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ABSTRACT This paper proposes the design of a PIα fractional robust controller with which to regulate the 

steam pressure in the steam drum of a bagasse-fired boiler. The dynamic behavior of this process was 

identified by means of experimentation. This identification procedure yielded an equivalent third order plus 

time delay model, and showed wide process static gain variations. We, therefore, propose a new method 

with which to design fractional-order robust controllers for this kind of processes. This method is based on 

the exact attainment of certain nominal time specifications while using one of the parameters of the 

controller to maximize the gain margin. The controller attained was shown to significantly outperform the 

robustness achieved by using PI or PID controllers, in the sense of reducing the Integral Absolute Error 

(IAE) and improving the steam pressure uniformity. 

INDEX TERMS Steam pressure control, robust fractional-order controller, bagasse-fired boiler, system 

identification 

I. INTRODUCTION 
The sugarcane industry is regarded as one of the world’s 

oldest industries, in which sugarcane bagasse is largely used 

as a combustible fuel to generate electrical and thermal 

energy for this industrial process [1], [2]. This industry 

involves three basic processes: the cultivation of cane, the 

milling of the sugarcane to extract the juice, and the 

industrial conversion of this juice into raw sugar [3]. Bagasse 

is a by-product of the grinding operation [4]. Traditional 

sugarcane factories are characterized by their high energy 

consumption and pollution of the environment, largely owing 

to their low-efficiency technology [5]. The increase in the 

energy crisis, high competitiveness in energy markets and 

strong environmental demands have, therefore, led the 

research aimed at increasing energy efficiency and reducing 

the impact that the industrial activity associated with 

sugarcane has on the environment to acquire great relevance 

and scientific-technical importance [6], [7]. 

The bagasse-fired boiler is an essential component of this 

industry since bagasse, which is a waste product of the 

industry itself, is used as fuel, thus guaranteeing relatively 

economic energy production [8]. The conditions of high 

pressure and temperature under which this boiler is operated 

also make it one of the most potentially dangerous pieces of 

equipment in this industry [9], and one of the most energy 

wasting units. Studies related to the design of effective 

controllers for bagasse fired boilers are, therefore, imperative 

[9], [10]. 

Bagasse-fired boilers are characterized by their complex 

dynamic behavior: time-varying parameters and various 

interacting processes that are usually controlled 

independently by conventional PID  controllers [10]. If 

these boilers are to operate in a highly efficient manner, it is 

necessary to [11]–[13]: 1) guarantee that the amount of 

bagasse necessary to keep the steam pressure within the 

required limits is burned, independently of the load 

variations; and 2) maintain a correct air/bagasse ratio, 

which will enable a complete combustion within the design 
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limits of the boiler. These requirements cannot be guaranteed 

if there is no effective steam pressure control in the steam 

drum of the boiler [14]. 

The bagasse-fired boilers in the sugarcane industry are 

required to operate at constant pressure [3], and several 

strategies for steam pressure control in the steam drum of 

these boilers have, therefore, been proposed for this purpose 

[15]–[23]. The most popular and widespread strategy is 

based on conventional PID  controllers (analog or discrete) 

owing to their simple structure, flexibility, easy tuning and 

general robustness properties [5], [21]. However, some 

studies have shown that simple PID  controllers do not 

perform well when the dynamic behavior of this kind of 

processes is characterized by time delay, time-varying 

parameters and unmeasured disturbances [15], [24]–[26]. 

These result in a large steam pressure settling time in the 

steam drum, which leads to excessive bagasse consumption 

and, therefore, inadequate combustion and great 

environmental pollution. Any controller designed for this 

purpose should consequently have an adequate robustness 

with which to deal with the steam drum dynamics. 

During the past three decades, the subject of fractional 

calculus, i.e., the calculation of integrals and derivatives of 

any arbitrary real or complex order, has gained considerable 

popularity and importance, principally owing to its 

demonstrated applications in diverse and widespread fields of 

science and engineering [27], [28]. Fractional order operators 

have, therefore, also been applied with satisfactory results to 

model and control processes with complex dynamic 

behaviors [29]–[33]. 

The concept of extending classical integer order operators 

to non-integer order ones is by no means new. For example, 

[27] mentions that the earliest systematic studies, which were 

carried out by Liouville, Riemann, and Holmgren, date from 

the beginning and middle of the 19th century. The 

significance of the application of fractional order operators to 

the design of control systems is based on a generalization of 

the classical integer order control theory, which yields more 

adequate models of the processes and control systems that 

have a better performance. 

