT payload are shown in red.
Spectra for the shell-point configuration of Fig 1(a) are shown in (a) and spectra for the shell-side configuration of Fig 1(b) are shown in (b).

https://doi.org/10.1371/journal.pone.0188959.g014

Fig 15. Spectrum of the energy deposited by all incident particles in a 2×3 inch LaBr3 detector in the fully optimized instrument
design in the thermal-only timewindow. The simulated energy deposits are smeared using the energy resolution characteristics of [24].
Spectra for the shell-point configuration of Fig 1(a) are shown in (a) and spectra for the shell-side configuration of Fig 1(b) are shown in (b).
The inset in (b) shows the peak from the hydrogen 2.22 thermal capture line. The result of a Gaussian peak fit over linear background is
shown in red.

https://doi.org/10.1371/journal.pone.0188959.g015
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4 Discussion

4.1 Signal optimization

The gamma flux incident on the detector of a PGNAA instrument is driven by the neutron

flux at the unknown object and the geometry of the apparatus. In particular, care must be

taken to minimize the distances between the neutron source, the unknown object and the

detector, as both emissions processes, for neutrons and gamma rays, are isotropic (gammas)

or nearly isotropic (neutrons).

Based on the studies described in Section 3.1, we conclude that a 50 mm thick disk of effi-

cient neutron moderator material (polyethylene) is sufficient to provide a high thermal neu-

tron flux to the unknown object while also maintaining a high fast neutron flux. Note that the

features of the time distribution of thermal neutrons are sharper in the simulated data samples

where the cavity is empty, such as those shown in Fig 4, than in those where it is filled with a

dense unknown object such as the artillery shell. The thermalization that occurs within the

unknown object’s volume softens the amplitude difference between the minimum and maxi-

mum of the time distribution.

Of the elements that are important to identify explosives and chemical weapons (H, N, As,

F, P, S and Cl) [25], hydrogen is especially challenging. Its presence as a moderating agent is

essential to generate a large flux of thermal neutrons. It is also a commonly occurring element,

present in many of the materials used in the experimental apparatus. Care had to be taken in

the design of the instrument to manage the background gamma-ray contribution from hydro-

gen-containing materials. Through iterative design, tested via simulation, we optimized

choices of material and shielding to bring the hydrogen signal fraction SFH to a level that is

compatible with a high precision analysis of an unknown object containing a high-explosive

payload. Values of SFH at different stages of the optimization process are shown in Table 5. By

doping the liquid shielding materials (water and oil) with boron to increase neutron absorp-

tion, and by substituting other materials for all non-essential polyethylene volumes, SFH

increases from 2:8
þ0:5

�0:4
%, a level at which long measurement times are necessary to ascertain

the presence of signal from the object, to 19þ4

�4
%, for the shell-point design. This is already a sig-

nificant improvement, however the value of SFH can be further increased to 53þ7

�7
% by adding

lead shields around the detector to absorb gamma rays from sources other than the unknown-

object. With SFH over or near 50% in this benchmark scenario of a 155 mm shell of TNT, iden-

tification of high explosives in most other unknown objects is expected to be possible. Further

studies that include a variety of target objects are needed to precisely estimate the measure-

ment times of both the benchmark case and other scenarios.

Fast neutrons dissipate from the unknown-object cavity within the first microsecond after

neutron generation. As a result, the duration of the fast-dominant signal region depends

entirely on the pulse length of the neutron generator. The pulse fall-off time of the generator

design for this instrument is in the range 10–30 μs. Only a microsecond time gap is needed

between the end of the pulse fall-off time and the start of data collection to ensure that the col-

lected gamma-ray spectrum arises with high purity from thermal neutron interactions. The

Table 5. Value of SFH in simulated event samples with the shell-point instrument design at various
stages of the design optimization process.

Optimization stage SFH [%]

Optimized neutron flux 2:8
þ0:5

�0:4

Optimized materials 19
þ4

�4

Optimized lead shielding 53
þ7

�7

Optimized thermal-neutron time window 74
þ8

�10

https://doi.org/10.1371/journal.pone.0188959.t005
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peak of the time distribution of thermal neutrons occurs approximately 100 μs after neutron

creation, so a pulse duration between 100 and 300 μs should be used, in combination with the

design operating frequency of a few kHz, to provide as many thermal neutrons as possible

inside of the thermal-neutron time-window. Longer pulses would let the bulk of the thermal

neutrons generated early in the pulse dissipate before signal begins to be recorded in the ther-

mal-only window. However, the lifetime of thermal neutrons in the unknown-object cavity is

of the order of milliseconds. As a result, a complementary time-window with a pure fast-neu-

tron gamma-ray spectrum would require that the generator be operated at a frequency of not

more than a few 100 Hz. To rapidly characterize an unknown object, a high neutron flux is

needed, requiring a combination of high pulse frequency and intensity. A moderately high

duty cycle would allow pauses of a few 100 μs, as required to maximize the signal from thermal

neutron interactions. Pileup of thermal neutrons from earlier pulses is expected, but a fast-

neutron dominant signal region can nonetheless be defined in the first few tens of μs at the

beginning of each new pulse.

