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Preface

During the last years, scientific computing has become an important research
branch located between applied mathematics and applied sciences and engi-
neering. Nowadays, in numerical mathematics not only simple model problems
are treated, but modern and well-founded mathematical algorithms are ap-
plied to solve complex problems of real life applications. Such applications are
demanding for computational realization and need suitable and robust tools
for a flexible and efficient implementation. Modularity and abstract concepts
allow for an easy transfer of methods to different applications.

Inspired by and parallel to the investigation of real life applications, nu-
merical mathematics has built and improved many modern algorithms which
are now standard tools in scientific computing. Examples are adaptive meth-
ods, higher order discretizations, fast linear and non-linear iterative solvers,
multi-level algorithms, etc. These mathematical tools are able to reduce com-
puting times tremendously and for many applications a simulation can only
be realized in a reasonable time frame using such highly efficient algorithms.

A very flexible software is needed when working in both fields of scientific
computing and numerical mathematics. We developed the toolbox ALBERTA!
for meeting these requirements. Our intention in the design of ALBERTA is
threefold: First, it is a toolbox for fast and flexible implementation of efficient
software for real life applications, based on the modern algorithms mentioned
above. Secondly, in an interplay with mathematical analysis, ALBERTA is an
environment for improving existent, or developing new numerical methods.
And finally, it allows the direct integration of such new or improved methods
in existing simulation software.

Before having ALBERTA, we worked with a variety of solvers, each designed
for the solution of one single application. Most of them were based on data
structures specifically designed for one single application. A combination of
different solvers or exchanging modules between programs was hard to do.

!The original name of the toolbox was ALBERT. Due to copyright reasons, we
had to rename it and we have chosen ALBERTA.
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Facing these problems, we wanted to develop a general adaptive finite element
environment, open for implementing a large class of applications, where an
exchange of modules and a coupling of different solvers is easy to realize.

Such a toolbox has to be based on a solid concept which is still open for ex-
tensions as science develops. Such a solid concept can be derived from a math-
ematical abstraction of problem classes, numerical methods, and solvers. Our
mathematical view of numerical algorithms, especially finite element methods,
is based on our education and scientific research in the departments for applied
mathematics at the universities of Bonn and Freiburg. This view point has
greatly inspired the abstract concepts of ALBERTA as well as their practical
realization, reflected in the main data structures. The robustness and flexible
extensibility of our concept was approved in various applications from physics
and engineering, like computational fluid dynamics, structural mechanics, in-
dustrial crystal growth, etc. as well as by the validation of new mathematical
methods.

ALBERTA is a library with data structures and functions for adaptive fi-
nite element simulations in one, two, and three space dimension, written in the
programming language ANSI-C. Shortly after finishing the implementation of
the first version of ALBERTA and using it for first scientific applications, we
confronted students with it in a course about finite element methods. The
idea was to work on more interesting projects in the course and providing a
strong foundation for an upcoming diploma thesis. Using ALBERTA in edu-
cation then required a documentation of data structures and functions. The
numerical course tutorials were the basis for a description of the background
and concepts of adaptive finite elements.

The combination of the abstract and concrete description resulted in a
manual for ALBERTA and made it possible that it is now used world wide in
universities and research centers. The interest from other scientists motivated
a further polishing of the manual as well as the toolbox itself, and resulted in
this book.

These notes are organized as follows: In Chapter 1 we describe the con-
cepts of adaptive finite element methods and its ingredients like the domain
discretization, finite element basis functions and degrees of freedom, numeri-
cal integration via quadrature formulas for the assemblage of discrete systems,
and adaptive algorithms.

The second chapter is a tutorial for using ALBERTA without giving much
details about data structures and functions. The implementation of three
model problems is presented and explained. We start with the easy and
straight forward implementation of the Poisson problem to learn about the
basics of ALBERTA. The examples with the implementation of a nonlinear
reaction-diffusion problem and the time dependent heat equation are more
involved and show the tools of ALBERTA for attacking more complex prob-
lems. The chapter is closed with a short introduction to the installation of the
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ALBERTA distribution enclosed to this book in a UNIX/Linux environment.
Visit the ALBERTA web site

http://www.alberta-fem.de/

for updates, more information, FAQ, contributions, pictures from different
projects, etc.

The realization of data structures and functions in ALBERTA is based on
the abstract concepts presented in Chapter 1. A detailed description of all
data structures and functions of ALBERTA is given in Chapter 3. The book
closes with separate lists of all data types, symbolic constants, functions, and
macros.

The cover picture of this book shows the ALBERTA logo, combined with
a locally refined cogwheel mesh [17], and the norm of the velocity from a
calculation of edge tones in a flute [4].

Starting first as a two-men-project, ALBERTA is evolving and now there
are more people maintaining and extending it. We are grateful for a lot of
substantial contributions coming from: Michael Fried, who was the first brave
man besides us to use ALBERT, Claus-Justus Heine, Daniel Késter, and Oliver
Kriessl. Daniel and Claus in particular set up the GNU configure tools for an
easy, platform-independent installation of the software.

We are indebted to the authors of the gltools, especially Jiirgen Fuhrmann,
and also to the developers of GRAPE, especially Bernard Haasdonk, Robert
Kléfkorn, Mario Ohlberger, and Martin Rumpf.

We want to thank the Department of Mathematics at the University of
Maryland (USA), in particular Ricardo H. Nochetto, where part of the docu-
mentation was written during a visit of the second author. We appreciate the
invitation of the Isaac Newton Institute in Cambridge (UK) where we could
meet and work intensively on the revision of the manual for three weeks.

We thank our friends, distributed all over the world, who have pointed
out a lot of typos in the manual and suggested several improvements for
ALBERTA.

Last but not least, ALBERTA would not have come into being without
the stimulating atmosphere in the group in Freiburg, which was the perfect
environment for working on this project. We want to express our gratitude to
all former colleagues, especially Gerhard Dziuk.

Bremen and Augsburg, October 2004
Alfred Schmidt and Kunibert G. Siebert
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Introduction

Finite element methods provide a widely used tool for the solution of problems
with an underlying variational structure. Modern numerical analysis and im-
plementations for finite elements provide more and more tools for the efficient
solution of large-scale applications. Efficiency can be increased by using local
mesh adaption, by using higher order elements, where applicable, and by fast
solvers.

Adaptive procedures for the numerical solution of partial differential equa-
tions started in the late 70’s and are now standard tools in science and en-
gineering. Adaptive finite element methods are a meaningful approach for
handling multi scale phenomena and making realistic computations feasible,
specially in 3d.

There exists a vast variety of books about finite elements. Here, we only
want to mention the books by Ciarlet [25], and Brenner and Scott [23] as
the most prominent ones. The book by Brenner and Scott also contains an
introduction to multi-level methods.

The situation is completely different for books about adaptive finite ele-
ments. Only few books can be found with introductory material about the
mathematics of adaptive finite element methods, like the books by Verfiirth
[73], and Ainsworth and Oden [2]. Material about more practical issues like
adaptive techniques and refinement procedures can for example be found in
(3, 5, 8, 44, 46].

Another basic ingredient for an adaptive finite element method is the a
posteriori error estimator which is main object of interest in the analysis
of adaptive methods. While a general theory exists for these estimators in
the case of linear and mildly nonlinear problems [10, 73], highly nonlinear
problems usually still need a special treatment, see [24, 33, 54, 55, 69] for
instance. There exist a lot of different approaches to (and a large number of
articles about) the derivation of error estimates, by residual techniques, dual
techniques, solution of local problems, hierarchical approaches, etc., a fairly
incomplete list of references is [1, 3, 7, 13, 21, 36, 52, 72].
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Although adaptive finite element methods in practice construct a sequence
of discrete solutions which converge to the true solution, this convergence
could only be proved recently for linear elliptic problem [50, 51, 52] and for
the nonlinear Laplacian [70], based on the fundamental paper [31]. For a mod-
ification of the convergent algorithm in [50], quasi-optimality of the adaptive
method was proved in [16] and [67].

During the last years there has been a great progress in designing finite
element software. It is not possible to mention all freely available packages.
Examples are [5, 11, 12, 49, 62], and an continuously updated list of other
available finite element codes and resources can for instance be found at

http://www.engr.usask.ca/ macphed/finite/fe_resources/.

Adaptive finite element methods and basic concepts of ALBERTA

Finite element methods calculate approximations to the true solution in some
finite dimensional function space. This space is built from local function spaces,
usually polynomials of low order, on elements of a partitioning of the domain
(the mesh). An adaptive method adjusts this mesh (or the local function
space, or both) to the solution of the problem. This adaptation is based on
information extracted from a posteriori error estimators.

The basic iteration of an adaptive finite element code for a stationary
problem is

e assemble and solve the discrete system;
e calculate the error estimate;
e adapt the mesh, when needed.

For time dependent problems, such an iteration is used in each time step, and
the step size of a time discretization may be subject to adaptivity, too.

The core part of every finite element program is the problem dependent
assembly and solution of the discretized problem. This holds for programs that
solve the discrete problem on a fixed mesh as well as for adaptive methods that
automatically adjust the underlying mesh to the actual problem and solution.
In the adaptive iteration, the assemblage and solution of a discrete system is
necessary after each mesh change. Additionally, this step is usually the most
time consuming part of that iteration.

A general finite element toolbox must provide flexibility in problems and
finite element spaces while on the other hand this core part can be performed
efficiently. Data structures are needed which allow an easy and efficient im-
plementation of the problem dependent parts and also allow to use adaptive
methods, mesh modification algorithms, and fast solvers for linear and nonlin-
ear discrete problems by calling library routines. On one hand, large flexibility
is needed in order to choose various kinds of finite element spaces, with higher
order elements or combinations of different spaces for mixed methods or sys-
tems. On the other hand, the solution of the resulting discrete systems may
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profit enormously from a simple vector—oriented storage of coefficient vectors
and matrices. This also allows the use of optimized solver and BLAS libraries.
Additionally, multilevel preconditioners and solvers may profit from hierarchy
information, leading to highly efficient solvers for the linear (sub-) problems.

ALBERTA [59, 60, 62] provides all those tools mentioned above for the ef-
ficient implementation and adaptive solution of general nonlinear problems in
two and three space dimensions. The design of the ALBERTA data structures
allows a dimension independent implementation of problem dependent parts.
The mesh adaptation is done by local refinement and coarsening of mesh
elements, while the same local function space is used on all mesh elements.

Starting point for the design of ALBERTA data structures is the abstract
concept of a finite element space defined (similar to the definition of a single
finite element by Ciarlet [25]) as a triple consisting of

e a collection of mesh elements;

e a set of local basis functions on a single element, usually a restriction of
global basis functions to a single element;

e a connection of local and global basis functions giving global degrees of
freedom for a finite element function.

This directly leads to the definition of three main groups of data structures:

e data structures for geometric information storing the underlying mesh to-
gether with element coordinates, boundary type and geometry, etc.;

e data structures for finite element information providing values of local basis
functions and their derivatives;

e data structures for algebraic information linking geometric data and finite
element data.

Using these data structures, the finite element toolbox ALBERTA provides the
whole abstract framework like finite element spaces and adaptive strategies,
together with hierarchical meshes, routines for mesh adaptation, and the com-
plete administration of finite element spaces and the corresponding degrees of
freedom (DOFs) during mesh modifications. The underlying data structures
allow a flexible handling of such information. Furthermore, tools for numeri-
cal quadrature, matrix and load vector assembly as well as solvers for (linear)
problems, like conjugate gradient methods, are available.

A specific problem can be implemented and solved by providing just some
problem dependent routines for evaluation of the (linearized) differential op-
erator, data, nonlinear solver, and (local) error estimators, using all the tools
above mentioned from a library.