The fractional order basic operator is represented as    

a tD
α

, where a  and t  are the limits and ( )α α ∈ℜ  is the 

order of the operator [28]. In this operator, 0α >  

represents a fractional derivative, and 0α <  a fractional 

integral. In the Laplace domain, this operator corresponds 

to a fractional-order differentiator or integrator s
α

 

(provided that initial conditions are zero). The frequency 

characteristics of this operator is, therefore, ( )j
αω  [27]. 

The robustness of PID  controllers can be enhanced by 

means of their generalization to 
λα

DPI  fractional-order 

controllers by involving an integrator of order α  and a 

differentiator of order λ  [28]. Fractional order controllers 

(
λα

DPI ) have received a considerable amount of 

attention, e.g. [34]–[43]. 

The qualitative behavior and the robustness of industrial 

PID  controllers when applied to the steam pressure control 

of the steam drums of bagasse-fired boilers can 

consequently be improved through the design of 
λα

DPI  

controllers. This paper concentrates on the design of a 

reduced version of a 
λα

DPI  controller: the fractional-

order 
α

PI  controller. 

The objectives of this paper are: 1) to propose a 

systematic and analytic method with which to design a 

robust 
α

PI  controller that will guarantee a minimum 

performance when the steam pressure dynamics changes as 

a result of variations in bagasse calorific values, 2) to make 

a comparison among the robustness of this 
α

PI  controller 

and that of another equivalent conventional controllers ( PI  
and PID ) by means of computer simulations. 

The main contribution of this paper is the proposal of a 

robust 
α

PI  controller with which to control the steam 

pressure in the steam drum of a bagasse-fired boiler, for 

which very satisfactory results have been obtained. A 

practical solution to the complex problem of designing 

effective controllers for bagasse-fired boilers that have 

some dynamics uncertainties and which outperform 

conventional PI and PID  controllers is, therefore, 

provided. All the modeling and control methodologies 

shown in this paper have been carried out for a real 

industrial bagasse-fired boiler, whose nominal dynamics 

and ranges of parameter variations have been determined 

experimentally. 

This paper is organized as follows. A linear dynamic 

model of the steam pressure in the steam drum of this boiler 

is obtained in Section 2. A method with which to design  
α

PI  controllers for this process is proposed in Section 3. 

Simulations of this controller when regulating the steam 

pressure of the process in the case of there being 

uncertainties in some parameters are carried out in Section 

4. Moreover, this section discusses the results obtained by 

this controller when compared to other standard controllers. 

Finally, some conclusions are drawn in Section 5. 

II. SYSTEM IDENTIFICATION OF STEAM PRESSURE IN 
THE DRUM OF A BAGASSE-FIRED BOILER   

A. DESCRIPTION OF BAGASSE-FIRED BOILER 

The study presented in this paper is based on the bagasse-

fired boiler of the ‘30 de Noviembre’ sugarcane industry in 

the province of Artemisa, Cuba. This industry operates as a 

cogeneration facility, providing steam to the sugar mill 

while simultaneously providing electric power to the grid. 

The boiler comprises water tubes and can generate up to 80 

T/h of steam with a maximum pressure of 30 kg/cm2. 

The main purpose of the bagasse-fired boiler is to 

convert the energy contained in the bagasse into heat 

energy, which is then transferred to water for its conversion 

into steam at a desired temperature and pressure [3], [8]. 

This steam is subsequently used to generate mechanical and 

electrical energy, or to feed other equipment and processes 
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of the industry itself. Fig. 1 shows a view of this kind of 

boilers.  

FIGURE 1. View of a bagasse-fired boiler. 

Bagasse is a fuel of varying composition, consistency, 

and calorific value [12], [39]. These characteristics depend 

on the climate, type of soil upon which the sugarcane is 

grown, variety of sugar cane, harvesting method, amount of 

sugar cane washing, and the efficiency of the milling plant. 

After being dried and crushed, the bagasse is carried on a 

conveyor mat to the rotary feeders (known as bagasse 

feeders) which are those that introduce the necessary 

bagasse into the furnace for its combustion [3]. These 

feeders have motors that turn two rollers whose rotation 

speed is proportional to the mass flow of the bagasse 

entering the furnace. 

The steam pressure required in the steam drum of the 

boiler determines the mass flow of the bagasse entering the 

furnace and, consequently, the speed of the motors of the 

rotary feeders. The steam drum is the upper drum of the 

boiler in which the separation of water and steam occurs. 

The speed of the motors in these devices is regulated 

through the use of Variable Frequency Drives (VFD) and 

can reach between 7 rpm at 25 Hz and 17 rpm at 60 Hz. 

The nominal operation steam pressure in the steam drum of 

the boiler is 23 kgf/cm2, which is attained with the 

combustion of a nominal bagasse flow of 8000 kg/h. 

