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Abstract The heliostat field of solar power tower plants can suppose up to
50% of investment costs and 40% of energy loss. Unfortunately, obtaining an
optimal field requires facing a complex non-convex, continuous, large-scale and
constrained optimization problem. Although pattern-based layouts and iter-
ative deployment are popular heuristics to simplify the problem, they limit
flexibility and might be suboptimal. This work describes a new genetic algo-
rithm for continuous and pattern-free heliostat field optimization. Considering
the potential computational cost of the objective function and the necessity of
broad explorations, it has been adapted to run in parallel on shared-memory
environments. It relies on elitism, uniform crossover, static penalization of
infeasibility and tournament selection. Interesting experimental results show
an optimization speedup up to 15x with 16 threads. It could approximately
reduce a one year runtime, at complete optimization, to a month only. The
optimizer has also been made available as a generic C++ library.

Keywords Genetic algorithm · Parallel computing · Heliostat field optimiza-
tion · Solar power tower

1 Introduction

As stated in [31], more solar energy arrives to the Earth in one hour than all
human consumption in a year. In this context, solar power towers (SPT) are
facilities of great interest for large-scale electricity generation due to their high
efficiency and scalability [7,26]. Concerning this work, an SPT can be defined
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as a set of high-reflectance mirrors, called ‘heliostats’, and a radiation receiver
on the top of a tower. Heliostats track the apparent movement of the Sun to
concentrate the incident radiation on the receiver surface. That energy is then
progressively transferred to a heat-transfer fluid to heat it. Finally, it can be
applied in a turbine cycle to generate electricity. Further information about
SPT can be found in [1,2,5].

The heliostat field can suppose up to 50% of initial investment and 40%
of energy loss at operation [3,7]. Thus, designing an optimal field is of high
importance to increase the competitiveness of this type of facilities [3,7]. Op-
timization might aim to maximize the power collected on the receiver as done,
for instance, in [16] and in this work. Maximizing the optical efficiency [3,18],
which can be seen as a ratio between the intercepted power and the theoreti-
cal maximum, is another valid target. Land use [18,23], production price [20]
and the trade-off between several targets [30] are also common aspects to
consider. Unfortunately, as stated in [7], there is a great lack of information
on optimal designs, and field optimization is still an open problem. This is
mainly because [6]: i) commercial plants have hundreds, even thousands, of
heliostats, which results in large-scale problems with numerous non-convex
constraints and ii) the objective function is usually computationally expen-
sive, non-smooth, multi-modal and without an exploitable structure. Hence,
as commented in [6,16], most field designs rely on following distribution pat-
terns or iterative placement of heliostats to simplify the problem. The analysis
of [14] also includes continuous pattern-free optimization and hybrid methods.

