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Abstract—For networks that are deployed for long-term moni-  multiple-access channel, to form distributed projectiohdata
toring of environmental phenomena, it is of crucial importance to  onto an appropriate basis at the FC. In this approach sensors
design an efficient data gathering scheme that prolongs the life- need to be perfectly synchronized. In [11] authors consider

time of the network. To this end, we exploit the sparse nature of . . .
the monitored field and consider a Random Access Compressed":1 decentralized network (without FC), where active nodes

Sensing (RACS) scheme in which the sensors transmit at random €Xchange measurements locally. The authors formulatesapar
to a fusion center which reconstructs the field. We provide an recovery as a decentralized consensus optimization proble
analytical framework for system design that captures packet and show that their iterative algorithm converges to a dlgba

collisions due to random access as well as packet errors dueoptimal solution. Reference [12] proposes compressivescoo

to communication noise. Through analysis and examples, we fi . . bil based Il set
demonstrate that recovery of the field can be attained using eralive mapping using mobiie Sensors based on a small se

only a fraction of the resources used by a conventional TDMA Of observations. Authors in [13] consider spatial mappiyg b
network, while employing a scheme which is simple to implement robots and propose an efficient way to reconstruct natutdkfie
and requires no synchronization. using random-walk-based sampling and compressed sensing.
Inspired by compressed sensing and employing random
i channel access, in [14] we proposed a simple and efficient
_Wireless sensor networks deployed for the purpose of gfisyyorking scheme referred to Random Access Compressed
vironmental monitoring, surveillance, or data collectiogve genging(RACS). The RACS scheme consists of distributed
to be designed for a long life-time. Sensor nodes are tigical,ngom sampling, followed by random channel access. The
distributed randomly or uniformly over a certain region angey jgea behind RACS is that packet collisions (which are
each sensor communicates its observations to a central Nqfléitahle in random access) occur randomly and thus do not
referred to as the fusion center (FC). The FC then recorstiugnange the random nature of the observations provided to
the map of the field of interest. Once the network is deployef,. Fc. since the FC only needs to receive some, and not
there is little access _to the sensors _and hence re-chargiiigihe sensor packets, it can simply disregard the cotiisio
batteries becom(_es d_lfflcu_lt. Therefore,_ in battery-poweret- By disregarding collisions, we eliminate the need for hete
works, network I|fe-t|me is of utmo.st importance. To be ablf'O the medium (as used in contention-based MAC protocols),
to operate over long intervals of time, sensor nodes need {flich further reduces the energy consumption of the sensor
conserve their energy. A large body of literature examings,jes The FC obtains an incomplete set of measurements
energy-aware design methodologies for managing the feriogy,e to hoth random sensing and losses due to random access)
sleep cycles of sensors, such as [1], [2], [3]. Moreoverpme  ¢oq \yhich it reconstructs the field using compressed sensin
networks, such as underwater acoustic networks, bandvedihe hniques. To provide a sufficient number of measurements
sevgrely I|_m|ted, hence efficient networking schemes are of 1o FC, we compensate for the collision losses by injtiall
particular importance [4], [5]. , o selecting the number of participating sensors to be somewha
To achieve the desired energy and bandwidth efficiency, Weaater than the minimum number of packets required. The
capitalize on the fact that most natural phenomena are Spgghcs scheme [14] assumes a frame-based (slotted) transmis-
(compressible) in an appropriate basis and exploit theepi@ o that requires the sensor nodes to be synchronized. In

of compressed Sensing. The the‘?fy of comprgssed SeNn3Wain network structures, such as large acoustic nesyork
establishes that under certain conditions, exact SigmaV®y  aintaining synchronization is challenging due to vagabl
is possible with a relatively small number of random measurg, ,aqation delays and clock drift. This fact motivates our
ments [6], [7]. Application of compressed sensing in wissle , o5ant work, whose goal is to dispense with synchroniaatio
sensor networks was first introduced in [8], [9], [10], whergnq scheduling requirements. Moreover, in the present work
the authors used phase-coherent transmission of random s address communication noise in the RACS network.