B. DYNAMIC MATHEMATICAL MODEL 

One of the main variables that must be controlled in this 

type of plants is the steam pressure in the steam drum of the 

bagasse-fired boiler, because it is an indicator of the energy 

balance between the steam that is generated and that which 

is demanded [44]–[46]. This pressure is proportional to the 

amount of steam generated and indicates the output energy 

[47], while the bagasse flow represents the input energy [8]. 

The mathematical model will, therefore, have the steam 

pressure variation in the steam drum of the boiler ( )(ty∆ ) 

as the output variable and the % of the speed variation of 

the bagasse feeder motors into the furnace ( )(tu∆ ) as the 

input variable. The fundamental disturbance ( )(tD ) that 

affects this process is the % of moisture content in the 

bagasse that enters the furnace [10]. 

The mathematical model of the steam pressure in the 

steam drum of the bagasse-fired boiler under study is 

obtained by employing a system identification procedure 

based on the step response [48], [49]. The identification 

experiment initially lowers the steam pressure in the steam 

drum of the boiler to a value that does not affect the turbine 

operation (22 kgf/cm2) and then carries this variable to its 

nominal operating value (23.5 kgf/cm2) through the use of 

a step input signal. The mathematical model of the steam 

pressure that is obtained will, therefore, represent the 

nominal dynamic behavior of this variable (nominal plant).  

The speed of the bagasse feeder motor receives an 

increment )(tu∆  of 10%. The data concerning the steam 

pressure variation ( )(ty∆ ), along with those regarding the 

increase in the speed of the bagasse feeder motors ( )(tu∆ ) 

are registered and stored in a computer. The experimental 

response of the nominal process to that step command is 

shown in Fig. 2.  

FIGURE 2. Experimental response to a step command of the nominal 
process. 
 

This dynamics can be represented by employing a third-

order overdamped system with a time delay: 

 

 

                               (1) 

 

  

 

where ( 0,....,3)ia i =  are real constant coefficients, K  is 

the static gain and τ the time delay. 

The transfer function of this system is: 

 

      (2) 

              

where 1T , 2T , and 3T   are the time constants. 
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The nominal model is denoted as 
0 ( )G s  and its 

parameters, which are estimated using the identification 

procedure, are 
0K = 0.36 kgf/cm2, 

10T = 81.2 s, 

20T = 62.7 s, 
30T = 34.1 s, and 0τ = 50 s. 

The validation of linear model (2) with the estimated 

nominal parameters is shown in Fig. 3. This figure shows a 

good agreement between the experimental response to a 

step and the prediction provided by our nominal 

mathematical model. 

 

FIGURE 3. Validation of linear model (2) with the estimated values of the 
nominal parameters. 

 

The most important property of fuels is their calorific 

value, which is defined as the amount of heat )(tQ  

produced by the complete combustion of fuel measured in 

units of energy per amount of material [38]. In the case of 

bagasse, the calorific value depends mainly on the % of its 

contents of moisture and cane fiber (cellulose) [1]. 

The calorific value of bagasse is 19250 kJ/kg at 0% 

moisture and 9950 kJ/kg at 48% moisture [7], [11]. The 

percentage of moisture content of the bagasse is, therefore, 

the most significant parameter by which to determine its 

calorific value, signifying that the higher the moisture 

content, the lower the calorific value of the bagasse [7]. A 

good milling process will result in a low bagasse moisture 

content, while an increase in the fiber content of the sugar 

cane increases the fiber content of the bagasse, which 

implies an increase in the calorific value. 

During sugar harvesting, and as result of a complex 

agro-industrial process of sugarcane transformation, the 

moisture and fiber contents in the bagasse undergo wide 

variations. They produce changes in the calorific value 

)(tQ  of the bagasse in an operation range [
maxmin ,QQ ] [4], 

[40], which affect the dynamic behavior of the steam 

pressure in the steam drum of the boiler. 

After developing more real-time experiments in the 

steam pressure of our bagasse-fired boiler, and using a 

robust system identification procedure, e.g., [45], it was 

shown that variations in the bagasse calorific value in the 

operation range [
maxmin ,QQ ] cause variations in the static 

gain of the mathematical model (2) in a range 

[
min max,K K ], which is defined by: 

 

                   12.11.0 ≤≤ K                                         (3) 

 

Any controller of the steam pressure in the steam drum 

of the boiler under study must, therefore, guarantee, a 

priori, a minimum performance in the whole range of 

variation of the dynamic parameters (model uncertainties) 

of the mathematical model (2). 

Furthermore, the plant undergoes the effect of non-

measurable disturbances. This effect has been modelled as a 

step input, )(tz  , that passes through a first order filter: 

                                     
        (3) 

                                                                            

 

which has a time constant =4T 17.5 s.  

Fig. 4 represents the complete model. In order to 

simplify the notation, the incremental variables u∆  and  

y∆  have been replaced with u  and y . 