Regarding distribution patterns, the ‘radial staggered’ layout [13] is one
of the most popular examples. It is used, for instance, in [7,18,19]. A more
flexible pattern which also relies on radially staggered rows of heliostats was
developed in [20]. In [18], it is proposed an innovative bio-inspired pattern
based on a Fermat spiral. That layout has become really popular: it has been
used, for instance, in [3], and successfully compared to other patterns [17,32].
To attenuate their rigidity, patterns are often applied to generate oversize fields
before finally selecting the minimum required heliostats [3,18,20]. Regarding
iterative placement of heliostats, the work of [23] is one of the most influencing
ones. The work of [28] continues in that way. The method developed in [6] is
also iterative but, instead of simulating a pattern-free deployment with a dense
grid like [23,28], it adjusts the coordinates of every heliostat directly on the
ground. Regarding continuous pattern-free optimization, the gradient-based
method of [16] is a good example. Despite considering a continuous search
space as [6], heliostats are not iteratively added, but their number is an in-
put. Good ways to optimize the number of heliostats are either their iterative
deployment or preliminary oversizing patterns. Finally, according to [14], ‘hy-
brid’ methods are those that concatenate several different design strategies.
The method of [4], which initially generates a field with any pattern-based
approach, is in this category. That would fix important aspects such as the
number of heliostats. After that, every one of them would be slightly moved
around its zone while trying to improve the field. The improvements observed
in [4] state the sub-optimality of some known methods [16].
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This paper describes a genetic algorithm which has been designed for con-
tinuous and pattern-free field optimization. Aspects such as the receiver size,
the tower height and the number of heliostats, which must be optimized too
[6,20], should be determined externally. However, its simple and parallel struc-
ture aims to be a valuable component of a complete field design methodology.
Although genetic algorithms have already been used for heliostat field opti-
mization, the focus is usually on reduced sets of parameters as in [3,17,19,
20]. Similarly, the use of high-performance computing is not a new proposal
of this work. Since most common simulations involving SPT are computation-
ally expensive, both the efficiency of methods and the exploitation of modern
architectures are generally considered [9]. In fact, it is a key factor when select-
ing a field design method in [14]. For instance, ray-tracers such as Tonatiuh
[25] and SolTrace [27] can use parallel computing to compute the flux map
reflected by a certain field on its receiver. In [33], it is presented a ray-tracer
for computing the optical field efficiency on GPU at optimization. In [8], three
parallelization strategies were proposed for processes based on a similar func-
tion definition. Nevertheless, the proposed algorithm aims to be independent of
the particularities of the objective function. This can be of major importance
if it is not under direct control, e.g., when using external tools and legacy code.
Hence, it is easier to ensure an acceptable workload for execution units, and
the overhead due to the transition from parallel to sequential code is reduced.

The rest of this paper is as follows: Sec. 2 formalizes the problem. Sec. 3
describes the proposed optimizer. After that, Sec. 4 shows the experiments
carried out. Finally, Sec. 5 states the conclusions and some future work. Ad-
ditionally, complementary material can be found in App. A.

2 Problem statement

Consider a flat surface delimited by i) a minimum (Rmin) and a maximum
(Rmax) distance from the tower base, which is the origin of coordinates, and
ii) a symmetric angular limit from the North, β. Let H be the number of
heliostats to place on it. As usual in real fields, they have the same rectangular
size l × w, with l and w referring to the length and width, respectively (see
Fig. 1). These values, as introduced, are external inputs. Since the surface is
flat, the center heights of all the heliostats are the same, and it is enough to
define a 2D Cartesian coordinate system on it (see Fig. 1). Every heliostat i
can be identified on the field by its central point, (xi, yi). Thus, a field of H
heliostats can be defined as a vector F ∈ R

2H according to Eq. (1).

F = (x1, y1, · · · , xH , yH) (1)

There are two main considerations to take into account. First, heliostats
cannot trespass the region defined by Rmin, Rmax and β. Secondly, heliostats
must be able to move without colliding each other. This aspect implies keeping
a distance between every pair of heliostats equal or higher than d, which can be
computed as d =

√
l2 + w2 (see Fig. 1). In fact, although it has been obviated
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Fig. 1 Representation of the available surface and heliostats

for simplicity, it is frequent to add an extra safety distance to d in order to
deal with precision errors and to allow operational purposes [7,20].

Let PT (F ) be the total power effectively reflected by a field F , on the
receiver, throughout a fixed set of T = {t1, · · · , tT } time instants of inter-
est. Every time instant is defined by an apparent solar position, in angular
distance from the ground and the north clockwise (elevation and azimuth an-
gles, respectively), and its incident radiation density (W/m2). Depending on
the application requirements, T can vary from a single one (known as design-
point) to many ones encompassing a whole year. In general, the more time
instants considered, the more computationally expensive the evaluation of the
objective function is, and the more complex the problem becomes.

Considering PT (F ) as the objective function, the target optimization pro-
blem can be formalized as expressed in Eq. (2):
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; ∀i = 1, ..., H

atan(|xi| , yi) ≤
(

β − asin

(

d

2
√

x2
i + y2i

))

; ∀i = 1, ..., H

√

(xi − xj)2 + (yi − yj)2 ≥ d ; ∀i, j = 1, ..., H & i 6= j.

