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This paper presents a general methodology for developing a steady-state detector for a vapor

compression system based on a moving window and using standard deviations of seven

measurements selected as features. The feature thresholds and optimized moving window

size were based upon steady-state no-fault tests and startup transient tests. The study

showed that evaporator superheat and condenser subcooling were sufficient for determining

the onset of steady-state during the startup transient. However, they misidentified steady-

state during indoor temperature change tests where evaporator saturation temperature

and air temperature change across the evaporator were needed for proper steady-state iden-

tification. Hence, the paper recommends including all fault detection and diagnosis (FDD)

features in the steady-state detector to ensure the robustness of the detector because differ-

ent features may play key roles with different transients.

Published by Elsevier Ltd.
Conception d’un détecteur d’anomalie / outil diagnostique en
régime stable pour un conditionneur d’air résidentiel

Mots clés : Conditionneur d’air ; Immeuble d’habitation ; Système à compression ; Procédé ; Détection ; Anomalie ; Régime stable
1. Introduction

Fault detection and diagnostic (FDD) methodologies can be

developed to function during steady-state or transient opera-

tion of a system. Some of the transient fault analyses have
3; fax: þ1 301 975 8973.
. Vance Payne).
Elsevier Ltd.
been applied to whole building HVAC systems (Cho et al.,

2005), to chiller refrigerant leak detection (Navarro-Esbri

et al., 2007), and to compressor motor and other electrical

faults (Armstrong et al., 2004). The original FDD publications

and the majority of the research, however, have been
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n

Nomenclature

Q capacity

t time

T temperature (�C)

v variance

x measured data

x moving window average of measured data

Greek symbols

D difference

s standard deviation about the mean value

Abbreviations and subscripts

A air side

C condenser

CA air across the condenser

D compressor discharge

E evaporator

EA air across the evaporator

FDD fault detection and diagnosis

HVAC heating, ventilating and air conditioning

i feature index

ID indoor or indoor dry-bulb temperature

IDP indoor dew point temperature

k index of time instant

MW moving window

n number of data samples in a moving window

OD outdoor

RH relative humidity

sc subcooling

sh superheat

ss steady-state

TXV thermostatic expansion valve
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presented on steady-state FDD methodologies (e.g., Grimme-

lius et al., 1995; Stylianou and Nikanpour, 1996; Rossi et al.,

1997; Navarro-Esbri et al., 2007; Glass et al., 1995; Rossi, 1995;

Breuker and Braun, 1998; Li, 2004), which require a method

for steady-state identification. Since the primary goal of these

investigations was fault detection, they did not evaluate

steady-state detectors in detail.

Some of the first investigations of system steady-state iden-

tification came from process control field studies (Mahuli et al.,

1992; Cao and Rhinehart, 1995; Jiang et al., 2003). Steady-state

can be detected by observing global system characteristics,

e.g., capacity, or – more simply – by monitoring selected param-

eters. If the only goal was to check system performance, provid-

ing enough time to reach steady capacity and power input could

be a sufficient approach. However, reaching steady capacity

does not guarantee the actual steady-state of all parameters

used in a particular FDD scheme, hence, identification of

steady-state is an important task for a satisfactory FDD analysis.

The term ‘‘steady-state’’ is a misnomer in a rigorous sense

because no system parameter is ever steady, and its readings

will vary to some degree with time. Hence, identification of

steady-state requires first establishing a definition of what

steady-state is, and then evaluating whether the system in

question satisfies this definition’s criteria. To this goal, we

will establish variability thresholds from mean values that

selected parameters cannot exceed over a predefined time

period, referred to as the time window, for steady-state to be

declared. Hence, the thresholds represent the allowed varia-

tions, and we use them to gauge the observed variations of

the selected features from their mean value. The time window

is moving with time because the observations made in the

past outside of our observation window no longer affect

steady-state identification in the present.

t, time

k n 1 k n n+1 k 2      k 1     kk

n
n

Fig. 1 – Moving windows of n data points at near kth time.
2. Moving window for steady-state detection

The concept of the steady-state detector originates from noise

filter theory. When a system is not steady, thermodynamic

system parameters are highly unstable. The variance or
standard deviation of important parameters is typically uti-

lized to indicate the statistical spread within the data distribu-

tion and can be used to characterize random variation of the

measured signals.