Both geometric and finite element information strongly depend on the
space dimension. Thus, mesh modification algorithms and basis functions are
implemented for one (1d), two (2d), and three (3d) dimensions separately
and are provided by the toolbox. Everything besides that can be formulated
in such a way that the dimension only enters as a parameter (like size of local
coordinate vectors, e.g.). For usual finite element applications this results in
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a dimension independent programming, where all dimension dependent parts
are hidden in a library. This allows a dimension independent programming of
applications to the greatest possible extent.

The remaining parts of the introduction give a short overview over the
main concepts, details are then given in Chapter 1.

The hierarchical mesh

The underlying mesh is a conforming triangulation of the computational do-
main into simplices, i.e. intervals (1d), triangles (2d), or tetrahedra (3d). The
simplicial mesh is generated by refinement of a given initial triangulation. Re-
fined parts of the mesh can be de-refined, but elements of the initial triangula-
tion (macro elements) must not be coarsened. The refinement and coarsening
routines construct a sequence of nested meshes with a hierarchical structure.
In ALBERTA, the recursive refinement by bisection is implemented, using the
notation of Kossaczky [44].

During refinement, new degrees of freedom are created. A single degree of
freedom is shared by all elements which belong to the support of the corre-
sponding finite element basis function (compare next paragraph). The mesh
refinement routines must create a new DOF only once and give access to
this DOF from all elements sharing it. Similarly, DOFs are handled during
coarsening. This is done in cooperation with the DOF administration tool,
see below.

The bisectioning refinement of elements leads naturally to nested meshes
with the hierarchical structure of binary trees, one tree for every element of
the initial triangulation. Every interior node of that tree has two pointers to
the two children; the leaf elements are part of the actual triangulation, which
is used to define the finite element space(s). The whole triangulation is a list
of given macro elements together with the associated binary trees. The hier-
archical structure allows the generation of most information by the hierarchy,
which reduces the amount of data to be stored. Some information is stored
on the (leaf) elements explicitly, other information is located at the macro
elements and is transfered to the leaf elements while traversing through the
binary tree. Element information about vertex coordinates, domain bound-
aries, and element adjacency can be computed easily and very fast from the
hierarchy, when needed. Data stored explicitly at tree elements can be reduced
to pointers to the two possible children and information about local DOF's (for
leaf elements). Furthermore, the hierarchical mesh structure directly leads to
multilevel information which can be used by multilevel preconditioners and
solvers.

Access to mesh elements is available solely via routines which traverse
the hierarchical trees; no direct access is possible. The traversal routines can
give access to all tree elements, only to leaf elements, or to all elements which
belong to a single hierarchy level (for a multilevel application, e.g.). In order to
perform operations on visited elements, the traversal routines call a subroutine
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which is given to them as a parameter. Only such element information which
is needed by the current operation is generated during the tree traversal.

Finite elements

The values of a finite element function or the values of its derivatives are
uniquely defined by the values of its DOFs and the values of the basis functions
or the derivatives of the basis functions connected with these DOFs. We follow
the concept of finite elements which are given on a single element S in local
coordinates: Finite element functions on an element S are defined by a finite
dimensional function space P on a reference element S and the (one to one)
mapping A% : § — S from the reference element S to the element S. In this
situation the non vanishing basis functions on an arbitrary element are given
by the set of basis functions of P in local coordinates A®. Also, derivatives are
given by the derivatives of basis functions on P and derivatives of \5.

Each local basis function on S is uniquely connected to a global degree
of freedom, which can be accessed from S via the DOF administration tool.
ALBERTA supports basis functions connected with DOFs, which are located
at vertices of elements, at edges, at faces (in 3d), or in the interior of elements.
DOFs at a vertex are shared by all elements which meet at this vertex, DOF's
at an edge or face are shared by all elements which contain this edge or
face, and DOFs inside an element are not shared with any other element.
The support of the basis function connected with a DOF is the patch of all
elements sharing this DOF.

For a very general approach, we only need a vector of the basis functions
(and its derivatives) on S and a function for the communication with the
DOF administration tool in order to access the degrees of freedom connected
to local basis functions. By such information every finite element function
(and its derivatives) is uniquely described on every element of the mesh.

During mesh modifications, finite element functions must be transformed
to the new finite element space. For example, a discrete solution on the old
mesh yields a good initial guess for an iterative solver and a smaller number
of iterations for a solution of the discrete problem on the new mesh. Usu-
ally, these transformations can be realized by a sequence of local operations.
Local interpolations and restrictions during refinement and coarsening of ele-
ments depend on the function space P and the refinement of S only. Thus, the
subroutine for interpolation during an atomic mesh refinement is the efficient
implementation of the representation of coarse grid functions by fine grid func-
tions on S and its refinement. A restriction during coarsening is implemented
using similar information.

Lagrange finite element spaces up to order four are currently implemented
in one, two, and three dimensions. This includes the communication with the
DOF administration as well as the interpolation and restriction routines.
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Degrees of freedom

Degrees of freedom (DOFs) connect finite element data with geometric infor-
mation of a triangulation. For general applications, it is necessary to handle
several different sets of degrees of freedom on the same triangulation. For
example, in mixed finite element methods for the Navier-Stokes problem, dif-
ferent polynomial degrees are used for discrete velocity and pressure functions.

During adaptive refinement and coarsening of a triangulation, not only
elements of the mesh are created and deleted, but also degrees of freedom
together with them. The geometry is handled dynamically in a hierarchical
binary tree structure, using pointers from parent elements to their children.
For data corresponding to DOFs, which are usually involved with matrix—
vector operations, simpler storage and access methods are more efficient. For
that reason every DOF is realized just as an integer index, which can easily be
used to access data from a vector or to build matrices that operate on vectors
of DOF data. This results in a very efficient access during matrix/vector
operations and in the possibility to use libraries for the solution of linear
systems with a sparse system matrix ([29], e.g.).

Using this realization of DOF's two major problems arise:

e During refinement of the mesh, new DOFs are added, and additional indices
are needed. The total range of used indices has to be enlarged. At the same
time, all vectors and matrices that use these DOF indices have to be adjusted
in size, too.

e During coarsening of the mesh, DOFs are deleted. In general, the deleted
DOF is not the one which corresponds to the largest integer index. Holes
with unused indices appear in the total range of used indices and one has to
keep track of all used and unused indices.

These problems are solved by a general DOF administration tool. During
refinement, it enlarges the ranges of indices, if no unused indices produced
by a previous coarsening are available. During coarsening, a book—keeping
about used and unused indices is done. In order to reestablish a contiguous
range of used indices, a compression of DOFs can be performed; all DOF's are
renumbered such that all unused indices are shifted to the end of the index
range, thus removing holes of unused indices. Additionally, all vectors and
matrices connected to these DOFs are adjusted correspondingly. After this
process, vectors do not contain holes anymore and standard operations like
BLASI routines can be applied and yield optimal performance.

In many cases, information stored in DOF vectors has to be adjusted
to the new distribution of DOFs during mesh refinement and coarsening.
Each DOF vector can provide pointers to subroutines that implements these
operations on data (which usually strongly depend on the corresponding finite
element basis). Providing such a pointer, a DOF vector will automatically be
transformed during mesh modifications.
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All tasks of the DOF administration are performed automatically during
refinement and coarsening for every kind and combination of finite elements
defined on the mesh.

Adaptive solution of the discrete problem

The aim of adaptive methods is the generation of a mesh which is adapted to
the problem such that a given criterion, like a tolerance for the estimated error
between exact and discrete solution, is fulfilled by the finite element solution
on this mesh. An optimal mesh should be as coarse as possible while meeting
the criterion, in order to save computing time and memory requirements. For
time dependent problems, such an adaptive method may include mesh changes
in each time step and control of time step sizes. The philosophy implemented in
ALBERTA is to change meshes successively by local refinement or coarsening,
based on error estimators or error indicators, which are computed a posteriori
from the discrete solution and given data on the current mesh.

Several adaptive strategies are proposed in the literature, that give criteria
which mesh elements should be marked for refinement. All strategies are based
on the idea of an equidistribution of the local error to all mesh elements.
Babugka and Rheinboldt [3] motivate that for stationary problems a mesh is
almost optimal when the local errors are approximately equal for all elements.
So, elements where the error indicator is large will be marked for refinement,
while elements with a small estimated indicator are left unchanged or are
marked for coarsening. In time dependent problems, the mesh is adapted
to the solution in every time step using a posteriori information like in the
stationary case. As a first mesh for the new time step we use the adaptive
mesh from the previous time step. Usually, only few iterations of the adaptive
procedure are then needed for the adaptation of the mesh for the new time
step. This may be accompanied by an adaptive control of time step sizes.

Given pointers to the problem dependent routines for assembling and so-
lution of the discrete problems, as well as an error estimator/indicator, the
adaptive method for finding a solution on a quasi—optimal mesh can be per-
formed as a black—box algorithm. The problem dependent routines are used
for the calculation of discrete solutions on the current mesh and (local) error
estimates. Here, the problem dependent routines heavily make use of library
tools for assembling system matrices and right hand sides for an arbitrary
finite element space, as well as tools for the solution of linear or nonlinear dis-
crete problems. On the other hand, any specialized algorithm may be added
if needed. The marking of mesh elements is based on general refinement and
coarsening strategies relying on the local error indicators. During the follow-
ing mesh modification step, DOF vectors are transformed automatically to
the new finite element spaces as described in the previous paragraphs.
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Dimension independent program development

Using black—box algorithms, the abstract definition of basis functions, quadra-
ture formulas and the DOF administration tool, only few parts of the finite
element code depend on the dimension. Usually, all dimension dependent parts
are hidden in the library. Hence, program development can be done in 1d or
2d, where execution is usually much faster and debugging is much easier (be-
cause of simple 1d and 2d visualization, e.g., which is much more involved
in 3d). With no (or maybe few) additional changes, the program will then
also work in 3d. This approach leads to a tremendous reduction of program
development time for 3d problems.

Notations. For a differentiable function f: 2 — R on a domain 2 C R?,
d=1,2,3, we set

VI(@) = Far (@) s Fana (@) = (ai @).... a%f(z))

and
2 0
D = (faorz _ = .
10 = G isor,a = (o @),
For a vector valued, differentiable function f = (f1,...,fn): 2 — R™ we
write
VI@) = (G @)oo Fona@) iy = (7o fi@)e e e fia)
- 1,T1 )t J,Tg i=1,..., n afL'l (2 P afL'd (2 —1om
and
2 0
D = Jixpz, ) i=1,...on = i .
1) = (imn) oy, = (om0 e

By L?(£2), 1 < p < 0o, we denote the usual Lebesgue spaces with norms

1/p
1 Fllzoa) = ( / If(w)lpdw) for p < o0
and
T Pp——]
xe(?

The Sobolev space of functions u € L?(§2) with weak derivatives Vu € L?(£2)
is denoted by H!'(§2) with semi norm

1/2
e = < /Q |Vu<x>|2d:c)

1/2
lull (o) = (HUH%Z(Q) + |u|§{1(9)) :

and norm
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Concepts and abstract algorithms

1.1 Mesh refinement and coarsening

In this section, we describe the basic algorithms for the local refinement and
coarsening of simplicial meshes in two and three dimensions. In 1d the grid
is built from intervals, in 2d from triangles, and in 3d from tetrahedra. We
restrict ourselves here to simplicial meshes, for several reasons:

1. A simplex is one of the most simple geometric types and complex domains
may be approximated by a set of simplices quite easily.

2. Simplicial meshes allow local refinement (see Fig. 1.1) without the need of
non—conforming meshes (hanging nodes), parametric elements, or mixture
of element types (which is the case for quadrilateral meshes, e.g., see Fig.
1.2).

3. Polynomials of any degree are easily represented on a simplex using local
(barycentric) coordinates.

Fig. 1.1. Global and local refinement of a triangular mesh.