weighted data from sensor nodes to the FC over a dedicateq}, (s paper, we propose a RACS networking scheme that

Research funded in part by ONR grant N00014-09-1-0700, Ne#tg OPviates the need for synchronized frame-based transimissi
0831728, and NSF CAREER grant ECCS-0847077. Knowing that the communication noise in an AWGN channel
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gives rise to packet errors, we let the FC discard the packets
that are received in error, in addition to those that resulte
in collision. To account for the packet losses that occur due
to both collisions and noisethe network design employs the
concept of sufficient sensing probability. With this prolbityo
which defines the desired system performance, sufficiently
many data packets — as required for field reconstructioncbase
on compressed sensing — are to be received. We develop
an analytical model for the data collection process and use
this model to determine the transmission rate necessary to
achieve the desired probability of sufficient sensing. The
proposed continuous-time RACS has a simple implementation
eliminates the need for time-synchronization and schagduli
and achieves considerable savings in energy and bandwidth
over conventional TDMA networks.

The rest of the paper is organized as follows. In Section Il
we introduce the RACS network model. In Section Il we Fig. 1.
propose an analytical framework to model the arrival of
useful packets to the FC. In Section IV we outline a design
methodology to determine the network parameters. In S@&; rier transform ofU, where W is the matrix of discrete
tion V bandwidth and energy consumption of a RACS networlkourier transform coefficientd¥ ;[m, k] = e=727*/1 |t can
are discussed. Section VI provides a comparison benchma}%w be shown that = (W, Wz’)
while Section VIl quantifies the savings in bandwidth an
energy expenditure attained by employing RACS. Finally,
provide concluding remarks in Section VIII.

Notation We denote by¢, the p-norm of a vector

\

A grid sensor network consisting &f = I.J sensor nodes.

u, wherev = vec(V)
ndu = vec(U). The Fourier representation is assumed to
e sparse.
Each sensor node measures the physical quantity of interest
and encodes the measurements, along with the sensor’s loca-

1
x = [z1,...,zn]T, %], = Zf;l |xl-|1’) /p. If V tion tag, into a data packet df bits, which is then modulated
is a k x | matrix, vec(V) denotes thekl x 1 vector and transmitted tothe FC. Upon reception, the FC demodulate
formed by stacking the columns of matri¥, vec(V) = the signal and extracts the measurement information. The
[vi1 ... vg ... vig ... vy |7 Finally, A®B de- communication noise in the channel may cause one or more
notes the Kronecker product of matricdsand B. bits to be received in error. Without loss of generality, we
assume that a packet is in error if one or more bits are
II. RACS SySTEM MODEL determined to be in error, i.e., we assume that no coding is

Consider a grid network shown in Fig. 1, which consists (ﬂmployedl..lf a packet is determined to be in error (via error-
N = I.J sensorsuniformly distributed on a two-dimensional 9€tection, i.e., CRC), the FC discards that packet. Assgmin
plane, with.J and/ sensors in: andy directions, respectively. that the system has bandwidbhand that each sensor transmits

The network measures a physical phenomenofs;, y,t), ;t a bLit-rate equal to the bandwidth, the packet duration is
= E'

whose coherence time i%,,;,. At time ¢, the sensor node “» )
located at position(i,j) in the network grid acquires a The observations of a random subset\éfsensors’ packets
measurement,; (¢) = u(z;, y;, t). Since the process is slowlyat the FC can be expressed as
varying duringT,,,, we assume thazuij(tl). ~ u,5(ts) for y=Ru+z @)
[t1 — ta] < Teon. In what follows, we will focus on an
observation window of sizd” < T,.,, and drop the time whereR is anM x N random selection matrix, consisting of
index from the sensor measurements. M rows of the identity matrix selected uniformly at random,