The most common and simple steady-state detectors analyze

the data over a predefined moving window, as illustrated inFig. 1.

A predefined time interval is established over which important

parameters are sampled at regular intervals. This produces an

array of system parameters that are continuously updated

and held in memory. Since a moving window replaces each

data point within the timespan, the moving window average is

equivalent to a low-pass filter. In this study, the moving window

standard deviation is used to detect system steady-state.

The steady-state detector uses the calculation of the stan-

dard deviation of parameters in a recursive fashion. Suppose

that at any instant k, the average of the latest n samples of

a data sequence, xi, is given by

xk ¼
1
n

Xk

i¼k�nþ1

xi (1)

A difference between two averages of the latest n samples at

the current time, k, and at the previous time instant, k� 1, is

xk � xk�1 ¼
1
n

" Xk

i¼k�nþ1

xi �
Xk�1

i¼k�n

xi

#
¼ 1

n
½xk � xk�n� (2)

Rearranged, the current average is calculated by

xk ¼ xk�1 þ
1
n
ðxk � xk�nÞ (3)
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This approach is known as a moving window average

because the average at each kth instant is based on the most

recent set of n values. In other words, at any instant, a moving

window of n values is used to calculate the average of the next

data sequence. A moving window variance can be defined

similarly.

vk ¼
1
n

Xk

i¼k�nþ1

ðxi � xkÞ2¼
1
n

Xk

i¼k�nþ1

x2
i � x2

k (4)

vk ¼ vk�1 þ
1
n

�
x2

k � x2
k�n

�
�
�
x2

k � x2
k�1

�
(5)

The moving window standard deviation is then given as

sk ¼
ffiffiffiffiffi
vk
p

(6)

The steady-state detector identifies steady operation if the

standard deviations for the selected features representing

the status of the system fall below the defined threshold.

Li (2004) utilized moving window slopes and variances of

evaporator exit superheat and liquid line subcooling as the key

parameters of the steady-state detector in his FDD research on

roof-top air conditioners. Glass et al. (1995) used geometrically

weighted variance to identify a steady-state for air-handling

units. Its main concept is that older data are exponentially atten-

uated by the multiplication of a ‘‘forgetting factor’’ based on the

time constant during a system transition. The authors provided

a recursive formulation for a digital application. Several FDD re-

searches on vapor compression systems applied this method

(e.g., Rossi, 1995; Breuker and Braun, 1998).

The moving window standard deviation can properly rep-

resent the state of the system when used with an optimized

moving window size and feature thresholds. Since the moving
Fig. 2 – Schematic diagram of
window method has a fundamental structure, applying it to

real systems imposes a small calculation load.
3. Development of the steady-state detector

3.1. Laboratory setup and tests

In this investigation, we used a split residential heat pump of

8.8 kW nominal cooling capacity and Seasonal Energy Effi-

ciency Ratio (SEER; ARI Standard 210/240) of 13. The unit con-

sisted of a compressor located with the outdoor coil, an indoor

fan-coil section, cooling mode and heating mode thermostatic

expansion valves (TXVs), and connecting tubing. Both the

indoor and the outdoor coils were finned-tube type heat ex-

changers. We installed the unit in environmental chambers

and charged with R410A according to the manufacturer’s

specifications. Fig. 2 illustrates the experimental setup. Addi-

tional specifications for the test rig, including indoor duct-

work, indoor/outdoor unit dimensions, data acquisition and

instrumentations, etc., were described in detail by Kim et al.

(2006).

