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Abstract
In this paper we study the optimal design of recurve arrays. An analytic
model of the static response of the recurve actuator with energy flow in the
system is derived. Two optimization problems for the recurve array are
formulated with material, packaging, and performance constraints. One
formulation is based on minimum weight. The second formulation is based
on energy efficiency. A genetic algorithm is used to find the optimum
designs. Recurve arrays designed for maximum energy conversion efficiency
are compared to those designed for minimum weight. Parametric studies are
conducted to investigate the effect of the stiffness of the driven structure and
the maximum deliverable voltage on the optimized designs. These
optimization formulations are effective design tools for a relatively complex
actuator.

(Some figures in this article are in colour only in the electronic version)

Nomenclature

b width of a recurve bimorph
ba normalized recurve array width
b∗ width specification of the recurve array
c capacitance per unit length
Cb clamped capacitance of a recurve bimorph
C F free force capacitance of the PZT
Cδ zero displacement capacitance
CS recurve connection stiffness
d13 PZT material coupling coefficient between axial and

poling direction
δ displacement of the recurve bimorph
δa normalized recurve array displacement
δf displacement at the center of the recurve array
δ∗

f free displacement specification for the recurve array
�F free displacement per volt
�V short circuit compliance
s33 free electrical permittivity of the PZT material
Ea normalized electric field

Ee input electrical energy
Eg maximum electric field set up by the amplifier
Em output mechanical energy
E I V short circuit bending stiffness
fr stiffness reduction factor due to finite recurve

connection stiffness
F applied external force
Fa normalized block force on the recurve array
F∗

b blocked force specification for the recurve array
h height of the recurve array
ha normalized height of the recurve array
h∗ height specification of the recurve array
η energy efficiency
k piezoelectric coupling coefficient
k̄ equivalent coupling coefficient
K stiffness of the load spring
κ beam curvature
l length of a recurve bimorph
La normalized recurve array length
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L∗ length specification of the recurve array
m number of parallel elements in the recurve array
M bending moment
M0 support reaction moment
μ induced piezoelectric moment per volt
n number of series element in the recurve array
q net charge flowing into the array
r number of layers in the PZT multimorph
R ratio of array stiffness to the load stiffness
ρp density of the PZT material
ρb density of the beam substrate material
ta total thickness of the PZT layers
tb thickness of the substrate
tp thickness of each PZT layer
ts spacing between two series recurve elements
V voltage applied to the array
Vg maximum voltage delivered by the drive amplifier
w(x) transverse displacement of the recurve bimorph
W weight of the recurve array
x poling direction
Ya open circuit Young’s modulus of PZT material
Yb Young’s modulus of the substrate
Y11 Young’s modulus of the PZT material in poling

direction

1. Introduction

Smart materials and smart structures have received substantial
interest in the past decade due to their broad applications
in areas of aerospace, manufacturing, defense, and civil
infrastructure systems, to name a few. The trend in smart
actuators has been to include the active materials in ever
more complex mechanisms so that the resultant smart actuator
matches the force and displacement requirements of the
applications of interest. One example of such an actuator is
the recurve array (Ervin and Brei 1998a), shown in figure 1.

One of the design challenges of this new generation
of actuator is their relative complexity. Recently, design
optimization has emerged as a design tool for smart actuators.
As demonstrated in a number of other studies (Abdalla et al
2003, Busquets-Monge et al 2004, Chandrasekaran et al
2000, Chandrasekaran and Lindner 2000, Lindner et al 2001,
Frecker 2002) mathematical optimization techniques offer an
organized and methodical way of formulating and solving
the design problem. This approach allows the designer to
potentially use a large number of design variables and fewer
simplifications in modeling the system. Better models, in
turn, may reduce the number of iterations during the hardware-
testing phase. The increasing speed of computer hardware
and the development of faster computational models allow
optimum designs to be obtained in a relatively short time.
Furthermore, the application of the optimization techniques
can provide a better understanding of the tradeoffs involved
in the design, and may even highlight those trends that are not
obvious.