(2)

The problem has 2H dimensions, i.e., two coordinates per heliostat. The
first and second constraints are linked to keeping the heliostats in the region
defined by Rmin, Rmax and β. Note that atan returns the azimuth angle of
heliostats according to the reference system shown in Fig. 1, which is compared
to β modified by the radius to avoid trespassing. By including the absolute
value of x, this constraint is expressed in relation to the East side of the field.
The third constraint is referred to avoiding collisions among them. There are
H(H − 1)/2 + 3H constraints to satisfy in total.
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In practical terms, defining the configuration of the objective function is
also necessary. It will be defined according to Eq. (3) [15,16]:

PT (F ) = A

T
∑

t=t1

It

(

H
∑

i=1

ηi(t)

)

(3)

A refers to the reflective area of the heliostat model (approximately l × w
(m2)) and It is the incident radiation density at time instant t (kW/m2).
In relation to ηi(t), it is the instantaneous efficiency factor of heliostat i at
time instant t. This value ranges from 0 to 1, representing the minimum and
maximum efficiencies respectively. This factor theoretically depends on: i) the
time instant, specifically the apparent position of the Sun, ii) the location of
heliostat i in the field and iii) the interaction among heliostats. Its computation
implies simulating the behavior of the candidate field. As explained in [3,18,
24], ηi(t) is referred to different sources of energy loss at operation. Hence,
it is composed by different sub-factors, also in the range [0, 1], which must
be ultimately defined. If any of them is not considered, it is equivalent to be
assumed 1 (not causing loss). The definition selected for ηi(t), shown in Eq.
(4), is the same as in [3,15,18].

ηi = ηcos · ηsb · ηitc · ηaa · ηref (4)

Computing ηi(t), whose sub-factors are described next, requires a model of
the heliostat field. As summarized in [16], several options are available, from
developing an ad-hoc model (as in this work and in [3,16,18]) to using an exter-
nal ray-tracer (not recommended for field optimization due to computational
costs [3,18], though). Defining this kind of models is beyond the scope of this
work. However, considering its impact on runtime, the implemented model is
described below including the references for every one of its components.

First, ηcos (‘cosine factor’) models how the effective reflective area of he-
liostats is reduced due to their orientation. The reduction factor is the cosine
of the angle formed by incident radiation and heliostats. Hence, it is computed
as the dot product between the unit vector pointing to the Sun and that nor-
mal to the studied heliostat as in [8,18,24]. It must be recomputed for every
input time instant.

Second, ηsb (‘shading & blocking factor’) models that heliostats can ob-
struct either incident (shading) of reflected (blocking) radiation by their peers.
It is defined as the ratio between their neither blocked nor shadowed reflective
area and the total one [15,18]. To compute it, the strategy proposed in [21] has
been applied. It is modeled as a clipping polygon problem: For every heliostat,
the four vertices of any other one that could affect it are projected on its plane.
Then, all those quadrilaterals are progressively subtracted to the one linked
to the reflective surface of the studied heliostat. This idea is depicted in Fig. 2
and has been implemented with the library Clipper [12]. Conflictive heliostats
are selected as in [8]: The studied heliostat is wrapped in a circumference as in
Fig. 1 and projected towards the Sun and receiver projections over the plane.
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Fig. 2 Shading and blocking estimation based on polygon clipping

If that of any other heliostat can intercept the translation trajectory, it is con-
sidered a candidate (of shadowing or blocking when the projection is towards
the Sun or receiver, respectively). This factor is the most computationally
expensive [3,7,18] and must be recalculated at every time instant too.

Third, ηitc (‘interception factor’) models that the reflected flux maps by
heliostats might not fully fall on the desired receiver zone. To compute it, the
innovative model proposed in [15] has been used. It estimates the axes of the
elliptical shape projected by heliostats, over the receiver plane, depending on
its type and relative position. This method, which is based on simple geometry
and trigonometry, cannot be as accurate as ray-tracing or convolution meth-
ods [3]. However, according to validation shown in [15], it is appropriate for
optimization testing and it only needs to be computed once.

