
 Open access  Proceedings Article  DOI:10.1109/ISLC.2002.1041137

Design of a widely tunable modulated grating Y-branch laser using the additive
Vernier effect for improved super-mode selection — Source link 

J.-O. Wesstrom, S. Hammerfeldt, J. Buus, R. Siljan ...+2 more authors

Published on: 10 Dec 2002 - International Semiconductor Laser Conference

Topics: Distributed feedback laser, Grating, Tunable laser, Dye laser and Laser power scaling

Related papers:

 State-of-the-art performance of widely tunable modulated grating Y-branch lasers

 Tunable semiconductor lasers: a tutorial

 Monolithic tunable diode lasers

 Method and system for hybrid integration of an opto-electronic integrated circuit

 Semi-integrated designs for external cavity tunable lasers

Share this paper:    

View more about this paper here: https://typeset.io/papers/design-of-a-widely-tunable-modulated-grating-y-branch-laser-
2zxnwrroi9

https://typeset.io/
https://www.doi.org/10.1109/ISLC.2002.1041137
https://typeset.io/papers/design-of-a-widely-tunable-modulated-grating-y-branch-laser-2zxnwrroi9
https://typeset.io/authors/j-o-wesstrom-c23twhzruj
https://typeset.io/authors/s-hammerfeldt-51vzxqu5r1
https://typeset.io/authors/j-buus-3bwondqba4
https://typeset.io/authors/r-siljan-4ap5xbjsoy
https://typeset.io/conferences/international-semiconductor-laser-conference-1czop10u
https://typeset.io/topics/distributed-feedback-laser-1gppuji0
https://typeset.io/topics/grating-hppg9vyd
https://typeset.io/topics/tunable-laser-2sv7sd4j
https://typeset.io/topics/dye-laser-2jsaprza
https://typeset.io/topics/laser-power-scaling-39t9sfqu
https://typeset.io/papers/state-of-the-art-performance-of-widely-tunable-modulated-6hzkbe080y
https://typeset.io/papers/tunable-semiconductor-lasers-a-tutorial-u60opvuxtv
https://typeset.io/papers/monolithic-tunable-diode-lasers-1jx4m5hy0b
https://typeset.io/papers/method-and-system-for-hybrid-integration-of-an-opto-4s5jux4iif
https://typeset.io/papers/semi-integrated-designs-for-external-cavity-tunable-lasers-3pjqgwnj1s
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/design-of-a-widely-tunable-modulated-grating-y-branch-laser-2zxnwrroi9
https://twitter.com/intent/tweet?text=Design%20of%20a%20widely%20tunable%20modulated%20grating%20Y-branch%20laser%20using%20the%20additive%20Vernier%20effect%20for%20improved%20super-mode%20selection&url=https://typeset.io/papers/design-of-a-widely-tunable-modulated-grating-y-branch-laser-2zxnwrroi9
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/design-of-a-widely-tunable-modulated-grating-y-branch-laser-2zxnwrroi9
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/design-of-a-widely-tunable-modulated-grating-y-branch-laser-2zxnwrroi9
https://typeset.io/papers/design-of-a-widely-tunable-modulated-grating-y-branch-laser-2zxnwrroi9


Design of a Widely Tunable Modulated Grating Y-branch Laser using the Additive 

Vernier Effect for Improved Super-Mode Selection 
 

Jan-Olof Wesström,
a
 Stefan Hammerfeldt,

a
 Jens Buus,

b
 Robert Siljan,

a
  

Reinhard Laroy,
c
 and Harry de Vries

a 

 
aADC Inc. PO Box 911, SE-175 29 Jarfalla, Sweden, Tel: +46 8 50679700,  Fax: +46 8 50679710, email: 

jan_olof_wesstrom@adc.com,  bGayton Photonics Ltd., 6 Baker Street, Gayton Nothants, NN7 3EZ, UK,  

Tel:  +44 (0)1604 859253, Fax:  +44 (0)1604 859256, email:  buus@compuserve.com, cGhent University - IMEC, 

Department of Information Technology, St-Pietersnieuwstraat 41, B-9000 Gent, Belgium, Tel: +32-9-2643316, 

Fax: +32-9-2643593 , email: rlaroy@intec.rug.ac.be 

 

Abstract: We present the design of a Modulated Grating Y-branch laser containing a splitter and two multi-peak 

reflectors. High selectivity is achieved using the additive Vernier effect.  

