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Abstract—This paper reports a novel remotely actuated ma-
nipulator for access to prostate tissue under magnetic resonance
imaging guidance (APT-MRI) device, designed for use in a
standard high-field MRI scanner. The device provides three-di-
mensional MRI guided needle placement with millimeter accuracy
under physician control. Procedures enabled by this device in-
clude MRI guided needle biopsy, fiducial marker placements, and
therapy delivery. Its compact size allows for use in both standard
cylindrical and open configuration MRI scanners. Preliminary
in vivo canine experiments and first clinical trials are reported.

Index Terms—Biomedical imaging, cancer, magnetic resonance
imaging, medical diagnosis, medical treatment.

I. INTRODUCTION

THIS PAPER reports the development of a novel access to

prostate tissue under magnetic resonance imaging guid-

ance (APT-MRI) manipulator for MR prostate imaging and pre-

cision MRI guided needle placements and reports the results of

in vivo canine experiments and clinical trials. The manipulator

operates inside the spatial confines and high magnetic field of a

standard “closed” MR scanner. The principal objective for the

manipulator is to provide precise image guided targeting of a

needle for therapeutic procedures and biopsy of the prostate.

The manipulator is equipped with active fiducial tracking to en-

code the position of the needle path and is remotely actuated by

the physician from outside the bore of the MR scanner. A tar-

geting system displays MR images, including the needle path,

and provides a graphical user interface for the physician. We
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have recently reported the use of a first generation prototype of

this manipulator [4], [8], [13]. This paper focuses on the de-

sign, materials and construction of a second generation device

for clinical trials. The results of these clinical trials, mentioned

briefly herein, are reported in [14].

This paper is organized as follows: The remainder of this sec-

tion reviews background information about prostate diseases

and treatments, compares imaging modalities for the prostate,

and reviews previous work in this area. Section II reports the

design of the manipulator. Section III reports the performance

of the manipulator in in vivo canine studies and clinical trials.

A. Background and Motivation

Prostate cancer is the most common noncutaneous cancer in

American men. In 2003, there will be an estimated 220 900 new

cases of prostate cancer in the United States and 28 900 men

will die of this disease [6]. There are two common screening

methods for prostate cancer: the prostate-specific antigen test

(PSA) and the digital rectal exam (DRE) [10]. The PSA concen-

tration in the blood estimates the likelihood of prostate cancer,

but is not conclusive. For the DRE, the physician determines

whether the prostate gland is enlarged or whether abnormal nod-

ules are present.

When a PSA level is higher than normal or a DRE shows

abnormal results, needle biopsy will normally be recommended

to determine if a tumor exists and whether the tumor is benign

or malignant. The current standard of care for verifying the

existence of prostate cancer is transrectal ultrasound (TRUS)

guided biopsy. Under ultrasound guidance, the physician places

a biopsy needle through the wall of the rectum into the prostate

gland. The needle removes a small cylinder of tissue, which

is examined under the microscope to determine if cancer is

present. Several biopsy samples are normally taken from dif-

ferent areas of the prostate. Usually, 6–18 cores are removed

(from upper, mid, and lower areas of the left and right sides)

to obtain a representative sample of the gland and to determine

how much of the gland is affected by the cancer.

TRUS provides limited diagnostic accuracy and image reso-

lution. In [17], the authors conclude that TRUS is not accurate

for tumor localization and therefore precludes the precise

identification and sampling of individual cancerous tumor sites.

As a result, the sensitivity of TRUS biopsy is only between

60% and 85% [11], [16]. Magnetic Resonance Imaging (MRI)

with an endorectal coil affords images with higher anatomical

resolution and contrast than can be obtained using TRUS

[17]. Although computed tomography (CT) X-Ray imaging is

capable of high spatial resolution, MRI’s superior soft-tissue

0018-9294/$20.00 © 2005 IEEE
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Fig. 1. Picture of the manipulator showing the different components and the
needle tip, showing needle guide and sheath, positioning stage, insertion stage,
flexible actuation shafts, and mount.

discrimination enables the identification of individual can-

cerous lesions. MRI guided transperineal prostate biopsy has

been demonstrated inside an open MRI scanner [5]. While the

transrectal approach is generally well tolerated by patients, the

transperineal approach dictates a longer needle path, which

may increase patient discomfort.

