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Design of a wireless active sensing unit for localized structural
health monitoring
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SUMMARY

The recent years have witnessed an increasing interest in using wireless structural monitoring as a low-cost
alternative to tethered monitoring systems. Previous work considered wireless sensors strictly as passive
elements in the monitoring system, responsible only for collection of response measurements. This paper
explores expansion of the wireless structural monitoring paradigm by including actuation capabilities in the
design of a wireless active sensing unit. To validate the performance of the prototype unit in structural
health monitoring applications, an aluminum plate monitored by piezoelectric active sensors is used.
Piezoelectric actuators mounted to the surface of the plate are commanded by the wireless active sensing
unit to excite and record the element. System identification models are then used to model the linear
relationship between the input excitation and the corresponding plate response. A novel damage detection
methodology is proposed that uses the characteristic equation roots obtained from an autoregressive with
exogenous input time-series model. Complex roots (poles) of the model’s characteristic equation are
sensitive to structural damage causing a change in their location on the complex plane. Using the mean
value of pole clusters, the migration of model poles are shown to be well correlated to the severity of crack
damage intentionally introduced in the plate. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Civil structures are expensive assets that contribute to the long-term prosperity of society. In
recent years, many critical civil structures have been deemed to be in deteriorating states as a
result of poor long-term maintenance or excessive loading. For example, a significant portion of
the national inventory of highway bridges in the United States are rated structurally deficient
because they carry traffic loads that exceed those anticipated when the bridges were initially
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designed [1]. Furthermore, civil structures located in regions of high seismic activity can sustain
major damage during strong earthquakes. Recognizing the pressing nature of these safety issues,
the structural engineering community routinely prescribes inspection of civil structures to search
for signs of deterioration and damage. Inspection methods that are available include visual
inspection and nondestructive evaluation (NDE). While many of these inspection methods have
played major roles in assessing structural health, they suffer from some limitations. For
instance, visual inspections can only assess structural health from external signs of structural
distress and are dependent on the judgment of the inspector; NDE techniques, including
ultrasonic acoustic inspection, are local approaches to structural inspection that can be labor-
intensive, time-consuming and expensive.

An alternative to visual and NDE inspection is the use of permanent structural monitoring
systems that record the response of civil structures to live loads. Structural monitoring systems
employ a variety of sensors that communicate measurements via coaxial wires to centralized
data repositories, where data is recorded for future engineering analysis. In particular, in areas
where earthquakes pose a serious risk to civil structures, structural monitoring systems are often
mandated by local law for structures of sufficient size [2]. The benefits gained by continuously
monitoring civil structures are many: repositories of structural response data can be used to
obtain better understanding of structural performance, to assess the effectiveness of current
design methodologies and to identify the existence of structural damage. When the monitoring
system is able to autonomously interrogate sensor measurements for indications of structural
damage, the system is known as a structural health monitoring system. The scope (global versus
local) of the damage detection method is strongly influenced by the monitoring system’s
underlying sensor topography. Many of the damage detection algorithms proposed by the
structural engineering community consider changes in global structural vibration characteristics
as indicators of damage [3]. The impetus for using global vibration characteristics can be
attributed to monitoring systems employing low sensor densities intended to only capture global
structural behavior. Low sensor densities are a result of the high costs of installing cable-based
monitoring systems, often in excess of $5000 per sensor [4]. The onset of structural damage in
civil structures is a local phenomenon that is poorly manifested in global vibration
characteristics. Furthermore, monitoring systems with low sensor densities capture only low-
order system modes that also exhibit sensitivity to the environmental and operational variability
common of civil structures. Increases in the density of sensors installed in large-scale civil
structures is needed to better capture local structural behavior and high-order response modes
so that damage detection methods will be better able to identify the initiation of structural
damage.

With electronic and computing technologies declining in cost while improving at rates
espoused by Moore’s law [5], a reevaluation of the design of structural monitoring systems is
warranted. In particular, modern technologies developed in related engineering disciplines can
be adopted to broaden the capabilities of current structural monitoring systems while reducing
their installation costs. In lieu of extensive cabling, Straser and Kiremidjian [6] first proposed the
integration of wireless communications with sensors to reduce the cost of structural monitoring
systems. Lynch [7] has extended on Straser and Kiremidjian’s seminal work by enhancing the
functionality of wireless sensors by integrating embedded microcontrollers with them. With
computational power coupled with sensors, engineering algorithms can be embedded in the
computational cores of wireless sensors for real-time execution. Lynch et al. [8] recently
illustrated the utility of sensor-based data interrogation by embedding damage detection
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algorithms in a wireless sensing unit. Wireless sensors that autonomously process measurement
data for damage prognosis can serve as building blocks of future structural health monitoring
systems. To validate wireless monitoring of real civil structures, a structural monitoring system
consisting only of wireless sensing unit prototypes was successfully used to monitor the Alamosa
Canyon Bridge in New Mexico during forced vibration testing [7]. Aside from academic
prototypes explicitly designed for structural monitoring, a number of generic commercial
wireless sensor systems have been used by researchers during laboratory and field testing of
structures [9, 10]. As the field of wireless sensors rapidly evolves, costs will continue to decline
and greater nodal densities will be employed.