 

FIGURE 4. Block diagram of the linear model. 

III. FRACTIONAL ORDER CONTROLLER DESIGN 

A. CONTROL OBJECTIVES 

When the calorific value of the bagasse changes, the static 

gain of our process varies in the wide range (3). Taking into 

account this gain variation, the control objectives are the 

following: 

1. Zero steady state error, =sse 0, to a step command. 

2. A small overshoot, =pM 5%, of the closed-loop 

nominal process. 

3. A settling time of the closed-loop nominal process that 

should be about twice the value of the open-loop settling 

time. Since the open loop settling time is =op

st 427 s, a 

value of =st 824 s is chosen for the nominal closed-loop 

settling time. 

4. A good performance of the closed-loop process when the 

static gain takes values in its entire range (3). In this 

respect, the quality of the closed-loop behavior is evaluated 

by means of the steam pressure uniformity, which can be 

assessed by employing the Integral Absolute Error [50]: 

                                                         
 

                        (5) 

 

1

1

4 +
=

sT
W(s)

∫
∞

∗ −=
0

)()( dttytyIAE
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where ∗y  is the steam pressure reference and y  is the 

actual steam pressure. 

Other desired control objectives that are usual in this 

kind of processes are: 

5. Good disturbance rejection in all cases: with the nominal 

process and when the gain changes. 

6. Low sensitivity to noise in the measurement. 

7. Low sensitivity to the sampling time. 

These control objectives are desirable and can also be 

evaluated by means of the steam pressure uniformity ( IAE  

index). 

B. CONTROL SCHEME AND CONTROLLERS 

Let us assume the standard feedback control scheme shown 

in Fig. 5, in which ∗y  is the steam pressure reference, e  

is the error signal, u  is the control signal, y  is the boiler 

steam pressure and z  is a step signal that passes through 

the filter )(sW , yielding the disturbance d . Furthermore, 

)(sC  and )(sG  are the transfer functions of the controller 

and the process (2), respectively. 

FIGURE 5. Block diagram of the proposed control scheme. 

 

Some previous research has proved that fractional-order 

controllers may increase the robustness of closed-loop 

processes that have a time delay [27], [35]. This work, 

therefore, explores the advantages of using fractional-order 

controllers in our process. The performances of our 

fractional-order controller and conventional PI  and PID   

controllers will now be compared. 

A PID  controller is of the form [50]: 

 

                    (6) 

 

where 
pK , 

iK  and 
dK  are the proportional, integral and 

derivative gains, respectively. A PI  controller is a 

particular example of the previous case in which 0dK =  

is made: 

                                                 

                                 (7) 

 

The proposed fractional-order controller is a PI  controller 

in which the integral operator has been substituted for a 

fractional-order integral operator [27]. This controller is 

known as the 
α

PI  controller and will, hereafter in this 

paper, also be denoted as the FPI  controller. It has the 

form [25]: 

                             (8) 

 

where α  is the non-integer order of the integral action and 

the gains have the same meaning as in the PI  and PID  

controllers. 

Note that controllers (6)–(8) fulfill the first control 

objective because all of them have an integral action (of 

integer or fractional order) that yields zero steady state error 

when a step command is applied. PI  controllers have two 

parameters that must be tuned, while PID  and 
α

PI  
controllers have three.  

Two parameters of all these controllers can be tuned to 

fulfill the nominal requirements  =pM 5%, and =st 824 s 

(second and third control objectives).  

The third parameter of the PID  and 
α

PI  controllers 

can be tuned in order to improve the closed-loop 

performance when the static gain changes in the range (3) 

(fourth control objective). 

C. TUNING PROCEDURE 

Frequency techniques are used to tune controller gains, 

assuming that the overshoot is related to the phase margin, 

mφ , and the settling time to the gain crossover frequency, 

cω . This tuning procedure is commonly used in process 

control [26], [27], [37]. 

The closed-loop transfer function between ∗y  and y  

of the scheme shown in Fig. 5 is: 

          (9) 
 

                

  and its corresponding open-loop transfer function is: 

                              )()()( sGsCsL =                           (10) 

Provided that the pair of desired frequency 

specifications are 
mφ  and 

cω  for the nominal process, the 

following complex equation can be used to tune the gains 

of the controllers [35]: 

                            mj

c ejL
φω −=)(                                 (11) 

Upon replacing )(sC  with equations (6), (7), and (8) in 

(10) and (11), the following tuning equations are easily 

obtained: 

         

               (12) 

     

                  (13)  

sK
s

K
KsC d

i
pPID ++=)(

s

K
KsC i

pPI +=)(

α
s

K
KsC i

pFPI +=)(
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ℜ=

)(

)(
:

ξω

ξ
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controllerPI
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  (14) 

 

where  

and  ()ℜ   and  ()ℑ   are the real and  

imaginary components of a complex number, respectively. 