The measurements are sent to the FC whose task isafifl z represents the sensing nofséloting thatu = ¥,
reconstruct the field of interest. The complete map of thehere ¥ = (W; @ W;)~! is the inverse Discrete Fourier
process, obtained from the sensor measurements, is dendtgnsform matrix, Eq. (2) can be re-written in terms of the
by

1Coding will improve the packet error rate and can easily betiperated

ey @ into our analysis once a code is specified
' 2Note the distinction between theensing noisez, which arises due to the

) limitations in the sensing device, and themmunication noisewhich is a
Most natural phenomena have a compressible (sparse) refaracteristic of the transmission system. The sensing rogpears as an

resentation in the frequency domain. and we will assunagditive term in Eq. (2), whereas the communication noiseltesubit errors
’ nd packet loss. The communication noise thus affectstiueture of the

that this holds for our measurernents_ as well. _Spe_(:iﬁcal&mdom selection matriR but does not appear as an additive term in the
let V.= W;UW be the two-dimensional spatial discretebservation vectoy.



sparse vectox as A. Useful Packets

y=R¥v+z ©) We assume that each node generates packets according to an

To reconstruct the field, the FC first tries to recover the aectindependent Poisson process at an average rakg phckets

v as accurately as possible, then uses it to construct the npew second. The overall packet generation rata is N ;.

U. Given the observationg, the random selection pattefd In order to reconstruct the field, the FC needs to collect at
and the sparsity basi#, and in the absence of sensing naise least N, useful packets; however, there is no guarantee that
—which is the case we will be focusing on — reconstruction catll the arriving packets will be useful. Three factors cinite

be performed by solving the following minimization problemto packet discarding: collisions, errors, and repetitiofike
latter refers to a situation in which the FC receives morentha
one packet from thesamenode during a collection interval

The theory of compressed sensing (specifically, [15]) staté- In such a case, the FC keeps only one packet and discards
that as long as the number of observations, picked unifoemnlythe copies (the copies carry the same information since the
random, is greater thaiV, = C'Slog N, then with very high measurement field is assumed not to have changed during one
probability the solution to the convex optimization prabl¢4) ~ collection interval).
is unique and is equal t. Here C is a constant that is The FC buffers the useful packets, and waits to have
independent ofV and S (see [15] for the details). Thus, insufficiently many to perform the reconstruction. The total
our case, it suffices to ensure that the FC collects at [¥ast number of packets that are used in the reconstruction pspces
packets picked uniformly at random from different sensors t5'(\1,7'), is thus the number of received packets left after
guarantee accurate reconstruction of the field with venhhigliscarding the colliding packets, the erroneous packetd, a
probability. multiple copies of the same packet. We conjecture that the

arrival of useful packets is a Poisson process with an éffect
[1l. PACKET ARRIVAL PROCESS average arrival rate’ < )\, given by

The nodes in a RACS scheme transmit asynchronously, N(1 — e~ MTYe=2NMT, (1 _ p
) ) NA—e™MT)e (1- Pg)
whenever they have a packet. As in any random access, packets A = T (6)

may collide at the FC. The key idea behind RACS is to let The effecti val rate ai bv Eq. (6 be iustified b
the FC simply discard the colliding packets and those packet € efieclive arrival rate given by £Q. (6) can be just 'ed by
odeling the collisions, the packet errors and the repeiti

that were received in error due to communication noise. THIS
approach is motivated by the compressed sensing theory, i follows.
the fact that the FC does not canich specific sensors are (i) Given an aggregate generation rale = N);, the
selected as long as (i) the selected subset is chosen utyiform  probability of no collision at the FC is modeled as
at random, and (ii) there are sufficiently many collisioadr
and error-free packets received to allow for the reconsitsac
of the field. Therefore, so long as the packet collisions and The probability of no packet error is given by
packet errors occur randomly, discarding of those packéts w
not change the way in which the FC perceives the arrival of Prob{no packet errdr = 1 — P

usefulpackets. Note that the matrR of Eq. (3) includes the (i) The probability of no repetition is assessed by focgsin

minimize; ||v|l, subjecttoR¥V =y. (4)

Prob{no collision} = ¢=2V M1

effects of packet loss due to both collisions and errors, A& on an individual node. Le\; (T) denote the number of
represents the number of useful packets received by the FC packets that a given node generateq'inf this number
after the erroneous and colliding packets are discarded. is greater than 1, the FC will discard the repetitions.

