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Abstract—For networks that are deployed for long-term moni-
toring of environmental phenomena, it is of crucial importance to
design an efficient data gathering scheme that prolongs the life-
time of the network. To this end, we exploit the sparse nature of
the monitored field and consider a Random Access Compressed
Sensing (RACS) scheme in which the sensors transmit at random
to a fusion center which reconstructs the field. We provide an
analytical framework for system design that captures packet
collisions due to random access as well as packet errors due
to communication noise. Through analysis and examples, we
demonstrate that recovery of the field can be attained using
only a fraction of the resources used by a conventional TDMA
network, while employing a scheme which is simple to implement
and requires no synchronization.

I. I NTRODUCTION

Wireless sensor networks deployed for the purpose of en-
vironmental monitoring, surveillance, or data collection, have
to be designed for a long life-time. Sensor nodes are typically
distributed randomly or uniformly over a certain region and
each sensor communicates its observations to a central node,
referred to as the fusion center (FC). The FC then reconstructs
the map of the field of interest. Once the network is deployed,
there is little access to the sensors and hence re-charging
batteries becomes difficult. Therefore, in battery-powered net-
works, network life-time is of utmost importance. To be able
to operate over long intervals of time, sensor nodes need to
conserve their energy. A large body of literature examines
energy-aware design methodologies for managing the periodic
sleep cycles of sensors, such as [1], [2], [3]. Moreover, in some
networks, such as underwater acoustic networks, bandwidthis
severely limited, hence efficient networking schemes are of
particular importance [4], [5].

To achieve the desired energy and bandwidth efficiency, we
capitalize on the fact that most natural phenomena are sparse
(compressible) in an appropriate basis and exploit the principle
of compressed sensing. The theory of compressed sensing
establishes that under certain conditions, exact signal recovery
is possible with a relatively small number of random measure-
ments [6], [7]. Application of compressed sensing in wireless
sensor networks was first introduced in [8], [9], [10], where
the authors used phase-coherent transmission of randomly-
weighted data from sensor nodes to the FC over a dedicated
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multiple-access channel, to form distributed projectionsof data
onto an appropriate basis at the FC. In this approach sensors
need to be perfectly synchronized. In [11] authors consider
a decentralized network (without FC), where active nodes
exchange measurements locally. The authors formulate sparse
recovery as a decentralized consensus optimization problem
and show that their iterative algorithm converges to a globally
optimal solution. Reference [12] proposes compressive coop-
erative mapping using mobile sensors based on a small set
of observations. Authors in [13] consider spatial mapping by
robots and propose an efficient way to reconstruct natural fields
using random-walk-based sampling and compressed sensing.

Inspired by compressed sensing and employing random
channel access, in [14] we proposed a simple and efficient
networking scheme referred to asRandom Access Compressed
Sensing(RACS). The RACS scheme consists of distributed
random sampling, followed by random channel access. The
key idea behind RACS is that packet collisions (which are
inevitable in random access) occur randomly and thus do not
change the random nature of the observations provided to
the FC. Since the FC only needs to receive some, and not
all the sensor packets, it can simply disregard the collisions.
By disregarding collisions, we eliminate the need for listening
to the medium (as used in contention-based MAC protocols),
which further reduces the energy consumption of the sensor
nodes. The FC obtains an incomplete set of measurements
(due to both random sensing and losses due to random access)
from which it reconstructs the field using compressed sensing
techniques. To provide a sufficient number of measurements
to the FC, we compensate for the collision losses by initially
selecting the number of participating sensors to be somewhat
greater than the minimum number of packets required. The
RACS scheme [14] assumes a frame-based (slotted) transmis-
sion that requires the sensor nodes to be synchronized. In
certain network structures, such as large acoustic networks,
maintaining synchronization is challenging due to variable
propagation delays and clock drift. This fact motivates our
present work, whose goal is to dispense with synchronization
and scheduling requirements. Moreover, in the present work
we address communication noise in the RACS network.