The sensors used in permanent monitoring systems are passive devices that only record
the behavior of the structure during ambient and forced vibrations. Recently, active sensors
have received attention as a promising monitoring technology that could improve a structural
health monitoring system’s ability to quantify structural damage. Active sensors are
sensors with an ability to initiate vibrations in a structure and to record the corresponding
structural response to those vibrations. An attractive feature of active sensing is the ability
to repeatedly apply the same excitation on the structure}a convenience not afforded by
ambient or seismic loads. Active sensing encompasses many familiar NDE monitoring
tools including impact echo and ultrasonic wave testing. The growing interest in the active
sensing field lies in the increased availability and reduced cost of piezoelectric materials.
A piezoelectric material expands when a voltage potential is applied; conversely, such materials
will generated an internal electric potential when strained. This symmetrical mechanical–
electrical property of piezoelectric materials has motivated their use as both strain sensors
and actuators. With respect to damage prognosis, piezoelectric pads are widely used as
conformable surface mounted actuators for imparting Lamb waves into structural plates. Many
researchers have correlated the time-of-arrival and attenuation properties of Lamb waves with
crack and delamination damage in plates [11–14]. Others have illustrated the sensitivity of a
piezoelectric pad’s electrical impedance to damage when the structural damage is in the vicinity
of the mounted pad [15].

To take advantage of active sensing technologies for monitoring the long-term health of civil
structures, the wireless sensing paradigm can be further extended to include actuation
capabilities. In this study, a convergence of wireless communications, mobile computing,
sensors and actuators is proposed for the design a wireless active sensing unit capable of
interacting with the structure in which it is installed. With the capability to actuate, sense and
compute, the wireless active sensing unit is a self-contained intelligent agent ready to play ever
greater roles in structural health monitoring applications. While any actuator type can be
considered for use with the proposed wireless active sensing unit, piezoelectric actuation will be
used for illustrative purposes in this study. To validate the performance of the proposed wireless
active sensing unit design, an aluminum plate with two piezoelectric elements epoxy mounted to
its surface will be studied. The wireless active sensing unit will command one piezoelectric pad to
emit broad-band surface acoustic waves, while the sensing interface simultaneously records
attenuated waves received at a second pad. Input–output response data of the aluminum plate
fully characterizes the linear behavior of the structural element. As such, time-series system
identification models formed from the data can be used to identify the existence of crack damage
in the plate. In particular, the roots of an autoregressive model’s characteristic equation will be
shown to exhibit sensitivity to damage. The paper will conclude with a discussion of the
pertinent research findings and suggest future research directions.
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2. HARDWARE DESIGN OF THE WIRELESS ACTIVE SENSING UNIT

Herein proposed, is the design of a wireless active sensing unit capable of: (1) commanding
active sensors and actuators; (2) collecting structural response measurements from sensors; (3)
storing and interrogating measurement data collected; and (4) communicating data to a wireless
sensing network comprised of other wireless sensors. To accomplish these tasks, the
architectural design of the wireless active sensing unit can be delineated by four functional
modules: the computational core, the sensing interface, the actuation interface and the wireless
communication channel. Hardware components will be selected based on their ability to satisfy
the performance requirements of the wireless active sensing unit. Unlike previous wireless
sensing unit designs, integration of an actuation interface that can command active sensors will
place imposing performance demands on the unit design. For example, Lamb wave generation
in structural elements using piezoelectric pads will require the actuation and sensing interfaces
to operate at high sample rates in excess of 1 kHz. The performance goals of the sensing and
actuation interfaces represent a significant challenge of the proposed unit design; as such, other
design issues, such as power consumption, will not be a primary focus in this study. To keep the
total cost of the wireless active sensing unit prototype low, an off-the-shelf design strategy will
be employed with only commercial hardware components considered. Figure 1 is an
architectural overview of the wireless active sensing unit design with all the electrical
components delineated.
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Figure 1. Proposed hardware design of a wireless active sensing unit for
health monitoring of civil structures.
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At the center of the wireless active sensing unit design is the computational core. Similar to
previously proposed wireless sensing unit designs, the 32-bit Motorola MPC555 PowerPC
microcontroller is selected as the core’s primary hardware component [7]. Selection of the
MPC555 is motivated by its high-speed clock frequency (40MHz) and its sophisticated internal
arithmetic and logic unit capable of executing floating-point calculations in hardware. High
processor speeds are necessary to operate high-frequency piezoelectric elements envisioned for
use with the wireless active sensing unit. Internally integrated with this fast processor is
448 kbytes of read-only memory (ROM) where firmware will be stored for unit operation and
embedded data processing. Since only 26 kbytes of internal random-access-memory (RAM) is
included in the MPC555, 512 kbytes of external static RAM (SRAM) is added to the unit design
for data storage. The read and write operations to the external memory take two clock cycles to
complete and are slower than those to internal memory that take one cycle. Therefore, for
applications demanding high sample rates, data collected from the sensing interface will be
written first to internal memory. After the data has been collected and real-time constraints are
no longer imposing, the measurement data will be transferred automatically from internal to
external memory.

