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Abstract— This paper studies the properties of a variable
gain integrator with reset, i.e. a nonlinear lag filter that is
obtained by a) saturating the input, b) filtering the saturated
input with a Clegg integrator, and c) add the filtered output
to the unsaturated input before applying it to a PID-based
controller. Depending on the amount of saturation, the corner
frequency of the lag filter is reduced along with the associated
phase lag. This follows from a describing function analysis in
which at low frequencies a minus 20 dB/decade amplitude
decay is realized with a phase lag of only 32.48 degrees.
Conditions to assess global asymptotic stability of the closed-
loop nonlinear control system are provided that are based
on a circle criterion-like argument for the flow condition,
which applies to the intervals without resets, combined with
a jump condition at reset. The reset integrator design is
demonstrated on a piezo-actuated motion system where its
favorable phase and amplitude properties induce overshoot and
settling times comparable to a single (linear) integrator, but with
the disturbance rejection properties of a double integrator.

I. INTRODUCTION

In this paper, we consider trade-offs between frequency

domain disturbance rejection properties and time-domain

overshoot and settling behavior. In particular, the fact that

adding integral action to a control system often enhances the

suppression of low-frequency disturbances but deteriorates

transient performance in terms of overshoot and settling

behavior. Given the inherent design limitations associated

with linear feedback systems, nonlinear control has been

proposed by many researchers in an attempt to deal with such

trade-offs, e.g. the work of Aangenent et al. [1]. An early

example is the Clegg integrator [7], i.e. an integrator which

resets its single state upon zero crossings of its input. As a

result of the reset, the describing function associated with the

Clegg integrator has a minus 20 dB/decade amplitude decay

with 38.15 degrees phase lag instead of the 90 degrees phase

lag corresponding to a simple linear integrator.

A recent advancement is the variable gain integrator by

Hunnekens et al. [8]. The variable gain integrator is a simple

integrator preceded by a saturation element. Depending on

the level of the saturation input signal, the integrator gain

is lowered. That is, signals exceeding the saturation band

will effectively lower the integrator gain, whereas signals

inside the saturation band do not. Being the result of a

smaller integrator buffer, an integrator design is obtained

with reduced overshoot as compared to an integrator design

without a saturation element. Moreover, inside the satu-

ration bound, the variable gain integrator induces similar

disturbance rejection properties as obtained with a simple

integrator otherwise. In practice, however, this often means
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that settling properties inside the saturation bound are equally

limited by the phase delay induced by the simple integrator.

As a solution to this problem, in this paper a variable gain

integrator with reset will be studied. For a piezo-actuated

motion system, it will be demonstrated that less overshoot is

obtained as compared to the Clegg integrator but equal to the

variable gain integrator without reset. Contrarily, the settling

behavior of the variable gain integrator with reset is equally

fast as the settling behavior induced by the Clegg integrator,

but much faster than the variable gain integrator without re-

set. The variable gain integrator with reset thus combines the

favorable properties of the variable gain integrator without

reset, i.e. reduced overshoot, with the small settling times

of the Clegg integrator. From describing function analysis,

this may relate to the minus 20 dB per decade amplitude

decay that corresponds to only 32.48 degrees phase lag, i.e. a

phase reduction of about 6 degrees with respect to the Clegg

integrator.

Stability of the variable gain integrator with reset will be

shown by combining a circle criterion-like argument used

to prove stability of the variable gain integrator along the

resets. Essentially, stability of the reset system boils down to

satisfying two conditions: a) a flow condition in the intervals

between resets, and b) a jump condition at the resets, see

also Beker et al. [4], Zaccarian et al. [9], and Carrasco et

al. [6]. For the base-nonlinear system, i.e. the variable gain

integrator without reset in closed loop, stability is guaranteed

by the application of the positive real lemma along with

a LaSalle argument to deal with the simple pole. This

renders the base-nonlinear system globally asymptotically

stable, thus satisfying the flow condition. For the closed-

loop nonlinear system with reset, we seek a positive-definite

matrix P ≻ 0 that satisfies both the flow and the jump

condition. This will be done by solving a set of linear matrix

inequalities (LMIs).