Our test included no-fault steady-state tests and no-fault

startup transient tests for defining steady-state detection pa-

rameters. The startup transient tests were repeated three

times to verify startup repeatability. Then we performed no-

fault tests at indoor load change conditions to verify the per-

formance of the developed detector. For the indoor load

change tests, indoor dry-bulb temperature (TID) was varied

by increasing or decreasing the number of energized electric

air heaters within the indoor chamber supply duct. Table 1
the experimental setup.



Table 1 – Types and conditions of no-fault tests

Test type TOD (�C) TID (�C) RHID (%)

Steady-state 27.8� 0.5 26.7� 0.5 50� 1.0

Startup transient 27.8� 0.5 26.7� 0.5 50� 1.0

Indoor load change 35.0� 0.5 15–35 20–80
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shows the indoor and outdoor chamber conditions and stan-

dard deviations for these experiments.
3.2. Measurement features

We selected the following seven features: evaporator exit sat-

uration temperature (TE) and superheat (Tsh), condenser exit

saturation temperature (TC), compressor discharge tempera-

ture (TD), liquid line subcooling (Tsc), air-side temperature

drop across the evaporator (DTEA), and air-side temperature

gain across the condenser (DTCA). In addition, we monitored

the on–off status of the compressor. We used pressure trans-

ducers at the exits of the evaporator and the condenser to ob-

tain TE and TC, respectively. The obtained pressures were

converted into saturation temperatures using REFPROP 7

(Lemmon et al., 1998). For the other five features, T-type ther-

mocouples were used.
3.3. Setting feature thresholds based on steady-state
data

The threshold of each feature that bounds the mean steady-

state signal is an important parameter in determining the per-

formance of a steady-state detector. The smaller a threshold,

the more conservatively steady-state is identified, and the

more time it takes for the considered features to settle within

their threshold ranges. Also, an excessively small threshold

may cause the steady-state detector to never detect a steady-

state especially under field conditions. Large thresholds, on

the other hand, allow faster data collection but carry

a risk of including some transient data and initiating false

alarms. Therefore, the thresholds must be selected to both

minimize the inclusion of non-steady-state data and max-

imize the recognition of steady-state.

To determine the steady-state detection thresholds for our

heat pump/data collection hardware, we collected 47 data

scans over 60 min after stable chamber conditions were

achieved and the system stabilized. We accepted system sta-

bility criteria for steady-state tests as defined by ASHRAE

Standard 37-2005; system’s stability is attained after the

equipment has operated for at least 1 h, and a four-sample

moving window with sample rate of 10 min/sample yields
Table 2 – Variations of selected features during steady-state

Features Tsh Tsc

Rangea (�C) 0.49 0.22 0

Standard deviation, s (�C) 0.124 0.052 0

Calculated thresholds, 3s (�C) 0.37 0.16 0

a Difference between the maximum and the minimum value.
a maximum range of 1.1 �C for indoor and outdoor air dry-

bulb temperatures and a maximum range of 0.56 �C for wet-

bulb temperatures. The mean value of the indoor and outdoor

dry-bulb and wet-bulb temperatures for the four-sample mov-

ing window must not be greater than 0.28 �C and 0.17 �C, re-

spectively, from the test condition setpoint.

We assumed a Gaussian distribution of the measured sys-

tem parameters while the system was stable; therefore, a mea-

surement of at least 30 data points was needed to assure

a suitable estimate of the mean and standard deviation (Ott,

1984). We calculated the mean and standard deviations for

all seven features, as listed in Table 2. Fig. 3 shows the varia-

tion and standard deviation of the steady-state data for Tsh

and Tsc. We selected the value of �3s as the steady-state

threshold for selected features, i.e., we defined a feature as be-

ing in steady-state when its value falls within plus or minus

three standard deviation, �3s, of its average value. Assuming

that the steady-state measurements are random and nor-

mally distributed, the �3s thresholds will filter out less than

1% of the steady-state data. Using the standard deviation

thresholds of �1s would lead to a very restrictive indication

of steady-state.