The 10-bit analog-to-digital converter (ADC) that is included with the MPC555 will be used
as the sole sensing interface of the wireless active sensing unit. The sensing interface can
accommodate the collection of structural response data from analog sensors connected to the 32
simultaneous sensing channels readily available. A particularly convenient feature of the on-
chip ADC is its maximum sample rate of 100 kHz. A high sample rate is useful when using the
wireless active sensing unit for recording the response of structural plates to Lamb waves. To
ensure the real-time demands of the data acquisition tasks are met and that data is read from the
ADC on a precise timing schedule, interrupt services included in the MPC555 will be utilized by
software.

In designing the actuation interface, versatility is sought so that the unit will be able
to command any actuation technology including piezoelectrics, impact hammers and
structural control devices, just to name a few. Therefore, to achieve an actuator-transparent
interface, the interface will need to be designed so that it will be able to output a broad
spectrum of voltage signals. At the core of the actuation interface is a digital-to-analog
converter (DAC) that converts digital command signals generated by the MPC555 into
analog representations acceptable for commanding actuators. The Texas Instruments
DAC7624 is a 12-bit converter well suited for the task. The DAC7624 accepts 12-bit digital
samples in parallel and outputs a zero-order-hold (ZOH) analog signal from 0 to 2.5V on
four selectable channels. To attain the minimum settling time, only one channel of the
quad-DAC is utilized in the actuation interface design. The settling time associated with
each conversion is 10 ms, allowing digital data streams of up to 100 kHz. However, the DAC
output range of 0–2.5V is inadequate for commanding devices that require negative
command signals. Therefore, the output signal of the DAC is fed to an instrumentation
amplifier where the signal is range shifted and amplified. An Analog Devices AD620 amplifier
is chosen to shift the DAC output to a zero mean (from 1.25V) and to amplify fourfold.
This will result in an actuation interface capable of outputting command voltages from
–5 to +5V using a 12-bit digital command signal issued by the MPC555. To assist the
amplifier in range shifting the signal, the Analog Devices ADP667 voltage regulator is included
in the actuation interface circuit. After the actuation interface is constructed in hardware,
embedded firmware is written for the MPC555 to operate the interface with precise timing. To
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allow the DAC output sufficient time to settle, the maximum sample rate of the actuation
interface is set at 100 kHz.

The wireless communication channel integrated with the wireless active sensing unit will
immediately alleviate the burden of installing and maintaining cables in a structure. However,
to be an effective substitute for cables, wireless radios chosen for integration with the wireless
active sensing unit must be low-cost, far reaching and highly reliable. Previous wireless sensing
unit designs have employed wireless modems such as the Proxim ProxLink and Proxim
RangeLAN2 radio modems [7,16]. While both Proxim radios can propagate over 300m in
unobstructed open space, they consume over 150mA of electrical current when transmitting and
receiving data. To improve the power consumption characteristics of the wireless active sensing
unit, a new wireless radio is considered for integration; in particular, the MaxStream 9XCite
radio is chosen. The 9XCite communicates on the unregulated 900MHz radio band and can
communicate with over-the-air data rates of 38.4 kbits per second. The open space
communication range of the radio is 300m but is approximately 90m when used in the interior
of structures [17]. In contrast to the Proxim modems, the 9XCite radio only consumes 55mA
when transmitting data and 35mA when receiving data. Use of the 9XCite radios reduce by at
least one-third the power consumption demands of the Proxim radios without sacrificing open-
space communication range. When the radios utilize the wireless channel, frequency hopping
spread spectrum encoding is employed so that the radio channel is reliable and exhibits
resilience to narrow-band interference.

After all of the electrical components have been selected, they are appropriately assembled to
form a single prototype unit. To produce a prototype unit of the smallest form factor possible,
the unit’s functional modules (microcontroller, actuation interface and wireless modem) are
housed on separate printed circuit boards that are stacked onto one another. While board
stacking allows the unit form factor to be minimized, the approach will also render future
hardware upgrades easier to complete. First, the Motorola MPC555 is purchased as a small
starter development kit from Axiom (PB-555) where the microcontroller is mounted on a small-
footprint (9� 9 cm) printed circuit board. The output pins of the MPC555 are provided as
header rows on the development kit board. The header rows of the Axiom board will be
conveniently used to mount custom-made printed circuit boards on top. To house the actuation
interface circuit and the external SRAM chip, a two-layer printed circuit board is designed and
fabricated. This actuation interface/memory circuit board is design with dimensions close to
those of the MPC555 board (10� 10 cm). The MaxStream wireless radios are purchased from
the manufacturer on their own circuit board (4� 7 cm) and are placed as a third layer over the
actuation interface circuit board. Figure 2 shows clearly the stack of printed circuit boards
(three in total) assembled as a compact wireless active sensing unit. The final dimensions of the
fully assembled wireless active sensing unit are 11� 10 cm in area and 4.5 cm in height. The cost
of constructing the prototype, including the cost of the wireless modem, is approximately $230.
It should be noted that the final cost and size of the wireless active sensing unit are both limited
by the resources available in the study’s academic setting; industrial commercialization of the
technology would reduce both cost and size by at least half. Table I summarizes the
performance attributes of the proposed wireless active sensing unit prototype design.