In this paper, we propose a RACS networking scheme that
obviates the need for synchronized frame-based transmission.
Knowing that the communication noise in an AWGN channel



gives rise to packet errors, we let the FC discard the packets
that are received in error, in addition to those that resulted
in collision. To account for the packet losses that occur due
to bothcollisions and noise, the network design employs the
concept of sufficient sensing probability. With this probability,
which defines the desired system performance, sufficiently
many data packets – as required for field reconstruction based
on compressed sensing – are to be received. We develop
an analytical model for the data collection process and use
this model to determine the transmission rate necessary to
achieve the desired probability of sufficient sensing. The
proposed continuous-time RACS has a simple implementation,
eliminates the need for time-synchronization and scheduling,
and achieves considerable savings in energy and bandwidth
over conventional TDMA networks.

The rest of the paper is organized as follows. In Section II
we introduce the RACS network model. In Section III we
propose an analytical framework to model the arrival of
useful packets to the FC. In Section IV we outline a design
methodology to determine the network parameters. In Sec-
tion V bandwidth and energy consumption of a RACS network
are discussed. Section VI provides a comparison benchmark,
while Section VII quantifies the savings in bandwidth and
energy expenditure attained by employing RACS. Finally, we
provide concluding remarks in Section VIII.

Notation: We denote by ℓp the p-norm of a vector

x = [x1, . . . , xN ]T , ‖x‖ℓp
=

(

∑N
i=1 |xi|

p
)1/p

. If V

is a k × l matrix, vec(V) denotes thekl × 1 vector
formed by stacking the columns of matrixV, vec(V) =
[ v11 . . . vl1 . . . v1k . . . vlk ]T . Finally, A⊗B de-
notes the Kronecker product of matricesA andB.

II. RACS SYSTEM MODEL

Consider a grid network shown in Fig. 1, which consists of
N = IJ sensorsuniformly distributed on a two-dimensional
plane, withJ andI sensors inx andy directions, respectively.
The network measures a physical phenomenon,u(x, y, t),
whose coherence time isTcoh. At time t, the sensor node
located at position(i, j) in the network grid acquires a
measurementuij(t) = u(xj , yi, t). Since the process is slowly
varying duringTcoh, we assume thatuij(t1) ≈ uij(t2) for
|t1 − t2| ≤ Tcoh. In what follows, we will focus on an
observation window of sizeT ≤ Tcoh, and drop the time
index from the sensor measurements.

The measurements are sent to the FC whose task is to
reconstruct the field of interest. The complete map of the
process, obtained from the sensor measurements, is denoted
by

U = [uij ] i=1,...,I
j=1,...,J

(1)

Most natural phenomena have a compressible (sparse) rep-
resentation in the frequency domain, and we will assume
that this holds for our measurements as well. Specifically,
let V = WIUWJ be the two-dimensional spatial discrete

Fig. 1. A grid sensor network consisting ofN = IJ sensor nodes.

Fourier transform ofU, whereWI is the matrix of discrete
Fourier transform coefficients,WI [m, k] = e−j2πmk/I . It can
now be shown thatv = (WJ ⊗ WI)u, wherev = vec(V)
andu = vec(U). The Fourier representationv is assumed to
be sparse.

Each sensor node measures the physical quantity of interest
and encodes the measurements, along with the sensor’s loca-
tion tag, into a data packet ofL bits, which is then modulated
and transmitted to the FC. Upon reception, the FC demodulates
the signal and extracts the measurement information. The
communication noise in the channel may cause one or more
bits to be received in error. Without loss of generality, we
assume that a packet is in error if one or more bits are
determined to be in error, i.e., we assume that no coding is
employed.1 If a packet is determined to be in error (via error-
detection, i.e., CRC), the FC discards that packet. Assuming
that the system has bandwidthB and that each sensor transmits
at a bit-rate equal to the bandwidth, the packet duration is
Tp = L