B. Previous Work in MRI Compatible Interventional Devices

Masamune and colleagues [9] report an in-MRI robot for

stereotactic brain surgery for use with open MRI. In [7], Kaiser

and colleagues report a 6 degrees of freedom (DOF) robotic

system for breast biopsy for the use inside of a “closed” MR

scanner. In [2], Chinzei and colleagues report a surgical assist

robot for use inside an open MRI scanner. This robot can be used

for transperineal access to the prostate. In [1], Beyersdorff and

colleagues report a device for prostate biopsy inside a “closed”
MR scanner utilizing passive fiducial tracking. In [15], Tajima

and colleagues report an MR compatible surgical manipulator

for heart intervention designed for vertical magnetic field open-

configuration MR imagers. In contrast to these approaches, we

have developed a remotely actuated manipulator that operates

inside a conventional high-field MRI scanner, which has higher

signal-to-noise ratio (SNR) than most open configuration scan-

ners and employs transrectal access to the prostate. This paper

reports the first successful device combining MR imaging and

tracking coils with a needle for the purpose of image guided

prostate intervention.

II. MANIPULATOR DESIGN

This section reports on the design of the manipulator. Place-

ment schematic and the components of the manipulator are de-

scribed. In addition, design, needles, encoding system and ma-

terials for the manipulator are reported. Fig. 1 shows a photo of

the manipulator. The manipulator consists of needle guide and

rectal sheath, positioning stage, insertion stage, flexible shafts,

and mount.

A. Device Operation

Fig. 2 shows a computer-aided design (CAD) drawing of

the placement and operation of the robotic device. The device

is comprised of a rectal sheath, which is placed adjacent to

the prostate in the rectum of the patient and a needle guide,

containing a curved needle channel. The sheath is held sta-

tionary during the procedure while the needle guide rotates and

translates within the sheath. The needle exits the needle guide

Fig. 2. CAD drawing of needle guide and sheath with curved needle channel.
The needle is guided inside the curved needle channel of the needle guide and
advanced through a window in the rectal sheath into the prostate.

Fig. 3. CAD drawing of needle guide and sheath with straight needle channel.
A 20 needle channel for distal parts of the prostate and a 30 channel for
proximal parts of the prostate.

through a window in the sheath at a 45 angle between axis of

the guide and the needle for optimal coverage of the prostate.

Rotation and translation of the needle guide and insertion of

the needle are the three DOF necessary for the manipulator to

place the needle at a target within the prostate.

Some applications require a straight needle path (Fig. 3).

Biopsy, for example, requires fast actuation of the biopsy

needle to reliably harvest good biopsy samples. Fast needle

actuation is difficult to achieve with a curved channel due to

friction induced by the bending of the needle. A straight needle

path is therefore preferred for biopsies.

While the curved needle channel allows for unobstructed cov-

erage of the prostate, even with high exit angles, the straight

approach is complicated by the constraint of avoiding obstruc-

tion by tissue surrounding the proximal end of the needle guide.

Therefore, the curved approach is preferable for most applica-

tions. Two different needle guides with different needle chan-

nels were designed to accommodate for various applications:

1) a needle guide with curved needle channel for injections and

fiducial marker placements, and 2) a needle guide with a straight

needle channel for biopsies. The sheath for the straight approach

contains two slots as windows: one on top for the entry of the

needle and one on the bottom for the exit. In straight needle ver-

sion, the sheath rotates together with the needle guide. A key

inside the needle guide riding in the top slot provides the rota-

tion of the sheath. For better coverage of the prostate, the needle

guide for the straight approach contains two needle channels: A

channel with 30 exit angle for proximal parts of the prostate

and a channel with 20 exit angle for the distal parts.
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Fig. 4. Transparent CAD drawing of the positioning stage. Rotation of the
actuation shaft for translation is converted into pure translation of the drive shaft.
Rotation of the actuation shaft for rotation is converted into pure rotation of the
drive shaft.