Batteries represent the most probable power source for the wireless active sensing unit.
However, wireless active sensing units embedded in infrastructure systems could reside in
difficult-to-reach locations, making battery replacement a daunting task. Therefore, the power
consumption characteristics of the wireless active sensing unit are of paramount concern. In
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designing this prototype, unit functionality was of primary importance and designing the unit to
be low-power, secondary. Future refinements on the current wireless active sensing unit design
will emphasize the power consumption of the unit. From a usage standpoint, local data
interrogation at the wireless sensor has been identified as a mechanism by which considerable
battery power can be preserved [8]. Lithium-based batteries are considered for adoption with the
wireless active sensing unit. Lithium batteries are superior to their alkaline counterparts because
their output voltages remain constant over their operational lives and exhibit minimal
deterioration when left unused for long periods of time. To assess the life expectancy of a
lithium battery pack, the power demands of the individual components of the wireless active

Figure 2. Fully constructed wireless active sensing unit: (a) perspective; (b) top; (c) side views.

Table I. Summary of the wireless active sensing unit hardware specifications.

Prototype subsystem Attribute specification

Actuation interface Signal type Voltage
(1 channel) Output range –5 to +5V

Resolution 12-bits
Maximum sample rate 100 kHz

Sensing interface Signal type Voltage
(32 channels) Input range 0 to +5V

Resolution 10-bits
Maximum sample rate 100 kHz

Computational core Clock speed 40MHz
(Motorola MPC555) Floating point Hardware

ROM (Internal) 448 kbytes
RAM (Internal/External) 26 kbytes/512 kbytes

Wireless communications ISM frequency band 900MHz
(Proxim 9XCite) Encoding Frequency hopping

Range (open space) 300m

Copyright # 2005 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2005; 12:405–423

STRUCTURAL HEALTH MONITORING BY WIRELESS ACTIVE SENSING 411



sensing unit are calculated. The entire wireless active sensing unit requires 170mA of electrical
current referenced at 5V (which includes a conservative estimate of the electrical current
required to drive piezoelectric actuation elements). Using a single battery pack consisting of four
3V Panasonic BR-C polycarbon-monoflouride lithium batteries, each with a nominal capacity
of 5000mAh, the wireless active sensing unit would be capable of uninterrupted operation for
approximately 30 h [18]. Naturally, duty cycle usage of the unit would be able to extend the life
of the unit to one or two years before battery replacement would be necessary.

3. EMBEDDED FIRMWARE FOR REAL-TIME DATA ACQUISITION

Once the hardware is fully assembled into a wireless active sensing unit, software is required to
manage the sensing and actuation interfaces, execute embedded engineering analyses and to
exchange information with other units in the monitoring system’s wireless network. The high-
level programming language C is chosen for writing software for the MPC555 microcontroller.
To produce portable and high-quality code, the software is structured into three software
modules (the sensing interface module, the actuation interface module, and the wireless channel
module), each combining functions related to the same hardware subsystem. After compilation
into binary machine code, the software is then burned into the MPC555 ROM memory banks
for autonomous execution.

To meet the real-time demands of the sensing and actuation interfaces, both software modules
must take advantage of the interrupt services provided by the MPC555 microcontroller.
Interrupt services are a common feature included with microcontrollers to provide the
opportunity to asynchronously interrupt software execution in order to service a subroutine that
requires completion at a specific period in time. The sensing interface consists of the 10-bit
analog-to-digital converter (ADC) that is contained in the MPC555 microcontroller’s queued
analog-to-digital converter module (QADC). The software module written to operate the
sensing interface consists of functions that initialize the QADC, set the QADC clock and service
the MPC555 interrupt signals when generated by the QADC, indicating the completion of an
ADC conversion. Using the interrupt services, the ADC is read at a guaranteed time interval by
the software module at sample rates as high as 100 kHz.