Fourth, ηaa (‘atmospheric attenuation factor’) estimates the effect of the
atmosphere on the reflected radiation by heliostats. In order to compute it,
the analytical model used in [3,8,15,18] has been chosen. It only depends on
the distance between every heliostat and the receiver. Hence, this information
is also computed and recorded once for every heliostat.

Fifth and last, ηref (‘reflectivity factor’) represents the fact that heliostats
might be unable to grant a lossless reflection phenomenon. It is considered a
common fabrication constant as in [18].

3 Method description

Genetic algorithms (GA) [11] are usually applied to solve complex optimization
problems. This technique is based on creating a pool of candidate solutions,
called population, and mimicking natural evolution on them. Hence, their the-
oretical principle is not linked to any particular problem but to the abstract
evolution of species. This is why they are successfully applied in numerous
different problems which, as commented in Sec. 1, includes heliostat field op-
timization. The definition of GA is generic and its methods must be adapted
to the target problem, though. See [22] for further information about GA.
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3.1 Overview

In this work, a GA called ‘EnGA’ has been designed for the problem defined
in Sec. 2. Its design not only includes the definition of evolutionary operators
but also the explicit possibility of parallel execution in a shared-memory envi-
ronment. Therefore, the optimizer can benefit from modern high-performance
computers. This is of major interest considering that: i) due to the problem
complexity, large populations will be required to get competitive results and
ii) depending on the selected objective function, its evaluation can be very
time demanding, especially for large fields and/or sets of time instants. Addi-
tionally, the general parts of the method have been isolated to create a public
C++ - OpenMP library (see App. A).

Individuals are vectors in R
2H with an extra field for the fitness of that

field design, i.e., the total power reflected on the receiver after simulation
(Eq. (3)). In Fig. 3, the structure of individuals is depicted. However, GA are
mainly aimed at unconstrained optimization [29] and, as the target problem is
constrained, some adaptations must be incorporated. Specifically, the problem
will be treated as an unconstrained one but infeasible solutions will be penal-
ized with very low fitness. Penalization will only depend on the degree and
number of violations so that the more constraints are not satisfied, the worse
fitness is assigned. This strategy, which is quite common to handle constrained
optimization problems with GA, is called ‘static penalization’ [29]. Thus, the
constraints in Eq. (2) are ignored at operation, but the objective function is
altered to consider them according to Eq. (5):

eval(F ) =















PT (F ), if V = ∅
−A

(
∑

t∈T It
)

[

αi−αmaxi

αi

vi1 +
(Rmin+d/2)−mi

(Rmin+d/2) vi2

+mi−(Rmax−d/2)
mi

vi3 +
d−dist(i,j)

d vi,j

]

; ∀v ∈ V
otrw.

(5)

A is the reflective area of the heliostat model, and It is the solar radiation
density at time instant t as defined in Sec. 2. αi is the azimuth angle on the
East side of heliostat i, which is computed with function atan as included
in the first term of the second constraint in Eq. (2). αmaxi

is the maximum
azimuth angle of heliostat i for not trespassing the angular limit, which is
computed as the second term of the second constraint in Eq. (2). mi is the
distance between heliostat i and the tower base, i.e., mi =

√

x2
i + y2i . V is a

set containing, per constraint, either 1 or 0 if it is violated or not, respectively.
Specifically: i) vi1 is 1 only if αi > αmaxi

, ii) vi2 is 1 only if the center of
heliostat i is less than Rmin + d/2, iii) vi3 is 1 only if the center of heliostat i
is greater than Rmax − d/2, and iv) vi,j is 1 only if the distance between any
heliostat i and any other one j is less than d. The boolean structure given to the
constraints omits the effect of non-violated ones. Otherwise, their components
would counteract the numerical penalization of those affecting ones. Also note
that every component is normalized to avoid distortions caused by different
numerical ranges. Finally, the factor combining A and every value It, which
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is equal to the maximum obtainable power, scales the order of magnitude of
unfeasible solutions to be numerically similar to that of feasible ones.