Assuming no channel coding, a packet will be in error if Hence, the number of “non-repeated” packets generated
one or more of its bits are in error. The probability of packet  at each node durin@ is given by
error is thus given by

niy =0 Ni(T) =0

Pp=1-(1-P)" ®) ! 1, M(T)>1
where P, is the probability of bit error and. is the number The average effective packet generation rate at each node
of bits per packet. The probability of bit error is related to is thus some\; < A,. Let us define the corresponding
the signal-to-noise ratio (SNR), e.g.,P. = 2¢~7 for DPSK reduction factor ap = A} /Ay, i.e.,
(161 _ | E{N{(T)} _ 1= Probi\i(T) = 0}

In what follows, we consider a Poisson process for packet p = EN(T)} = NT (7)

generation at each node, and analyze the aggregate arrival | N7

process of useful packets at the FC. We then study the =
conditions under which this process yields a sufficient neimb MT

of measurementsy; = C'Slog N. These conditions in turn The average arrival rate of useful packets at the KC.can
imply a per-node packet generation raté,, which fully now be expressed as the product of the average aggregate
defines the continuous-time RACS. arrival rate N A1, the probability of no collision, the probability



of no packet error, and the reduction facjor the probability of sufficient sensings the probability that
the FC collectsN, or more useful packets durin@, and

r_ —ONMTp (1 _
N = Nie™™ " (1 - Pg)p ®)  we specify the performance requirement as the minimum

Substituting forp from Eq. (7), the above expression reducegrobability of sufficient sensingl. In other words, we ask
that the FC collect at leasV, useful packets during tim&

to (6). The Poisson model fdk (A, T) is now given by
(VT)* with probability P, or higher. This condition can be expressed
Prob{K (A1, T) = k} = Prc(ks M, T) = == eNT (9) as
In order to examine our conjecture, we conducted numer-
ical experiments. Fig. 2 shows the histogram of a simulatgglyen the Poisson model for the number of useful packets
K (X1, T) process. Shown also in the figure are the Poissqp( )\, 7, we have that
distribution functions with conjecture®f of Eq. (6), and with -
Aest, @N average arrival rate estimated from the simulated daja. _ . _ — .
Noting a good match between the conjectured model andat%areOb{K(Al’T) 2k} =Qr(k;A,T) =1~ ZPK(Z’ M, T)
simulation, we adopt the model (9) and proceed to design the =0 (11)
system in Section IV.
where Pk (k; A1, T) is given by Eq. (9). The sufficient sensing
requirement (10) is now expressed as
Poisson model QK (Nsa AhT) 2 Ps (12)

0.035+
- = - estimated Poissson

I measured
whereP; is the desired probability of sufficient sensing (which
is a system design parameter).

Fig. 3 showsQx (Ng; A1,T) versusa = N'T for two
different values ofN,. These values correspond A = 2500
nodes, andS = 10 or 16, with C = 2. For a given N,
and a desired probability of sufficient sensiiyy, one can
find the corresponding as illustrated in the figure. The so-
obtaineda represents the number of useful packets that have
to be acquired during the collection interval in order to
meet the sufficient sensing probabilig. In other words, the
condition (12) can equivalently be stated as

150 160 170 180 190 200 210 220 230 240
number of successful receptions, k
a > ag (13)

Prob{K (\;,T) > N,} > P, (10)
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Probability distribution function of the number ofefisl packets Wherea is a design target that depends di and Ps only,
and can be determined through the procedure illustrated in