With the actuation interface constructed as a separate circuit external to the MPC555, real-
time operation of the interface represents a more complex and challenging task. The Texas
Instruments DAC7624 digital-to-analog converter (DAC) included in the actuation interface
receives 12-bit digital data in parallel fashion (all bits presented at once). Additional control
lines (CS and LDAC) are needed between the microcontroller and DAC that limit conversions
to sample rates of 100 kHz or less. To control the DAC conversion process, the general purpose
input–output ports (MGPIO and MPWM) of the MPC555 microcontroller are employed. The
12-bit digital sample is output by the MGPIO port to the DAC7624 while the MPWM port is
reserved for the control lines. The software module written to operate the actuation interface is
essentially controlling the MGPIO and MPWM input–output ports of the MPC555. To
establish a precise sample rate, the internal time processing unit (TPU) of the MPC555
microcontroller is used to generate a time signal tied to the interrupt services that will preempt
software execution in accurately timed intervals. When the TPU interrupt is executed, an
interrupt service routine loads data in the DAC and then initiates the conversion by bringing the
CS and LDAC pins low.
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To validate the real-time performance of the actuation interface, the interface’s analog output
is connected to an Agilent 54621D mixed signal oscilloscope that will record the signal. Various
waveforms are generated by the MPC555 and output by the actuation interface. First, a simple
sine wave shown in Figure 3, is generated by the MPC555 at a low frequency of 1.35Hz. To
generate the sine wave, a software math function is executed at each time-step to calculate the
value of the sine function at that period in time. Execution of software to calculate the actuation
output at each step is done to validate the ability to use the wireless active sensing unit in
feedback control applications. The approach of generating a sine signal at each time step can
consume significant amounts of processor time resulting in diminished performance at higher
sine signal frequencies. Using the same approach, the sine signal frequency is increased to
160Hz where the zero-order-hold (ZOH) of the DAC output becomes well pronounced. The
sample rate of the DAC in this case is set to a value that permits ample time for the sine function
to calculate an output value. In the case of the 160Hz sine signal, the DAC is commanded at
5.1 kHz. Clearly, higher frequency sine signals become increasingly difficult with ZOH effects
dominating the signal output.

For applications where the output signal of the wireless active sensing unit is known a priori,
an alternative approach to generating an output signal can be taken. To achieve high sample
rates with minimal ZOH effects dominating the output signal, the desired output signal can be
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Figure 3. Waveforms generated by the wireless active sensing unit actuation interface.
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generated and stored in memory first. After the signal time-history has been stored, the signal
can be executed by the actuation interface directly from memory. This approach eliminates the
software overhead that would exist if the output has to be calculated. While the actuation
interface can now be operated at higher sample rates, latencies in servicing MPC555 interrupts
prevent the theoretical maximum sample rate of 100 kHz from being achieved. Precision timing
of the interface reveals the maximum permissible sample rate possible by using buffered memory
for the output signal is 50 kHz. To validate the buffered memory approach, a 4 kHz sine wave is
generated at a sample rate of 50 kHz and stored in memory prior to its output via the actuation
interface. As shown in Figure 3, the high-rate sine signal is of relatively high quality, but ZOH
effects dominate the signal.

To validate the ability of the actuation interface to generate linear signals, a 19Hz triangle
waveform is generated and output by the actuation interface. In a similar fashion, a high-
frequency square waveform is generated to assess the output when held at a fixed voltage
output. Some overshoot behavior is observed in the signal at the start of high and low regions.
The signal also reveals some inherent white noise output by the DAC. In the last validation test,
a Morlet waveform, widely used for generation of Lamb waves, is buffered in memory and
output [13].

4. PIEZOELECTRIC ACTUATED ALUMINUM PLATE EXPERIMENT

The wireless active sensing unit coupled with active sensors could potentially be used to monitor
a structure for the existence of crack damage. Using piezoelectric actuators mounted to the
surface of metallic structural elements, Lamb waves can be generated for propagation through
the structural element with corresponding element responses recorded. A number of researchers
have investigated the use of Lamb waves and piezoelectric active sensors for the detection of
structural damage. Sohn et al. [13] illustrate the use of piezoelectric actuators to generate Lamb
waves in composite plates to identify delamination damage present in the plate. Taniguchi and
Mita [19] have explored the application of pattern recognition and support vector machines
(SVM) to screen a structure for damage based on the system’s transient response to piezoelectric
generated excitations.

To illustrate the role the proposed wireless active sensing unit could play in an automated
structural health monitoring system, the prototype unit is used to identify crack damage in a
structural element excited by active sensors. In particular, an aluminum plate to which
piezoelectric pads have been surface mounted is intentionally cut to simulate crack damage.
Using the wireless active sensing unit, the plate is excited with broadband acoustic excitations
using one piezoelectric pad while a second pad is used to record the plate’s corresponding strain
response. For each set of input–output responses, autoregressive with exogenous input (ARX)
time-series models are fit. Roots of the ARX model characteristic equation will be used to
identify the occurrence and severity of structural damage within the aluminum plate.