B .
The observations of a random subset ofM sensors’ packets

at the FC can be expressed as

y = Ru + z (2)

whereR is anM ×N random selection matrix, consisting of
M rows of the identity matrix selected uniformly at random,
and z represents the sensing noise.2 Noting that u = Ψv,
where Ψ = (WJ ⊗ WI)

−1 is the inverse Discrete Fourier
Transform matrix, Eq. (2) can be re-written in terms of the

1Coding will improve the packet error rate and can easily be incorporated
into our analysis once a code is specified

2Note the distinction between thesensing noise, z, which arises due to the
limitations in the sensing device, and thecommunication noise, which is a
characteristic of the transmission system. The sensing noisez appears as an
additive term in Eq. (2), whereas the communication noise results in bit errors
and packet loss. The communication noise thus affects thestructure of the
random selection matrixR but does not appear as an additive term in the
observation vectory.



sparse vectorv as
y = RΨv + z (3)

To reconstruct the field, the FC first tries to recover the vector
v as accurately as possible, then uses it to construct the map
U. Given the observationsy, the random selection patternR
and the sparsity basisΨ, and in the absence of sensing noisez

– which is the case we will be focusing on – reconstruction can
be performed by solving the following minimization problem:

minimizẽv ‖ṽ‖ℓ1 subject toRΨṽ = y. (4)

The theory of compressed sensing (specifically, [15]) states
that as long as the number of observations, picked uniformlyat
random, is greater thanNs = CS log N , then with very high
probability the solution to the convex optimization problem (4)
is unique and is equal tov. Here C is a constant that is
independent ofN and S (see [15] for the details). Thus, in
our case, it suffices to ensure that the FC collects at leastNs

packets picked uniformly at random from different sensors to
guarantee accurate reconstruction of the field with very high
probability.

III. PACKET ARRIVAL PROCESS

The nodes in a RACS scheme transmit asynchronously,
whenever they have a packet. As in any random access, packets
may collide at the FC. The key idea behind RACS is to let
the FC simply discard the colliding packets and those packets
that were received in error due to communication noise. This
approach is motivated by the compressed sensing theory, i.e.,
the fact that the FC does not carewhich specific sensors are
selected as long as (i) the selected subset is chosen uniformly
at random, and (ii) there are sufficiently many collision-free
and error-free packets received to allow for the reconstruction
of the field. Therefore, so long as the packet collisions and
packet errors occur randomly, discarding of those packets will
not change the way in which the FC perceives the arrival of
usefulpackets. Note that the matrixR of Eq. (3) includes the
effects of packet loss due to both collisions and errors, i.e., M
represents the number of useful packets received by the FC
after the erroneous and colliding packets are discarded.

Assuming no channel coding, a packet will be in error if
one or more of its bits are in error. The probability of packet
error is thus given by

PE = 1 − (1 − Pe)
L (5)

wherePe is the probability of bit error andL is the number
of bits per packet. The probability of bit error is related to
the signal-to-noise ratio (SNR)γ, e.g.,Pe = 1

2e−γ for DPSK
[16].

In what follows, we consider a Poisson process for packet
generation at each node, and analyze the aggregate arrival
process of useful packets at the FC. We then study the
conditions under which this process yields a sufficient number
of measurements,Ns = CS log N . These conditions in turn
imply a per-node packet generation rate, λ1, which fully
defines the continuous-time RACS.

A. Useful Packets

We assume that each node generates packets according to an
independent Poisson process at an average rate ofλ1 packets
per second. The overall packet generation rate isλ = Nλ1.
In order to reconstruct the field, the FC needs to collect at
leastNs useful packets; however, there is no guarantee that
all the arriving packets will be useful. Three factors contribute
to packet discarding: collisions, errors, and repetitions. The
latter refers to a situation in which the FC receives more than
one packet from thesamenode during a collection interval
T . In such a case, the FC keeps only one packet and discards
the copies (the copies carry the same information since the
measurement field is assumed not to have changed during one
collection interval).