Summarizing, the main contributions of this paper are as

follows. First, the variable gain integrator of Hunnekens et

al. [8] is extended with a reset condition that is introduced

to maintain the disturbance properties associated with a

double integrator, but that significantly improves the settling

behavior inside the saturation length toward the behavior of

a single integrator. Second, a describing function analysis is

presented to demonstrate the nonlinear lag-filter properties

of the design. Third, sufficient Lyapunov-based stability

conditions are provided that can be verified using standard

LMI-solvers. Fourth, the potential of the proposed nonlinear

controller is shown by means of experimental results on an

industrially-relevant piezo-actuated motion system.

The remainder of this paper is organized as follows. In

Section II, the variable gain integrator with reset will be

presented, whereas its properties will be studied using de-
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scribing function analysis. In Section III the problem setting

will be described including the motivation for the variable

gain integrator with reset on the basis of experimental results

obtained from a piezo-actuated motion system. In Section IV

the base-nonlinear system, i.e. the variable gain integrator

without reset in closed loop with a PID-based controller and

double-integrator-based motion system will be given along

with a short review of its closed-loop stability properties.

In Section V, new stability conditions will be posed for the

variable gain integrator with reset in closed loop. Section VI

will summarize the main conclusions.

The following notational conventions will be used. Let R

denote the set of real numbers and Rn denote the n-fold

Cartesian product R× . . .×R with standard Euclidean norm

denoted by ‖·‖. For a matrix S ∈Rn×m, we denote by imS :=
{Sv |v∈Rm} the image of S, and by kerS := {x∈Rm |Sx= 0}
its kernel. We call a matrix P ∈ Rn×n positive definite and

write P ≻ 0, if P is symmetric (i.e., P = P⊤) and x⊤Px > 0

for all x 6= 0. Similarly, we call P ≺ 0 negative definite when

−P is positive definite.

II. VARIABLE GAIN INTEGRATOR WITH RESET

Consider the variable gain integrator with reset as shown

in Fig. 1. It consists of a variable gain part, see Hunnekens et

e

−v uωi

∫ t
0 dτ

∑

Fig. 1. Graphical representation of the reset integrator design.

al. [8], i.e. a saturation function between the input signal e(t)
and the internal signal v(t)=−φ(e(t)), a Clegg integrator [7]

that resets its integrator state upon zero crossings of v(t), and

a direct path that gives the overall output signal u(t)+ e(t).
The saturation function φ(e) is defined as

φ(e) =

{

e, if |e| ≤ δ

δ sign(e), otherwise,
(1)

with saturation length δ ≥ 0, whereas the Clegg integrator

in state-space description is given by
{

ẋI(t) = ωiv(t), if v(t) 6= 0,

u(t) = xI(t),

xI(t
+) = 0, otherwise,

(2)

with xI(t) denoting the integrator state, ωi the integrator

frequency, and t+ denoting a time instance where v(t) crosses

zero. To better understand the properties associated with the

reset integrator design from Fig. 1, a describing function

analysis will be carried out that allows for frequency domain

evaluation through Bode diagrams.

A. Describing Function Analysis

In this section, we provide a describing function analysis

of the variable gain integrator with reset. To do so, let e be

a sinusoidal input signal given by

e(τ) = êsin(τ), (3)

with amplitude ê and τ = ωt. Consider the case where the

input signal e(t) is saturated, i.e. 0 < δ < ê. Using (1), the

saturated signal v(τ) =−φ(e(τ)) for 0 ≤ τ < π reads:

v(τ) =







êsin(τ), if 0 ≤ τ < γ

δ , if γ ≤ τ < π − γ

êsin(τ), if π − γ ≤ τ < π ,

(4)