In this work, we focus our attention on the recurve array
proposed by Ervin and Brei (1998a). Using this actuation
building block, parallel and serial connection for piezoceramic
recurve actuator arrays are demonstrated by Ervin and Brei
(1998b). Several models are proposed to study the behaviour

Figure 1. Recurve element (Ervin and Brei 1998a).

of piezoceramic materials (Kamlah and Jiang 1999, Lu and
Hanagud 2002, Smith and Ounaies 2000). Recently, Ervin
and Brei (2004) studied the dynamic response of piezoelectric
recurve actuation architectures. To the authors’ knowledge
no attempt has been made to take into account the energy
flow in the analysis model, which is crucial to applications
with limited power supply. The recurve array is a good
candidate for design optimization because it has many design
variables, both continuous and discrete. Because this is a
mixed optimization problem we used a genetic algorithm
(Nagendra et al 1996). We formulated the objective function
in two ways. First, we define the optimization problem as a
weight minimization problem. This formulation is appropriate
for applications where weight and/or volume specifications
are critical. Second, we define the optimization problem
as an efficiency maximization problem. This formulation
is appropriate for applications where the power source has
limited capacity. Many components of a smart structural
system contribute to and influence the energy efficiency
of the overall system (Abdalla et al 2005). Apart from
energy losses in the actuator and the drive electronics, an
important consideration is the energy conversion efficiency of
the actuator. Even when the drive electronics and the actuator
are completely free from energy dissipation, only a limited
fraction of the energy supplied by the electric circuit will be
deliverable to the controlled structure. The rest of the energy
will be stored in the actuator. Since all the input energy to
drive the actuator will have to be supplied by the electronics,
energy conversion efficiency plays a key role in determining
the overall size of the system.

The optimization formulation developed in the paper also
allows for a numerical study of the interaction between the
drive electronics and the complexity of the recurve array.
As the maximum voltage that the drive amplifier can deliver
is decreased, the complexity of the recurve array increases.
Conversely, as the maximum voltage increases, the recurve
array looks more and more like a single piece of PZT. Since
high voltage amplifiers are more complex than their low
voltage counterparts, we see an interesting trade between the
size and complexity of the mechanical part of the actuator and
the size and complexity of the drive electronics.

In the following section, we first provide a description
of the recurve actuator, followed by an analytic study of
energy flow from the drive circuit through the actuator to the
structure. The structure is modeled as a linear spring, and we
consider static response only. The optimization problem is
then formulated, and the genetic algorithm (GA) used is briefly
described. Optimal designs are obtained for minimum weight
and for maximum energy conversion efficiency. Numerical
parametric studies are carried out to investigate the effect of
maximum deliverable voltage and the structure stiffness on
these optimum designs.
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Figure 2. Smart actuator.

2. Recurve actuator

The smart actuator configuration that uses an array of recurve
actuators considered in this paper is shown in figure 2. The
central component of this actuator is a recurve array (Ervin and
Brei 1998a) of figure 1. It is this component on which we will
focus our attention. The mass/spring system provides a load
for the recurve array. Here we assume that the load is a spring
with stiffness K . The electronic amplifier provides the electric
power to drive the recurve array. We assume that the amplifier
can deliver a maximum voltage of Vg. The amplifier and the
load provide boundary conditions for the optimization of the
recurve array.

As suggested by figure 2, the recurve array is composed
of cantilever beams (called here a recurve bimorph) with two
pairs of piezoelectric multimorph patches along its length as
shown in figure 3. Of course, the recurve bimorph can be
constructed of layered piezoelectric material. Figure 4 shows a
cross section of the recurve bimorph in figure 3 along with its
dimensions.