4.1. Aluminum plate experiment setup

A cantilevered aluminum plate is chosen to serve as the structural element to which the
piezoelectric actuators will be mounted. The plate is 0.3175 cm thick and has an area
approximately 6.8� 28.6 cm in size. Piezoelectric actuators have been selected for excitation of
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the plate because their high-frequency operational spectrum can uniquely illustrate the
performance of the wireless active sensing unit in high-speed sample rate applications. In this
study, lead-zirconate-titanate (PZT) piezoelectric pads purchased from Piezo-systems, Inc. will
be employed. A 0.191-mm-thick PZT sheet (T105-A4E-602) is cut to obtain small pads
approximately 1.43� 1.43 cm in area. The PZT pads are nickel plated on both sides to render
soldering of electrical connections easy. As shown in Figure 4, the piezoelectric pads are epoxy
mounted to the top surface of the plate, 18.9 cm apart from each other. One pad is designated as
the transmitting pad to be attached to the actuation interface of the wireless active sensing unit.
The second pad is designated as the receiver and is connected to the unit’s sensing interface.
Based on commands issued by a remote computer via the wireless link, the wireless active
sensing unit will excite the transmitting pad through the actuation interface with a variety
of input signals pre-stored in memory. As the unit commands the transmitting pad, the
unit will simultaneously collect the response of the plate, as measured by the second PZT pad,
and store the input–output data in memory. Response data is subsequently transmitted to
the remote computer by the wireless active sensing unit after the test is completed. To illuminate
high-order response modes in the plate, both the sensing and actuation interfaces are operated
at 40 kHz.

Numerous excitations can be considered for exciting the aluminum plate, but broadband
white noise signals are chosen for this study. White noise signals are used because they are
defined by constant power spectrums that will excite all of the aluminum plate modes that fall
below the Nyquist frequency (20 kHz). In total, a set of 10 white noise signals with varying levels
of energy are stored in the wireless active sensing unit memory for repeated excitation of the
plate. The white noise signals have standard deviations varying from 0.3 to 1.2V in 0.1V
increments. All of the excitation signals are within the � 5V saturation limits of the actuation
interface and draw little power from the wireless active sensing unit power supply. Figure 5 is
the 1.0V standard deviation white noise signal applied to the plate by the wireless active sensing
unit and the corresponding plate response measured by the second PZT pad. Input–output time-
histories of the other white noise excitations are similar to those presented in Figure 5.
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Figure 4. A cantilevered aluminum plate monitored by a wireless active sensing unit and PZT piezoelectric
pads mounted to the plate surface.
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4.2. System identification of the aluminum plate system

To provide a mathematical model for the aluminum plate behavior, system identification time-
series models can be formed from the plate’s input–output time-history response data. From the
large number of time-series models available, the ARX time-series model is selected for this
study. ARX models are essentially linear difference equations that weigh past observations of
the system output, y, with those of the system input, u, to make a prediction of the system
output, #y; at time step k:

#yðkÞ ¼ �a1yðk� 1Þ þ � � � � anayðk� naÞ þ b1uðk� 1Þ þ � � � bnbuðk� nbÞ ð1Þ

The weights on the past observations of the system output are a, while those used for the
input are b. The model assumes the system to be linear time-invariant and requires the input and
output response data to both be stationary signals [20]. To accurately model the input–output
response time-histories using an ARX model, the size of the ARX model needs to be chosen a
priori. When fitting ARX models to system response data, the size of the model will dictate its
predictive qualities; generally, as sizes grow, model prediction errors will reduce. However,
models too large are not necessarily better because they over-fit the measurement data and
capture signal noise in addition to the system’s physical behavior. To select a suitable size for the
ARX models, two pairs of input–output time-history records are needed: the first is designated
for calculation of the model and the second to verify the model prediction error. Using the first
pair of input–output data, ARX model coefficients are calculated for various model sizes. Once
the model is determined, its predictive error is calculated using the calculation as well as the
validation data sets. The vector norm of the model’s prediction error is a scalar quantity widely
used to quantify the model’s quality. When the model size first begins to increase, the norm of
the prediction error of the ARX model using both sets of input–output data will rapidly
decrease. This indicates the larger models are capturing the structural system’s dynamics more

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
 -4

 -2

0

2

4
Input White Noise with Mean = 0 V and STD = 1.0 V

V

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2

3

4
Output Signal of Receiving Pad

V

t (sec)

Figure 5. (Top) excitation signal (1.0V STD) of the aluminum plate, and (bottom) corresponding plate
response (sample rate 40 kHz).
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completely. As the model size continues to grow, improvements in the model prediction error
will occur at an increasingly slower rate. At one point, larger models will start to include signal
noise; at this point, the prediction error of the second verification data set will begin to increase.
As illustrated in Figure 6, an acceptable range of model orders are those that fall between the
point where the calculation data set error reduces at a slow rate and the point where the
prediction error of the verification data set begins to increase. For the aluminum plate, the 0.3V
excitation input–output response histories are chosen as the calculation data set for the ARX
models and the 0.4V input–output response time-histories are selected as the verification data
set. The selection of these two input–output data sets was arbitrary. Using these two data sets,
the optimal number of weights on the ARX model inputs and outputs, denoted na and nb
respectively, is determined to be na=21 and nb=4.