First of all we start with the definition of a simplex, parametric simplex
and triangulation:

Definition 1.1 (Simplex).

a) Let ag,...,aq € R™ be given such that a1 — ao,...,aq — ag are linear in-
dependent vectors in R™. The convex set
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[ -

Fig. 1.2. Local refinements of a rectangular mesh: with hanging nodes, conforming
closure using bisected rectangles, and conforming closure using triangles. Using a
conforming closure with rectangles, a local refinement has always global effects up
to the boundary.

S = conv hull{ay, ...,aq}
is called a d-simplex in R™. For k < d let
S" = conv hull{ay, ...,a;} C 9S

be a k-simplex with aj, ..., a) € {ao,...,aq}. Then S is called a k-sub-
simplex of S. A O—sub—simplex is called vertex, a 1-sub—simplex edge and
a 2—sub—simplex face.

b) The standard simplex in R is defined by

S =conv hull{agp =0,a1 =e1,...,aq0 = €4},

where e; are the unit vectors in R<.

c) Let Fs: S — 8§ C R™ be an invertible, differentiable mapping. Then S
is called a parametric d—simplex in R™. The k—sub—simplices S’ of S are
given by the images of the k-sub—simplices S’ of S. Thus, the vertices
ap, . ..,aq of S are the points Fs(dgp),. .., Fs(aq).

d) For a d—simplex S, we define

hs :=diam(S) and pg:=sup{2r; B, C S is a d-ball of radius r},
the diameter and inball-diameter of S.

Remark 1.2. Every d-simplex S in R" is a parametric simplex. Defining the
matrix Ag € R"*? by

As = |a1—ao -+ ag—ao| ,

the parameterization Fg: S — Sis given by
Fs(:f):Asf+a0. (11)

Since Fjg is affine linear it is differentiable. It is easy to check that Fl: S-S
is invertible and that Fs(d;) = a;, 1 =0,...,d holds.
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Definition 1.3 (Triangulation).

a) Let S be a set of (parametric) d—simplices and define

{2 = interior U S C R™.
Ses

We call S a conforming triangulation of £2, iff for two simplices S1, 52 € S
with S1 # S the intersection S1NSs is either empty or a complete k—sub—
simplex of both S1 and Sz for some 0 < k < d.

b) Let Sk, k > 0, be a sequence of conforming triangulations. This sequence
is called (shape) regular, iff

sup max max cond(DFE(2) - DFg(%)) < oo (1.2)
keENy SeS, zeS

holds, where DFg is the Jacobian of Fs and cond(A) = || A||||A™!]|| denotes
the condition number.

Remark 1.4. For a sequence Si, k > 0, of non—parametric triangulations the
regularity condition (1.2) is equivalent to the condition

S
sup max — < 00.
keNg SeS, PS

In order to construct a sequence of triangulations, we consider the following
situation: An initial (coarse) triangulation Sy of the domain is given. We call it
macro triangulation. It may be generated by hand or by some mesh generation
algorithm ([63, 65]).

Some (or all) of the simplices are marked for refinement, depending on
some error estimator or indicator. The marked simplices are then refined, i.e.
they are cut into smaller ones. After several refinements, some other simplices
may be marked for coarsening. Coarsening tries to unite several simplices
marked for coarsening into a bigger simplex. A successive refinement and
coarsening will produce a sequence of triangulations Sp,S1,. ... The refine-
ment of single simplices that we describe in the next section produces for
every simplex of the macro triangulation only a finite and small number of
similarity classes for the resulting elements. The coarsening is more or less
the inverse process of refinement. This leads to a finite number of similarity
classes for all simplices in the whole sequence of triangulations.

The refinement of non—parametric and parametric simplices is the same
topological operation and can be performed in the same way. The actual chil-
dren’s shape of parametric elements additionally involves the children’s pa-
rameterization. In the following we describe the refinement and coarsening for
triangulations consisting of non—parametric elements. The refinement of para-
metric triangulations can be done in the same way, additionally using given
parameterizations. Regularity for the constructed sequence can be obtained
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with special properties of the parameterizations for parametric elements and
the finite number of similarity classes for simplices.

Marking criteria and marking strategies for refinement and coarsening are
subject of Section 1.5.

1.1.1 Refinement algorithms for simplicial meshes

For simplicial elements, several refinement algorithms are widely used. The
discussion about and description of these algorithms mainly centers around
refinement in 2d and 3d since refinement in 1d is straight forward.

One example is regular refinement (“red refinement”), which divides every
triangle into four similar triangles, see Fig. 1.3. The corresponding refinement
algorithm in three dimensions cuts every tetrahedron into eight tetrahedra,
and only a small number of similarity classes occur during successive refine-
ments, see [14, 15]. Unfortunately, hanging nodes arise during local regular
refinement. To remove them and create a conforming mesh, in two dimensions
some triangles have to be bisected (“green closure”). In three dimensions, sev-
eral types of irregular refinement are needed for the green closure. This creates
more similarity classes, even in two dimensions. Additionally, these bisected
elements have to be removed before a further refinement of the mesh, in order
to keep the triangulations shape regular.

Fig. 1.3. Global and local regular refinement of triangles and conforming closure
by bisection.

Another possibility is to use bisection of simplices only. For every element
(triangle or tetrahedron) one of its edges is marked as the refinement edge, and
the element is refined into two elements by cutting this edge at its midpoint.
There are several possibilities to choose such a refinement edge for a simplex,
one example is to use the longest edge; Mitchell [48] compared different ap-
proaches. We focus on an algorithm where the choice of refinement edges on
the macro triangulation prescribes the refinement edges for all simplices that
are created during mesh refinement. This makes sure that shape regularity of
the triangulations is conserved.

In two dimensions we use the newest vertex bisection (in Mitchell’s nota-
tion) and in three dimensions the bisection procedure of Kossaczky described
in [44]. We use the convention, that all vertices of an element are given fixed
local indices. Valid indices are 0, 1, for vertices of an interval, 0, 1, and 2 for
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vertices of a triangle, and 0, 1, 2, and 3 for vertices of a tetrahedron. Now, the
refinement edge for an element is fixed to be the edge between the vertices
with local indices 0 and 1. Here we use the convention that in 1d the element
itself is called “refinement edge”.

During refinement, the new vertex numbers, and thereby the refinement
edges, for the newly created child simplices are prescribed by the refinement
algorithm. For both children elements, the index of the newly generated vertex
at the midpoint of this edge has the highest local index (2 resp. 3 for triangles
and tetrahedra). These numbers are shown in Fig. 1.4 for 1d and 2d, and in
Fig. 1.5 for 3d. In 1d and 2d this numbering is the same for all refinement
levels. In 3d, one has to make some special arrangements: the numbering of the
second child’s vertices does depend on the type of the element. There exist
three different element types 0, 1, and 2. The type of the elements on the
macro triangulation can be prescribed (usually type 0 tetrahedron). The type
of the refined tetrahedra is recursively given by the definition that the type
of a child element is ((parent’s type + 1) modulo 3). In Fig. 1.5 we used the
following convention: for the index set {1,2,2} on child[1] of a tetrahedron
of type 0 we use the index 1 and for a tetrahedron of type 1 and 2 the index
2. Fig. 1.6 shows successive refinements of a type 0 tetrahedron, producing
tetrahedra of types 1, 2, and 0 again.

child[0] child[1] child[0] child[1]

G child(0] [ o child[l] ‘1

0 1 1 22 0

Fig. 1.4. Numbering of nodes on parent and children for intervals and triangles.

child[1] 1 child[1

(1 0
child[0] 7 child[0] 3
(R . 2 0 1 {2.1.1}
" b {1.2.2}

1,

Fig. 1.5. Numbering of nodes on parent and children for tetrahedra.

By the above algorithm the refinements of simplices are totally determined
by the local vertex numbering on the macro triangulation, plus a prescribed
type for every macro element in three dimensions. Furthermore, a successive
refinement of every macro element only produces a small number of similarity
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Type O:
0 2
Type 1: 3 \
child[0] 3 child[1]
0 1
2
4 1
Type 2:
child0] 2 2~ child[1] N
0 3 0 3
child[1]
11
Type 0
‘Chlld[o] child[1] ch]ld[O] ’!
chlld[O
hil d[ ch1ld[0] Ch‘ld[” 0
child[1]

Fig. 1.6. Successive refinements of a type 0 tetrahedron.

classes. In case of the “generic” triangulation of a (unit) square in 2d and
cube in 3d into two triangles resp. six tetrahedra (see Fig. 1.7 for a single
triangle and tetrahedron from such a triangulation — all other elements are
generated by rotation and reflection), the numbering and the definition of the
refinement edge during refinement of the elements guarantee that always the
longest edge will be the refinement edge and will be bisected, see Fig. 1.8.

The refinement of a given triangulation now uses the bisection of single
elements and can be performed either iteratively or recursively. In 1d, bisec-
tion only involves the element which is subject to refinement and thus is a
completely local operation. Both variants of refining a given triangulation are
the same. In 2d and 3d, bisection of a single element usually involves other
elements, resulting in two different algorithms.

For tetrahedra, the first description of such a refinement procedure was
given by Bénsch using the iterative variant [8]. It abandons the requirement
of one to one inter—element adjacencies during the refinement process and thus
needs the intermediate handling of hanging nodes. Two recursive algorithms,
which do not create such hanging nodes and are therefore easier to implement,
are published by Kossaczky [44] and Maubach [46]. For a special class of
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macro triangulations, they result in exactly the same tetrahedral meshes as
the iterative algorithm.

In order to keep the mesh conforming during refinement, the bisection
of an edge is allowed only when such an edge is the refinement edge for all
elements which share this edge. Bisection of an edge and thus of all elements
around the edge is the atomic refinement operation, and no other refinement
operation is allowed. See Figs. 1.9 and 1.10 for the two and three—dimensional
situations.

(0,1) (1,11

(1,1,0)
00 (1,0) (0,0,0) (1,0,0)

Fig. 1.7. Generic elements in two and three dimensions.

()

005 o ©00 (1,0.0)

Fig. 1.8. Refined generic elements in two and three dimensions.

Fig. 1.9. Atomic refinement operation in two dimensions. The common edge is the
refinement edge for both triangles.

If an element has to be refined, we have to collect all elements at its
refinement edge. In two dimensions this is either the neighbour opposite this
edge or there is no other element in the case that the refinement edge belongs



16 1 Concepts and abstract algorithms

Fig. 1.10. Atomic refinement operation in three dimensions. The common edge is
the refinement edge for all tetrahedra sharing this edge.

to the boundary. In three dimensions we have to loop around the edge and
collect all neighbours at this edge. If for all collected neighbours the common
edge is the refinement edge too, we can refine the whole patch at the same
time by inserting one new vertex in the midpoint of the common refinement
edge and bisecting every element of the patch. The resulting triangulation
then is a conforming one.

But sometimes the refinement edge of a neighbour is not the common edge.
Such a neighbour is not compatibly divisible and we have to perform first the
atomic refinement operation at the neighbour’s refinement edge. In 2d the
child of such a neighbour at the common edge is then compatibly divisible; in
3d such a neighbour has to be bisected at most three times and the resulting
tetrahedron at the common edge is then compatibly divisible. The recursive
refinement algorithm now reads

Algorithm 1.5 (Recursive refinement of one simplex).

subroutine recursive_refine(S, S)
do
A:={5"€S8;5 is not compatibly divisible with S}
for all S’ € A do
recursive refine(S’, S);
end for
A:={5"€S8;5 is not compatibly divisible with S}
until A =1

A:={5€8;5 is element at the refinement edge of S}

for all S'c A
bisect S’ into S| and S
S :=8S\{S't U {5, 51}

end for

In Fig. 1.11 we show a two—dimensional situation where recursion is
needed. For all triangles, the longest edge is the refinement edge. Let us as-
sume that triangles A and B are marked for refinement. Triangle A can be
refined at once, as its refinement edge is a boundary edge. For refinement of
triangle B, we have to recursively refine triangles C and D. Again, triangle
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D can be directly refined, so recursion terminates there. This is shown in the
second part of the figure. Back in triangle C, this can now be refined together
with its neighbour. After this, also triangle B can be refined together with its
neighbour.