In figure 3 the four multimorph piezoelectric patches are
polled such that the induced moments act in opposite directions
over each half of the beam. This geometry causes the beam to
bend with positive curvature up to the mid-span and negative
curvature over the other half, producing a relative displacement
of the end of the beam in a direction perpendicular to the
beam axis without relative rotation of the ends. Thus, unlike a
straight bender, recurve components can be joined at their free
ends to form a recurve couple. Two recurve couple are then
joined together to form a recurve element as shown in figure 1.
These recurve elements can be interconnected into serial and
parallel arrays, without constraining each other from motion.
These components are replicated and assembled together into
a recurve array as shown in figure 2.

A basic feature of the recurve array is the ability to connect
a number of basic recurve couples in parallel and/or in series
to tailor the design to meet specific displacement and force

Figure 3. Recurve bimorph.

requirements. By increasing the number of serial elements,
larger displacements for the same force can be achieved. By
increasing the number of parallel elements, larger forces can
be driven for the same displacement requirements.

From this brief description, we can see that the design
of a recurve array is relatively complex. Typically, we
are given specifications for the recurve array including
force/displacement requirements, voltage restrictions from the
drive amplifier, and packaging restrictions. Based on these
specifications, all of the materials must be selected, the
geometry determined, and the dimensions selected. The design
includes determining the layering of the bimorphs and the
number and arrangement of the recurve elements. In this
paper we approach this design problem using mathematical
optimization methodologies.

2.1. Modeling of the recurve array

In this section we will develop a static model for the recurve
array that is used in the optimization algorithms below. The
approach is to develop a 2 × 2 transfer matrix based on the
variables defined in figure 2. This transfer matrix is developed
from the equations for a recurve bimorph which are developed
first. Finally, an expression for the efficiency of the recurve
array is derived.

2.1.1. Single recurve bimorph. The constitutive equations of
an active beam are given by (Busquets-Monge et al 2004),

M = E I V κ − μV (1)

dq

dx
= cV + μκ. (2)

For the recurve geometry as defined in figures 3 and 4,
the E I V , μ, and c, are defined in terms of the geometric and
material properties of the beam in the following form (Abdalla
et al 2003)

E I V = b

12

[
Ybt3

b + 2Yata

(
4t2

a + 6tatb + 3t2
b

)]

− k2 b

2
Yata[(ta + tb)

2 + (r 2 − 1)t2
a /3r 2] (3)

μ = r
(
1 − k2

)
d13Yab (ta + tb) (4)

c = 2r 2ε33
(
1 − k2) b

ta
. (5)

The open circuit Young’s modulus of the PZT material Ya is
given by

Ya = Y11

1 − k2
. (6)
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Figure 4. Dimensions of the cross sections of a recurve bimorph.

The PZT material electromechanical coupling coefficient
k2 is

k2 = Y11d2
13

ε33
. (7)

In order to determine the output displacement and force
characteristics of the actuator, we solve for the beam transverse
displacements using small deflections assumption. The
bending curvature in this case is given by

κ = d2w(x)

dx2
(8)

and the bending moment distribution from statics is

M = M0 − F(l − x). (9)

Solving the bending curvature from equation (1), and using
equation (9), we obtain

d2w(x)

dx2

= 1

E I V

{
μV + M0 − F(l − x) 0 < x < l/2

−μV + M0 − F(l − x) l/2 < x < l .
(10)

Note that the PZT induced bending moments change sign
in equation (10) between the first and second half of the beam.
Equation (10) is integrated twice to obtain the deflected shape
w(x). The constants of integration and the value of the support
reaction M0 are obtained from the boundary conditions

w(x)|x=0 = 0

CS
dw(x)

dx

∣∣∣
∣
x=0

= M0

CS
dw(x)

dx

∣∣
∣∣
x=l

= −M0.