The FC buffers the useful packets, and waits to have
sufficiently many to perform the reconstruction. The total
number of packets that are used in the reconstruction process,
K(λ1, T ), is thus the number of received packets left after
discarding the colliding packets, the erroneous packets, and
multiple copies of the same packet. We conjecture that the
arrival of useful packets is a Poisson process with an effective
average arrival rateλ′ ≤ λ, given by

λ′ =
N(1 − e−λ1T )e−2Nλ1Tp(1 − PE)

T
(6)

The effective arrival rate given by Eq. (6) can be justified by
modeling the collisions, the packet errors and the repetitions
as follows.

(i) Given an aggregate generation rateλ = Nλ1, the
probability of no collision at the FC is modeled as

Prob{no collision} = e−2Nλ1Tp

The probability of no packet error is given by

Prob{no packet error} = 1 − PE

(ii) The probability of no repetition is assessed by focusing
on an individual node. LetN1(T ) denote the number of
packets that a given node generates inT . If this number
is greater than 1, the FC will discard the repetitions.
Hence, the number of “non-repeated” packets generated
at each node duringT is given by

N ′
1(T ) =

{

0, N1(T ) = 0
1, N1(T ) ≥ 1

The average effective packet generation rate at each node
is thus someλ′

1 ≤ λ1. Let us define the corresponding
reduction factor asρ = λ′

1/λ1, i.e.,

ρ =
E {N ′

1(T )}

E {N1(T )}
=

1 − Prob{N1(T ) = 0}

λ1T
(7)

=
1 − e−λ1T

λ1T

The average arrival rate of useful packets at the FC,λ′, can
now be expressed as the product of the average aggregate
arrival rateNλ1, the probability of no collision, the probability



of no packet error, and the reduction factorρ:

λ′ = Nλ1e
−2Nλ1Tp(1 − PE)ρ (8)

Substituting forρ from Eq. (7), the above expression reduces
to (6). The Poisson model forK(λ1, T ) is now given by

Prob{K(λ1, T ) = k} = PK(k;λ1, T ) =
(λ′T )k

k!
e−λ′T (9)

In order to examine our conjecture, we conducted numer-
ical experiments. Fig. 2 shows the histogram of a simulated
K(λ1, T ) process. Shown also in the figure are the Poisson
distribution functions with conjecturedλ′ of Eq. (6), and with
λest, an average arrival rate estimated from the simulated data.
Noting a good match between the conjectured model and the
simulation, we adopt the model (9) and proceed to design the
system in Section IV.
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Fig. 2. Probability distribution function of the number of useful packets
K(λ1, T ) for N = 2500, T = 1000 s, λ1 = 10−4 packet/s,Tp = 0.2 s
andPE = 0.1; the number of simulation runs is 10,000.

IV. SYSTEM DESIGN

The parameters that define a RACS system withN nodes
are the per-node packet generation rateλ1, the collection
intervalT , the bit rateB which determines the packet duration
Tp = L/B,3 and the probability of packet errorPE . These
parameters defineλ′ through Eq. (6). System design involves
finding a set of parameters for which a performance require-
ment is met. Specifically, we define a performance requirement
based on the concept of sufficient sensing.

A. Probability of Sufficient Sensing

In order to perform field reconstruction, the FC needs to
collect Ns = CS log N or more useful packets during the
time intervalT . However, because the packet arrival process
is random, there is no guarantee that the FC will collect
sufficiently many packets during this interval. We thus define

3Without loss of generality, throughout this paper we use bandwidth and
bit rate interchangeably

the probability of sufficient sensingas the probability that
the FC collectsNs or more useful packets duringT , and
we specify the performance requirement as the minimum
probability of sufficient sensing,Ps. In other words, we ask
that the FC collect at leastNs useful packets during timeT
with probabilityPs or higher. This condition can be expressed
as

Prob{K(λ1, T ) ≥ Ns} ≥ Ps (10)

Given the Poisson model for the number of useful packets
K(λ1, T ), we have that

Prob{K(λ1, T ) ≥ k} = QK(k;λ1, T ) = 1 −
k−1
∑

i=0

PK(i;λ1, T )

(11)

wherePK(k;λ1, T ) is given by Eq. (9). The sufficient sensing
requirement (10) is now expressed as

QK(Ns;λ1, T ) ≥ Ps (12)

wherePs is the desired probability of sufficient sensing (which
is a system design parameter).