Fig. 1.11. Recursive refinement in two dimensions. Triangles A and B are initially
marked for refinement.

The refinement of a given triangulation S where some or all elements are
marked for refinement is then performed by

Algorithm 1.6 (Recursive refinement algorithm).

subroutine refine(S)
for all S €S8 do
if S is marked for refinement
recursiverefine(S, S)
end if
end for

Since we use recursion, we have to guarantee that recursions terminates.
Kossaczky [44] and Mitchell [48] proved

Theorem 1.7 (Termination and Shape Regularity). The recursive re-
finement algorithm using bisection of single elements fulfills

1. The recursion terminates if the macro triangulation satisfies certain cri-
teria.
2. We obtain shape regularity for all elements at all levels.

Remark 1.8.

1. A first observation is, that simplices initially not marked for refinement
are bisected, enforced by the refinement of a marked simplex. This is a
necessity to obtain a conforming triangulation, also for the regular refine-
ment.

2. It is possible to mark an element for more than one bisection. The natural
choice is to mark a d-simplex S for d bisections. After d refinement steps
all original edges of S are bisected. A simplex S is refined k£ times by
refining the children S; and S; k£ — 1 times right after the refinement of S.
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3. The recursion does not terminate for an arbitrary choice of refinement
edges on the macro triangulation. In two dimensions, such a situation
is shown in Fig. 1.12. The selected refinement edges of the triangles are
shown by dashed lines. One can easily see, that there are no patches for the
atomic refinement operation. This triangulation can only be refined if other
choices of refinement edges are made, or by a non—recursive algorithm.

Fig. 1.12. A macro triangulation where recursion does not stop.

4. In two dimensions, for every macro triangulation it is possible to choose
the refinement edges in such a way that the recursion terminates (selecting
the ‘longest edge’). In three dimensions the situation is more complicated.
But there is a maybe refined grid such that refinement edges can be chosen
in such a way that recursion terminates [44].

1.1.2 Coarsening algorithm for simplicial meshes

The coarsening algorithm is more or less the inverse of the refinement algo-
rithm. The basic idea is to collect all those elements that were created during
the refinement at same time, i.e. the parents of these elements build a com-
patible refinement patch. The elements must only be coarsened if all involved
elements are marked for coarsening and are of finest level locally, i.e. no ele-
ment is refined further. The actual coarsening again can be performed in an
atomic coarsening operation without the handling of hanging nodes. Infor-
mation is passed from all elements onto the parents and the whole patch is
coarsened at the same time by removing the vertex in the parent’s common
refinement edge (see Figs. 1.13 and 1.14 for the atomic coarsening operation
in 2d and 3d). This coarsening operation is completely local in 1d.

During refinement, the bisection of an element can enforce the refinement
of an unmarked element in order to keep the mesh conforming. During coars-
ening, an element must only be coarsened if all elements involved in this
operation are marked for coarsening. This is the main difference between re-
finement and coarsening. In an adaptive method this guarantees that elements
with a large local error indicator marked for refinement are refined and no ele-
ment is coarsened where the local error indicator is not small enough (compare
Section 1.5.3).
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:

Fig. 1.13. Atomic coarsening operation in two dimensions.

Fig. 1.14. Atomic coarsening operation in three dimensions.

Since the coarsening process is the inverse of the refinement, refinement
edges on parent elements are again at their original position. Thus, further
refinement is possible with a terminating recursion and shape regularity for
all resulting elements.

Algorithm 1.9 (Local coarsening).

subroutine coarsen_element(S, S)
A:={5"€S8; 5 must not be coarsened with S}
if A=
for all child pairs S),S] at common coarsening edge do
coarse S and S] into the parent S’
S = S\{5p, 51} U {5}
end for
end if

The following routine coarsens as many elements as possible of a given trian-
gulation S:

Algorithm 1.10 (Coarsening algorithm).

subroutine coarsen(S)
for all S €S do
if S is marked for coarsening
coarsen_element (S, S)
end if
end for

Remark 1.11. Also in the coarsening procedure an element can be marked
for several coarsening steps. Usually, the coarsening markers for all patch
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elements are cleared if a patch must not be coarsened. If the patch must not
be coarsened because one patch element is not of locally finest level but may
coarsened more than once, elements stay marked for coarsening. A coarsening
of the finer elements can result in a patch which may then be coarsened.

1.1.3 Operations during refinement and coarsening

The refinement and coarsening of elements can be split into four major steps,
which are now described in detail.

Topological refinement and coarsening

The actual bisection of an element is performed as follows: the simplex is
cut into two children by inserting a new vertex at the refinement edge. All
objects like this new vertex, or a new edge (in 2d and 3d), or face (in 3d) have
only to be created once on the refinement patch. For example, all elements
share the new vertex and two children triangles share a common edge. The
refinement edge is divided into two smaller ones which have to be adjusted
to the respective children. In 3d all faces inside the patch are bisected into
two smaller ones and this creates an additional edge for each face. All these
objects can be shared by several elements and have to be assigned to them.
If neighbour information is stored, one has to update such information for
elements inside the patch as well as for neighbours at the patch’s boundary.

In the coarsening process the vertex which is shared by all elements is
removed, edges and faces are rejoined and assigned to the respective parent
simplices. Neighbour information has to be reinstalled inside the patch and
with patch neighbours.

Administration of degrees of freedoms

Single DOFs can be assigned to a vertex, edge, or face and such a DOF
is shared by all simplices meeting at the vertex, edge, or face respectively.
Finally, there may be DOF's on the element itself, which are not shared with
any other simplex. At each object there may be a single DOF or several DOFs,
even for several finite element spaces.

During refinement new DOFs are created. For each newly created object
(vertex, edge, face, center) we have to create the exact amount of DOFs,
if DOF's are assigned to the object. For example we have to create vertex
DOFs at the midpoint of the refinement edge, if DOFs are assigned to a
vertex. Again, DOFs must only be created once for each object and have to
be assigned to all simplices having this object in common.

Additionally, all vectors and matrices using these DOF's have automatically
to be adjusted in size.
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Transfer of geometric data

Information about the children’s/parent’s shape has to be transformed. Dur-
ing refinement, for a simplex we only have to calculate the coordinates of the
midpoint of the refinement edge, coordinates of the other vertices stay the
same and can be handed from parent to children. If the refinement edge be-
longs to a curved boundary, the coordinates of the new vertex are calculated
by projecting this midpoint onto the curved boundary. During coarsening, no
calculations have to be done. The d+ 1 vertices of the two children which are
not removed are the vertices of the parent.

For the shape of parametric elements, usually more information has to be
calculated. Such information can be stored in a DOF-vector, e.g., and may
need DOF's on parent and children. Thus, information has to be assembled
after installing the DOFs on the children and before deleting DOFs on the
parent during refinement; during coarsening, first DOFs on the parent have
to be installed, then information can be assembled, and finally the children’s
DOFs are removed.

Transformation of finite element information

Using iterative solvers for the (non-) linear systems, a good initial guess is
needed. Usually, the discrete solution from the old grid, interpolated into the
finite element space on the new grid, is a good initial guess. For piecewise
linear finite elements we only have to compute the value at the newly created
node at the midpoint of the refinement edge and this value is the mean value
of the values at the vertices of the refinement edge:

1
up (midpoint) = §(uh (vertex 0) 4+ up (vertex 1)).

For linear elements an interpolation during coarsening is trivial since the val-
ues at the vertices of the parents stay the same.

For higher order elements more DOF's are involved, but only DOFs belong-
ing to the refinement/coarsening patch. The interpolation strongly depends
on the local basis functions and it is described in detail in Section 1.4.4.

Usually during coarsening information is lost (for example, we loose infor-
mation about the value of a linear finite element function at the coarsening
edge’s midpoint). But linear functionals applied to basis functions that are
calculated on the fine grid and stored in some coefficient vector can be trans-
formed during coarsening without loss of information, if the finite element
spaces are nested. This is also described in detail in Section 1.4.4. One appli-
cation of this procedure is a time discretization, where L? scalar products of
the new basis functions with the solution u?lld from the last time step appear
on the right hand side of the discrete problem.

Since DOF's can be shared by several elements, these operations are done
on the whole refinement/coarsening patch. This avoids that coefficients of the
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interpolant are calculated more than once for a shared DOF. During the re-
striction of a linear functional we have to add contribution(s) from one/several
DOF(s) to some other DOF(s). Performing this operation on the whole patch
makes it easy to guarantee that the contribution of a shared DOF is only
added once.

1.2 The hierarchical mesh

There are basically two kinds of storing a finite element grid. One possibility
is to store only the elements of the triangulation in a vector or a linked list.
All information about elements is located at the elements. In this situation
there is no direct information of a hierarchical structure needed, for exam-
ple, for multigrid methods. Such information has to be generated and stored
separately. During mesh refinement, new elements are added (at the end) to
the vector or list of elements. During mesh coarsening, elements are removed.
In case of an element vector, ‘holes’ may appear in the vector that contain
no longer a valid element. One has to take care of them, or remove them by
compressing the vector.

ALBERTA uses the second way of storing the mesh. It keeps information
about the whole hierarchy of grids starting with the macro triangulation up
to the actual one. Storing information about the whole hierarchical structure
will need an additional amount of computer memory. On the other hand, we
can save computer memory because such information which can be produced
by the hierarchical structure does not have to be stored explicitly on each
element.

The simplicial grid is generated by refinement of a given macro triangu-
lation. Refined parts of the grid can be de-refined, but we can not coarsen
elements of the macro triangulation. The refinement and coarsening routines,
described in Section 1.1, construct a sequence of nested grids with a hierar-
chical structure. Every refined simplex is refined into two children. Elements
that may be coarsened were created by refining the parent into these two el-
ements and are now just coarsened back into this parent (compare Sections
1.1.1, 1.1.2).

Using this structure of the refinement/coarsening routines, every element
of the macro triangulation is the root of a binary tree: every interior node
of that tree has two pointers to the two children; the leaf elements are part
of the actual triangulation, which is used to define the finite element space.
The whole triangulation is a list of given macro elements together with the
associated binary trees, compare Fig. 1.15.

Some information is stored on the (leaf) elements explicitly, other informa-
tion is located at the macro elements and is transferred to the leaf elements
while traversing through the binary tree. For instance, information about
DOFs has to be stored explicitely for all (leaf) elements whereas geometric
information can be produced using the hierarchical structure.
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3 4 3 4 3 4
0 9 9
2 5 1112
718 Tol13
mesh
first_macro_el
el [0]
el [0]—B{6 [1] el (0]
macro_el el child[0] 2 [1l—e1l [0] 10 1]
next el 0 childl[1] el [0] 7 [1] el [0]
3 [11] 11 [1]
el [0] el [0]
macro_el el child[0] 4 (1] el [0] 12 1]
next el 1 childl[1] el [o]B8 [1] el [0]
5 [1lj—fe1 (0] 13 1]
9 [1]

Fig. 1.15. Sample mesh refinement and corresponding element trees

Operations on elements can only be performed by using the mesh traversal
routines described in Section 3.2.19. These routines need as arguments a flag
which indicates which information should be present on the elements, which
elements should be called (interior or leaf elements), and a pointer to a func-
tion which performs the operation on a single element. The traversal routines
always start on the first macro element and go to the indicated elements of
the binary tree at this macro element. This is done in a recursive way by
first traversing through the subtree of the first child and then by traversing
through the subtree of the second child. This recursion terminates if a leaf
element is reached. After calling all elements of this tree we go to the next
macro element, traverse through the binary tree located there, and so on until
the end of the list of macro elements.

All information that should be available for mesh elements is stored explic-
itly for elements of the macro triangulation. Thus, all information is present
on the macro level and is transfered to the other tree elements by transform-
ing requested data from one element to its children. This can be done by
simple calculations using the hierarchic structure induced by the refinement
algorithm, compare Section 1.1.1.