3.2 Input values

The optimizer, obviating contextual information such as the size of heliostats
or the number of threads to deploy (see the details given Sec. 4), gets eight pa-
rameters as shown in Alg. 1. pop is the population size, which is kept constant.
pairs is the number of reproduction pairs formed at every cycle while tourn is
the size of tournaments created to select every progenitor. That information is
also used at replacement as tournament selection is applied then too. mut ov
and mut pb are the overall probability of launching the mutation procedure
on descendants and that of ultimately altering every heliostat, respectively.
init is the number of heuristic-based, i.e., not random solutions injected to
the population at initialization as commented later. elite states that the elite
best solutions in the population will directly survive to the next cycle. Finally,
cycles is the number of generations.

Algorithm 1: Pseudo-code of the static ‘EnGA’ genetic optimizer
Input: Int pop, pairs, tourn, init, elite, cycles; Real mut ov,mut pb

Output: Vector F in R
2H

1 IndividualSet population, Individual bestInd; /* Shared among threads */

2 ThreadPool threads = createThreads(); /* Create a team */

3 threads.runInParallel(); /* Thread-local below: */

4 Individual localInd = ∅; /* The best I found as a thread */

5 Load range = getChunkSize(); /* Get my zone of work as a thread */

6 population = GenerateInitialPop(range.pop, init)
7 localInd = UpdateBest(range.pop); /* Update my view as a thread */

8 < barrier >; /* The whole population must be ready before looping */

9 for i = 1 to cycles do
10 IndividualSet progs = SelectProgenitors(population, range.pairs, tourn);
11 IndividualSet desc = Reproduce(progs);
12 IndividualSet descMut = Mutate(desc,mut ov,mut pb);
13 localInd = UpdateBest(desc, descMut);
14 popultion < single barrier >= Replace(population, elite, descMut, tourn);

15 end
16 bestInd < synchr >= UpdateBest&Join(localInd); /* Best from threads */

17 return bestInd.F
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3.3 Parallel work-flow

Alg. 1 features a traditional evolutionary loop in which the evaluation of indi-
viduals (Eq. (5) in this case) is distributed among threads. In fact, they all stay
in the same epoch while a single thread defines the population that survives
to the next cycle at line 14 (denoted as ‘single barrier’). Thus, threads share
the cost of evaluating individuals at initialization (line 6), reproduction (line
11) and mutation (line 12) within a consistent population. Similarly, as shown
at line 8, creating the initial individuals in parallel requires granting that the
whole population could be read by any thread before continuing. Replacement
is not computationally expensive, as it does not need new evaluations, and
synchronization costs to parallelize it (e.g., to avoid repeated selections) out-
performs the hypothetical benefits. Functions createThreads, runInParallel
and getChunkSize create a thread pool to work on different ranges of the
population matrix. This can be considered as a ‘static’ load-balancing scheme
as labeled in Alg. 1 (further comments on this topic are provided in Sec. 3.5).
Finally, threads keep a local record of their best solution (lines 7, 13) which
is globally updated (tag synchr, line 16) at the end. Thus, individuals can be
downgraded at mutation (or lost at replacement if elite = 0) without risks.

3.4 Behavior of functions

Function GenerateInitialPop (line 6) creates and evaluates pop candidate
solutions. Every one of them consists of H pairs of coordinates randomly
generated in the region defined by Rmin, Rmax and β. Thus, they can contain
collisions among heliostats, i.e., be partially infeasible. However, as introduced,
EnGA can be requested to include init heuristic-based individuals. To do so,
it uses the algorithm proposed in App. A. It has been specially designed for
this purpose, in this work, by adapting the principles of radial staggering
[7]. The interested reader could implement any different procedure to create
‘promising’ individuals dynamically, though. Its recommended features are
that i) generating a new individual should not require solving any additional
optimization problem, and ii) it should have a certain degree of variability
(unless init is always set to 1). In fact, if dynamism is not needed, it could be
even created a solution pool adapted to any specific requirements. Note that
since the cost of creating these individuals is potentially different to random
ones, every thread generates an equal fraction of init. It is also important
to mention that including this kind of solutions influences the whole process.
Although the input fields can be completely modified during the search, their
initial fitness will be significantly higher than those of random ones. This biases
the search and could lead to premature convergence. Then, the fields obtained
are likely to be variations of the input ones. This is useful to get acceptable
results in a reasonable time. However, non-biased explorations might lead to
better results despite the extra effort to converge. Thus, it is a user decision,
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and it can only rely on preliminary tests to choose if loading fields, their type
and number.