B. Principal Mechanical Components

The positioning stage provides translation and rotation of the

needle guide. Fig. 4 shows a semi-transparent view of the posi-

tioning stage. It consists of a drive shaft, which is concentrically

connected to the needle guide. It contains a through-hole for the

needle to pass through the manipulator. Translation is provided

through an actuation shaft rotating a nut over a gear reduction,

as shown in Fig. 4. The threaded nut drives the shaft. A second

actuation shaft rotates a small gear, which engages an internal

gear. The internal gear is held stationary by the housing. Upon

rotation of the small gear, the entire inner assembly including

the actuation shafts rotates. Two keys riding in two horizontal

grooves on the drive shaft and which are held by the inner as-

sembly rotate the drive shaft. A spring washer provides enough

axial load to prevent unintentional rotation of the drive shaft.

The actuation shafts exit the housing via a radial slot on the left

side of the housing allowing for 140 degrees of rotation, without

compromising structural stability.

Two bidirectional, nonmagnetic phosphor bronze flexible

shafts (SS White Technologies, Piscataway, NJ) are attached to

the actuation shafts to provide remote actuation from outside

the scanner bore. For protection the flex shafts are encased in

nylon tubing. The rectal sheath for the curved approach attaches

to the positioning stage with a click-in mechanism, comprised

of a nylon ball and a flat spring mating with a spherical dent

on the right housing of the positioning stage. A similar click-in

mechanism is used for attaching the sheath for the straight

approach. However, a circular groove is used instead of the

spherical dent, to allow for rotation of the sheath. A medical

grade heat shrink (Tyco Electronics Corporation, Menlo Park,

CA) is fitted around the sheath and covers the window to

prevent tissue from being trapped between window and needle

guide.

The insertion depth is set by the insertion stage by increasing

and decreasing the length of a tubular stop for the needle with

a set screw mechanism. A scale is attached to the stop to man-

ually set the length and thus the insertion depth of the needle.

The insertion stage docks to the drive shaft of the positioning

Fig. 5. Signal to noise contours for 200- and 300-mm-wide imaging coil. The
graphs show contours of measured SNR level of a cross section of the imaging
coil. XY units are in millimeters. The position of the coil is indicated by the
arrows.

stage with a click in mechanism, similar to the one of the sheath.

A tube is fitted inside the drive shaft to protect the drive shaft

and the positioning mechanism from getting in contact with the

needle. This limits the number of parts requiring sterilization

to the sheath, the needle guide, and the insertion mechanism.

The mount consists of a Drylin® T-slide and rail assembly (Igus

Inc., E. Providence, RI) for motion along the main axis of the

scanner bore and an arm with two integrated ball joints (Man-

frotto Trading, Milano, Italy) for adjusting horizontal and ver-

tical position and orientation of the device.

C. MR Coils

The manipulator contains two types of MR coils: an imaging

coil and tracking coils for position encoding.

The imaging coil is looped around the window of the sheath,

resting in a groove machined into the sheath. Two design

ideas were explored for the sheath containing the imaging

coil: with cylindrical cross section and a sheath with elliptical

cross section. An elliptical sheath would increase the width of

the imaging coil, yielding higher SNR levels. The cylindrical

sheath has the advantage of easier machinability and better

patient comfort. To make a design choice, we compared the

SNR level for an imaging coil on a flexible endorectal coil

(MedRad Inc., Indianola, PA) with auto tuning capability of

a width of 300 mm, which is achievable with the elliptical

design to the SNR level for the cylindrical design with an

imaging width of 200 mm. Fig. 5 shows both SNR maps. The

increase in SNR of the elliptical design was considered too

small to justify higher machining costs and potential increase

of patient discomfort, leading to the decision to favor the

cylindrical design.

Three tracking micro coils are placed into the manipulator

to encode the position of the needle channel. The method is

explained in Section II-E.