where it holds that γ = arcsin(δ/ê), see also the upper part of

Fig. 2. By forward integration using (2), it therefore follows

for the signal u(τ):

u(τ) =







−
ωi

ω
êcos(τ)+ c1, if 0 ≤ τ < γ

ωi

ω
δτ + c2, if γ ≤ τ < π − γ

−
ωi

ω
êcos(τ)+ c3, if π − γ ≤ τ < π ,

(5)

with integration constants:

c1 =
ωi

ω
ê

c2 =
ωi

ω

(

ê

(

1− γ

√

1− sin2 (γ)

)

− δγ

)

c3 =
ωi

ω

(

ê

(

1− 2γ

√

1− sin2 (γ)

)

− 2δγ

)

+
ωi

ω
δπ ,

(6)

see also the lower part of Fig. 2. The describing function

✻

✲
γ π

2

π − γ

δ
τ = ωt

e(τ)

v(τ)

✻

✲
γ π

2

π − γ

δ
τ = ωt

u(τ)

Fig. 2. Graphical representation of the variable gain (upper) part: from
a sinusoidal input e(τ) = êsin(τ) to saturation output v(τ), and the reset
(lower) part from v(τ) to u(τ).

N(ê,ω) between harmonic input e and resulting output u+e

is given by:

N(ê,ω) = 1+
b1 + ja1

ê
, (7)

with

a1 =
2

π

∫ π

0
u(τ)cos(τ)dτ

b1 =
2

π

∫ π

0
u(τ)sin(τ)dτ.

(8)

Substitution of (5) and (6) in (8) gives (after some algebra):

a1 =
2ωi

πω



−δ

√

1−

(
δ

ê

)2

− êγ





b1 =
2ωi

πω



2ê



1−

√

1−

(
δ

ê

)2



+ δπ − 2δγ



 .

(9)
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For the case where the input signal e(t) is not saturated,

i.e. 0 < ê ≤ δ , it follows that:

a1 =
2ωi

πω

(

−
êπ

2

)

=−
ωiê

ω

b1 =
2ωi

πω
(2ê) =

4ωiê

πω
.

(10)

Note that when ê → δ , (9) tends to (10). Moreover for the

trivial case where δ = 0, i.e. neither saturation nor integration

with reset takes place, it follows that a1 = b1 = 0.

By substitution of either (9) or (10) in (7), depending on

the parameter values for δ and ê, Fig. 3 shows the Bode

diagrams. For the curve where δ/ê = 1, a lag filter results.
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Fig. 3. Bode diagrams of different describing functions of the reset
integrator design from e to e+u for δ/ê ∈ {0.0001,0.001,0.01,0.1,0.5,1}.

Namely, substitution of (10) in (7) gives

N(ê,ω)→ 1+
ωi

jω
(1+

4

π
j), if 0 < ê ≤ δ . (11)

At high frequencies the frequency response tends to unity

whereas at low frequencies a Clegg integrator is obtained,

i.e. a simple integrator multiplied with the complex number

ωi(1 + 4 j/π) ≈ 1.619ωi exp( j51.85). As a result, Fig. 3

shows a 20dB/decade amplitude decay with a phase lag of

only ≈ 90−51.85= 38.15 degrees; increasing the ratio δ/ê

does not change these properties. Decreasing the ratio δ/ê,

i.e. saturating the input signal e(t), shows two effects: a) the

corner frequency of the lag filter decreases as the integrator

part decreases, and b) the phase lag of the integrator part

further decreases. The latter follows from the fact that:

arcsin

(
δ

ê

)

→
δ

ê
and

√

1−

(
δ

ê

)2

→ 1 for ê ≫ δ , (12)

which substituted in (9) and using (7) gives

N(ê,ω)→ 1+
ωiδ

π jω ê

(

2π j−
4δ

ê
j+ 4

)

for ê ≫ δ , (13)

and with δ > 0. At low-frequencies, this gives rise to a phase

lag limit of 32.48 degrees as can be seen in Fig. 3.