In a physical sense, the calculated standard deviations of

Tsh and Tsc represent the range of their ‘‘natural’’ fluctuation,

which combine the effects of instability of the operating condi-

tions induced by the environmental chambers, instability of

the system itself, and instability of the data acquisition system.

The standard deviations established from our steady-state

tests should be considered the minimum standard deviations

since they were attained at constant indoor and outdoor condi-

tions as defined by the industry test standard and using dedi-

cated, lab-quality instrumentation and data acquisition

equipment. A manufacturer implementing this steady-state

detector development technique must perform this exercise

for their particular heat pump/data acquisition system combi-

nation to establish their standard deviations.
3.4. Establishing the moving window size using startup
transient tests

Figs. 4–6, presented in this section, were derived from the

same startup transient test. Fig. 4 displays variation of the

seven features in the post-startup period. The figure demon-

strates that Tsh and Tsc fluctuate the most and are the domi-

nant indicators of system instability during startup. Fig. 5(a)

further examines fluctuations of Tsh and Tsc showing them

with �3s thresholds superimposed (these thresholds were

presented in Fig. 3). The vertical dashed line extending to

Fig. 5(b) and (c) indicates the onset of steady-state at approxi-

mately 6 min and 30 s. From this point in time and on, the
TE TD TC DTCA DTEA

.14 0.25 0.17 0.27 0.25

.024 0.058 0.035 0.063 0.058

.07 0.17 0.11 0.19 0.17
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values of both features are retained within their respective

�3s thresholds. While Fig. 5(a) convincingly shows us, based

on individual measurements, that steady-state was attained

at 6 min and 30 s after the startup, we must realize that we

could make this determination only after extending the data

collection much further in time beyond 6 min and 30 s to be

able to calculate Tsh and Tsc mean values for steady-state op-

eration. For this reason, using individual feature measure-

ments for steady-state indication proves not to be a robust

approach, and it is rather attractive to base a steady-state de-

tector on some statistical quantity based upon measurements

taken within a predefined moving time window. In this study

we applied the �3s steady-state thresholds and standard
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deviations of moving-window-measured Tsh and Tsc values,

sMW(Tsh) and sMW(Tsc), for steady-state detection during the

startup transient. Fig. 5(b) and (c) explains the procedure we

used to determine the size of the moving window by showing

Tsh and Tsc standard deviations, sMW(Tsh) and sMW(Tsc), respec-

tively, for three windows sizes at a sample period of 14 s/sam-

ple: 70 s (MW70s), 140 s (MW140s), and 210 s (MW210s). It is

our interest to establish the minimum window size for which

the calculated sMW(Tsh) and sMW(Tsc) are below their respec-

tive threshold values past the onset of steady-state, which is

shown in Fig. 5 to occur at 6 min and 30 s after startup.

The general procedure for determining the minimum mov-

ing window size, illustrated in Fig. 5, is as follows:

(1) Collect selected feature data during the startup period for

at least 30 samples into the steady-state region at a sam-

pling rate equal to the sampling rate used for steady-state

sampling. The steady-state region is defined here to occur

when the instantaneous values of the selected features

fluctuate within �3s of their steady-state mean values,

as determined in Fig. 3. The dashed vertical line in

Fig. 5(a) illustrates this onset of steady-state using the

two most fluctuating FDD features during the startup, Tsh

and Tsc.

(2) For all features, calculate the moving window standard de-

viation versus time for a range of moving window sample

sizes, as presented in Fig. 5(b) and (c) for Tsh and Tsc.

(3) The moving window size that results in all features’ stan-

dard deviations crossing and remaining within the �3s

threshold after steady-state is attained (as defined in

Step 1), is the minimum acceptable moving window size.