Function SelectProgenitors (line 10) forms the total number of pairs, i.e.,
pairs, from tournament selection. This approach is very popular because it
combines uniformity of exploration and adjustable selection pressure. Every
progenitor is selected as the best out of a sample formed by tourn participants.
This procedure is also applied in function Replace (line 14), where a thread
selects pop − elite individuals to survive. The −elite term indicates that the
elite best individuals are directly moved to the new population (as they could
be lost if they did not participate in any tournament). This strategy, called
‘elitism’, assumes that good solutions can help to improve other ones.

Function Reproduce (line 11) gets two descendants from every pair by
applying uniform crossover. This method is very popular due to its high rate
of mixing that allows a better exploration of the search space. It consists of
the following steps: First, a random binary string of length H, called crossover
mask, is formed. Every bit has the same probability to be either 0 or 1. Second,
a first descendant results from taking the heliostats of its progenitor i at every
position where the mask has a 1 and of its progenitor i+ 1 otherwise. Third,
the mask is inverted and a second descendant is obtained by applying the same
rules. Any new individual must be ultimately evaluated according to Eq. (5).

Function Mutate (line 12) should make it possible to reach new zones of
the search space. To do so, there is a probability mut ov of attempting the mu-
tation of every descendant. Then, there is a probability mut pb of randomly
relocating every heliostat. Any altered individual must be re-evaluated. Be-
sides, as mutation can downgrade promising solutions, both the altered and
original descendants are considered when updating the best result known (line
13). That local record is ultimately used to return the final solution.

3.5 Load-balancing

Finally, the proposed load-balancing is, by default, static. However, Eq. (5) has
a different definition for feasible and infeasible solutions. The first type implies
simulating T time instants of a field with H heliostats while the second one
only depends on the relation between heliostats. Thus, when i) the cardinality
of T or H makes a great runtime difference between the type of evaluation
and ii) the quantity of feasible and infeasible solutions is very different, this
could lead to a serious risk of unbalancing. In that context, dynamic balancing
could be implemented by removing line 5 and forcing all threads to get more
iterations once they finish their previous ones. Besides, the transition from
line 11 to 12 should also be synchronized because threads could try to mutate
descendants not created by them, i.e., potentially under creation otherwise.
These comments are of interest in any case that the objective function features
a conditional nature, though. In fact, the library linked in App. A also offers
a dynamic load-balancing mode.
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4 Experimentation and results

The experimentation context is based on the field CESA-I, which is part of
the PSA solar platform [7]. Thus, the receiver considered is at 86.60 m over
the ground. It has a vertical height of 2.45 m and a width of 2.25 m. All the
heliostats have a reflective surface with a height of 6.60 m, a width of 6.62 m
and a reflectivity factor of 0.8. Their central point is at 3.65 m over the ground.
As in the real field, there are 300 heliostats to deploy. The surface available
is arbitrarily defined by Rmin = 20.0 m, Rmax = 300.0 and β = 90◦, i.e., all
the heliostats should be north of the receiver. It will be considered a single
simulation instant (design point): the 21st May at solar noon. According to
the models described in [24], then, the solar elevation and azimuth are 72.74◦

and 180◦, respectively. The instantaneous solar radiation density is assumed
to be 960 W/m2. EnGA and the heliostat field model have been implemented
in C++ with OpenMP for threading. The execution platform is a computer
with 2 Intel Xeon E5 2650 processors (16 cores), and 64 GB of RAM.