D. Nitinol Needles

For accurate targeting with the curved approach, the needle

needs to exit the channel of the needle guide along a straight

trajectory tangential to the arc at the point of exit. A higher

exit angle allows for better coverage of the prostate. Higher exit
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angle for a given needle guide diameter requires higher cur-

vature of the needle channel. Increasing the curvature of the

needle channel beyond a certain point, however, induces plastic

deformation (i.e., permanent bending) of the needle, resulting

in arching of the needle and missing of the target. Our tests

showed that for 18 mm needle guide diameter an adequate exit

angle could not be achieved using a standard 18 G (1.3 mm)

or larger MRI compatible needle. 18 G Nitinol tube and wire

(NDC Nitinol Devices & Components) with its super-elastic

ability was determined to provide enough yield strength to pre-

vent it from plastically deforming at an exit angle of up to 45

for an 18-mm-diameter needle guide. MRI Devices Daum pro-

vided the grinding of the needle tips and assembly of the con-

nectors and needles to our specifications for use with this new

design.

E. 3-D Spatial Position Sensing

We explored three methods for encoding the device posi-

tion in the MR scanner: Electro optic encoders, passive fiducial

tracking and active fiducial tracking.

Electro-optical encoders reliably and accurately encode the

position of a robotic joint and were successfully implemented

in the MRI environment by using optical connection for the de-

velopment of a surgical assist robot [2]. However, they require

accurate calibration between device coordinate system and MRI

coordinate system and suffer from inaccuracies caused by ma-

terial deflection.

For passive fiducial tracking, fiducial markers composed

of water doped with gadolinium-DTPA or other contrast

agents are rigidly attached to the end-effector of the device.

Gadolinium-DTPA is a commonly used contrast agent that

produces large MR signal. Volumetric MR images are taken

and after segmenting the marker position in the images the

device position can be determined. This method provides

position of the end-effector in MRI coordinates, but in order to

achieve good accuracy the images have to be of high quality

which takes a lot of time, preventing any real time tracking.

Additionally, segmentation of the marker position from the rest

of the image is very time consuming.

Active fiducial tracking proved to be a fast and accurate

encoding method [3]. This method utilizes three tracking micro

coils rigidly embedded in the end-effector of the device, which

pick up their spatial position in the MRI scanner. A micro

coil consists of a wire coil wrapped around a tube filled with

a gadolinium-DTPA water solution. A cable connects the

antenna coils to the imaging channels of the MRI scanner. The

position of the center points of the gadolinium-DTPA tubes is

determined by performing a series of twelve 1D projections

along different directions, using a frequency encoding gradient.

A special MR pulse sequence to produce a series of projections

was written. This yields an over-determined linear system for

the position of the points, which can be solved using a least

square algorithm. The registration sequence takes approxi-

mately 50 ms allowing for real time tracking. Two tracking

coils are positioned along the axis of the needle guide, while the

third coil is placed off axis in the rotating part of the positioning

stage, encoding the rotation of the needle guide, Fig. 6.

Fig. 6. Detailed picture of sheath, needle guide and positioning stage. The
picture shows: the imaging coil, embedded in the rectal sheath, tracking coil 1
and 2 built into the needle guide along the axis, and tracking coil 3, which is
attached to the rotating part of the positioning stage.

Fig. 7. Screen shot of the visualization and targeting program. An axial
T2 weighted MR image containing prostate and rectal sheath is displayed.
Intersection points of the device axis and the needle trajectory with the MRI
image are visualized as well as the selected target point. The necessary rotation,
translation, and insertion values to reach the target are displayed in the lower
right corner.

F. MR Image Guidance Software

We developed a custom visualization and targeting program

which displays MR images and reads the tracking coil positions.

Fig. 7 shows a screen shot of the visualization and targeting pro-

gram. An axial T2 weighted MR image containing prostate and

rectal sheath is displayed. The program overlays a schematic

view of the device represented by the intersection points of the

device axis and the needle trajectory with the MRI image. After

selecting a target position, the program calculates the inverse

kinematics and displays necessary rotation, translation and in-

sertion to reach the target. The program is displayed on a screen

next to the scanner and the translation, rotation and insertion

values are updated every second while the physician uses the ac-

tuation shafts of the positioning stage to move the needle guide

to the target. The tracking sequence is stopped once the needle

trajectory is aligned with the target. The insertion depth is set

using the insertion stage and the needle is advanced.
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Fig. 8. Graph of tracking coil errors with aluminum ball joint, brass gear and phosphor bronze flex-shaft. The errors in mm are displayed over the displacement
from the tracking coil in mm. The three lines indicate the position errors for coil 1, coil 2, and coil 3, respectively. Coil 1 is initially placed adjacent to the metal
component. Coil 2 and 3 are not influenced by the metal object.