  

Widely tunable lasers find an increasing number of applications 

since they can contribute to flexibility in WDM systems.1 The 

GCSR (Grating-assisted codirectional Coupler with Sampled 

Reflector) 2 and the SSG-DBR (Super Structure Grating – 

Distributed Bragg Reflector) 3 lasers are two types of monolithic 

edge-emitting lasers based on multi-peak modulated reflector 

gratings such as the SSG or the sampled grating. Also the 

Modulated Grating Y-branch laser4 (MGY) presented here (Figure 

1) is based on multi-peak reflectors and can be designed to cover 

the entire C-band (192 – 196 THz). In our design the light is split 

by the use of a 60-µm long, 7-µm wide Multi-Mode 

Interferometer (MMI). Then 46-µm long S-bends with a 130-µm radius of curvature are used to increase the separation 

between the waveguides. Each arm ends with a 500-µm long multi-peak reflector with an effective coupling coefficient of 

30/cm. In one arm there is an 80-µm long phase section that can be used to adjust the phase difference between the 

reflections. A common phase section of the same length is used to align the cavity mode with the reflector peaks. The design 

is to be manufactured as an InP/InGaAsP buried hetero structure, butting a 400 µm multi-quantum-well gain section to the 

passive sections made in a 0.35-µm thick InGaAsP layer with a photo-luminescence wavelength of 1.39 µm. 

 

The MGY is similar to the SSG-DBR in that it is based on the Vernier effect using two multi-peak reflection gratings. The 

SSG-DBR utilizes two such gratings, one at each end of the cavity. The reflection peak separations of the two gratings are 

slightly different and the Vernier effect is used to select one reflection peak for lasing. By tuning the two reflection sections 

and a phase section, any frequency within a wide range can be reached. One disadvantage with the SSG-DBR laser is that 

the output light has to pass through the front reflector, which inevitably suffers from free carrier absorption when tuned. This 

gives a higher power variation. The MGY is also comparable to the GCSR laser in the sense that it has all tuning sections on 

the same side of the gain section, so that the power can exit the cavity without absorption. Instead of using the Vernier effect, 

the GCSR laser uses a widely tunable coupler transmission peak to efficiently select one peak for lasing. One disadvantage 

for the GCSR is that it is typically a rather long chip. 

 

Figure 1. Schematic drawing of the MGY 
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Figure 2. Power reflection spectra of  (a) reflector 1 and  (b) reflector 2, with 630 and 700GHz peak spacing 

respectively. (c) The product of the spectra, |r1r2|
2, after a slight tuning of reflector 1 so that peaks 6 are aligned 

(SSG-DBR case). (d) Sum of the reflections, |r1+r2|
2 /4,  (MGY case). 
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Conceptually, one main difference between the SSG-DBR laser and the MGY laser is that, for the MGY, the super-mode 

selection is performed by an addition of the complex amplitudes of reflectivities instead of a multiplication. Since the 

addition is sensitive to the phase difference between the reflections, the shape of the aggregate reflection spectrum is not 

self-evident. As seen in Figure 2 (d), when properly designed the addition suppresses the adjacent peaks strongly although 

these side peaks overlap. The large overlap is evident from the product of the two reflections seen in Figure 2 (c). The MGY-

laser has an extra differential phase section that controls the phase difference between the two reflections. It is highly 

desirable to eliminate the need to readjust this setting between different operation points. Also this can be done by following 

a set of simple design rules. 