Fig. 2.
K(X\1,T) for N = 2500, T = 1000 s, \; = 104 packet/sT, = 0.2’ s
and Pg = 0.1; the number of simulation runs is 10,000. Fig 3

IV. SYSTEM DESIGN

The parameters that define a RACS system wiNtmodes
are the per-node packet generation ratg the collection
interval T', the bit rateB which determines the packet duration
T, = L/B.2 and the probability of packet erraPz. These
parameters defing’ through Eqg. (6). System design involves
finding a set of parameters for which a performance require-
ment is met. Specifically, we define a performance requirémen
based on the concept of sufficient sensing.

P =09 ’
s

0.8

06 N_=157

QN;A, T

04r

A. Probability of Sufficient Sensing ol

In order to perform field reconstruction, the FC needs to
collect Ny = CSlog N or more useful packets during the T
time interval 7. However, because the packet arrival process

is random, there is no guarantee that the FC will collect

sufficiently many packets during this interval. We thus defirFig. 3. Qx (Ns;M\1,T) vs.a = XN'T for N5 = 157 and 251 packets. A
required probability of sufficient sensing, implies a corresponding minimum

a =272
s

y

| | | | i i

200 250 300 350 400 450 500
o [packets]

3without loss of generality, throughout this paper we usedbddth and  Value ofa, .
bit rate interchangeably



B. Design objective the desired value of, obtained from Fig. 3 determines the

The design objective is to determine the per-node pack@tfficient per node sensing rate to be, = 1.52 x 10~
generation rate\; that is necessary to ensure sufficient senacket/s forB = 5 kbps. Employing the so-obtained sensing
ing. In doing so, we will assume th& and L are set a- fate, Figure 6(b) shows the image recovered by the FC after
priori, as these parameters pertain to the actual procésg bel’ = 1000 s. We note an excellent similarity between the
sensedT is determined in accordance with the desired upda@iginal and the recovered map. The normalized error for the
rate and has to be less thdh,,, while L is determined by recovered image”(%) is on the order oft 0~ which is
the nature of the measurements). We will also assume titathe domain of numerical round-off errors.
the probability of packet erroPg is fixed, i.e., the system
is designed to provide a certain SNfg at the receiver, or
equivalently, a certain probability of bit erra?..

Fig. 4 showsa versus \; for a given set of system
parametersN, Ps, T, L and~,. We note from the figure that
depending upon the bandwidii, a solution forA; may or
may not exist. If sufficient bandwidth is available such that
a solution exists, then the range of acceptable values\for
is the set of values for whicle > «,. Within this range,
we choose the smallest value ®f, as it corresponds to least
frequent transmissions, i.e., it minimizes the overall rgpe
consumption as we will discuss in Section V.
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Fig. 5. The value otvs = 272 obtained from Fig. 3 determines a per node
sufficient sensing rata;; = 1.52 x 10~* packet/s.
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V. BANDWIDTH AND ENERGY CONSIDERATIONS

N}
=}
1)

A. Minimum Bandwidth

B =1kbps - 5 kbps

100

The observations that we made from Fig. 4 imply that in
order for a set of design parameters to satisfy the sufficient
sensing condition, a minimum bandwidth is required. For
example, we see in Fig. 4 that given = 272 packets, for
B =1 kbps no value of\; can meet the sufficient sensing
Fig. 4. Average numbew of useful packets received during collection timerequirement (13), while foB = 2 kbps a solution to\; exists.

T is plotted vs.\1 using Eq. (6) for different values dB and foras = 272 The minimum required bandwidth is obtained by identifying
(Ns = 251, Ps = 0.9). Other system parameters ae= 1000 s, L = 1000 . . . L .
bits and P = 0.1 (yo = 9.2 dB assuming uncoded DPSK). This figuretN® maximum ofa, i.e., by taking the derivative of with

shows that in order to achieve a desired a certain minimum bandwidth respect to\; and setting it to zero. The value af at which
is required. When sufficient bandwidth is available, the @esivalue ofas  the maximum occurs is given by
implies the minimum required per-node packet rate (B).