III. PIEZO-ACTUATED MOTION SYSTEM

To demonstrate the effectiveness of the variable gain

integrator with reset in dealing with linear design limitations,

consider the control of a piezo-actuated motion system that is

used in wafer scanners. During the process of wafer scanning

light from an (extreme) ultra-violate source travels through

an optical path that includes a reticle containing a blueprint

of the integrated circuits to be processed and a lens system.

The lens system consists of several lens elements that are

individually controlled during the scanning process. This

poses the following problem.

A. PROBLEM SETTING

Given the limited stroke of the piezo actuators, a calibra-

tion, or so-called shuffle, needs to be performed whenever

stroke limitations are encountered. Such a shuffle may occur

more than once during full wafer exposure. It is clear that

the duration of the shuffle should be kept small. This is

because during shuffle, the scanning process is interrupted

and therefore machine throughput, i.e. the amount of wafers

that can be processed per unit of time, is compromised.

Furthermore, during shuffle mode the piezo-actuated system

operates in an open-loop state such that after the shuffle,

i.e. after closing the loop, the motion system, which then

operates in scanning mode, suffers from an initial value

problem. This problem even becomes more pronounced in

view of the disturbance rejection properties required during

scanning mode for which a PI2D controller, i.e. a controller

with two integrators, is preferred over PID control with one

integrator only.

B. MEASUREMENT RESULTS

Given the above problem setting, the effect of the vari-

able gain integrator with reset from Fig. 1 is demonstrated

in Fig. 4. Through time-series measurement1 on a state-
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Fig. 4. Moving average (MA) filtered error responses of measurement data
from a piezo-actuated lens system under different controller configurations:
a) PID, b) PID and a Clegg integrator (PID+R), c) PID and a variable gain
integrator without reset (PID+VG), d) PID and a variable gain integrator
with reset (PID+VGR), and PI2D.
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of-the-art piezo-actuated lens system of a wafer scanner,

the figure shows the results in scanning mode after five

identical shuffles with different controller configurations:

a) PID control, b) PID control and a Clegg integrator, c)

PID control and a variable gain integrator without reset, d)

PID control and the variable gain integrator with reset, and

e) PI2D control. The results in terms of moving average

(MA) filtered error signals appear to be very illustrative,

though the actual time instances of reset at e(t) = 0 are

not immediately detectable from these (filtered) responses.

Having desired disturbance rejection properties in scanning

mode, PI2D control induces significantly more overshoot and

a larger settling time compared to PID control. Contrarily,

PID control in combination with the variable gain integrator

shows a significant reduction of the overshoot according to

what is claimed in Hunnekens et al. [8], while preserving the

desired disturbance rejection properties in scanning mode.

In fact, inside the saturation band of 45 nm the controller

properties become identical to PI2D control, which comes

with the disadvantage of too long settling times (dashed red

curve). The variable gain integrator with reset (red curve)

perfectly combines the advantage of small overshoot from

the variable gain integrator without reset with the small

settling times associated with a Clegg integrator. The latter

follows from PID control in combination with a Clegg

integrator (black curve) that induces less favorable overshoot

in comparison with the variable gain integrator, but with

desirable settling behavior related to the reduced phase lag.
Having a clear industrial motivation, at this point in the

analysis we want to study (in depth) the stability properties

of the variable gain integrator with reset when being used in

closed loop with an additional controller and motion system.

To do so, we will first study the base-nonlinear system,

i.e. the variable gain integrator without reset.