 

It can easily be shown that if the reflections are to stay in phase 

without changing the differential phase section, while the two 

reflectors are simultaneously tuned by the same amount (medium 

tuning) the reflector tuning contacts have to start at the same distance 

from the splitter. When making a super-mode hop from peaks m to 

peaks m+1, (coarse tuning) a further requirement for the phase 

conservation is that φ2
m+1 -φ1

m+1=φ2
m -φ1

m, where φi
m is the phase 

before tuning at reflection peak m in reflector i using the beginning 

of the tuning contacts as reference points. Some frequencies can 

most easily be reached using peak m in reflector 1 and peak m+1 in 

reflector 2 or vice versa (repeat mode tuning). For those operation 

points to work properly we also require that φ2
m+1=φ2

m and 

φ1
m+1=φ1

m. If this is to hold for all peaks, their phases would all have 

to be the same which is only possible for the simple sampled 

reflector, which has the disadvantage that the reflection amplitude 

varies among the peaks. Fortunately frequency coverage can be 

achieved without using repeat mode tuning for all peaks, at the cost 

of slightly higher tuning currents. As mentioned the suppression of reflection peaks adjacent to the ones that currently 

overlap is very sensitive to the phase. It can be shown that the phase difference, Ψ, at which these peaks add 

is Ψ=4πngrLeff(∆f2− ∆f1)/c0, where Leff is the average effective length of the reflectors counted from the beginning of the 

contacts, ∆fi is the peak separation in reflector i, and ngr is the group index in both reflectors. The expression shows that, just 

as in the SSG-DBR case, reflector pairs with high effective coupling constant (low Leff) or a small difference in peak 

separation will have less suppression of adjacent peaks. The example in Figure 2 however shows that the selectivity is much 

higher for the MGY case, at the cost of low suppression of peaks further away.  These peaks may cause problems only when 

the gain spectrum is not sufficiently flat over the intended tuning range. 

 

After designing the reflectors according to these design rules, a simulation was performed showing that all frequencies 

between 191.335 and 196.77 THz can be reached by tuning each reflector by less than 800GHz without readjusting the 

differential phase section. See Figure 3.  For the whole frequency range, the main aggregate reflection peak was at least 1.9 

times larger (in power reflection) than the second largest one. Since the differential phase section can be set to the same 

value for all operation points, it is tempting to take it away to shorten the laser. This is indeed possible although it requires 

careful control in manufacturing. Simulations show that a variation of ±1 radian in phase difference can be accepted with 

maintained frequency coverage. This corresponds to a difference in effective index of the waveguides of the order of ±0.01 

or a difference in the overall positioning of the reflector gratings of +-35nm, clearly achievable with electron-beam 

lithography. The elimination of the 4th tuning section reduces the control complexity to the level of an SSG-DBR. A further 

reduction in length can be achieved by letting the MMI together with the bends act as the common phase section. Then the 

length would be very close to a 3-section DBR laser achieving a larger tuning range although lower tuning currents are used. 

 

Due to the free carrier absorption, reflectivities are reduced with tuning. For the design described in the introduction, the 

simulations show that the effective reflection, as seen from the gain section, falls in the range between 10.5% and 17.8% for 

all operation points in the covered tuning range. Eliminating the differential phase section and letting the MMI and the bends 

double as a phase section, the effective reflectivities fall in the range between 15.6% and 26.4%. These are higher numbers 

than what can easily be achieved with the GCSR. Assuming a gain current of 150mA and a front facet reflectivity of 28%, 

the output power is estimated to vary between 13 mW and 16 mW, for the shortened design. Applying an AR coating of 5% 

is estimated to boost the output power to values between 25 mW and 28 mW. 

 

The MGY is currently under production and further progress will be reported at the conference. This work has been 

supported by the EU via the IST project IST-2000-2844 NEWTON. 
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Figure 3. Peak frequency for the 

aggregate reflection in the MGY case. 
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