0

h h h . .
0 0.001 0.002 0.03 0.004 0005 0006 0.07 0.008 0.009 0.01
Al[packel/s]

1 T
Az = = log <1 + ) (14)
C. Design Example T 2NL/B
We use a numerical example to demonstrate the desfd the corresponding maximum valuecis given by
procedure and to visually illustrate the field recovery e BT BT \ “2NL/BT-1
using RACS. We consider &) x 50 grid network measuring a Omaz = 57 (1 + 2NL> (1-Pg) (15

physical process with a spatial map given in Figure 6(a)sThi
map may for instance represent the temperature. Its spatforder for a solution to exist, this value has to be
Fourier transform indicates a sparse behavior with sparsit o > o (16)
S = 16. Let us assume a collection timiE = 1000 s, a s =
packet sizel. = 1000 bits, a bit rateB = 5 kbps and a packet which implies that the system bandwidih has to be greater
error probability Pr = 0.1. From Fig. 3 the value ok is than some minimumpB;. Eq. (16) can be solved numerically
determined asv; = 272 packets. Fig. 5 shows a zoomed-irto obtain the minimum required bandwidiB;. While there
version ofa versus\; according to Eq. (6). Using this figure,is no closed form solution fo3,, an approximation can be
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Fig. 7. Minimum required bandwidti3s vs. the number of noded’. The
system parameters are = 10, Ps = 0.9, L = 1000 bits, 7" = 1000 s and
Pg =0.1

transmit power, and’,, is the packet duration, i.e., the time
during which a node is active. In a system designed to provide
a certain SNRy, at the receiver, choosing the bandwidth auto-
matically determines the necessary transmit power. Assgmi
an AWGN channel with the noise power spectral density
and attenuationd between the transmitter and the receiver,
the SNR is given by

(b) The recovered map of the sensing field. PT/A ( )
= 19
Fig. 6. The sensing field is recovered employing RACS with = 1.52 x NoB
—4 _ _ _ . . .
107" packetls, forT" = 1000 s, Pp = 0.1 andT, = 0.2 s. Without loss of generality, we assume the same attenuation

for all the links. Hence, the transmit power of each node is
Pr = vANyB, and we have that

obtained wher2 NL/TB > 1:

B~ 2eLag 17
T T(1 - Pg) (17) As expected, the energy consumption is minimized if one
Fig. 7 shows the exact and the approximate valuesBpf Ch0oses the minimum sensing ratg (5).
versusN for a given set of parameters. The exact values for Fig- 8 shows\,, versus B for a given set of system
B, are obtained by solving Eq. (16) numerically, whereas tfgarametersN, L, T, and ~o. We note from this figure that
approximate values follow from Eq. (17). We note that thé1s(B) < Ai5(Bs) whenever the solution exists, i.e., for

approximation serves as a lower bound By, and that it B = Bs. Thus A14(B;) can be used to provide an upper
becomes quite tight a&’ grows. bound on the energy expenditure for a RACS network. Using

the expression (14) we have that
B. Energy Consumption

1

In a battery-powered network where re-charging is difficult Ms(Bs) = 7 log (1 * QNL/BS> @D
as is the case in underwater deployments, network lifetinetjence, the energy (20) is bounded by
of utmost importance. Energy per successfully deliverad bi
of information thus naturally emerges as a figure of merit for By, = Nlog (1 + T) Y0 ANyL (22)
system performance. In light of a sensor network based on 2NL/B;
compressed sensing, we define a related figure of merit as Higally, using Eq. (17) a closed form approximation for the
total average energy required for one field reconstruction: upper bound on the energy Consumption can be obtained as