As is shown in Figs 11 and 14, after optimizing the instrument design, SF
H
¼ 53

þ7

�7
% (shell-

point design) or 45:9þ0:8

�0:8
% (shell-side design), depending on the configuration used. The value

of SFH increases to 74þ8

�10
% and 49þ1

�1
%, respectively, when limiting data acquisition to the time

window within the thermal-only region (50 μs to next pulse) that maximizes SFH for detection

of high explosives. Furthermore, limiting data acquisition to a thermal neutron-only window

of interest reduces the number of counts at energies lower than 2.22 MeV in the gamma-ray

energy spectrum by an order of magnitude (see Fig 13).

4.2 Measurement times

The hydrogen peak counts in the gamma-ray energy spectra from Section 3.5 can be used to

estimate the measurement time requirements for hydrogen. For normal operation of the

instrument, the anticipated neutron flux from the neutron generator is in the range of 1

− 5 × 109 neutrons/s using a pulsing frequency of approximately 1 kHz, potentially reaching

up to 1 × 1011 neutrons/s as the generator system improves [23]. With a generator flux of

1 × 109 neutrons/s, we extrapolate from the fitted peak area of 64±11 counts per 108 initial neu-

trons to estimate that 0.32 of data result in a 10% Poisson uncertainty contribution to the

signal estimate. A 32 measurement would shrink this uncertainty to 1%. For a 30 minute mea-

surement, it goes down to 0.13%. While there are small differences in the material budget and

design of the shell-point instrument, for identical detectors, distance to the artillery shell is the

main factor affecting the count rate. The centre of the detector volume is approximately 5

times further away from the centre of the neutron activation zone in the shell. The gamma-ray

flux is reduced by a factor 25 based on distance, and the estimate of measurement time

increases accordingly. The time needed to reach 1% Poisson uncertainty becomes approxi-

mately 15 minutes. The average detector count rates over the duration of the thermal-only

window can also be estimated from the simulated hit energy spectra of Fig 15. It is (1.435

±0.007)×105 counts per second for the shell-side configuration and (2.6±0.1)×103 counts per

second in the shell-point configuration. The 10.8 nitrogen peak is small but it is in a low-back-

ground region of the spectrum, so once the number of signal events in the hydrogen peak has

been determined, the H/N ratio for the shell content can be calculated from the spectrum

using well-established PGNAAmethods [26–28].

5 Conclusion

Monte Carlo simulations in GEANT4 were used to guide the design of a new active interro-

gation system for isotopic-content determination in artillery shells using a pulsed neutron
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generator. A 50 mm-thick neutron moderator disk is used in the instrument to maximize total

neutron flux while generating a sufficient amount of thermal neutrons in the object interro-

gation cavity. Use of a pulsed neutron generator allows separation of the fast neutron-induced

signal and the thermal neutron-induced signal, reducing background in both spectra. These

two features allow for identification of high explosives using neutrons from the D-D reaction,

which is not possible with currently available commercial instruments.

Two instrument designs have been optimized, one for the case where the gamma ray detec-

tor must be protected from the intense neutron flux from the generator, and one that can be

used with detectors that are not affected by the presence of neutrons. The choice of material in

many instrument parts was modified to minimize the presence of gamma-ray emissions from

hydrogen in the gamma-ray spectrummeasured by the detector. Furthermore, the design of

the internal lead shielding was optimized. In the thermal-only time window, the hydrogen

signal fraction reaches 45:9þ0:8

�0:8
% (Monte Carlo statistical uncertainty) in the “shell-side” con-

figuration, which should be used whenever the detector system allows it, as the higher total

gamma-ray flux enables more precise gamma-ray measurements for a given measurement

time than in the “shell-point” configuration. In either configuration, 1% statistical precision in

the determination of the hydrogen signal from a TNT-filled artillery shell can be achieved by a

30-minute measurement. A prototype instrument based on the shell-side design has been built

and commissioning of the instrument has begun.
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