The minimum acceptable moving window size (and thus

sample size for our sampling rate) is determined by plotting

the moving window standard deviations as a function of
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time for all features used in the FDD algorithm. In our case the

last two features to vary within their �3s thresholds, of all the

features listed in Table 2, were Tsc and Tsh. The moving win-

dow standard deviations of Tsh and Tsc (sMW(Tsh) and sMW(Tsc))

are plotted as a function of time in Fig. 5(b) and (c) with the

vertical steady-state line determined in Fig. 5(a) extending

down to indicate the onset time of steady-state.

Selecting the MW70s would not be appropriate because

both sMW(Tsh) and sMW(Tsc) values calculated for this window
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size drop below the respective thresholds well before the on-

set of steady-state at 6 min and 30 s. The MW140s appears to

be a good selection because it produces standard deviations

that remain below the steady-state threshold after the vertical

steady-state line; with a few seconds past this instance for

sMW(Tsh) and 90 s later for sMW(Tsc) at 8 min. Hence, MW140s

would indicate the onset of steady-state 90 s after it actually

has occurred, but it would not provide a false indication of

steady-state at any time earlier because of the relatively

smooth and oscillation-free character of sMW(Tsh) and

sMW(Tsc) lines. For MW210s, steady-state detection was indi-

cated at approximately 9 min with sMW(Tsh) being the defining

factor; this moving window could be acceptable, but it is not

the minimum moving window size to satisfy our steady-state

criteria that all features remain within their �3s thresholds.

In this startup test, we took measurements every 14 s. We

should note that the data sampling rate (samples/s or Hz)

should be based upon a Nyquist frequency (greater than twice

the frequency of the most varying feature) (Franklin et al.,

1991), as determined by the frequency of variation in the fea-

tures important to the FDD algorithm. For this investigation,

the heat pump features during steady-state varied at a maxi-

mum frequency well below 0.03 Hz. Sampling at greater than

twice this frequency, or one sample every 16 s, would capture

all the feature variations. The sample rate fixed at one sample

per 14 s was sufficient to eliminate or greatly reduce the



0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

27

29

31

33

4

5

6

7

8

9

10 T
em

perature (°C
) 

T
em

pe
ra

tu
re

 (
°C

)

threshold 0.37

Tsh

TID

Identified as
transient region 

0

0.1

0.2

0.3

0.4

0.5

0.6

145 155 165 175 185 195

Time (min)

threshold 0.07

threshold 0.17

Tsc

MW (Tsh)

MW (TE)

MW (ΔTEA)

b

c

a

d

e

MW72s

MW144s

MW216s

MW72s

MW144s

MW216s

MW72s

MW144s

MW216s

M
W

 (T
sh

) 
(º

C
)

M
W

 (T
E

) 
(º

C
)

M
W

 (Δ
T

E
A

) 
(º

C
)

Fig. 7 – Identification of steady-state during a no-fault indoor load change test, TOD [ 35 ± 0.5 8C. (a) TID, (b) Tsh and Tsc, (c)

sMW(Tsh), (d) sMW(TE) and (e) sMW(DTEA).

i n t e r n a t i o n a l j o u r n a l o f r e f r i g e r a t i o n 3 1 ( 2 0 0 8 ) 7 9 0 – 7 9 9796
likelihood of signal measurement bias. A greater sampling

rate could be desirable, but sampling at much greater than

the Nyquist frequency gains no new information.

As defined by the�3s steady-state threshold, the system was

stable approximately 6 min and 30 s after startup; however, the

discharge line wall temperature, TD, continued to increase. Fig. 6

shows that TD increased by 2.1 �C for the remainder of the time

shown in the figure while the evaporator capacity, QEA, in-

creased by 1.3% with no change in the condenser capacity,

QCA. The unchanging value of QCA tends to indicate a thermal in-

ertia effect for TD. The slow increase, or drift, in this temperature

does not preclude its use as a fault detection feature, however, it
will result in a higher uncertainty for TD within the system’s

steady-state no-fault reference model.
4. Verification of the steady-state detector
using an indoor load change test