IV. BASE-NONLINEAR SYSTEM

Consider the motion control structure without any reset

such as depicted in Fig. 5, with reference r used to dictate

−

r e

φ

C

d

P
y

∑∑∑

−v
CI

Fig. 5. Block diagram of the base-nonlinear system, i.e. the motion control
structure without the reset part.

point-to-point motion and the error signal e = r− y. Herein

y is the output of the linear-time invariant (LTI) motion

system P , which is subject to disturbances d, and which is

controlled in feedback by the LTI controller C . The variable

gain integrator design in Fig. 5 will be referred to as the

base-nonlinear system, where φ is defined by (1) and CI is

given in frequency domain by

CI(s) =
ωi

s
(14)

1Numerical simulations based on second-order parametric models show
very similar results. Furthermore, various experiments under different initial
conditions demonstrated comparable behavior.

with s ∈ C the Laplace variable. The transfer function

between e and v (with r = d = 0) is then given by

e(s)

v(s)
= G(s) =

ωi

s

C (s)P(s)

1+C (s)P(s)
︸ ︷︷ ︸

Sc(s)

, (15)

with Sc(s) the complementary sensitivity function and with

G(s) having a simple pole at s = 0.

A representative motion system P is shown in Bode rep-

resentation in Fig. 6. Both a second-order parametric model
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Fig. 6. Bode diagram of a non-parametric model obtained from measured
FRF data coming from a piezo-actuated motion system and a simplified
second-order parametric model fit.

as well as a non-parametric model obtained from measured

frequency response function (FRF) data and coming from

the previously introduced piezo-actuated motion system are

shown. Both models are used to illustrate the main ideas of

this paper.

A. STATE-SPACE MODEL

In the time domain the closed-loop dynamics of the base-

nonlinear system can be represented by the state-space model

ẋ(t) = Ax(t)+Bv(t)+Brr(t)+Bdd(t)

e(t) =Cx(t)+Drr(t)+Ddd(t)

v(t) =−φ(e(t)),

(16)

with state vector x(t) = [xI(t) x̃(t)T ]T ∈ Rn at time t ∈ R≥0,

in which xI ∈R denotes the state of the linear integrator CI

and x̃ ∈Rñ consists of both the states of the plant P as well

as the states of the LTI controller C . Note that G(s) as in

(15) satisfies G(s) := C(sI −A)−1B, where we assume that

(A,B,C) corresponds to a minimal realization.

B. STABILITY

Consider the base-nonlinear system for constant references

r(t) = rc and constant disturbances d(t) = dc, t ∈R≥0. In this

case, there is a unique equilibrium with e = 0 corresponding

to x∗ = [x∗I x̃∗T ]T (clearly, x∗ depends on both rc and dc).

The following result (see also Hunnekens et al. [8]) poses

sufficient conditions under which global asymptotic stability

(GAS) of the equilibrium x∗ can be guaranteed.
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Proposition 1: Consider system (16) with constant ref-

erence rc and constant disturbance dc. If the following

conditions are satisfied:

i) Sc(0)≥ 0

ii) Sc( jω) is Hurwitz

iii) ℜ{G( jω)} ≥ −1, ∀ω ∈ R,

(17)

then the equilibrium point x = x∗ of system (16) satisfying

e = 0 is GAS.

Proof: [Sketch of proof]

For the detailed proof, the reader is referred to Hunnekens

et al. [8]. Here it suffices to state that a circle criterion

argument is adopted, see also Arcak et al. [2]. Key in this

argument is the application of the positive real lemma (rather

than the strictly positive real lemma) together with a LaSalle

argument used to conclude GAS of the equilibrium point

x = x∗; the strictly positive real lemma cannot be used due

to the simple pole jω = 0 of G( jω) in (15).

Remark 1: For the piezo-actuated motion system from

Fig. 6, the conditions in (17) can be checked as follows:

i) Sc(0) ≥ 0 is satisfied as (15) equals one (by design)

for ω = 0, ii) Sc( jω) being Hurwitz follows for any min-

imal realization of a stabilizing linear control design, and

iii) ℜ{G( jω)} ≥ −1, ∀ω ∈ R is graphically shown to be

satisfied in Fig. 7, for the non-parametric model based on

−1 0
−3

0

0.5

 

 

ℜ{G( jω)}

ℑ
{

G
(

jω
)}

non-parametric model
parametric model

Fig. 7. Nyquist diagram showing that ℜ{G( jω)} ≥ −1 is satisfied either
with the non-parametric or the parametric model from Fig. 6.

measured FRF data, and the parametric second-order model.