EnGA has been first configured to make a broad and not biased exploration
of the search space. To do so, the number of initial fields was fixed to 0. Then,
every parameter was increased progressively and tested only for 100 cycles for
practical reasons. After that, the number of cycles was also increased until
the improvements of quality became uncommon. The final configuration was
pop = 1200, pairs = 600, tourn = 6, init = 0, mut ov = 0.3, mut pb = 0.05,
elite = 60 and cycle = 10000. The runtime of EnGA in sequential has been
compared to the use of 2, 4, 8 and 16 threads. Fig. 4 plots the speedup achieved
with static load balancing and averaged after ten executions. The X axis shows
the number of threads and the Y axis contains the speedup. As shown, EnGA
achieves a perfect linear acceleration when it runs in parallel. In sequential,
EnGA took 176478 s on average while this runtime was reduced to 11156 s
with 16 threads. Thus, the same optimization procedure can be executed up to
15.82 times faster. In fact, the average speedup with 2, 4 and 8 threads are 2.03,
4.05 and 8.06, respectively, i.e., marginally higher than the ideal value, which
is caused by the stochasticity of EnGA: threads do not necessarily execute the
same process.

Regarding dynamic load-balancing, the speedups are very similar. For in-
stance, with 16 threads, it is approximately 15.67. However, the speedup seems
to be slightly lower. This is because of the extra synchronization of task dis-
patching. As commented, the evaluation time of the real objective function is
significantly different from that of the penalized version. Numerically, the real
function takes 0.015 s while the penalized one requires 0.0005 s, i.e., the real
evaluation of candidate fields is 30 times slower than the penalized one. Hence,
dynamic load-balancing could be expected to perform better than the static
approach. However, after the initial 70-200 cycles of search, the population
has multiple feasible solutions that require real evaluations. Thus, potential
unbalancing lasts less than 2% of the cycles.

An alternative configuration approach would renounce flexibility and rely
on injecting initial fields. To do so, the previous base configuration has been
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Fig. 5 Examples of initial solutions: random (left) and heuristic-based (right)

altered by setting init = 60 (5% of pop). Fig. 5 shows two initial solutions
to illustrate the effect of this change. The one on the left has been randomly
generated. The other one has been created by EnGA through the knowledge-
based strategy also developed in this work (see App. 1). The first one contains
multiple collisions among heliostats and requires a significant improvement.
In contrast to it, the other one has a robust design that provides EnGA a
promising initial solution. This extra help allows reducing the number of cycles
to 200. With this base configuration, the sequential version only takes 2676 s
on average. The static parallel approach still shows a perfect linear speedup.
However, in this case, the dynamic load-balancing version outperforms the
other one: its speedup is up to 5% higher when 16 threads are launched. Since
the number of cycles is lower, the convergence of the population does not hide
the benefit of paying attention to load unbalancing.

After having confirmed the positive effect of parallelization on both con-
figuration approaches, it is interesting to compare how they affect the opti-
mization results achieved by EnGA. Tab. 1 includes the average efficiency of
the fields obtained with every configuration, independently of the number of
threads and the load balancing style. The first three columns summarizes the
main details of each configuration, i.e., they have the same population size but
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Table 1 Optimization results of EnGA depending on the configuration approach.

pop init cycles Av. Eff. (%) Av. Seq. Time (s)
1 1200 0 10000 69.25 176478
2 1200 60 200 70.62 2676
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Fig. 6 Fields obtained starting without (left) and with (right) heuristic-based solutions

the second one uses knowledge-base individuals and requires fewer cycles. The
last two columns, highlighted in bold, show the average efficiency of the fields
obtained in each case and the runtime in sequential, respectively. The first
configuration makes EnGA generate fields with an average efficiency of 69.25
% (around 8700 kW on the receiver at design point). This value is near to the
maximum value that could be achieved, i.e., 80 %, which is the upper bound
implicitly defined by the reflectivity of the heliostats. However, the second one
yields fields with an average efficiency of 70.62 %. Thus, those fields are clearly
better. Although the numerical difference of efficiency might seem negligible, it
can be relevant in this context. Since these values are referred to a single time
instant, there is little room for improvement. Besides, the yearly improvements
achieved in [18] are very well considered in spite of looking numerically low.
Another advantage of the second configuration is that it results in significantly
faster executions. Note that parallelization can accelerate both executions up
to 16, though. For the sake of completeness, Fig. 6 shows two examples of fields
obtained by EnGA when it does not use heuristic-based solutions and when it
does. Although the first one tends to accumulate heliostats in the central zone
of the field logically, its external zone seems improvable. In contrast to it, the
second one has a structure better balanced. As predicted, it is directly based
on a heuristic-based solution with modifications.