As mentioned above, geometric data like coordinates of the element’s ver-
tices can be efficiently computed using the hierarchical structure (in the case
of non-parametric elements and polyhedral boundary). Going from parent to
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child only the coordinates of one vertex changes and the new ones are sim-
ply the mean value of the coordinates of two vertices at the refinement edge
of the parent. The other vertex coordinates stay the same. Another example
of such information is information about adjacent elements. Using adjacency
information of the macro elements we can compute requested information for
all elements of the mesh.

User data on leaf elements. Many finite element applications need special
information on each element of the actual triangulation, i.e. the leaf elements
of the hierarchical mesh. In adaptive codes this may be, for example, error
indicators produced by an error estimator. Such information has only to be
available on leaf elements and not for elements inside the binary tree.

The fact that leaf elements do not have children, and thus the pointers to
such children in leaf element’s data structures are not used, can be exploited
by enabling access to special data via these pointers. So, special pointers for
such data do not have to be included in an element data structure. Details
about such an implementation are given in Section 3.2.12.

1.3 Degrees of freedom

Degrees of freedom (DOFs) connect finite element data with geometric infor-
mation of a triangulation. Each finite element function is uniquely determined
by the values (coefficients) of all its degrees of freedom.

For example, a continuous and piecewise linear finite element function can
be described by the values of this function at all vertices of the triangulation.
They build this function’s degrees of freedom. A piecewise constant function
is determined by its value in each element. In ALBERTA, every abstract DOF
is realized as an integer index into vectors, which corresponds to the global
index in a vector of coefficients.

For the definition of general finite element spaces DOFs located at vertices
of elements, at edges (in 2d and 3d), at faces (in 3d), or in the interior of
elements are needed. DOF's at a vertex are shared by all elements which meet
at this vertex, DOFs at an edge or face are shared by all elements which
contain this edge or face, and DOF's inside an element are not shared with
any other element. The location of a DOF and the sharing between elements
corresponds directly to the support of basis functions that are connected to
them, see Fig. 1.16.

When DOFs and basis functions are used in a hierarchical manner, then
the above applies only to a single hierarchical level. Due to the hierarchies,
the supports of basis functions which belong to different levels do overlap.

For general applications, it may be necessary to handle several different
sets of degrees of freedom on the same triangulation. For example, in mixed
finite element methods for the Navier—Stokes problem, different polynomial
degrees are used for discrete velocity and pressure functions. In Fig. 1.17, three
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R<PA> 4

Fig. 1.16. Support of basis functions connected with a DOF at a vertex, edge, face
(only in 3d), and the interior.

examples of DOF distributions for continuous finite elements in 2d are shown:
piecewise quadratic finite elements [0] (left), piecewise linear [*] and piecewise
quadratic [9] finite elements (middle, Taylor-Hood element for Navier—Stokes:
linear pressure and quadratic velocity), piecewise cubic [+] and piecewise quar-
tic [O] finite elements (right, Taylor-Hood element for Navier—Stokes: quartic
velocity and linear pressure).

[+] [o]
o
[o] [O]
[O] O]
[O] O]
ﬁ ﬁ :
O]
[O]
(9 (9
°. o °. & ClololTe

Fig. 1.17. Examples of DOF distributions in 2d.

Additionally, different finite element spaces may use the same set of degrees
of freedom, if appropriate. For example, higher order elements with Lagrange
type basis or a hierarchical type basis can share the same abstract set of
DOFs.

The DOF's are directly connected to the mesh and its elements, by the
connection between local (on each element) and global degrees of freedom.
On the other hand, an application uses DOF's only in connection with finite
element spaces and basis functions. Thus, while the administration of DOF's is
handled by the mesh, definition and access of DOFs is mainly done via finite
element spaces.

1.4 Finite element spaces and finite element
discretization

In the sequel we assume that 2 C R? is a bounded domain triangulated by
S, ie.
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2=s
Ses

The following considerations are also valid for a triangulation of an im-
mersed surface (with n > d). In this situation one has to exchange derivatives
(those with respect to x) by tangential derivatives (tangential to the actual
element, derivatives are always taken element—wise) and the determinant of
the parameterization’s Jacobian has to be replaced by Gram’s determinant of
the parameterization. But for the sake of clearness and simplicity we restrict
our considerations to the case n = d.

The values of a finite element function or the values of its derivatives are
uniquely defined by the values of its DOF's and the values of the basis functions
or the derivatives of the basis functions connected with these DOFs. Usually,
evaluation of those values is performed element-wise. On a single element the
value of a finite element function at a point = in this element is determined
by the DOF's associated with this specific element and the values of the non
vanishing basis functions at this point.

We follow the concept of finite elements which are given on a single element
S in local coordinates. We distinguish two classes of finite elements:

Finite element functions on an element S defined by a finite dimensional
function space P on a reference element S and the (one to one) mapping A%
from the reference element S to S. For this class the dependency on the actual
element S is fully described by the mapping A°. For example, all Lagrange
finite elements belong to this class.

Secondly, finite element functions depending on the actual element S.
Hence, the basis functions are not fully described by P and the one to one
mapping A\°. But using an initialization of the actual element (which defines
a finite dimensional function space P with information about the actual ele-
ment), we can implement this class in the same way as the first one. This class
is needed for Hermite finite elements which are not affine equivalent to the
reference element. Examples in 2d are the Hsieh—Clough—Tocher or HCT ele-
ment or the Argyris element where only the normal derivative at the midpoint
of edges are used in the definition of finite element functions; both elements
lead to functions which are globally C(£2). The concrete implementation for
this class in ALBERTA is future work.

All in all, for a very general situation, we only need a vector of basis
functions (and its derivatives) on S and a function which connects each of
these basis functions with its degree of freedom on the element. For the second
class, we additionally need an initialization routine for the actual element. By
such information, every finite element function is uniquely described on every
element of the grid.

1.4.1 Barycentric coordinates

For describing finite elements on simplicial grids, it is very convenient to use
d + 1 barycentric coordinates as a local coordinate system on an element of
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the triangulation. Using d + 1 local coordinates, the reference simplex S is a
subset of a hyper surface in R4+1:

d
S={(Aos- -, Aa) ERTH N >0, Y N =1}
k=0

On the other hand, for numerical integration on an element it is much more
convenient to use the standard element S € R¢ defined in Section 1.1 as

S =conv hull{ap =0,a1 =e1,...,aq = eq}

where e; are the unit vectors in R?; using S for the numerical integration, we
only have to compute the determinant of the parameterization’s Jacobian and
not Gram’s determinant.

The relation between a given simplex S, the reference simplex S, and the
standard simplex S is now described in detail.

Let S be an element of the triangulation with vertices {ao,...,aq}; let
Fg: S — S be the diffeomorphic parameterization of S over S with regular
Jacobian DFg, such that

Fs(dk)zak, kZO,...,d
holds. For a point x € S we set
i=Fg'(z)€s.

For a simplex S the easiest choice for Fyg is the unique affine mapping (1.1)
defined on page 10. For an affine mapping, DFYs is constant. In the following,
we assume that the parameterization Fg of a simplex S is affine.

For a simplex S the barycentric coordinates

M(z) = (AF,...,\])(z) e R
of some point z € R? are (uniquely) determined by the (d + 1) equations

Z)\f(x) ap = and Z)\g(x) =1

k=0 k=0

The following relation holds:
res iff  N(z)e[0,1]forallk=0,....d if A eS.

On the other hand, each A € S defines a unique point z° € S by

d
:ES(A) = Z >\k ag.
k=0
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Thus, °: S — S is an invertible mapping with inverse A%: S — S. The
barycentric coordinates of z on S are the same as those of # on S, i.e. A% () =
().

In the general situation, when Fs may not be affine, i.e. we have a para-
metric element, the barycentric coordinates A are given by the inverse of the
parameterization Fg and the barycentric coordinates on S:

A () = A5(@) = NS (F5' (@)
and the world coordinates of a point x° € S with barycentric coordinates A
are given by
d
#S(\) = Fs (Z /\kdk> — Fs (xS(A))
k=0

(see also Fig. 1.18).

S

A\S
Fig. 1.18. Definition of A%: § — S via F§1 and )\S, and 25: § — S via z° and Fs

Every function f: S — V defines (uniquely) two functions

f: 8-V and f:S—>V
A= f(@%(N) & f(Fs(2)).

Accordingly, f: S — V defines two functions f: S—=Vand f: S—V, and
f: S — V defines f: SHVandf: SV,

Assuming that a function space P C C°(S) is given, it uniquely defines
function spaces P and Pg by

P= {@600(5’); @6]15} and  Ps={pecC’S);pecP}. (1.3)
We can also assume that the function space Pis given and this space uniquely

c_leﬁnes_}f” and Pg in the same manner. In ALBERTA, we use the function space
P on S; the implementation of a basis {@1, . .,gbm} of P is much simpler
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than the implementation of a basis {([71, ey gbm} of P as we are able to use
symmetry properties of the barycentric coordinates \.

In the following we shall often drop the superscript S of A% and z°. The
mappings A\(z) = A¥(x) and z(\) = 2°()\) are always defined with respect to
the actual element S € S.

1.4.2 Finite element spaces

ALBERTA supports scalar and vector valued finite element functions. The
basis functions are always real valued; thus, the coefficients of a finite element
function in a representation by the basis functions are either scalars or vectors
of length n.

For a given function space P and some given real valued function space C
on {2, a finite element space X}, is defined by

Xp=Xu(S,P,C) ={peC; psePgforall SeS}
for scalar finite elements. For vector valued finite elements, it is given by
Xp=XS,P,C) = {<p€ C"; pjis €Psforalli=1,...,n, SES}.

The spaces Pg are defined by P via (1.3).

For conforming finite element discretizations, C' is the continuous space
X (for 2nd order problems, C = X = H!(£2)). For non-conforming finite
element discretizations, C' may control the non conformity of the ansatz space
which has to be controlled in order to obtain optimal error estimates (for
example, in the discretization of the incompressible Navier—Stokes equation
by the non—conforming Crouzeix—Raviart element, the finite element functions
are continuous only in the midpoints of the edges).

The abstract definition of finite element spaces as a triple (mesh, local
basis functions, and DOFs) now matches the mathematical definition as X}, =
X1,(S,P,C) in the following way: The mesh is the underlying triangulation S,
the local basis functions are given by the function space P, and together with
the relation between global and local degrees of freedom every finite element
function satisfies the global continuity constraint C'. This relation between
global and local DOFs is now described in detail.

1.4.3 Evaluation of finite element functions

Let {@1,...,@7"} be a basis of P and let {©1,...,on} be a basis of X,
N = dimXj, such that for every S € S and for all basis functions ¢; which
do not vanish on S

eiis(@(N) =¢'(\)  forall A€ S

holds with some i € {1,...,m} depending on j and S. Thus, the numbering of
the basis functions in P and the mapping z° induces a local numbering of the



30 1 Concepts and abstract algorithms

non vanishing basis functions on S. Denoting by Jg the index set of all non

vanishing basis functions on S, the mapping is : Js — {1,...,m} is one to
one and uniquely connects the degrees of freedom of a finite element function
on S with the local numbering of basis functions. If js : {1,...,m} — Jg

denotes the inverse mapping of ¢g, the connection between global and local
basis functions is uniquely determined on each element S by

pi(x(\) =@ (\), forallXe S, je Js, (1.4a)
Qist) (@A) = @' (N), forall A€ S,ie{l,...,m}. (1.4b)

For up € X}, denote by (ui,...,un) the global coefficient vector of the
basis {¢;} with u; € R for scalar finite elements, u; € R™ for vector valued
finite elements, i.e.