Furthermore, it is important to realize that satisfying (17)

implies the existence of P ≻ 0 such that V (z) = zT Pz >
0 for z 6= 0, and V̇ (z) ≤ 0 with z = x − x∗ a coordinate

transformation used to shift the equilibrium x = x∗ to the

origin; note that an equilibrium point of (16) implies e = 0

due to the integrator in C (s) and the fact that φ(e) = 0 only

holds true for e = 0. Given this transformation, (16) can be

written (for constant r and constant d) as

ż(t) = Az(t)+Bv(t)

e(t) =Cz(t)

v(t) =−φ(e(t)).

(18)

In particular, the Lyapunov function V essentially satisfies

V̇ (z) = zT (AT P+PA)z+ vTBT Pz+ zT PBv ≤ 0, (19)

or, alternatively:

[
z

v

]T [
AT P+PA PB

BT P 0

][
z

v

]

≤ 0, (20)

when for all v and e (or z) satisfying the sector condition

v2 + ve ≤ 0. In fact, using the S-procedure, see e.g. Boyd

[5], leads to the condition that there exists τ ≥ 0 such that



AT P+PA PB−

τ

2
CT

BT P−
τ

2
C −τ



� 0. (21)

Having the conditions in (17) to check for GAS of the

equilibrium of the base-nonlinear system (16) and having

the means to find an explicit P ≻ 0 by solving the LMIs in

(21), we want to extend the closed-loop stability result to the

case when the integrator CI in Fig. 5 is allowed to reset.

V. CLOSED-LOOP STABILITY UNDER RESET

Consider the closed-loop dynamics as depicted in Fig. 8.

The variable gain integrator with reset element from Fig. 1

−

r e
ψ(·) C

d

P
y

∑

Fig. 8. Block diagram of a motion control structure with variable gain
integrator with reset element ψ(·).

is denoted by ψ = ψ(e).

A. STATE-SPACE MODEL WITH RESET

In state-space representation, the dynamics underlying

Fig. 8 can be represented by






ẋ(t) = Ax(t)+Bv(t)+Brr(t)+Bdd(t)

e(t) =Cx(t)+Drr(t)+Ddd(t) if x(t) 6∈ M

v(t) =−φ(e(t)),
(22a)

x(t+) = ARx(t), if x(t) ∈ M

(22b)

with

AR =

[
0 O1×ñ

Oñ×1 Iñ×ñ

]

, (22c)

in which I denotes the identity matrix and O a matrix

containing zeros, and the set M is given by

M := {x ∈R
n |Cx = 0, (I −AR)x 6= 0}. (22d)

Note that, in (22d) the condition (I −AR)x 6= 0 was added

to avoid multiple jumps at one time instant. As a standing

assumption, we assume that the overall system (22) produces

complete and non-Zeno solutions in the terminology of [10,

Definition 2.5], for all relevant initial conditions, references

and disturbances, i.e. solutions are defined for all t ∈ R≥0.

In the current control configuration as depicted in Fig. 8,

the integrator state xI ∈ R is reset to zero when v(t) = 0,

for all t ∈ R≥0. Hence, different from solutions to (16), the

solutions to (22) are (partly) discontinuous, which is implied

by the additional reset condition (22b).
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B. STABILITY WITH RESET

Let x∗ be defined as the unique equilibrium point of system

(22) satisfying

0 = Ax∗+Brrc +Bddc (23a)

0 =Cx∗+Drrc +Dddc, (23b)

and, due to (23b) also v = 0 (due to e = 0), which implies

x∗ = ARx∗. (23c)