(11)

The recurve connection stiffness is expressed in terms of cross
section dimensions as (Abdalla et al 2003)

CS = b

5.3

[
Yata (ta + tb) + 1

2
Ybt2

b

]
. (12)

Given the beam displacements w(x), we can determine the
deflection of the beam at the free end δ = w(l) in terms of
the applied voltage, external force, and stiffness and properties
of the beam as

δ =
[

(1 + 6 fr) l3

E I V

μl2

4E I V

]{
F
V

}
. (13)

The stiffness reduction factor due to the finite recurve
connection stiffness fr given by

fr = 1 + 6E I V

CS l
. (14)

We next substitute the definition of the curvature and the
displacement expression into equation (2) and, assuming
constant piezoelectric moment, μ, and capacitance, c, integrate
equation (2) over the beam length to determine the net charge
as a function of the applied voltage, external force, and stiffness
and properties of the beam. Finally, we reach a 2 × 2-matrix
relationship with net tip displacement and charge as output
variables and the applied force and voltage as inputs.

{
δ

q

}
=

[ (1+6 fr)l3

E I V
μl2

4E I V

μl2

4E I V C F

]{
F
V

}
. (15)

In equation (15) the recurve free force capacitance given by

C F =
(

c + μ2

E I V

)
l. (16)

It is also useful to define the free displacement (displacement
at zero force) per unit voltage as

�F = μl2

4E I V
(17)

and the short circuit compliance

�V = (1 + 6 fr) μl3

12E I V
. (18)

We also define clamped capacitance of a recurve element Cδ

as the capacitance when the displacement is restricted to zero,
which can be expressed as

Cδ = C F −
(
�F

)2

�V
. (19)

Thus, an equivalent coupling coefficient k̄2 for the recurve
bimorph can be defined similar to electromechanical coupling
coefficient of the material as

k̄2 = 1 − Cδ

C F
. (20)
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2.1.2. Recurve arrays. A recurve array is formed by
connecting m recurve bimorphs in parallel and n recurve
bimorphs series. For a recurve array the system of
equations (15) (using equations (16)–(18)) takes the form

{
δ

q

}
=

[
n
m �V n�V

n�V nmC F

]{
F
V

}
. (21)

2.2. Energy analysis

Next we derive an expression for the efficiency of a recurve
array. For this analysis we assume that the recurve array is used
to deflect a linear output spring of stiffness K . Then we have
F = K δ. With this assumption the deflection–force relations
in equation (15) can be solved for the force, deflection, and net
charge responses in terms of the applied voltage as

δ = mn�F

m + n�V K
V (22)

F = mnK�F

m + n�V K
V (23)

q = mnC F

(
m + nK�V (1 − k̄2)

m + nK�V

)
V . (24)

The electrical energy delivered by the amplifier is

Ee = 1
2 qV . (25)

The energy delivered to the mechanical load is

Em = 1
2δF. (26)

Thus, the energy efficiency, defined as the output mechanical
energy (equation (26)) divided by the input electrical energy
(equation (25)), can be found using equations (22)–(24) as,

η = Em

Ee
= k̄2 R

(1 + R)
[
1 + R(1 − k̄2)

] (27)

where R is the ratio of structural stiffness to recurve array
stiffness given by,

R = nK�V

m
= K

m
n�V

. (28)

It is concluded from equation (27) that the overall energy
conversion efficiency depends on how much energy can be
converted by a recurve element through k̄2. It also depends on
the matching of the actuator stiffness to the structure stiffness
through R. Similar conclusions were found in Abdalla et al
(2003) for a structure actuated by a combination of a PZT stack
and a compliant mechanism.

Other important performance measures are the blocked
force and the free displacement, which are used in the
optimization algorithm below. The free displacement can be
obtained by setting K = 0 in equation (22). We have

δf = n�F V . (29)

The blocked force is obtained by taking the limit as K tends to
infinity in equation (23). This calculations yields,

Fb = m
�F

�V
V . (30)

3. Optimization formulation

3.1. Objective function

Here we consider two objective functions for the optimization
formulation. The first objective function is the recurve array
weight

min
design var

W (31)

where the weight is given by

W = 2lbmn
(
2r tpρp + tbρb

)
. (32)

This formulation is suitable for applications where the actuator
has strict weight and/or volume constraints.