Once the appropriate ARX model order has been established, ARX time-series models can be
calculated from the input–output response history of the aluminum plate system. A least-
squares estimation approach is taken to find the optimal ARX coefficients by minimizing a
quadratic cost function of the model error time-history, eðkÞ ¼ #yðkÞ � yðkÞ: To employ a least-
squares solution for finding the optimal ARX model coefficients, the input–output response of
the plate is assembled into a matrix form with the ARX model difference equation written for
each output observation of the system:

y¼

yðna þ 1Þ
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Figure 6. Behavior of the ARX prediction error as a function of the model size.
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It is generally assumed that more response samples are collected than the number of
coefficients used in the ARX model ðN >> nb þ naÞ: In this case, the measurement matrix, A, will
be over-determined and full rank. To find the vector of ARX model coefficients, c, the least-
squares solution of Equation (2) is given by:

c ¼ ðATAÞ�1ATy ð3Þ

After an ARX model is formed for the plate system in the time domain, the model is
transferred to the frequency domain. Provided the system is discretely sampled in time, the
Z-transform is used to derive the system transfer function in the complex Z-domain:

HðzÞ ¼
YðzÞ
UðzÞ

¼
b1z
�1 þ � � � b4z�4

1þ a1z�1 þ � � � a21z�21
ð4Þ

The motivation for converting the ARX model to the complex frequency domain is to obtain
from the resulting transfer function, the frequencies and damping ratios of the system’s response
modes. In particular, the denominator of the transfer function is the polynomial characteristic
equation of the linear system. An interesting feature of the characteristic equation is that the
complex roots of the equation, also termed poles, embody the frequency o and damping ratio x
of each uncoupled response mode (where T is the time-step of the sampled system):

zROOT ¼ e
�xon�on

ffiffiffiffiffiffiffiffi
1�x2

p
j

� �
T

ð5Þ

The poles of the system transfer function can be drawn upon the real–imaginary complex
plane. Poles within the unit circle are denoted as stable, while those outside the unit circle
represent unstable modes of the system. The complex plane is an incredibly powerful
visualization tool widely used in the design of feedback control systems. Upon the complex
plane, contours of constant frequency and damping can be superimposed with the plotted poles
to provide visual reference of pole frequency and damping values. For this reason, the complex
plane will be used in this study as an expressive domain to analyze if a structure should be
characterized as damaged or undamaged.

4.3. Identification of crack damage in the aluminum plate

To simulate cracking of the aluminum plate, a hacksaw is used to introduce a cut between the
PZT pads that is orthogonal to the plate’s longitudinal axis, as shown in Figure 4. The plate is
cut in multiple steps, resulting in simulated cracks of various lengths. In total, three cuts are
incrementally made: 1, 2 and 3 cm long. The 10 white noise excitations stored in the wireless
active sensing unit memory bank are identically applied to the aluminum plate when it is
undamaged and when it is cut. In total, 10 ARX models are fit to the input–output response
pairs for the plate in each structural state. Using the calculated ARX model coefficients, the
poles of the ARX model transfer function are determined. For each ARX model, a total of 21
poles are determined with the first pole a real number and the remaining 20 poles as 10
conjugate pole pairs. It is hypothesized that, as damage is introduced in the aluminum plate, the
stiffness and damping properties of the plate change, resulting in a detectable change in the
location of poles upon the complex plane. Plotted in Figure 7 are the ARX model poles
corresponding to the undamaged aluminum plate. Superimposed on the complex plane with
dotted lines are contours of constant damping originating from z=1 and contours of constant
frequency originating from the unit circle boundary. When the poles are plotted for the 10
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excitation sources, the poles naturally form 21 clusters with variability of the poles evident for
each cluster. The variability in pole location can be attributed to low levels of electrical noise
within the wireless active sensing unit actuation and sensing interfaces. Bivariate normal
probability density functions are estimated for each pole cluster of the plate in the undamaged
and damaged states. Superimposed with each pole cluster in Figure 7 is an elliptical level curve
representing the first standard deviation of the estimated normal density function.

The location of ARX pole clusters exhibit sensitivity to cracks introduced in the aluminum
plate. Furthermore, as the crack in the aluminum plate grows, some of the ARX model pole
clusters migrate on the complex plane in concert with the cut length. The normal probability
density functions for each pole cluster are tracked upon the complex plane as the plate is
incrementally damaged. While all of the clusters exhibit some migration, it is observed that pole
clusters 2, 6 and 12 exhibit the greatest sensitivity to the growing cut. Figure 8 presents the
migration of the estimated normal density function for each of these damage sensitive pole
clusters. For all three clusters, a significant change in the cluster location is experienced when
damage is first introduced in the plate. For the 1-cm-long cut, the mean of the pole cluster is
outside of the level curve corresponding to the first standard deviation of the normal density
function of the undamaged plate; clearly, this is a statistically significant migration. As damage
is increased, the means of the pole clusters move an increasing distance away from the
corresponding undamaged plate’s clusters. The absolute difference between the estimated
normal density function mean of the damaged and undamaged plate is measured for each cut
length. Also presented in Figure 8 for clusters 2, 6 and 12, are plots of the norm of the complex
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change in cluster mean for each cut length; clearly, the cluster means increase in tandem with the
growing cut length. Superimposed upon the same plots are dashed and dotted lines that
represent the standard deviation of the estimated normal density function in the real and
imaginary coordinates, sRe and sIm, for the undamaged plate clusters. The intention of
superimposing these standard deviations is to provide a benchmark for assessing the statistical
significance of the pole cluster migrations. For the 1-cm-long cut, the absolute mean difference
for cluster 2 and 6 is approximately equal to the standard deviations of the estimated normal
density function of the undamaged plate. However, as the cut lengthens, the migration of the
cluster becomes increasingly significant as shown. As a result of symmetry in the complex plane,
clusters 3, 7 and 13 behave in identical manner to clusters 2, 6 and 12 respectively. The other
seven remaining pole clusters exhibit only minor sensitivity to the introduction of crack damage
with clusters migrating within the first standard deviation of the cluster for the undamaged
plate.