Gains 
pK , and 

iK   of a PI  controller are defined in 

their totality by employing the two specifications 
mφ  and 

cω  (see (12)). However, the gain 
iK  of a PID  controller 

depends on the gain 
dK  (see (13)), which can be freely 

chosen, and the two gains of the 
α

PI controller depend on 

the non-integer integral action, α  (see (14)), which can 

also be freely chosen. This signifies that 
dK , in the case of 

the PID  controller, and α , in the case of the 
α

PI  

controller, will be chosen to satisfy the fourth control 

objective: obtaining a good closed loop performance for all 

the values of K  comprised in the range (3). Since stability 

robustness to gain changes is assessed by the gain margin 

(e.g. [50]), we propose to achieve the fourth objective by 

choosing the parameters 
dK  and α , which maximize the 

gain margin. 

IV. SIMULATED RESULTS AND DISCUSSION 
The simulations were carried out using MATLAB with a 

sampling period of T = 0.2 s. The fractional-order action 

of the controllers was implemented by employing the 

Grünwald-Letnikov algorithm (without any series 

truncation) in order to obtain accurate results [27]: 

 
                                                                          

                                                                         
(15) 

 

 In this expression, ℜ∈β  is the fractional-order 

operator that signifies a fractional derivative if 0>β  and 

a fractional integral if 0<β  of the function )(tf , [ ]⋅  

represents the integer part, and the combinatorial function 

has been generalized in the following respect: 

 

                          (16) 

 

 

Expressions (15), (16) are used to implement the 
fractional-order integral term of the 

α
PI  controller by 

simply making αβ −= . 

We verified that (15) yields an accurate approximation 

of the operator 
α

s/1  if the above sampling period is used. 

Coefficients (16) were determined prior to the simulation. 

A. CONTROLLERS FOR THE NOMINAL PROCESS 

PI controller: Specifications =pM 5% and =st 824.2 s 

are achieved by employing a single pair of parameters 

( ,p iK K ) of a PI  controller. Since analytical expressions 

that relate the closed-loop time specifications (
sp tM , ) to 

the frequency specifications (
cm ωφ , ) are not available for 

third order plus time delay transfer functions combined 

with PI  controllers, the gains ( ,p iK K ) have to be 

determined numerically using a search method. A 

procedure composed of the following steps has been used 

for this purpose: 

1) The analytical relations existing between the pairs of 

specifications (
sp tM , ) and (

cm ωφ , ) in the case of simple 

second order systems, e.g, [50], are used to obtain initial 

values (
0,0, , cm ωφ ); 

2) Values (
0,0, , cm ωφ ) are introduced into expressions (12) in 

order to yield the initial values of the gains (
,0 ,0,p iK K ); 

3)  A search procedure is carried out in which specifications 

(
cm ωφ , ) are modified. Consider the step i : 

a) For each pair (
icim ,, ,ωφ ), gains (

,i ,,p i iK K ) are 

calculated using (12). 

b) The step response of the closed-loop system using the 

PI  controller with gains (
,i ,,p i iK K ) is simulated and the 

corresponding specifications (
isip tM ,, , ) are obtained. 

c) The performance index sispipi ttMM −+−= ,.χ  is 

calculated. 

d) The search finishes if χχ <i , where χ  is the 

maximum error allowed in the pair of specifications. If 

χχ >i , a new pair (
1,1, , ++ icim ωφ ) is determined in the 

descending direction of the cost iχ  at the point (
icim ,, ,ωφ ). 

Details of this procedure can be found in [32]. 

Taking into account that =pM 5% approximately 

corresponds to =mφ 65° (see [27]) and that sc t/πω ≈ , 

the initial estimation of the frequency specifications is 

=0,cω 0.0038 rad/s and =0,mφ 65°. The frequency 

specifications that exactly guarantee the nominal time 

specifications are subsequently adjusted by following the 

above procedure. They are =cω 0.002113 rad/s and 

=mφ 61.68°. Tuning equations (12) with these values then 

yield the controller: 

 

     (17) 

 

Fig. 6 plots the time response yielded by the nominal 

process when using this controller. 

PID  controller: Once the parameter 
dK  has been chosen, 

parameters 
pK  and 

iK  are calculated from this value and 

the frequency specifications 
mφ  and 

cω  by using (13). In 

this case, a set of PID  controllers that depend on the 

parameter 
dK  can be obtained that fulfill the nominal time 

specifications. It is well-known that if 
mφ  and 

cω  remain 
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constant but 
dK  changes, the time responses do not 

maintain the same 
pM  and 

st  values [33]. The application 

of tuning equation (13) does not, therefore, guarantee the 

desired nominal specifications 
pM  and 

st .  