E=NMT-Pr T, (18) Fup ~ Nlog (1 N lep> ANGL  (23)
where the first term§ \,T) is the average number of nodes (1-Pg)

that transmit in one collection tim&’; Pr is the per-node Fig. 9 shows the energy consumption (20) of the RACS



network (normalized with respect tdNy) for B = 2 kbps » ‘

and B = 10 kbps, as well as the exact and approximate upper —F

bounds given by Egs. (22) and (23), respectively. The mini- 69F | - = - By PPrOXTRN

mum bandwidth that determines the bound3is ~ 1 kbps. e
Note also that\;; decreases with bandwidth, reaching a

limiting value asB — oo (see Fig. 8). This value can be

analytically determined as

average normalized energy consumption [dB]
3
\
\
\

1 1 i
~ N(1—Pgr) ol
which can be used to assess a lower bound on the energy ¢ |
consumption, B T R e i e e
Elow o N)\l (OO)T")/()AN()L 622000 30‘00 40‘00 50‘00 G(i?O 70‘00 80‘00 90‘00 10000

Fig. 9. Average normalized energy consumption vs. the numbeodésN .
The system parameters afg = 0.9, S = 10, L = 1000 bits, 7" = 1000 s
The lower bound (25) is included in Fig.9. We note that thignd Pz = 0.1 (yo = 9.2 dB assuming uncoded DPSK).

bound is well approached already with= 10 kbps.

1
Nlog — “YANoL  (25)
1- N(1—Pg)

A. ARQ

To achieve reliable data transmission in a conventional
network, if a data packet is determined to be in error, the
FC sends a re-transmission request to the node whose packet
is received in error. The extra time it takes to collect the re
transmitted packets extends the overall collection timiee T
average number of times a packet needs to be re-transmitted
before it is successfully received i$1 — Pg. In a full-duplex
system it thus take§” = NT,/(1 — Pg) on the average to
transmit all N packets! For a specified updating interval,
the bandwidth required by the system is

NL
T(1- Pg)
The average energy consumption of a conventional network
with ARQ is given by

x10”

A,, [packets]

Be arg = (26)

5
B [kbps]

Fig. 8. Minimum per-node packet ratg s vs. B for N = 2500, L = 1000

bits, 7 = 1000 s andPg; = 0.1. Note that\; s (B) < A1+ (Bs) for B > B,. Eearg = PrT = 1— = Y ANy L (27)
B. No ARQ
Unlike the ARQ scheme, this scheme does not compromise
VI. COMPARISONBENCHMARK the collection time. However, once a packet is detected to be

in error, complete reconstruction is not achieved. Henle, t

As a comparison benchmark, we assume a conventiopabbability of correct frame reception in this scheme gatal
network with deterministic sensing and deterministic @scén the sufficient sensing probability in RACS. The probabithist
the conventional network, alV nodes conduct measurementshe FC receives allV packets correctly during one collection
and transmit their data packets to the FC using a standamterval is (1 — Pg)". Equating this probability with an
time-division multiple access (TDMA). This approach regsi equivalent sufficient sensing requirement implies that
scheduling, such that packets from different nodes arraekb N
to-back at the FC. Fig. 10 depicts the required scheduling (1-Pg)" 2 Py (28)

process. In other words, we ask that full reconstruction occur with
In the presence of channel noise, packet errors are boungptobability of at leastP;. Alternatively, we may relax this

occur. To deal with the packet errors, the conventional ngtw

can either employ automatic repeat request (ARQ), or allow4'” a half-duplex underwater acoustic network, this time misd anclude

., the waiting time which depends on the propagation delay. THopgmation
for some packet loss (no ARQ). In what follows we considgje|ay in tum depends on the distance between the FC and tiserseodes

both scenarios. and can be rather long due to the low speed of sound.



and

T, N(1-P
f—> Bc,noARQ/Bs ~ (27E> = GBQ (36)
| #l u| (e il time at FC eds
where we have used the approximation for the minimum
kT kT+T bandwidth of a RACS network given by Eq. (17).
Savings in energy can be quantified as
1