The second objective function is the efficiency of the
recurve array

max
design var

η. (33)

The formulation is motivated by applications where the energy
supply is limited, and it is desirable to extend the lifetime
operation of the system. For example, these applications may
have only a battery as a power source (Brei et al 2003).

3.2. Constraints

The same constraints are used for both objective functions. The
first constraint is on the blocked force

Fa = Fb

F∗
b

� 1 (34)

where Fb is given by equation (30), and F∗
b is the user-specified

minimum blocked force. The second constraint is on the
minimum displacement

δa = δf

δ∗
f

� 1 (35)

where δf is given by equation (29). The third set of constraints
are defined by a user-specified volume. These constraints can
be expressed as

La = 2ml

L∗ � 1 ba = b

b∗ � 1,

ha = n
(
2r tp + tb

) + (n − 1)ts

h∗ � 1.

(36)

In this calculation it is assumed that the spacing between
two series recurve elements ts is to be twice the maximum
displacement of an individual recurve bimorph ts = 2δf/n.

The fourth constraint is imposed by the drive amplifier
which we assume can supply a maximum drive voltage Vg.
When this maximum voltage is applied to a piezoelectric
material it sets up a field

Eg = Vg

tp
. (37)

We do not want this field to depole the individual layer of
piezoelectric material. Hence, given the maximum voltage
from the drive amplifier and given the saturation field of the
piezoelectric material Ec, these constraints impose a maximum
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Table 1. Design variables.

Design variable Type Description

n Integer No. of series elements
m Integer No. of parallel elements
r Integer No. of PZT layers
l Continuous Recurve length
b Continuous Recurve width
tb Continuous Beam substrate thickness
tp Continuous PZT layer thickness

Table 2. Design specifications.

F∗
b δ∗

f L∗ b∗ h∗

30 N 500 μm 150 mm 25 mm 35 mm

limitation on the thickness of the piezoelectric material. This
constraint can be expressed as

Ea = V ∗

Ectp
� 1. (38)

All of these constraints are typical design specifications
for actuators.

3.3. Design variables

The design variables consist of the geometry, dimensions, and
materials of the recurve array. The geometry of the array is the
number of series and parallel elements. The dimensions of the
array are determined by the dimensions of the recurve bimorph
including the length, width, and thickness of the substrate. The
other dimensions of the bimorph include the number of layers
of the piezoelectric material as well as their thickness. These
design variables are summarized in table 1.

Another set of design variables that could be included in
this optimization is the selection of the materials in the recurve
array including the type of piezoelectric material and the type
of core material used in the recurve bimorph. These design
variables were not included in the demonstration problems
below.

3.4. Optimization algorithm

This optimization problem is characterized by the presence of
both continuous and discrete design variables in almost equal
numbers. These types of problems pose challenges to the
traditional gradient-based algorithms that have been widely
applied to solve continuous design variable problems. Other
stochastic approaches such as genetic algorithms (GA) have
been successfully applied to solve both continuous and discrete
design variable problems (Nagendra et al 1996). A GA was
selected to solve the present problem, in view of its ability to
handle integer variables. Moreover, the design space contains
a number of local optima, and the stochastic nature of GA
increases the possibility of converging to the global optimum
design.

4. Results

The performance of this algorithm was demonstrated using
the actuator specifications from the Intertially Stablized Rifle

Table 3. Material properties.

Yb 106 GPa
Y11 63 GPa
ε33 3.365 × 10−8 C2 N−1 m−2

d13 3.55 × 10−10 m V−1

ρp 7450 kg m−3

ρb 8542 kg m−3

(Brei et al 2003). The design specifications are given in
table 2. The piezoelectric material used is PZT5 and brass
is used for the beam substrate. Material properties are listed
in table 3. The GA algorithm described in McMahon et al
(1998) was run using a population size of 200 individuals for
25 000 generations. Multiple Elitist selection was used with
a crossover probability of 1.00, and a mutation probability of
0.1.