N
up(x) = Zujgoj(x) for all z € 12,
j=1

and the local coefficient vector

(u}g, .. ,u?) = (Ujs(1)7 e vujs(m))

of up on S with respect to the local numbering of the non vanishing basis
functions (local numbering is denoted by a superscript index and global num-
bering is denoted by a subscript index). Using the local coefficient vector and
the local basis functions we obtain the local representation of up on S:

un(x) =Y us@'(\z)) forallzeS.

=1

In finite element codes, finite element functions are not evaluated at world
coordinates x as in (1.4.3), but they are evaluated on a single element S at
barycentric coordinates A on S giving the value at the world coordinates x()\):

up(z(N) = Zufg @'(\) forall A € S.
i=1

The mapping js, which allows the access of the local coeflicient vector from
the global one, is the relation between local DOFs and global DOFs. Global
DOFs for a finite element space are stored on the mesh elements at positions
which are known to the DOF administration of the finite element space. Thus,
the corresponding DOF administration will provide information for the im-
plementation of the function jg and therefore information for reading/writing
local coefficients from/to global coefficient vectors (compare Section 3.5.1).
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Evaluating derivatives of finite element functions

Derivatives of finite element functions are also evaluated on single elements
S in barycentric coordinates. In the calculation of derivatives in terms of
the basis functions @*, the Jacobian A = Ag € R(PTM#1)XDINOFUORID of the
barycentric coordinates on S is involved (we consider here only the case DIM =
DIM_OF _WORLD = d):

A0.21 () Moaa (T) -+ Aoy (€) = Vo(z) -
Alx) = : E : = :
Ad,a1 (T) Adas (T) -+ Aday(2) - Va(z) -
Now, using the chain rule we obtain for every function ¢ € Pg and z € S
d
Ve(z) = =Y P (A@) V() = A" (@) Vap(A(2))
k=0

and
d
D?p(x) = A'(@) D3 @A (@) A(z) + > D*Xi(2) P, (A(@))-

For a simplex S with an affine parameterization Fg, V) is constant on S
and we get

Vi(z) = A™ag(N(x)) and  D?*p(z) = A'D3p(A(z))A.
Using these equations, we immediately obtain
Vup(x Z us V>\<,0
and

D?uy, ZUSD ZDQ)\k Zusgp/\k()\(x)).

Since the evaluation is actually done in barycentric coordinates, this turns for
A€ Son S into

Vup(z(N) = A (z(N)) Z us VA (M)
and

D?up(w(X) = A'(x()) Z us D3@' (N A(z(N))

+ ZD%

HMg
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Once the values of the basis functions, its derivatives, and the local coeffi-
cient vector (uls, ...,u) are known, the evaluation of u; and its derivatives
does only depend on A and can be performed by some general evaluation
routine (compare Section 3.9).

1.4.4 Interpolation and restriction during refinement and
coarsening

We assume the following situation: Let S be a (non—parametric) simplex with
children Sp and S; generated by the bisection of S (compare Algorithm 1.5).
Let Xs, Xs,,5, be the finite element spaces restricted to S and Sp U S re-
spectively.

Throughout this section we denote by {Spi}i:l,___,m the basis of the coarse
grid space Xg and by {wj }j=1,...,k the basis functions of Xg,us, . For a function
up € Xg we denote by u, = (u;, e ,u?})t the coefficient vector with respect
to the basis {¢'} and for a function v, € Xs,us, by vy = (vj,...,v})" the
coefficient vector with respect to {wj }

We now derive equations for the transformation of local coefficient vectors
for finite element functions that are interpolated during refinement and coars-
ening, and for vectors storing values of a linear functional applied to the basis
functions on the fine grid which are restricted to the coarse functions during
coarsening.

Let

I3, 5,0 Xs = Xsous,
be an interpolation operator. For nested finite element spaces, i.e. Xg C

Xs,us;, every coarse grid function uj, € Xg belongs also to Xg,us,, so the
natural choice is ]Igo, s, = id on Xg (for example, Lagrange finite elements

are nested). The interpolants Hgo, S ' can be written in terms of the fine grid
basis functions

k
I2,,5,%" = ZaijW
j=1
defining the (m x k)-matrix
A= (aij)i;1 ..... m. (15)

This matrix A is involved in the interpolation during refinement and the
transformation of a linear functional during coarsening.

For the interpolation of functions during coarsening, we need an interpo-
lation operator Hg"’slz Xs,us;, — Xg. The interpolants ]Ig“*sle of the fine
grid functions can now be represented by the coarse grid basis

S0,51,,7 i
I = bij

=1
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defining the (m x k)-matrix

B = (bjj)i=1....om . (1.6)
j=1,..., k
This matrix B is used for the interpolation during coarsening.

Both matrices do only depend on the set of local basis functions on parent
and children. Thus, they depend on the reference element S and one single
bisection of the reference element into Sy, S;. The matrices do depend on
the local numbering of the basis functions on the children with respect to
the parent. Thus, in 3d the matrices depend on the element type of S also
(for an element of type O the numbering of basis functions on S; differs from
the numbering on S; for an element of type 1, 2). But all matrices can be
calculated by the local set of basis functions on the reference element.

DOFs can be shared by several elements, compare Section 1.3. Every DOF
is connected to a basis function which has a support on all elements sharing
this DOF. Each DOF refers to one coefficient of a finite element function, and
this coefficient has to be calculated only once during interpolation. During the
restriction of a linear functional, contributions from several basis functions are
added to the coefficient of another basis function. Here we have to control that
for two DOF's, both shared by several elements, the contribution of the basis
function at one DOF is only added once to the other DOF and vice versa.
This can only be done by performing the interpolation and restriction on the
whole refinement/coarsening patch at the same time.

Interpolation during refinement

Let u, = (ul,...,u}')" be the coefficient vector of a finite element function
up € Xg with respect to {gpi}, and let uy = (u}p,...,ufp)t the coefficient
vector of I[go,s1 up, with respect to {¢7}. Using matrix A defined in (1.5) we
conclude

k

m m k
S _ i S i i g t j
I[SO»Sluh - Zuw HSO»Slw - Zuw Za” P = Z (A u‘f’)j v,
=1 =1 Jj=1

j=1

or equivalently
uy = Alu,,.
A subroutine which interpolates a finite element function during refinement

is an efficient implementation of this matrix—vector multiplication.

Restriction during coarsening

In an (Euler, e.g.) discretization of a time dependent problem, the term
(ugld, ©i)12 () appears on the right hand side of the discrete system, where
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u‘fbld is the solution from the last time step. Such an expression can be cal-
culated exactly, if the grid does not change from one time step to another.
Assuming that the finite element spaces are nested, it is also possible to cal-
culate this expression exactly when the grid was refined, since uzld belongs to
the fine grid finite element space also. Usually, during coarsening information
is lost, since we can not represent uzld exactly on a coarser grid. But we can
calculate (u‘fbld, ¥i)L2(0) exactly on the fine grid; using the representation of
the coarse grid basis functions ¢; by the fine grid functions v;, we can trans-
form data during coarsening such that (u$'d, ¢;) £2(0) is calculated exactly for
the coarse grid functions too.

More general, assume that the finite element spaces are nested and that we
can evaluate a linear functional f exactly for all basis functions of the fine grid.
Knowing the values f,, = ((f, ¥'),..., (f, ¥*))* for the fine grid functions, we
obtain with matrix A from (1.5) for the values f, = ((f, ¢"),..., (f, ¢"))"

on the coarse grid
fo=Afy

since . i
(f, ') =, Zaij¢j> = Zaij<f7 )
j=1 =1

holds (here we used the fact, that Hgm s, = id on Xg since the spaces are
nested).

Thus, given a functional f which we can evaluate exactly for all basis
functions of a grid S and its refinements, we can also calculate (f, ©*) exactly
for all basis functions ¢° of a grid S obtained by refinement and coarsening
of § in the following way: First refine all elements of the grid that have to
be refined; calculate (f, o) for all basis functions ¢ of this intermediate grid;
in the last step coarsen all elements that may be coarsened and restrict this
vector during each coarsening step as described above.

In ALBERTA the assemblage of the discrete system inside the adaptive
method can be split into three steps: one initialization step before refinement,
the second step between refinement and coarsening, and the last, and usu-
ally most important, step after coarsening, when all grid modifications are
completed, see Section 3.13.1. The second assemblage step can be used for an
exact computation of a functional (f, ¢) as described above.

Interpolation during coarsening

Finally, we can interpolate a finite element function during coarsening. The
matrix for transforming the coefficient vector u,, = (u}p, . ,ui)t of a fine grid
function wuy, to the coefficient vector u, = (ui,, ce, u?})t of the interpolant on
the coarse grid is given by matrix B defined in (1.6):
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k k
ISt = 105 Y = 3 IS
j=1 =1

om m k )
SIS IR o b S P
1

j=1 i=1 i=1 \j=

Thus we have the following equation for the coefficient vector of the interpolant
of up:
U, = Buy.

In contrast to the interpolation during refinement and the above described
transformation of a linear functional, information is lost during an interpola-
tion to the coarser grid.

Example 1.12 (Lagrange elements). Lagrange finite elements are con-
nected to Lagrange nodes z’. For linear elements, these nodes are the ver-
tices of the triangulation, and for quadratic elements, the vertices and the
edge-midpoints. The Lagrange basis functions {gpz} satisfy

gDi(,’Bj):(gij for i,jzl,...,dith.

Consider the situation of a simplex S with children Sy, S;. Let {gpi}izl o
be the Lagrange basis functions of Xg with Lagrange nodes {:pr}i:l on
S and {1/Jj }j=1,....k be the Lagrange basis functions of Xg,us, with Lagrange

nodes {xfp}jzl ,,,,, k on So U S;. The Matrix A is then given by
aij:goi(xfb), i=1,....m, j=1,...,k
and matrix B is given by

bij = (1), i=1,....m, j=1,... k.

1.4.5 Discretization of 2nd order problems

In this section we describe the assembling of the discrete system in detail. We
consider the following second order differential equation in divergence form:

Lu:=-V -AVu+b-Vu+cu=f in £, (1.7a)
u=g on I'p, (1.7b)
vy - AVu =0 on I'y, (1.7¢)

where A € L>®(2;R>4) b € L2(2;RY), ¢ € L>=(2), and f € L*(2). By
I'p € 092 (with [I'p| # 0) we denote the Dirichlet boundary and we assume
that the Dirichlet boundary values g: I'p — R have an extension to some
function g € H(2).
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By I'v = 002\I'p we denote the Neumann boundary, and by v, we denote
the outer unit normal vector on 9f2. The boundary condition (1.7¢) is a so
called natural Neumann condition.

Equations (1.7) describe not only a simple model problem. The same kind
of equations result from a linearization of nonlinear elliptic problems (for
example by a Newton method) as well as from a time discretization scheme
for (non-) linear parabolic problems.

Setting

X =H' () and X:{veHl(Q);v:OonFD}

this equation has the following weak formulation: We are looking for a solution
u € X, such that v € g + X and

/ch'AVqugab-Vqucgoudx: fodz (1.8)
Q Q

for all ¢ € X ) )
Denoting by X* the dual space of X we identify the differential operator
L with the linear operator L € £(X, X*) defined by

<Lv,<p>)c(*x)a(::/V<p'AVv+/<pb~Vv+/c<pv forallv,ch)O(
Q 0 0
and the right hand side f with the linear functional f € X* defined by

(Fy #) v s iz/nfga for all p € X.

With these identifications we use the following reformulation of (1.8): Find
u € X such that ) )
ueg+X: Lu=f in X* (1.9)
holds.

Suitable assumptions on the coefficients imply that L is elliptic, i.e. there
is a constant C' = Cy ¢, such that

(Lo, <P>)°(*X)°(ZCH<,0H§( for all p € X.

The existence of a unique solution u € X of (1.9) is then a direct consequence
of the Lax—Milgram—Theorem.