 

FIGURE 6. PI controller: nominal time response. 

For a given value of 
dK , and using the frequency 

requirements of the PI  controller obtained in the previous 

subsection, =mφ 61.68° and =cω 0.002113 rad/s, the 

application of the procedure described in Subsection PI  
controller (in which now expressions (13) are applied 

instead of (12) and the PID  controllers are simulated 

instead of PI s) yields the PID  controller that verifies the 

nominal time specifications required. This procedure can be 

repeated for a set of 
dK  values, yielding a set of PID  

controllers that exactly yield the nominal time 

specifications required. The two sets of gains obtained are 

fitted by employing third order polynomials: 

 

   

(18) 

 

 

 

The norms of the residual values of these fittings are 

0.003669 for ( )p dK K  and 0.00003199 for ( )i dK K , 

which are regarded as very low. Functions (18), therefore, 

accurately represent the locus in the controller parametric 

space that simultaneously achieves 
pM  and 

st   

specifications. 

Controllers (18) provide nominal closed-loop responses 

with time specifications that are very close to those 

required. The maximum error of 
pM  is 0.8% and that of  

st  is 0.25%. Fig. 7a shows the step responses yielded by the 

PID  controllers (18) in the case of the nominal process. 

Fig. 7b shows the step responses yielded by the PID  
controllers tuned using expression (13) with =cω 0.002113 

rad/s and =mφ 61.68°. Large variations of  
pM  and 

st  are 

produced in this last case (the settling time changes from 

820 s to 2150 s approximately). The time responses shown 

in Fig. 7 sometimes exhibit oscillatory behavior when they 

begin, which is caused by the derivative term of the 

controllers. 

 
FIGURE 7. PID set: nominal time responses using: a) the time domain 
tuning method and b) the frequency domain tuning method with 
expression (13). 
 

α
PI  controller: The parameters 

pK  and 
iK of this 

controller can be obtained from tuning equations (14), 

provided that the two frequency specifications are 
mφ  and 

cω , and that the fractional order is α . This last parameter 

can be freely chosen and will be used in the following 

section to improve the robustness of the closed-loop system 

to process gain changes. In accordance with (14), a set of 

controllers will be defined depending on the values of α  in 

a specified range. As explained in [34], if 
mφ  and 

cω  

remain constant while α  changes, the resulting time 

responses have the values 
pM  and 

st , which vary and are 

different from the desired specifications. This signifies that 

equation (14) cannot be applied in order to tune the 

proposed 
α

PI  controllers because the controllers yielded 

do not provide the nominal time response required. 

For a given value of α , and again using the frequency 

requirements of the PI  controller obtained in Subsection 

PI  controller, =cω 0.002113 rad/s and =mφ 61.68°, the 
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application of the procedure shown in Subsection PI  

controller (in which expressions (14) are now applied 

instead of (12) and the 
α

PI  controllers obtained are 

simulated instead of PI s) yields the 
α

PI  controller that 

verifies the nominal time specifications. This procedure can 

be repeated for a set of  α  values, yielding a set of 
α

PI  

controllers that exactly yield the nominal time 

specifications required. The two sets of gains obtained are 

fitted by third order polynomials: 

 

       
(19) 

 

 

 

The norms of the residual values of these fittings are 

0.01554 for ( )pK α  and 0.000011627 for ( )iK α , which 

are regarded as very low. Functions (19), therefore, 

accurately represent the locus in the controller parametric 

space that simultaneously achieves 
pM  and 

st  

specifications.    

Controllers (19) provide nominal time responses with 

time specifications that are very close to those required. 

The maximum error of 
pM  is 2.2% and that of 

st  is 0.6%. 

Fig. 8a shows the nominal step responses yielded by (19) 

and Fig. 8b the responses yielded by the controllers 

designed using the frequency domain method with 

=cω 0.002113 rad/s and =mφ 61.68° (without subsequently 

carrying out the fine tuning provided by the time domain 

method). Large variations of  
pM  and 

st  can be observed 

in this last figure (the settling time changes from 824 s to 

2250 s approximately). 

Moreover, a comparison between Figs 7a and 8a shows 

that 
α

PI  controllers provide a much better time response 

uniformity than that of PID  controllers (e.g., the initial 

oscillations of the PID  responses are prevented). 