4.1. Test with no faults imposed

Fig. 7 presents verification of the developed steady-state de-

tection procedure during transients driven by changes in the

indoor air temperature with no faults imposed. Stepped
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increases in TID in Fig. 7(a) reflect the energizing of additional

indoor chamber electric duct heaters. In addition to TID, the

figure shows Tsh, Tsc, and standard deviations of Tsh, TE and

DTEA for an 18 s sample interval and moving window sizes of

72 s, 144 s, and 216 s. Tsh, Tsc and sMW(Tsh) are included be-

cause they were important during the startup transient. While

Tsh shows some variation during an indoor load change test,

Tsc is much more stable than during the startup transient.

The figures show two transient regions, which were identi-

fied using a 144 s moving window. The gray areas in the plots in-

dicate transient regions for individual featuresas determined by

the�3s threshold steady-state detector algorithm within a 144 s

moving window. Fig. 7(e) shows that DTEA consistently indicates
the beginning of the transient while Fig. 7(d) shows that TE indi-

cates the end of the transient. The variation of Tsh in Fig. 7(c)

cannot filter out the whole transient region for all of these pa-

rameters. Instead, the variation of TE and DTEA in Fig. 7(d) and

(e) controls the detection of steady-state. Since the transients

in Fig. 7(a) are due to changes in TID, the features that character-

ize the evaporator (indoor coil), TE and DTEA, proved to be neces-

sary for steady-state detection.

4.2. Test with a 20% refrigerant undercharge fault

Since the goal of an FDD scheme is to detect a system fault, the

steady-state detector must be able to identify steady-state
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during a system’s faulty operation. For this reason, we applied

the developed steady-state detector during a test with chang-

ing indoor temperature with a 20% refrigerant undercharge

fault.

Fig. 8 shows the selected system parameters and features

during the 35 �C outdoor temperature test. The moving win-

dow sizes are 66 s, 132 s, and 198 s with a data sampling rate

of 22 s. Fig. 8(a) shows two rapid drops of TID due to turning

off chamber electric duct heaters and a continuous decrease

of TID due to chamber cooling by the tested system.

As during the fault-free indoor temperature change tran-

sient test, the change of sMW(Tsh) in Fig. 8(c) is not large

enough to filter out the transient state, but changes in sMW(TE)

and sMW(DTEA), taken together, correctly identify steady-state,

as shown in Fig. 8(d) and (e). Hence, the same features identi-

fied steady-state during the undercharge fault and no-fault

operations. Further, our review of transient data of the system

operating under different faults indicated that the developed

steady-state detector would work reliably with other faults

as well.
5. Conclusions

We presented a methodology for developing a steady-state

detector for a vapor compression system based on a moving

window and using standard deviations of seven parameters

selected as features. When the threshold band of the features

was set at�3s reflecting their fluctuations during steady-state

operation, the optimal moving window size was approxi-

mately 140 s for a 14 s sampling rate. Of the seven monitored

features, Tsh and Tsc measurements were sufficient for deter-

mining the onset of steady-state during the startup transient.

However, they were not the dominant steady-state indicators

during indoor temperature change tests, where TE and DTEA

were needed for proper steady-state identification. Conse-

quently, we recommend including all FDD features in the

steady-state detector to ensure the robustness of the detector

because different features may play key roles with different

transients. While the proposed steady-state detector was de-

veloped from no-fault data, we verified that it can perform

correctly with a faulty system.

A practical steady-state detector must be defined based

upon the heat pump and system controller that will perform

the fault detection and diagnosis. For any given system, the

designer may choose FDD features other than those identified

here. The system controller and instrumentation used in

a commercial product most likely will have a different resolu-

tion or noise immunity than a dedicated lab-quality data ac-

quisition system. This would translate into larger standard

deviations and threshold values with different sampling rates

and moving window sizes.
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