Fig. 3 showsQK(Ns;λ1, T ) versus α = λ′T for two
different values ofNs. These values correspond toN = 2500
nodes, andS = 10 or 16, with C = 2. For a givenNs

and a desired probability of sufficient sensingPs, one can
find the correspondingαs as illustrated in the figure. The so-
obtainedαs represents the number of useful packets that have
to be acquired during the collection intervalT in order to
meet the sufficient sensing probabilityPs. In other words, the
condition (12) can equivalently be stated as

α ≥ αs (13)

whereαs is a design target that depends onNs andPs only,
and can be determined through the procedure illustrated in
Fig. 3.
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Fig. 3. QK(Ns; λ1, T ) vs. α = λ′T for Ns = 157 and 251 packets. A
required probability of sufficient sensingPs implies a corresponding minimum
value ofα, αs.



B. Design objective

The design objective is to determine the per-node packet
generation rateλ1 that is necessary to ensure sufficient sens-
ing. In doing so, we will assume thatT and L are set a-
priori, as these parameters pertain to the actual process being
sensed (T is determined in accordance with the desired update
rate and has to be less thanTcoh, while L is determined by
the nature of the measurements). We will also assume that
the probability of packet errorPE is fixed, i.e., the system
is designed to provide a certain SNRγ0 at the receiver, or
equivalently, a certain probability of bit errorPe.

Fig. 4 shows α versus λ1 for a given set of system
parametersN,PS , T, L andγ0. We note from the figure that
depending upon the bandwidthB, a solution forλ1 may or
may not exist. If sufficient bandwidth is available such that
a solution exists, then the range of acceptable values forλ1

is the set of values for whichα ≥ αs. Within this range,
we choose the smallest value ofλ1, as it corresponds to least
frequent transmissions, i.e., it minimizes the overall energy
consumption as we will discuss in Section V.
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Fig. 4. Average numberα of useful packets received during collection time
T is plotted vs.λ1 using Eq. (6) for different values ofB and forαs = 272
(Ns = 251, Ps = 0.9). Other system parameters areT = 1000 s,L = 1000
bits andPE = 0.1 (γ0 = 9.2 dB assuming uncoded DPSK). This figure
shows that in order to achieve a desiredαs a certain minimum bandwidth
is required. When sufficient bandwidth is available, the desired value ofαs

implies the minimum required per-node packet rateλ1s(B).

C. Design Example

We use a numerical example to demonstrate the design
procedure and to visually illustrate the field recovery process
using RACS. We consider a50×50 grid network measuring a
physical process with a spatial map given in Figure 6(a). This
map may for instance represent the temperature. Its spatial
Fourier transform indicates a sparse behavior with sparsity
S = 16. Let us assume a collection timeT = 1000 s, a
packet sizeL = 1000 bits, a bit rateB = 5 kbps and a packet
error probabilityPE = 0.1. From Fig. 3 the value ofαs is
determined asαs = 272 packets. Fig. 5 shows a zoomed-in
version ofα versusλ1 according to Eq. (6). Using this figure,

the desired value ofαs obtained from Fig. 3 determines the
sufficient per node sensing rate to beλ1s = 1.52 × 10−4

packet/s forB = 5 kbps. Employing the so-obtained sensing
rate, Figure 6(b) shows the image recovered by the FC after
T = 1000 s. We note an excellent similarity between the
original and the recovered map. The normalized error for the
recovered image (

||û−u||ℓ2
||u||ℓ2

) is on the order of10−10 which is
in the domain of numerical round-off errors.
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Fig. 5. The value ofαs = 272 obtained from Fig. 3 determines a per node
sufficient sensing rateλ1s = 1.52 × 10−4 packet/s.