Recurve array designs optimized for minimum weight are
presented in table 4, and designs optimized for maximum
energy efficiency are presented in table 5. In each case, results
are presented for different values of the structure stiffness and
applied voltage. Active constraints are highlighted in bold
type.

Comparing the weight of designs for different values of
structural stiffness in tables 4 and 5, we note that although
the structural stiffness does not influence the minimum weight
designs, it does have a significant influence on the energy
efficiency of these designs. For small values of structural
stiffness (1000–10 000 N m−1), optimizing for minimum
weight yields designs that are similar in performance to
those obtained by optimizing for maximum energy efficiency.
The maximum efficiency designs are from 5% to 50% more
efficient than the minimum weight designs, but are also from
5% to 50% heavier. Physically, the minimum weight designs
are characterized by a zero beam substrate thickness, whereas
the maximum efficiency designs have beam substrate thickness
that range from 300 to 950 μm and 1–2 fewer PZT layers. The
most critical constraints for the both the minimum weight and
maximum efficiency designs are the minimum blocked force
constraint (equation (34)) and the material saturation constraint
(equation (38)). Also, as indicated in tables 4 and 5, the length
and width packaging constraints are active for many of the
designs.

For larger values of the structural stiffness (100 000–
500 000 N m−1), performance differences between the
minimum weight and maximum efficiency designs are more
pronounced. Compared to the minimum weight designs, the
maximum efficiency designs are 25%–50% heavier, but over
500% more efficient. The physical differences described
for the low stiffness designs are more pronounced: the
minimum weight designs continue to have zero beam substrate
thicknesses, whereas the maximum efficiency designs have
beam substrate thicknesses that range from 1000 to 1700 μm.
The blocked force constraint (equation (34)) is active for
the minimum weight designs, whereas the free displacement
constraint (equation (35)) is active for the maximum efficiency
designs. As before, the length and width packaging constraints
are active for many of the designs.

The effect of the maximum applied voltage on the optimal
weights and efficiencies appears to be insignificant. The
differences that do exist are a result of the discrete nature of
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Table 4. Weight optimization results.

K Vg l b tp tb η W
(N m−1) (V) m n r (mm) (mm) (μm) (μm) Ea δa Fa La ba ha (%) (×10−4)

500 000 100 2 10 3 37.5 22.78 250 0.0 1.00 3.96 1.05 1.00 0.91 0.53 0.41 0.583
150 1 5 4 75.0 22.32 375 0.0 1.00 3.97 1.03 1.00 0.89 0.52 0.40 0.586
200 1 5 3 75.0 22.36 500 0.0 1.00 3.95 1.05 1.00 0.89 0.52 0.4 0.587
300 2 10 1 37.5 23.44 750 0.0 1.00 3.71 1.07 1.00 0.94 0.52 0.41 0.587
400 1 4 2 74.97 24.48 1000 0.0 1.00 2.35 1.92 1.00 0.98 0.51 1.03 0.617
500 1 6 1 59.0 25 1250 0.0 1.00 3.3 1.00 0.79 1.00 0.51 0.42 0.596

100 000 100 1 5 6 75.0 24.13 250 0.0 1.00 3.98 1.11 1.00 0.97 0.52 1.66 0.586
150 1 5 4 75.0 23.25 375 0.0 1.00 3.97 1.07 1.00 0.93 0.52 1.62 0.586
200 1 5 3 75.0 22.69 500 0.0 1.00 3.95 1.04 1.00 0.91 0.52 1.59 0.586
300 1 5 2 75.0 23.08 750 0.0 1.00 3.92 1.06 1.00 0.92 0.52 1.60 0.587
400 1 4 2 74.96 13.11 1000 0.0 1.00 2.35 1.03 1.00 0.52 0.51 2.06 0.617
500 1 6 1 59.0 25 1250 0.0 1.00 3.3 1.00 0.79 1.00 0.51 1.61 0.597