The method proposed for identifying crack damage in the aluminum plate shares many
similarities with damage detection methods previously proposed that considered shifts in the
natural frequency of the dynamic system modes. This method is potentially more powerful
because system poles contain information on both modal natural frequencies and damping
ratios. For many of the cut lengths, the additional damage resulted in pole cluster migrations
consistent with changes in frequency, damping, or a combination of the two. Had only
frequency been considered, many of the pole migrations corresponding in changes in the
damping would not have been detected.

There exists a strong relationship between the modal frequencies calculated from frequency
response functions and the poles on the complex plane. The transfer function of Equation (4)
can be determined for every location on the complex plane, except at the pole locations where
H(z) is infinite. Hence, the transfer function describes a three-dimensional contour above the
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complex plane. If this transfer function contour is sliced along the unit circle, the discrete
frequency response function would be derived. Hence, peaks that correspond to modal
frequencies in the frequency response functions are really the result of poles in the complex
plane pulling the transfer function contour towards infinity. In essence, the discrete frequency
response function is a two-dimensional subset of the more complex three-dimensional transfer
function contour.

5. CONCLUSIONS

To reduce installation costs and enhance functionality, innovative technologies are currently
being adopted in structural monitoring systems. This study has explored an extension of the
wireless structural monitoring paradigm by tightly integrating with a wireless sensing unit, the
ability to actuate. Providing a means for direct interaction with the physical system in which it is
installed, wireless active sensing units can play a major role in structural health monitoring
systems. The design of an actuation interface ensures the unit is capable of commanding active
sensors, impact hammers and large-scale actuators. After selecting optimal hardware
components, the components are assembled into a compact wireless active sensing unit whose
volume is less than 500 cm3 and whose cost is approximately $230. Various validation studies
are performed to assess the capabilities of the actuation interface. The result of these waveform
output tests revealed excellent outputs defined by low noise and high accuracy. However, the
tests reveal code latencies that reduce the effective maximum sample rate of the actuation
interface to 50 kHz.

To illustrate the role the prototype wireless active sensing unit might play in future structural
health monitoring systems, a simple laboratory experiment is devised for illustration. An
aluminum plate, with two PZT piezoelectric pads epoxy mounted to its surface, is monitored by
the wireless active sensing unit for signs of damage. The study proposes a novel interrogation
approach for detecting crack damage in metallic structural elements. Using the characteristic
equation roots of ARX models fit to the input–output response data, damage can be
successfully identified in the aluminum plate. In particular, a set of broadband excitations are
applied to the plate in a given structural state (undamaged versus damaged) so that the
distribution of ARX model poles upon the complex plane can be statistically described using
estimated bivariate normal probability density functions. As damage is introduced into the
aluminum plate, an observable change the location of pole clusters upon the complex plane is
witnessed. The migration of the pole clusters were shown to be statistically significant by
comparing the absolute difference of cluster means with the standard deviations of the
undamaged plate’s estimated normal probability density functions. Hence, the cluster mean
appears to be a promising indicator of the existence of crack damage with the degree of cluster
migration strongly correlated with the length of the crack in the aluminum plate.

Future work will explore the improvement of the actuation interface of the wireless active
sensing unit design. Higher sample rates, in excess of 1MHz, are sought for selective excitation
of desired symmetric and antisymmetric plate modes using Lamb waves. The energy
consumption characteristics of the total unit can be further reduced by adopting microcon-
trollers that consume less power. The paper described a viable approach to identifying crack
damage in structural elements. With the approach proven to identify damage, firmware is
currently being written to allow the wireless active sensing unit to autonomously execute the
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methodology. The pole migration method proposed in this study was only intended to assist in
illustrating the capabilities of the prototype design. Clearly, many other damage detection
methods that take advantage of an ability to actuate the structural system can also be
considered. Aside from damage detection, the wireless active sensing unit can be used in
structural control systems. Research efforts are already underway exploring the feasibility of the
technology for a number of control applications.
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