V. BANDWIDTH AND ENERGY CONSIDERATIONS

A. Minimum Bandwidth

The observations that we made from Fig. 4 imply that in
order for a set of design parameters to satisfy the sufficient
sensing condition, a minimum bandwidth is required. For
example, we see in Fig. 4 that givenαs = 272 packets, for
B = 1 kbps no value ofλ1 can meet the sufficient sensing
requirement (13), while forB = 2 kbps a solution toλ1 exists.
The minimum required bandwidth is obtained by identifying
the maximum ofα, i.e., by taking the derivative ofα with
respect toλ1 and setting it to zero. The value ofλ1 at which
the maximum occurs is given by

λ1x =
1

T
log

(

1 +
T

2NL/B

)

(14)

and the corresponding maximum value ofα is given by

αmax =
BT

2L

(

1 +
BT

2NL

)−2NL/BT−1

(1 − PE) (15)

In order for a solution to exist, this value has to be

αmax ≥ αs (16)

which implies that the system bandwidthB has to be greater
than some minimum,Bs. Eq. (16) can be solved numerically
to obtain the minimum required bandwidthBs. While there
is no closed form solution forBs, an approximation can be
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(b) The recovered map of the sensing field.

Fig. 6. The sensing field is recovered employing RACS withλ1s = 1.52×
10−4 packet/s, forT = 1000 s, PE = 0.1 andTp = 0.2 s.

obtained when2NL/TB ≫ 1:

Bs ≈
2eLαs

T (1 − PE)
(17)

Fig. 7 shows the exact and the approximate values ofBs

versusN for a given set of parameters. The exact values for
Bs are obtained by solving Eq. (16) numerically, whereas the
approximate values follow from Eq. (17). We note that the
approximation serves as a lower bound onBs, and that it
becomes quite tight asN grows.

B. Energy Consumption

In a battery-powered network where re-charging is difficult,
as is the case in underwater deployments, network lifetime is
of utmost importance. Energy per successfully delivered bit
of information thus naturally emerges as a figure of merit for
system performance. In light of a sensor network based on
compressed sensing, we define a related figure of merit as the
total average energy required for one field reconstruction:

E = Nλ1T · PT · Tp (18)

where the first term (Nλ1T ) is the average number of nodes
that transmit in one collection timeT ; PT is the per-node
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Fig. 7. Minimum required bandwidthBs vs. the number of nodesN . The
system parameters areS = 10, Ps = 0.9, L = 1000 bits, T = 1000 s and
PE = 0.1

transmit power, andTp is the packet duration, i.e., the time
during which a node is active. In a system designed to provide
a certain SNRγ0 at the receiver, choosing the bandwidth auto-
matically determines the necessary transmit power. Assuming
an AWGN channel with the noise power spectral densityN0

and attenuationA between the transmitter and the receiver,
the SNR is given by

γ =
PT /A

N0B
(19)

Without loss of generality, we assume the same attenuationA
for all the links. Hence, the transmit power of each node is
PT = γ0AN0B, and we have that

E = Nλ1Tγ0AN0L (20)

As expected, the energy consumption is minimized if one
chooses the minimum sensing rateλ1s(B).

Fig. 8 showsλ1s versus B for a given set of system
parametersN,L, T, and γ0. We note from this figure that
λ1s(B) ≤ λ1s(Bs) whenever the solution exists, i.e., for
B ≥ Bs. Thus λ1s(Bs) can be used to provide an upper
bound on the energy expenditure for a RACS network. Using
the expression (14) we have that

λ1s(Bs) =
1

T
log

(

1 +
T

2NL/Bs

)

(21)

Hence, the energy (20) is bounded by

Eup = N log

(

1 +
T

2NL/Bs

)

· γ0AN0L (22)

Finally, using Eq. (17) a closed form approximation for the
upper bound on the energy consumption can be obtained as

Eup ≈ N log

(

1 +
eαs

N(1 − PE)

)

· γ0AN0L (23)

Fig. 9 shows the energy consumption (20) of the RACS



network (normalized with respect toAN0) for B = 2 kbps
andB = 10 kbps, as well as the exact and approximate upper
bounds given by Eqs. (22) and (23), respectively. The mini-
mum bandwidth that determines the bound isBs ≈ 1 kbps.