The following theorem poses sufficient conditions under

which GAS of the equilibrium x = x∗ can be guaranteed for

the system in (22). In order to do so, the matrix Θ∈Rn×(n−1)

is defined as im(Θ) = ker(C).
Theorem 1: Consider the system in (22). If there exist a

positive definite matrix P ∈ Rn×n and a constant τ ∈ R≥0,

satisfying



AT P+PA PB−

τ

2
CT

BT P−
τ

2
C −τ



� 0 (24)

ΘT
(
AT

RPAR −P
)

Θ � 0, (25)

then the corresponding equilibrium point x = x∗ of system

(22) is globally asymptotically stable for any constant refer-

ence rc and constant disturbance dc.

Proof: [Sketch of proof]

The first step is to employ a coordinate transformation z̃ =
x− x∗ on (22) giving:







˙̃z = Az̃+Bv

e =Cz̃

v =−φ(e(t)),

if z̃ 6∈ M̃ , (26a)

z̃+ = ARz̃, if z̃ ∈ M̃ (26b)

with M̃ := {z̃ ∈ Rn |Cz̃ = 0, (I −AR)z̃ 6= 0}.

In the second step, we will show that V (z̃) = z̃T Pz̃, with

P = PT ≻ 0, satisfying (24) and (25), is a Lyapunov function

for the transformed (perturbed) dynamics in (26). In fact,

during flow, feasibility of (24) guarantees that

V̇ (z̃)≤ 0, for z̃ 6∈ M̃ , (27)

along the solutions of (26), and feasibility of (25) guarantees

that during resets

V (ARz̃)−V(z̃)≤ 0, for z̃ ∈ M̃ , (28)

i.e. the Lyapunov function does not increase during resets.

Note that (27) together with (28) implies Lyapunov sta-

bility of z̃ = 0, however, not yet GAS. To establish GAS

of z̃ = 0, a LaSalle argument is used for hybrid systems,

see [10], in which we also exploited the observations in

[8], which were already remarked in the sketch of proof of

Proposition 1. As a consequence, it follows that x = x∗ is a

GAS equilibrium point of (22), which completes the proof.

Remark 2: In practice, a preferable stability check would

be a graphical check similar to the circle criterion evaluation

in Fig. 7. The reason is that solving the LMIs in (24) and

(25) requires a parametric model which for real applications

is time-consuming to obtain and often not accurate enough.

The use of non-parametric models based on measured FRF

data, which are both easily obtained and accurate, is therefore

highly preferred in posing the stability conditions.
Remark 3: Feasibility of the LMIs in (24) and (25) turned

out to be difficult to obtain in the case of the Clegg integrator.

In fact, feasibility has only been obtained when replacing the

specific Clegg integrator by the more general first-order reset

element (FORE) [11], i.e. using a weak integrator instead

of a simple integrator. Physically, this can be understood

from the reduced phase lag that has a stabilizing effect. As

an additional advantage, using a FORE (and excluding the

specific case of the Clegg integrator) renders the need for

the LaSalle argument in (17) superfluous, i.e. we can reside

to the strictly positive real lemma to conclude GAS of the

equilibrium point x = x∗.

VI. CONCLUSIONS

In this paper, a variable gain integrator design with reset

is discussed. The design has disturbance rejection properties

associated with a double integrator but with the overshoot

and settling properties related to a single integrator. For

a piezo-actuated motion system, these properties appear

very useful in dealing with the initial value problem re-

sulting from a shuffle and occurring prior to scanning. By

reducing overshoot and settling times, wafer exposure is

less delayed, i.e. enhanced wafer throughput, which has

been demonstrated by experimental results. Furthermore,

Lyapunov-based stability conditions are presented. Solving

P with LMI-solvers, however, requires parametric models

which are time-consuming to obtain and often not accurate

enough. Future work will therefore focus on non-parametric

models, i.e. measured FRF data.
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