EC,ARQ/Eup ~ = GEl (37)

| time at node 2 (1*PE)10g <1+ﬁ)
kT+T,—T, and
log ML -
Ec,noARQ/Eup ~ 2U-F) = GE2 (38)

Fig. 10. The scheduling required at each node in the bencheas& of 7o log (1 + N(l—SPE))

TOMA. where we have used the upper bound on energy consumption
for RACS given by Eq. (23).

requirement and ask instead that a fraction of packets, sayNoW. to quantify a lower bound on the energy savings

N, = X%N, be received correctly. Then, we want obtained by RACS, let us assume that the packet errors caused
' by noise do not affect the performance of the benchmark case,
N . . .
Z N (1— Pg)"PY—" > p (29) i.e., the conventional network can perfectly recover thédfie
< n E)SE =T regardless of the packet errors. The conventional netwuark t
=N has a minimum energy consumption given by
Given a design targeP,, the condition (28) implies that
P, < P*, where the threshold* can be computed numeri- E. = NPpT, = NyoANoL (39)

cally. For a given functional dependenég = f(7), the cor- Thjs provides us with the minimum savings that RACS can
responding bit SNR condition becomes> v* = f~'(PY). 5chieve:

For example, ifN, = N, assuming that 1

1-Pe)¥N~(1—-LP)N ~1-NLP, P cas
( E) ( e) e (30) log (1 + m)
we obtain . ., 1-P, Fig. 11 shows the saving in bandwidth plotted versus the
Y2y = NI ) (31) size of the network. This figure demonstrates that RACS is

capable of providing a factor of two in bandwidth savings for
our example network withV = 2500 nodes, or more for a
larger network (assuming that the sparsity leselemains the
NL same). This is a significant feature from the viewpoint of a
T (32) band-limited system.
The total energy consumed during one collection interval is Fig- 12 shows the corresponding energy saving versus the
size of the network. We note that RACS offers substantial
Ecnoarqg = NPrT, = NY"ANoL (33) savings over the benchmark case. For exampleMet 2500
gges, the energy consumed by RACS is about 9 dB less than
the energy consumed by the benchmark TDMA network of
the same size, not employing ARQ. If ARQ is employed in
(34) the benchmark network, the savings are almost 7 dB. Even

One frame of data contain§ packets, and the total collec-
tion time has to bé&” > NT,. Thus, the bandwidth required
in this case is

Bc,noARQ =

For example, using the expression (31) and assuming unco
DPSK, we obtain

NL
E¢rnoarg = NANyLlog 1P

(1—PFy) if we assume the benchmark case does not suffer from any
We will use this value for performance comparisons in theacket errors, RACS can still offer more than 6 dB savings in
next section. energy.
VIl. PERFORMANCEANALYSIS VIIl. CONCLUSION

In this section we quantify the savings in bandwidth and We proposed a networking scheme that combines the con-
energy that can be achieved through RACS as comparedctgpts of random channel access and compressed sensing to
the conventional scheme of Section VI. achieve energy and bandwidth efficiency, and to eliminate

Savings in bandwidth can be quantified as any synchronization or scheduling requirements. The sehem

is suitable for large coverage networks, deployed for long-
N term monitoring of phenomena that is sparse in the spatial-
Be,arq/Bs ~ 2ecr. G (35) frequency domain. Network design principles were provided
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L = 1000 bits, T = 1000 s.

based on the concept of sufficient sensing probability. With
this probability, which is the system design target, thedus
center is guaranteed to acquire sufficiently many obsemati

to reconstruct the measured field during a given interval of
time. A desired probability of sufficient sensing in turn iles

the necessary rate at which each sensor node should transmit
its measurements. (A probabilistic approach is necessary i
order to account for packet loss due to both collisions and bi
errors caused by communication noise.) The performance of
RACS was assessed analytically in terms of the energy and
bandwidth requirements, demonstrating substantial gavin
over a conventional scheme based on deterministic channel
access and sensing. Future work will focus on inclusion of
channel fading effects.
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