Note also thatλ1s decreases with bandwidth, reaching a
limiting value asB → ∞ (see Fig. 8). This value can be
analytically determined as

λ1(∞) =
1

T
log

(

1

1 − αs

N(1−PE)

)

(24)

which can be used to assess a lower bound on the energy
consumption,

Elow = Nλ1(∞)Tγ0AN0L

= N log

(

1

1 − αs

N(1−PE)

)

· γ0AN0L (25)

The lower bound (25) is included in Fig.9. We note that this
bound is well approached already withB = 10 kbps.
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VI. COMPARISONBENCHMARK

As a comparison benchmark, we assume a conventional
network with deterministic sensing and deterministic access. In
the conventional network, allN nodes conduct measurements
and transmit their data packets to the FC using a standard
time-division multiple access (TDMA). This approach requires
scheduling, such that packets from different nodes arrive back-
to-back at the FC. Fig. 10 depicts the required scheduling
process.

In the presence of channel noise, packet errors are bound to
occur. To deal with the packet errors, the conventional network
can either employ automatic repeat request (ARQ), or allow
for some packet loss (no ARQ). In what follows we consider
both scenarios.
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Fig. 9. Average normalized energy consumption vs. the number ofnodesN .
The system parameters arePs = 0.9, S = 10, L = 1000 bits, T = 1000 s
andPE = 0.1 (γ0 = 9.2 dB assuming uncoded DPSK).

A. ARQ

To achieve reliable data transmission in a conventional
network, if a data packet is determined to be in error, the
FC sends a re-transmission request to the node whose packet
is received in error. The extra time it takes to collect the re-
transmitted packets extends the overall collection time. The
average number of times a packet needs to be re-transmitted
before it is successfully received is1/1−PE . In a full-duplex
system it thus takesT = NTp/(1 − PE) on the average to
transmit allN packets.4 For a specified updating intervalT ,
the bandwidth required by the system is

Bc,ARQ =
NL

T (1 − PE)
(26)

The average energy consumption of a conventional network
with ARQ is given by

Ec,ARQ = PT T =
N

1 − PE
· γ0AN0L (27)

B. No ARQ

Unlike the ARQ scheme, this scheme does not compromise
the collection time. However, once a packet is detected to be
in error, complete reconstruction is not achieved. Hence, the
probability of correct frame reception in this scheme parallels
the sufficient sensing probability in RACS. The probabilitythat
the FC receives allN packets correctly during one collection
interval is (1 − PE)N . Equating this probability with an
equivalent sufficient sensing requirement implies that

(1 − PE)N ≥ Ps (28)

In other words, we ask that full reconstruction occur with
probability of at leastPs. Alternatively, we may relax this

4In a half-duplex underwater acoustic network, this time must also include
the waiting time which depends on the propagation delay. The propagation
delay in turn depends on the distance between the FC and the sensor nodes
and can be rather long due to the low speed of sound.