Fig. 9. Angular and translational error distribution for active fiducial tracking. The graphs show histograms of angular and translational encoding error in
millimeters and degrees.

G. Materials

Due to the presence of a strong magnetic field inside of an

MRI scanner, the use of any ferromagnetic materials is prohib-

ited. Additionally, even nonmagnetic metals can create imaging

artifact. These artifacts are caused by a disturbance of the mag-

netic field due to difference in susceptibility of the metal and

surrounding objects. This disturbance also affects the readings

of the tracking coils in the vicinity of metals. The magnitude

of the disturbance is dependant on the size and on the material

of the metal. Very small nonmetallic metals create only a small

localized susceptibility artifact and can be neglected on MR im-

ages and for tracking coil readings.

To avoid obstruction in anatomical images and introduction

of errors in the coil readings, plastic materials are used to build

needle guide and sheath, which are in closest vicinity to the field

of view (FOV) of the anatomical MR images. Only very small

metallic components are used to build these parts: Brass screws

for fastening the needle guide to the drive shaft, the flat spring

for the click in mechanism of the sheath, which is comprised of

phosphor bronze and a thin walled brass tubular liner (Special

Shapes Inc.) for the needle channel to protect the plastic from

being marred with the needle. Functionality of the manipulator

could improve, if parts further away from the FOV may contain

more metallic parts.

We developed a test methodology to determine the influence

of metallic components on tracking coil readings, which also

indicates artifacts on MR images to determine the minimal dis-

tance of installation of the components to the FOV and to the

tracking coils. The position stage was used for stepped transla-

tion of a needle guide containing three tracking coils. The posi-

tion stage was set up to place one coil (coil 1) initially adjacent

to the metal component and the other 2 coils (coil 2 and 3) out

of the influenced region to provide undisturbed readings. The

needle guide was translated away from the metal component and

coil errors over the distance to the component were recorded.

Fig. 8 shows the results of testing a phosphor bronze flex-

ible shaft, a brass gear and an aluminum ball joint. The position

error for a tracking coil placed in direct vicinity of the phosphor

bronze flexible shaft did not measurably increase compared to

the tracking error distribution obtained without any metal parts

in the vicinity shown in Fig. 9. This allows us in our design

to place the flexible shafts right next to the positioning stage,

which contains one of the tracking coils. The error introduced

by placing a coil close to the aluminum ball joint significantly
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Fig. 10. MR images of the prostate. Panel A: Sagital T2 weighted MR image containing rectal sheath and prostate. Panel B: Axial T2 weighted MR image
containing prostate and rectal sheath with selected target. Panel C: Axial T1 weighted image after insertion of the needle, verifying accurate targeting, thus small
displacement between target point and the void created by the needle tip.

increased. However the error falls of rapidly to the level of the

tracking error distribution without metal when the coil is further

than 10 mm away from the ball joint. Adding a safety margin of

20 mm we placed the aluminum ball joint 30 mm away from the

positioning stage. The brass gears produced unacceptable errors

in the tracking coils and were replaced by plastic gears.

III. PERFORMANCE EVALUATION

All interventions were performed on a GE Signa Excite 1.5

T MR scanner (GE Medical Systems). A protocol was devel-

oped for MRI-guided gold fiducial marker placements on pa-

tients with prostate cancer prior to treatment with external radi-

ation beam therapy. Fiducial markers are used to adjust for daily

set-up changes to optimize targeting of external beam radiation

therapy [12]. The two primary goals of this study were to val-

idate the needle targeting accuracy of the manipulator system

in clinical practice and to assess the effects of fiducial markers

on the outcome of radiation therapy. Four markers were placed

into the prostate of each patient using the manipulator system.