B. OPTIMAL CONTROLLERS FOR GAIN VARIATION 

The robustness to changes in the process gain K  is 

improved in this subsection. The most robust controllers of 

the PID  set (18) and the 
α

PI  set (19) are determined. The 

transfer functions of the sets of PID  and 
α

PI  controllers 

are obtained by replacing (18) in (6) and (19) in (8), 

respectively. They are respectively represented by )(sCPID
 

and )(sCFPI
, and depend on the parameters 

dK  and α , 

respectively. The open-loop transfer functions are obtained 

by substituting )(sCPID
 and )(sCFPI

 in (10). The open-

loop transfer functions when using PID  controllers are 

represented by ),( dPID KsL , and when using 
α

PI  
controllers by ),( αsLFPI

. In both expressions, the 

dependence of the controllers on parameters 
dK  and α   

has been made explicit. The phase crossover frequency of  

),( dPID KjL ω  is denoted as )( dPID Kω  and its gain margin 

as )( dPID KM . The phase crossover frequency of 

),( αωjLFPI
 is denoted as )(αωFPI

 and its gain margin as 

)(αFPIM . Fig. 9 plots functions )( dPID KM  and 

)(αFPIM . The maxima of these functions are denoted as  
∗
PIDM  and 

∗
FPIM , respectively. Fig. 9 shows that these 

maxima are higher than the gain margin of the PI  
controller, which is =PIM 4.214. 

 

FIGURE 8. PIα set: nominal time response: a) time domain tuning 
method; b) frequency domain tuning method. 

 

The optimal PID  controller is obtained for 
dK = 50: 
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which provides a gain margin =∗
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The optimal 
α

PI  controller is obtained for =α 1.076:  
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FIGURE 9. Selection of the optimal PID and PIα controllers: a) MPID(Kd); 

b) MFPI (α). 

C. PERFORMANCE WHEN THE GAIN CHANGES 

Fig. 10 shows the behavior of the controlled system when 

the process gain changes in the range (3). Fig. 10a plots the 

step responses using the PI  controller (17), Fig. 10b using 

the PID  controller (20) and Figure 10c using the 
α

PI  
controller (21). 

As shown in Fig. 10, the optimal 
α

PI  controller 

provides a better uniformity response than the optimal  

PID  and the PI  controllers, although the PID  optimal 

controller achieves the highest gain margin (see Fig. 9a).  

The curves of the  indexes IAE  (5) obtained using the 

PI , optimal PID  and optimal 
α

PI  controllers when the 

plant gain changes in the range (3) are plotted in Fig. 11 in 

order to quantify the improvement to uniformity provided 

by the 
α

PI  controller. This figure shows that the optimal  
α

PI  controller behaves better than the PI  and the optimal  

PID  controllers. For low values of the gain, the 
α

PI  and 

PID  controllers yield similar results but, when the gain K  

increases, the 
α

PI  controller behaves much better, since it 

decreases the IAE  index as K  increases. For =K 1.12 

(maximum value allowed for the gain), the 
α

PI  controller 

reduces the IAE  index to 29.75% of the nominal value. 

 

FIGURE 10. Time response for K ϵ [0.17, 1.12]: a) PI (17); b) optimal PID 

(20), and c) optimal PIα (21). 

 

 
FIGURE 11. IAE index for K ϵ [0.17, 1.12]: a) PI (17); b) optimal PID (20), 

and c) optimal PIα (21). 
 

The PI , the optimum PID  and the optimum 
α

PI  
controllers, therefore, provide the time specifications 

required for the nominal process ( =sse 0, =pM 5% and 

=st 824.2 s), which are control objectives 1, 2 and 3. 

However, the uniformity of the steam pressure achieved by 

the 
α

PI  controller when the gain changes in the range (3) 

significantly outperforms those achieved by the PI  and 

PID  controllers, which is control objective 4. 

D. DISTURBANCE REJECTION BEHAVIOR 

This subsection assesses the ability of the PI , PID  and  
α

PI controllers to reject disturbances, even when the gain 

changes in the range (3). 
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Fig. 12 compares the time responses provided by the 

PI , PID  and 
α

PI  controllers in the cases of the nominal 

process and when K  changes in the range (3). Fig. 13 plots 

the IAE  indexes provided by these three controllers when 

K  varies. 

FIGURE 12. Disturbance rejection for K ϵ [0.17, 1.12]: a) PI (17); b) 

optimal PID (20), and c) optimal PIα (21). 
 

FIGURE 13. Disturbance rejection: IAE indexes for K ϵ [0.17, 1.12]: a) PI 

(17); b) optimal PID (20), and c) optimal PIα (21). 

These results show that the 
α

PI  optimal controller also 

improves the steam pressure uniformity in the presence of 

non-measurable disturbances. As in the case of set point 

changes, the 
α

PI  and PID  controllers provide similar 

results for low values of the gain, but when the gain 

increases, the 
α

PI  controller yields lower IAE  values 

than the PID  controller, thus increasing the steam pressure 

uniformity. 