According to the previous analysis, the use of initial knowledge-based so-
lutions seems advisable for the problem instance. It allows better fields in less
time, which would be a critical point when considering multiple time instants.
However, as discussed in Sec. 3 and supported by Fig. 6 (right), the fields
obtained in this way are mainly one of those initial solutions with some vari-
ations. Thus, it is still possible to opt for a high number of cycles to allow
more mutations with the hope of achieving better results. Some experiments
with this strategy lead EnGA obtaining field efficiencies up to 0.20% higher.
Although the runtime becomes approximately equal to that registered with
the initial configuration, the best fields have been achieved in this way. Nev-
ertheless, it is always possible to opt for non-biased explorations with more
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runtime due to their theoretical interest. Thus, it all depends on the final goals
and the availability of time and computational resources.

Back to the computational perspective, although the previous experiments
have been defined at design-point, real evaluations for yearly-scoped optimiza-
tion should consist of, at least, 192 time instants [10,16]. Then, as penalized
evaluations can be neglected, the runtime would be amplified by 192. Thus,
the sequential version would approximately take 176478 s × 192 = 33883776
s (more than a year). The parallel version with static load-balancing, which
performs better with large numbers of cycles, would only need 11156 s ×
192 = 2141952 s (less than a month). To validate this estimation, four more
time instants were added to the previous one and runtime was multiplied by
5 while the speedup was maintained. Moreover, a simpler problem instance
of 100 heliostats was studied for 1, 3, 5 and 7 time instants. The runtime
was also increased as expected. However, the speedup was slightly reduced
(up to 14.04 with 16 threads), but this is because of the lower computational
load. Additionally, it is interesting to mention that the efficiency achieved was
higher due to the simplicity of the problem (around 75.7% for a single time
instant). It was reduced progressively when increasing the number of time in-
stants (around 65.7% for 7 ones). This behavior is consistent with the fact
that, as mentioned in Sec. 2, the more time instants, the more difficult that
the problem becomes.

5 Conclusions and future work

In this work, the problem of continuous and pattern-free heliostat field opti-
mization has been presented. Although this approach is known to lead to good
results, it is not generally applicable due to its conceptual complexity and com-
putational cost. Therefore, it has been designed a parallel genetic algorithm
called EnGA to face this situation. Its structure enforces sharing the cost of
evaluating candidate solutions among different threads, and independently of
the field model used.

Parallelization effectively reduces the overall runtime without affecting res-
olution capabilities. The speedup can be considered linear featuring a peak of
15.93 with static load-balancing and 16 threads. In fact, due to optimiza-
tion stochasticity and time averaging, it can be even slightly higher than 16
with knowledge-based solutions, dynamic load-balancing and a low number of
cycles. This latter strategy only seems to be useful with that kind of configu-
ration, though. Besides, based on the observed trend, at yearly optimization,
more than a year of runtime could be reduced to less than a month by using
parallel computing. Hence, wider regions of the search space can be explored
for the same runtime. Moreover, the parallelization scope is not linked to any
particular objective function but to the optimizer itself. This aspect facilitates
granting enough workload for threads and enhances its applicability for dif-
ferent problem definitions. Thus, general comments regarding the underlying
context and some aspects to consider, such as potential load unbalancing, have
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also been made. In fact, not only a generic library with the optimizer base has
been made public, but a new heuristic to generate promising staggered fields
has been proposed too.

Future work is related to a new method that is under development to
facilitate continuous and pattern-free field optimization. To do so, it states
how to divide the problem into simpler instances to be ultimately addressed
by any selected optimizer. EnGA will be hence applied to that task.
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14174) and J.D. Álvarez (RYC-2013-14107) are fellows of the Spanish ‘Ramón y Cajal’
contract program, co-financed by the European Social Fund. The authors also wish to thank
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A Complementary material
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