Fig. 10. The scheduling required at each node in the benchmarkcase of
TDMA.

requirement and ask instead that a fraction of packets, say
Nx = X%N , be received correctly. Then, we want

N
∑

n=Nx

(

N

n

)

(1 − PE)nPN−n
E ≥ Ps (29)

Given a design targetPs, the condition (28) implies that
Pe ≤ P ∗

e , where the thresholdP ∗
e can be computed numeri-

cally. For a given functional dependencePe = f(γ), the cor-
responding bit SNR condition becomesγ ≥ γ∗ = f−1(P ∗

e ).
For example, ifNx = N , assuming that

(1 − PE)N ≈ (1 − LPe)
N ≈ 1 − NLPe (30)

we obtain
γ ≥ γ∗ = f−1(

1 − Ps

NL
) (31)

One frame of data containsN packets, and the total collec-
tion time has to beT ≥ NTp. Thus, the bandwidth required
in this case is

Bc,noARQ =
NL

T
(32)

The total energy consumed during one collection interval is

Ec,noARQ = NPT Tp = Nγ∗AN0L (33)

For example, using the expression (31) and assuming uncoded
DPSK, we obtain

Ec,noARQ = NAN0L log
NL

2(1 − Ps)
(34)

We will use this value for performance comparisons in the
next section.

VII. PERFORMANCEANALYSIS

In this section we quantify the savings in bandwidth and
energy that can be achieved through RACS as compared to
the conventional scheme of Section VI.

Savings in bandwidth can be quantified as

Bc,ARQ/Bs ≈
N

2eαs
= GB1 (35)

and

Bc,noARQ/Bs ≈
N(1 − PE)

2eαs
= GB2 (36)

where we have used the approximation for the minimum
bandwidth of a RACS network given by Eq. (17).

Savings in energy can be quantified as

Ec,ARQ/Eup ≈
1

(1 − PE) log
(

1 + eαs

N(1−PE)

) = GE1 (37)

and

Ec,noARQ/Eup ≈
log NL

2(1−Ps)

γ0 log
(

1 + eαs

N(1−PE)

) = GE2 (38)

where we have used the upper bound on energy consumption
for RACS given by Eq. (23).

Now, to quantify a lower bound on the energy savings
obtained by RACS, let us assume that the packet errors caused
by noise do not affect the performance of the benchmark case,
i.e., the conventional network can perfectly recover the field
regardless of the packet errors. The conventional network thus
has a minimum energy consumption given by

Ec = NPT Tp = Nγ0AN0L (39)

This provides us with the minimum savings that RACS can
achieve:

Ec/Eup ≈
1

log
(

1 + eαs

N(1−PE)

) = GEmin (40)

Fig. 11 shows the saving in bandwidth plotted versus the
size of the network. This figure demonstrates that RACS is
capable of providing a factor of two in bandwidth savings for
our example network withN = 2500 nodes, or more for a
larger network (assuming that the sparsity levelS remains the
same). This is a significant feature from the viewpoint of a
band-limited system.

Fig. 12 shows the corresponding energy saving versus the
size of the network. We note that RACS offers substantial
savings over the benchmark case. For example, forN = 2500
nodes, the energy consumed by RACS is about 9 dB less than
the energy consumed by the benchmark TDMA network of
the same size, not employing ARQ. If ARQ is employed in
the benchmark network, the savings are almost 7 dB. Even
if we assume the benchmark case does not suffer from any
packet errors, RACS can still offer more than 6 dB savings in
energy.

VIII. C ONCLUSION

We proposed a networking scheme that combines the con-
cepts of random channel access and compressed sensing to
achieve energy and bandwidth efficiency, and to eliminate
any synchronization or scheduling requirements. The scheme
is suitable for large coverage networks, deployed for long-
term monitoring of phenomena that is sparse in the spatial-
frequency domain. Network design principles were provided
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based on the concept of sufficient sensing probability. With
this probability, which is the system design target, the fusion
center is guaranteed to acquire sufficiently many observations
to reconstruct the measured field during a given interval of
time. A desired probability of sufficient sensing in turn implies
the necessary rate at which each sensor node should transmit
its measurements. (A probabilistic approach is necessary in
order to account for packet loss due to both collisions and bit
errors caused by communication noise.) The performance of
RACS was assessed analytically in terms of the energy and
bandwidth requirements, demonstrating substantial savings
over a conventional scheme based on deterministic channel
access and sensing. Future work will focus on inclusion of
channel fading effects.
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