We consider a finite dimensional subspace X; C X for the discretization
of (1.9) with N = dim Xj,. We set X}, = X, N X with N = dim X,. Let
gn € Xp, be an approximation of g € X. A discrete solution of (1.9) is then
given by: Find u; € X, such that

un € gn+Xn:  Lup=f inXj, (1.10)
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i.e.
up € g + Xp ¢ <Luh, (ph>)°(;;x)°(h = <f, 90h>)“<;;x)°(h, for all vy € X3,

holds. If L is elliptic, we have a unique discrete solution u, € X}, of (1.10),
again using the Lax—Milgram—Theorem.
Choose a basis {gpl,...,LpN} of X}, such that {gpl, .. .,@N} is a basis of

X),. For a function v, € X we denote by v = (v1,...,vn) the coefficient
vector of vy with respect to the basis {cpl, ey @N}, ie.

N
Vp = E ViPj.
j=1

Using (1.10) with test functions ¢;, i = 1,..., N, we get the following N

equations for the coefficient vector u = (uq,...,un) of up:
N
S s (Lo b, = s @), 1= Lo,
j=1
U; = g; fori:]{7+1,...,N.

Defining the system matriz L by

(Lot 1) o (Logs 01) (Logirs 1) - (Loys 1)

(Lot o) - (Legs 0x) {LPgiirs 0x) - (Lews ©5)

L = 0 0 1 0 0 (1.11)
0 0 0 1 0
: 0 0 0 . :
0 0 0 0 1

and the right hand side vector or load vector f by
i <f7 C)Ol> T

Fom |Uen) (1.12)

IN+1

L 9y

we can write the discrete equations as the linear N x N system
Lu=Ff, (1.13)

which has to be assembled and solved numerically.
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1.4.6 Numerical quadrature

For the assemblage of the system matrix and right hand side vector of the
linear system (1.13), we have to compute integrals, for example

Af@%@ﬂw

For general data A, b, ¢, and f, these integrals can not be calculated exactly.
Quadrature formulas have to be used in order to calculate the integrals approx-
imately. Numerical integration in finite element methods is done by looping
over all grid elements and using a quadrature formula on each element.

Definition 1.13 (Numerical quadrature). A numerical quadrature Q on
S is a set {(wg, \r) € R x Rk =0,...,ng—1} of weights wy and quadra-
ture points A\, € S (i.e. given in barycentric coordinates) such that

ng—1

/Sf(if) di ~ Q(f) = Y wif(@(\))-

k=0

It is called exact of degree p for some p € N if
/g q(&)di = Q(q)  for all ¢ € Py(S).

It is called stable if
wg > 0 forallk=0,...,n9 —1.

Remark 1.14. A given numerical quadrature Q on S defines for each element
S a numerical quadrature (s. Using the transformation rule we define Qs on
an element S which is parameterized by Fg: S — S and a function f : § — R:

AﬂmeQmﬂ:QWo&WMD&D

= Y wif(x(Me))] det DFs(&(Ak)]-

k=0
For a simplex S this results in

ng—1

Qs(f) =d![S| D> wif(z(\))-
k=0
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1.4.7 Finite element discretization of 2nd order problems

Let P be a finite dimensional function space on S with basis {@?, ..., ®™}. For
a conforming finite element discretization of (1.8) we use the finite element
space X;, = X3 (S, P, X). For this space X}, is given by X,(S,P, X).

By the relation (1.4a) for global and local basis functions, we obtain for
the jth component of the right hand side vector f

(o) :/Qﬂx)soj(x)d:c: Z/Sf(x)wj(x)d:c

SeSs
= > /Sf(x)¢is<j>(A(x))dx
SCS“SI‘?(SD]')
= > /gf(Fs(:%))ngiS(j)()\(:ﬁ)ﬂdetDFS(:ﬁ)|d:%,
SCsisl;S(wj)

where S is parameterized by Fg: S — S. The above sum is reduced to a sum
over all S C supp(p;) which are only few elements due to the small support
of @Lj-

The right hand side vector can be assembled in the following way: First,
the right hand side vector is initialized with zeros. For each element S of &
we calculate the element load vector fg = (f&,..., f2")!, where

fg_/Sf(FS(ge)W(A(fmdetDFS(ge)mge, i=1,...,m.  (1.14)

Denoting again by js : {1,...,m} — Jg the function which connects the local
DOFs with the global DOFs (defined in (1.4b)), the values f% are then added
to the jg(i)th component of the right hand side vector f,i=1,...,m.

For general f, the integrals in (1.14) can not be calculated exactly and we
have to use a quadrature formula for the approximation of the integrals (com-
pare Section 1.4.6). Given a numerical quadrature Q on S we approximate

fi~Q((foFs) (¢ o\)|det DFs))

ng—1

= 3 wif @) @ (M) det DFs(@(\). (1.15)

k=0
For a simplex S this is simplified to

ng—1

Fsm dlS] Y wif(z(\) @' (w)-

k=0

In ALBERTA, information about values of basis functions and its deriva-
tives as well as information about the connection of global and local DOF's
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(i.e. information about jg) is stored in special data structures for local basis
functions (compare Section 3.5). By such information, the element load vec-
tor can be assembled by a general routine if a function for the evaluation of
the right hand side is supplied. For parametric elements, a function for eval-
uating | det DFs| is additionally needed. The assemblage into the global load
vector f can again be performed automatically, using information about the
connection of global and local DOFs.

The calculation of the system matrix is also done element—wise. Addition-
ally, we have to handle derivatives of basis functions. Looking first at the
second order term we obtain by the chain rule (1.4.3) and the relation (1.4)
for global and local basis functions

/ Vyi(z) - A(z)Vp;(z) de = / V(@@ o A)(z) - A(x)V(g"5 D) o N)(x) d
S S

- /S Vg (@) - (Ale) Alz) A'(2))Vag's V) (A(x)) da,

where A is the Jacobian of the barycentric coordinates A on S. In the same
manner we obtain for the first and zero order terms

/‘Pi(x)b(w)~Vs0j(x)d~’”:/WS(i)(A(fE))(A(x)b(fr))~VA¢iS(j)(/\(x))dI
S S

and

/ () gi(z) 0y () de = / e(2) 3 D (A(2)) 6% D) (A(a)) de.
S

S
Using on S the abbreviations

AN = (@ (V) 1=o,....a = | det DFg(2(N))] A(z (X)) A(z(A)) A" (X)),
B(A) = (Bi(N) o, = |det DFs(#(N))| A(z(N) b(z())), and
¢(A) = |det DFs(&(X)] e(x (X))

and transforming the integrals to the reference simplex, we can write the
element matric Lg = (LY )i j=1,....m s

Ly — /S VE (A(@)) - A (@) W@ (A(2)) di
+ /S 5 (M2)) BAR)) - Vi@ (M) di
+ /S EA@)) F (@) @ (M) d

or writing the matrix—vector and vector—vector products explicitly
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1,7 = 1,...,m. Using quadrature formulas Qz, Ql, and QO for the second,
first and zero order term we approximate the element matrix

d

i

Lg ~ Q2 Z akl%’)\k@,\, )oA
k=0

d
1 (Z(Bl ¢ @y, 0 A) + QO((E@i ¢’)o )\)»
1=0
1,7 =1,...,m. Having access to functions for the evaluation of

ari(Ag),  bi(Ag), @A)

at all quadrature points A, on S, Lg can be computed by some general rou-
tine. The assemblage into the system matrix can also be done automatically
(compare the assemblage of the load vector).

Remark 1.15. Due to the small support of the global basis function, the sys-
tem matrix is a sparse matrix, i.e. the maximal number of entries in all matrix
rows is much smaller than the size of the matrix. Special data structures are
needed for an efficient storage of sparse matrices and they are described in
Section 3.3.4.

Remark 1.16. The calculation of A(z()\)) usually involves the determinant
of the parameterization’s Jacobian |det DFg(Z()))|. Thus, a calculation of
|det DFs(2(N))| A(z(N\)) A(xz(N)) A*(x(X)) may be much faster than the cal-
culation of A(z()\)) A(z(N)) A*(x())) only; the same holds for the first order
term.

Assuming that the coefficients A, b, and ¢ are piecewise constant on a non—

parametric triangulation, A(\), b(\), and &()\) are constant on each simplex
S and thus simplified to

Ag = (C_lkl)k,lzo,...,d =d!|S] AAgA
bs = (bl)l:O,...,d = d![S| Abs,

¢s = d!|S] cls-
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For the approximation of the element matrix by quadrature we then obtain

d
Li~ Y @lez((sﬁfAk @'\ o /\>
P1=0 (1.16)
d . A . .
+ D00 ((#" @) 0 N) 25 Qo((# @) 0 M)
1=0
1,7 = 1,...,m. Here, the numerical quadrature is only applied for approxi-

mating integrals of the basis functions on the standard simplex. Theses values
can be computed only once, and can then be used on each simplex S. This will
speed up the assembling of the system matrix. Additionally, for polynomial
basis functions we can use quadrature formulas which integrate these integrals
exactly.

As a result, using information about values of basis functions and their
derivatives, and information about the connection of global and local DOFs,
the linear system can be assembled automatically by some general routines.
Only functions for the evaluation of given data have to be provided for special
applications. The general assemble routines are described in Section 3.12.

1.5 Adaptive Methods

The aim of adaptive methods is the generation of a mesh which is adapted to
the problem such that a given criterion, like a tolerance for the estimated error
between exact and discrete solution, if fulfilled by the finite element solution
on this mesh. An optimal mesh should be as coarse as possible while meeting
the criterion, in order to save computing time and memory requirements. For
time dependent problems, such an adaptive method may include mesh changes
in each time step and control of time step sizes.

The philosophy implemented in ALBERTA is to change meshes successively
by local refinement or coarsening, based on error estimators or error indicators,
which are computed a posteriori from the discrete solution and given data on
the current mesh.

1.5.1 Adaptive method for stationary problems

Let us assume that a triangulation S of (2, a finite element solution u; € Xj,
to an elliptic problem, and an a posteriori error estimate

1/p
u—unll < nur) = (Z ns(wz)”> , PE[loo) (1.17)

Ses

on this mesh are given. If tol is a given allowed tolerance for the error, and
n(up) > tol, the problem arises, where to refine the mesh in order to reduce
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the error, while at the same time the number of unknowns should not become
too large.

A global refinement of the mesh would lead to the best error reduction, but
the amount of new unknowns might be much larger than needed to reduce the
error below the given tolerance. Using local refinement, we hope to do much
better.

The design of an “optimal” mesh, where the number of unknowns is as
small as possible to keep the error below the tolerance, is an open problem and
will probably be much too costly. Especially in the case of linear problems,
the design of an optimal mesh will be much more expensive than the solution
of the original problem, since the mesh optimization is a highly nonlinear
problem. Usually, some heuristic arguments are then used in the algorithm.
The aim is to produce a result that is “not too far” from an optimal mesh,
but with a relatively small amount of additional work to generate it.

Several adaptive strategies are proposed in the literature, that give criteria
which mesh elements should be marked for refinement. All strategies are based
on the idea of an equidistribution of the local error to all mesh elements.
Babusgka and Rheinboldt [3] motivate that a mesh is almost optimal when the
local errors are approximately equal for all elements. So, elements where the
error indicator is large will be marked for refinement, while elements with a
small error indicator are left unchanged.

The general outline of the adaptive algorithm for a stationary problem is
the following. Starting from an initial triangulation Sy, we produce a sequence
of triangulations Sy, for £ = 1,2, ..., until the estimated error is below the
given tolerance:

Algorithm 1.17 (General adaptive refinement strategy).

Start with Sy and error tolerance tol

k:=0
solve the discrete problem on Sk
compute global error estimate 7 and local indicators 7g
while n > tol do

mark elements for refinement (or coarsening)

adapt mesh Si, producing Sii1

k :=k+1

solve the discrete problem on Sk

compute global error estimate 7 and local indicators ng
end while

1.5.2 Mesh refinement strategies

Since a discrete problem has to be solved in every iteration of this algorithm,
the number of iterations should be as small as possible. Thus, the marking
strategy should select not too few mesh elements for refinement in each cycle.
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On the other hand, not much more elements should be selected than is needed
to reduce the error below the given tolerance.