10 000 100 1 5 6 75.0 23.03 250 0.0 1.00 3.98 1.04 1.00 0.92 0.52 3.01 0.586
150 1 5 4 75.0 21.99 375 0.0 1.00 3.97 1.01 1.00 0.88 0.52 3.03 0.586
200 1 5 3 75.0 23.68 500 0.0 1.00 3.96 1.09 1.00 0.95 0.52 2.96 0.586
300 1 5 2 75.0 22.28 750 0.0 1.00 3.92 1.02 1.00 0.89 0.52 2.97 0.587
400 1 4 2 75.0 15.29 1000 0.0 1.00 2.35 1.2 1.00 0.61 0.51 2.17 0.617
500 1 6 1 59.0 25 1250 0.0 1.00 3.3 1.00 0.79 1.00 0.51 2.67 0.596

1 000 100 1 5 6 75.0 22.6 250 0.0 1.00 3.98 1.04 1.00 0.90 0.52 0.69 0.586
150 1 5 4 75.0 22.11 375 0.0 1.00 3.97 1.02 1.00 0.88 0.52 0.69 0.586
200 1 5 3 75.0 22.31 500 0.0 1.00 3.96 1.02 1.00 0.89 0.52 0.69 0.586
300 1 5 2 74.94 22.85 750 0.0 1.00 3.91 1.05 1.00 0.91 0.52 0.66 0.587
400 1 4 2 75.0 17.29 1000 0.0 1.00 2.35 1.35 1.00 0.69 0.51 0.31 0.617
500 1 5 1 59.0 25 1250 0.0 1.00 3.3 1.00 0.79 1.00 0.43 0.56 0.596

Table 5. Energy optimization results.

K Vg l b tp tb η W
(N m−1) (V) m n r (mm) (mm) (μm) (μm) Ea δa Fa La ba ha (%) (×10−4)

500 000 100 1 3 8 70.6 25 250 1693 1.00 1.00 3.53 0.94 1.00 0.51 2.74 0.887
150 1 3 6 68.5 25 375 1183 1.00 1.00 3.78 0.91 1.00 0.51 2.76 0.813
200 1 3 4 70.6 25 500 1678 1.00 1.00 3.52 0.94 1.00 0.51 2.74 0.885
300 1 3 2 68.6 25 750 1182 1.00 1.00 3.77 0.91 1.00 0.38 2.74 0.813
400 1 3 2 70.6 25 1000 1675 1.00 1.00 3.51 0.94 1.00 0.51 2.72 0.885
500 1 3 2 67.9 24.23 1257 662 1.00 1.00 3.77 0.91 0.97 0.51 2.61 0.737

100 000 100 1 2 5 73.4 25 260 1049 0.97 1.09 1.49 0.98 1.00 0.22 3.53 0.852
150 2 4 2 37.5 25 375 448 1.00 1.14 1.77 1.00 1.00 0.25 3.48 0.800
200 1 2 3 75.0 25 500 894 1.00 1.15 1.77 1.00 1.00 0.24 3.49 0.806
300 1 2 2 75.0 25 750 946 1.00 1.12 1.72 1.00 1.00 0.24 3.48 0.816
400 1 2 1 68.7 25 1067 1065 0.94 1.00 1.16 0.92 1.00 0.20 3.43 0.888
500 1 2 1 74.7 25 1261 1159 1.00 1.10 1.50 1.00 1.00 0.23 3.45 0.874

10 000 100 1 5 4 75.0 25 250 942 1.00 3.56 1.00 1.00 1.00 0.50 3.37 0.836
150 1 5 3 75.0 25 376 592 1.00 3.97 1.00 1.00 1.00 0.50 3.45 0.740
200 1 5 2 74.9 25 507 940 0.99 3.47 1.00 1.00 1.00 0.50 3.32 0.837
300 2 9 1 37.5 17.6 750 195 1.00 2.97 1.00 1.00 0.70 0.51 2.83 0.691
400 1 5 1 74.9 25 1001 946 1.00 3.47 1.00 1.00 1.00 0.50 3.27 0.839
500 1 5 1 75 22.16 1250 192 1.00 3.67 1.00 1.00 0.89 0.47 3.19 0.723