E. ANOTHER PLANT PARAMETER VARIATION 

This subsection compares the performance of the three 

controllers when ,,, 321 TTT or τ  change slightly, in order 

to check their fragility. Let us assume that these parameters 

change ±10% with regard to their nominal values. The 

worst case is when the three time constants take their 

lowest values and the time delay takes its highest value. 

This case corresponds to =1T  72.36 s, =2T 57.42 s, 

=3T 31.68 s and =τ 55 s.  Fig. 14 plots the IAE  index 

when the gain changes and the other parameters take the 

previous values. 

 

FIGURE 14. Another plant parameter variation: IAE index for                    
K ϵ [0.17, 1.12]: a) PI (17); b) optimal PID (20), and c) optimal PIα (21). 
 

These results are similar to those obtained in the previous 

cases: the PID  and 
α

PI  controllers have similar behavior 

for low values of the gain, but the 
α

PI  controller improves 

the steam pressure uniformity at medium and high values of 

the process gain. 

E. NOISE SENSITIVITY AND SAMPLE TIME SENSITIVITY 

In this subsection, the steam pressure uniformities of the 

three controllers are compared in the presence of noise and 

when the sampling period increases. Fig. 15 plots the IAE  

index obtained in the case of adding a noise with a uniform 

distribution of amplitude 0.02 to the output )(ty  and 

simultaneously using a sampling period 100 times higher 

than that used in the previous simulations ( =T 20 s). This 

figure shows that the results are quite similar to those 

obtained in the previous sections and that the 
α

PI  

controller improves the steam pressure uniformity with 

regard to the PI  and PID  controllers when the gain 

increases. 

V. CONCLUSION 

This paper studies the closed-loop control of the steam 

pressure in the steam drum of a bagasse-fired boiler. First, 

an identification process has been carried out that yields a 
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linear third order plus time delay transfer function of the 

incremental model of the nominal process. An output 

disturbance has also been characterized as the output of a 

first order filter whose input is a step signal. Moreover, a 

large range of variation in the static gain has been 

characterized. 

FIGURE 15. Noise and sample time sensitivity: IAE indexes for                
K ϵ [0.17, 1.12]: a) PI (17); b) optimal PID (20), and c) optimal PIα (21). 

The design of PID  and 
α

PI  controllers that are robust 

to gain changes has also been detailed. The design 

procedure comprises two stages: 1) the sets of PID  

controllers and 
α

PI  controllers that provide the desired 

overshoot and settling time for the nominal process, along 

with zero steady state error to setpoint changes, are 

determined by employing a search procedure; 2) the 

controllers of each of these two sets that maximize the gain 

margin are chosen. The objective of this second stage is to 

choose controllers that significantly improve the robustness 

to the large gain changes experimentally observed (the 

maximum process gain is about 7 times the minimum gain). 

The robustness of the controllers designed has been 

assessed by using the well-known IAE  index and 

calculating its values in the entire gain range. The 

performances as regards set point changes, modelled 

disturbances, parametric variations of the time constants 

and the time delay, output noise and sampling period 

variations have been studied. The analysis carried out has 

yielded that: a) the optimum PID  and 
α

PI  controllers 

significantly outperform the PI  controller, and b) the 

optimum 
α

PI  significantly outperforms the optimum 

PID , especially in the high gain zone. 

Since a PI  controller has two parameters that must be 

tuned, while the PID  and 
α

PI  controllers have three, it is 

to be supposed that the optimum PID  and 
α

PI controllers 

will outperform the robustness of the PI  controller. What 

is remarkable is the improvement as regards robustness 

achieved when using the 
α

PI  rather than the PID  

controller. Since both controllers have three parameters that 

must be tuned (they have an equivalent complexity from the 

design point of view), the improvement cannot be attributed 

to an increase in the complexity of one of the controllers, 

i.e., to the fact that a higher number of parameters would be 

available to be tuned, but rather to the structure of the 

fractional-order controller, that appears to be better than the 

structure of the PID  controller as regards boosting the 

robustness to the static gain changes of our process.   

The next objective of our research is the practical 

implementation of the 
α

PI  controller designed in the 

bagasse-fired boilers of the ‘30 de Noviembre’ sugarcane 

industry using a PLC SIMATIC S7-300. 

The benefits obtained thanks to the increase in the 

robustness and effectiveness of the control of the steam 

pressure in the steam drum of the boiler are immediately 

translated into an increase in energy efficiency and greater 

environmental protection, which are attained by reducing 

the load of gases and pollutant particles. 

Finally, it is worth mentioning that, although the 

conclusions presented in this paper are concerned only with 

our particular industrial process, the controller design 

method and the procedures outlined can also be applied to 

other processes with different types of transfer functions.  
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