The target positions for the markers were selected to achieve

a diamond like pattern, with two markers placed to the left and

right in the middle of the prostate (mid-gland), one marker in the

lower part of the prostate (apex), and one marker in the upper

part of the prostate (base). After the markers were placed in the

prostate, MRI images of the prostate were taken in the radia-

tion treatment position without the transrectal device. These im-

ages are co-registered to CT scans using the fiducial markers as

common landmarks to aid in target delineation, and digitally re-

constructed radiographs (DRRs) are compared to the treatment

portal x-rays taken prior to every radiation dose, to achieve op-

timal beam coverage of the prostate gland. As of today, five pa-

tients received implantation of markers. All 20 markers were

implanted without complications. For each marker the physi-

cian selected the desired marker position on T2 weighted axial

and sagital MR images (Fig. 10). The manipulator was actu-

ated to the target location and the physician inserted the needle.

After the needle was inserted, MR images were taken to con-

firm that the location of needle tip was acceptable. The marker

was dropped and another MR image was taken after the needle

was extracted to visualize the marker position. Target location,

needle tip location and center of marker location were recorded

for each marker placement to assess the targeting accuracy of

our system. The displacement errors for the needle and for the

marker were determined on the MRI images as the distance of

the needle tip and the center of the marker respectively to the

planned target location. The average in-plane displacement error

for the needle tip of 20 needle placements was 1.3 mm with a

maximum of 2.3 mm. In none of the 20 cases was the needle

tip more than one slice (3 mm) away from the slice containing

the target position. The average marker displacement error was

4.8 mm with a maximum of 8.3 mm. The increased displace-

ment errors for the marker compared to the needle tip were

considered to be caused by deformation of the prostate tissue

during insertion of the needle. After the marker is dropped and

the needle is extracted, the tissue around the marker relaxes and

increases the displacement error.

This section reports on the performance evaluation of the

manipulator. First, the accuracy of the tracking method was

tested. Subsequently, the manipulator was tested in in vivo

canine studies and clinical trials.

A. In Vitro Tracking Accuracy Studies

An accuracy test with the proposed tracking method was per-

formed, Fig. 9, using the positioning stage. Precise, stepped

translations and rotations were performed and coil positions

were recorded after each step to calculate encoding errors. Step

size was 1.27 mm for translation and 2 for rotation. The av-

erage absolute error for translation was 0.19 mm with a standard

deviation of 0.25 mm. For rotation the average absolute error

was 0.33 with a standard deviation of 0.42 . For a target that is

30 mm away from the axis of rotation, a rotational error of 0.33

yields a rotational displacement of 0.17 mm. The combined

mean displacement due to translational and rotational tracking
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error is 0.26 mm. The measured bias for translation is mm

and for rotation mm, yielding a distribution that is close

to zero mean. This data indicates that the desired millimeter ac-

curacy for positioning of the manipulator can be achieved using

this encoding method.

B. In Vivo Canine Accuracy Studies

A first-generation prototype of this manipulator was used

to demonstrate feasibility for different applications of prostate

intervention and to assess the accuracy of needle placements.

Needle placements, intraprostatic injections, and fiducial

markers placements were performed in anesthetized canines,

as reported in [13]. The usefulness of the manipulator for ac-

curate needle placements, intraprostatic injections and fiducial

markers placements was demonstrated. The maximum in-plane

needle displacement error for 4 needles was 2 mm. Because

of a slice thickness of 3 mm for the MRI images it is more

difficult to exactly determine the error of the insertion depth. In

all cases, however, the needle tip was visible in the target slice.

C. In Vivo Clinical Accuracy Studies

In addition to the fiducial marker placements, four biopsy pro-

cedures were performed with no adverse patient outcome. The

average in-plane displacement error for 20 biopsy needles was

1.8 mm. Further clinical trials are in progress.

IV. CONCLUSION AND DISCUSSION

This paper reported the development of a novel APT-MRI

manipulator for MR prostate imaging and precision MRI guided

needle placements and reported the preliminary results of in

vivo canine experiments and clinical trials. Precise image guided

targeting of a needle for intraprostatic marker placement and

biopsy was achieved.

Tissue deformation was considered to be the main reason for

displacement errors. Reducing the tissue deformation, for ex-

ample by increasing the insertion speed of the needle or fixating

the prostate during insertion will be an objective for future work.

Another objective will be to enable the use of the manipulator

in a 3 T system. The increased SNR of the 3 T system could im-

prove the MR image quality and facilitate the use of functional

MRI, such as MR spectroscopy for better target selection.
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