1 000 100 1 5 5 74.9 25 250 295 1.00 4.21 1.00 1.00 1.00 0.50 0.81 0.657
150 1 5 3 74.8 25 375 589 1.00 3.97 1.00 1.00 1.00 0.50 0.80 0.739
200 1 5 2 74.8 25 500 939 1.00 3.54 1.00 1.00 1.00 0.50 0.72 0.837
300 1 5 2 74.9 20.7 750 73.2 1.00 3.81 1.00 1.00 0.83 0.53 0.69 0.609
400 1 5 1 74.9 25 1002 944 1.00 3.46 1.00 1.00 1.00 0.50 0.70 0.839
500 1 5 1 74.9 23.9 1251 377 1.00 3.87 1.00 1.00 0.96 0.50 0.73 0.685

the design problem. As the voltage increases, the minimum
thickness of a PZT layer also increases because of the material
saturation constraint (equation (38)). This effect, coupled
with the fact that the optimizer can only add or subtract PZT
thickness one layer at a time (fractional layer thicknesses are
not allowed), results in small variations in the optimal weights
and efficiencies as the voltage is varied.

Although the applied voltage does not significantly affect
the optimized weights and efficiencies, it does affect the
physical configuration of the optimized actuator. The low
voltage actuator designs (100–200 V) are more complex than
the high voltage designs (400–500 V) in the sense that are
made up of larger numbers of thinner PZT layers. Increased
voltages, therefore, will result in less complex (and thus more
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Table 6. Efficiency versus minimum blocked force.

F∗
b (N) 10 15 20 25 30

η (%) 3.79 3.71 3.71 3.68 3.36

easily constructed) arrays, but may adversely affect the power
electronics. As the maximum voltage of the drive amplifier
increases, so increases the cost, size, weight, and complexity of
the amplifier. This optimization example therefore illustrates
the trade-off between the recurve array complexity and the
complexity of the drive amplifier.

The effect of relaxing the performance constraints is
investigated by considering the case of load stiffness K =
10 000 N m−1 and maximum voltage Vg = 400 V for
which the blocked force constraint was active. The required
minimum blocked force was reduced systematically and the
corresponding efficiency recorded in table 6. The value F∗

b =
10 N corresponds to an active free displacement constraint. We
see that by reducing the blocked force requirement from 30
to 10 N, an increase of the efficiency from 3.36% to 3.79%
(∼13% increase) is obtained.

5. Conclusion

In this paper we have presented an optimization formulation
for the design of a recurve array. Because of the
complexity of the design of a recurve array, this optimization
tool has significant advantages as a design tool. Two
formulations of the optimization problem were presented.
One formulation, weight optimization, is appropriate for
applications where weight and/or volume constraints are
present. The second formulation, efficiency optimization, is
appropriate for applications whose energy sources are limited.
The performance of both formulations is demonstrated on a
realistic application.
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Abdalla M M, Frecker M, Gürdal Z and Lindner D K 2005 Design of
a piezoelectric actuator and compliant mechanism combination
for maximum energy efficiency Smart Mater. Struct.
14 1421–30

Abdalla M M, Song C, Lindner D K and Gurdal Z 2003 Combined
optimization of a recurve actuator and its drive circuit J. Intell.
Mater. Syst. Struct. 14 275–86

Brei D, Vendlinski J, Lindner D K, Zhu H and LaVigna C 2003
Development and demonstration of INSTAR—inertially
stabilized rifle Proc. SPIE’s Int. Symp. on Smart Structures and
Materials: Smart Structures and Integrated Systems (San Diego,
CA) ed E Anderson (Bellingham, WA: SPIE Optical
Engineering Press)

Busquets-Monge S, Soremekun G, Hertz E, Crebier C, Ragon S,
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