In the sequel, we describe several marking strategies that are commonly
used in adaptive finite element methods.

The basic assumption for all marking strategies is the fact that the mesh is
“optimal” when the local error is the same for all elements of the mesh. This
optimality can be shown under some heuristic assumptions, see [3]. Since the
true error is not know we try to equidistributed the local error indicators. This
is motivated by the lower bound for error estimators of elliptic problems. This
lower bound ensures that the local error is large if the local indicator is large
and data of the problem is sufficiently resolved [2, 73]. As a consequence,
elements with a large local error indicator should be refined, while elements
with a very small local error indicator may be coarsened.

Global refinement. The simplest strategy is not really “adaptive” at all,
at least not producing a locally refined mesh. It refines the mesh globally,
until the given tolerance is reached.

If an a priori estimate for the error in terms of the maximal size of a mesh
element h is known, where the error is bounded by a positive power of h, and
if the error estimate tends to zero if the error gets smaller, then this strategy
is guaranteed to produce a mesh and a discrete solution which meets the error
tolerance.

But, in most cases, global refinement produces far too much mesh elements
than are needed to meet the error tolerance.

Maximum strategy. Another very simple strategy is the maximum strat-
egy. A threshold v € (0, 1) is given, and all elements S € S, with

, 1.18
s > Y max s (1.18)

are marked for refinement. A small 7y leads to more refinement and maybe non—
optimal meshes, while a large « leads to more cycles until the error tolerance
is reached, but usually produces a mesh with less unknowns. Typically, a
threshold value v = 0.5 is used when the power p in (1.17) is p = 2 [72, 75].

Algorithm 1.18 (Maximum strategy).
Given parameter v € (0,1)

Nmax = max(ng, S € Sk)
for all S in Sk do

if Mg > Y Mmax then mark S for refinement
end for
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Equidistribution strategy. Let Nj be the number of mesh elements in Sy.
If we assume that the error indicators are equidistributed over all elements, i.
e. ng = ng: for all S, 5" € S, then

1/p
| tol
n = (Z 7}2) = N;/png = tol and ng = 7
SeSy, Nk

We can try to reach this equidistribution by refining all elements where it
is violated because the error indicator is larger than tol/N, ;/ P To make the
procedure more robust, a parameter 8 € (0,1), § ~ 1, is included in the
method.

Algorithm 1.19 (Equidistribution strategy[36]).
Start with parameter 6 € (0,1), =1

for all S in S; do

if ns > Gtol/N;/p then mark S for refinement
end for

If the error 7 is already near tol, then the choice 6 = 1 leads to the selection
of only very few elements for refinement, which results in more iterations of
the adaptive process. Thus, € should be chosen smaller than 1, for example
0 = 0.9. Additionally, this accounts for the fact that the number of mesh
elements increases, i. e. Nyy1 > N, and thus the tolerance for local errors
will be smaller after refinement.

Guaranteed error reduction strategy. Usually, it is not clear whether
the adaptive refinement strategy Algorithm 1.17 using a marking strategy
(other than global refinement) will converge and stop. Dorfler [31] describes
a strategy with a guaranteed error reduction for the Poisson equation within
a given tolerance.

We need the assumptions, that

- given data of the problem (like the right hand side) is sufficiently resolved
by the initial mesh Sy with respect to the given tolerance (such that, for
example, errors from the numerical quadrature are negligible),

- all edges of marked mesh elements are at least bisected by the refinement
procedure (using regular refinement or two/three iterated bisections of
triangles/tetrahedra, for example).

The idea is to refine a subset of the triangulation whose element errors sum
up to a fixed amount of the total error n. Given a parameter 6, € (0,1), the
procedure is:

Mark a set A C Sy such that Z ne > (1—0.)PnP.
SeA
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It follows from the assumptions that the error will be reduced by at least a
factor k < 1 depending of 6, and data of the problem. Selection of the set
A can be done in the following way. The maximum strategy threshold ~ is
reduced in small steps of size v € (0,1), v << 1, until the maximum strategy
marks a set which is large enough. This inner iteration is not costly in terms
of CPU time as no computations are performed.

Algorithm 1.20 (Guaranteed error reduction strategy[31]).
Start with given parameters 6. € (0,1), v € (0,1)

Tmax = max(ng, S € Sg)

sum := 0

v =1

while sum < (1 —6.)Pn? do
vy i=y—-v

for all S in S; do
if S is not marked
if 75 > ¥ Nmax
mark S for refinement
sum := sum + 7%
end if
end if
end for
end while

Using the above algorithm, Dérfler [30] describes a robust adaptive strat-
egy also for the nonlinear Poisson equation —Au = f(u). It is based on a poste-
riori error estimates and a posteriori saturation criteria for the approximation
of the nonlinearity.

Remark 1.21. Using this GERS strategy and an additional marking of ele-
ments due to data approximation, Morin, Nochetto, and Siebert [50, 51, 52]
could remove the assumption that data is sufficiently resolved on Sy in order
to prove convergence. The result is a simple and efficient adaptive finite ele-
ment method for linear elliptic PDEs with a linear rate of convergence without
any preliminary mesh adaptation.

Other refinement strategies. Babuska and Rheinboldt [3] describe an
extrapolation strategy, which estimates the local error decay. Using this esti-
mate, refinement of elements is done when the actual local error is larger than
the biggest expected local error after refinement.

Jarausch [41] describes a strategy which generates quasi—optimal meshes.
It is based on an optimization procedure involving the increase of a cost func-
tion during refinement and the profit while minimizing an energy functional.

For special applications, additional information may be generated by the
error estimator and used by the adaptive strategy. This includes (anisotropic)
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directional refinement of elements [43, 66], or the decision of local h— or p—
enrichment of the finite element space [27, 61].

1.5.3 Coarsening strategies

Up to now we presented only refinement strategies. Practical experience in-
dicates that for linear elliptic problems, no more is needed to generate a
quasi—optimal mesh with nearly equidistributed local errors.

In time dependent problems, the regions where large local errors are pro-
duced can move in time. In stationary nonlinear problems, a bad resolution
of the solution on coarse meshes may lead to some local refinement where it
is not needed for the final solution, and the mesh could be coarsened again.
Both situations result in the need to coarsen the mesh at some places in order
to keep the number of unknowns small.

Coarsening of the mesh can produce additional errors. Assuming that these
are bounded by an a posteriori estimate 7. 5, we can take this into account
during the marking procedure.

Some of the refinement strategies described above can also be used to
mark mesh elements for coarsening. Actually, elements will only be coarsened
if all neighbour elements which are affected by the coarsening process are
marked for coarsening, too. This makes sure that only elements where the
error is small enough are coarsened, and motivates the coarsening algorithm
in Section 1.1.2.

The main concept for coarsening is again the equidistribution of local
errors mentioned above. Only elements with a very small local error estimate
are marked for coarsening. On the other hand, such a coarsening tolerance
should be small enough such that the local error after coarsening should not
be larger than the tolerance used for refinement. If the error after coarsening
gets larger than this value, the elements would be directly refined again in the
next iteration (which may lead to a sequence of oscillating grid never meeting
the desired criterion).

Usually, an upper bound p for the mesh size power of the local error
estimate is known, which can be used to determine the coarsening tolerance:
if

Ns < Chu?
then coarsening by undoing b bisections will enlarge the local error by a factor
smaller than 2#°/P™ such that the local coarsening tolerance tol, should be

smaller than
tol,

tole < 9ub/DIM’

where tol, is the local refinement tolerance.

Maximum strategy. Given two parameters v > 7., refine all elements S
with
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D D
> v max ,
Mg =7 s U
and mark all elements S with

P D D
+ < max 7',
Mg T Mg = Ve Gex Ms

for coarsening.

Equidistribution strategy. Equidistribution of the tolerated error tol

leads to 1ol
NS~ —=_ forall S€S.

N;/P
If the local error at an element is considerably smaller than this mean value,
we may coarsen the element without producing an error that is too large. All

elements with
tol

775>9T
Nkp

are marked for refinement, while all elements with

<0 tol
Ns + Ne,s < CW

k

are marked for coarsening.

Guaranteed error reduction strategy. Similar to the refinement in Al-
gorithm 1.20, Dorfler [32] describes a marking strategy for coarsening. Again,
the idea is to coarsen a subset of the triangulation such that the additional
error after coarsening is not larger than a fixed amount of the given tolerance
tol. Given a parameter 6. € (0, 1), the procedure is:

Mark a set B C Sy such that Z ne + 77?,5 < LnP.
seB

The selection of the set B can be done similar to Algorithm 1.20.

Remark 1.22. When local h— and p—enrichment and coarsening of the finite
element space is used, then the threshold 6. depends on the local degree of
finite elements. Thus, local thresholds 6. s have to be used.

Handling information loss during coarsening. Usually, some informa-
tion is irreversibly destroyed during coarsening of parts of the mesh, compare
Section 3.3.3. If the adaptive procedure iterates several times, it may occur
that elements which were marked for coarsening in the beginning are not al-
lowed to coarsen at the end. If the mesh was already coarsened, an error is
produced which can not be reduced anymore.
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One possibility to circumvent such problems is to delay the mesh coars-
ening until the final iteration of the adaptive procedure, allowing only refine-
ments before. If the coarsening marking strategy is not too liberal (6. not too
large), this should keep the error below the given bound.

Dorfler [32] proposes to keep all information until it is clear, after solv-
ing and by estimating the error on a (virtually) coarsened mesh, that the
coarsening does not lead to an error which is too large.

1.5.4 Adaptive methods for time dependent problems

In time dependent problems, the mesh is adapted to the solution in every time
step using a posteriori error estimators or indicators. This may be accompa-
nied by an adaptive control of time step sizes, see below.

Béansch [9] lists several different adaptive procedures (in space) for time
dependent problems:

Explicit strategy: The current time step is solved once on the mesh from

the previous time step, giving the solution u,. Based on a posteriori es-
timates of up, the mesh is locally refined and coarsened. The problem is
not solved again on the new mesh, and the solve—estimate-adapt process
is nmot iterated.
This strategy is only usable when the solution is nearly stationary and
does not change much in time, or when the time step size is very small.
Usually, a given tolerance for the error can not be guaranteed with this
strategy.

Semi—implicit strategy: The current time step is solved once on the mesh
from the previous time step, giving an intermediate solution u;. Based
on a posteriori estimates of @y, the mesh is locally refined and coarsened.
This produces the final mesh for the current time step, where the discrete
solution uy, is computed. The solve—estimate—adapt process is not iterated.
This strategy works quite well, if the time steps are not too large, such
that regions of refinement move too fast.

Implicit strategy A: In every time step starting from the previous time

step’s triangulation, a mesh is generated using local refinement and coars-
ening based on a posteriori estimates of a solution which is calculated on
the current mesh. This solve-estimate—adapt process is iterated until the
estimated error is below the given bound.
This guarantees that the estimated error is below the given bound. To-
gether with an adaptive control of the time step size, this leads to global
(in time) error bounds. If the time step size is not too large, the number
of iterations of the solve—estimate—adapt process is usually very small.

Implicit strategy B: In every time step starting from the macro triangu-
lation, a mesh is generated using local refinements based on a posteriori
estimates of a solution which is calculated on the current (maybe quite
coarse) mesh; no mesh coarsening is needed. This solve—estimate—adapt



50 1 Concepts and abstract algorithms

process is iterated until the estimated error is below the given bound.
Like implicit strategy A, this guarantees error bounds. As the initial mesh
for every time step is very coarse, the number of iterations of the solve—
estimate—adapt process becomes quite large, and thus the algorithm might
become expensive. On the other hand, a solution on a coarse grid is fast
and can be used as a good initial guess for finer grids, which is usually
better than using the solution from the old time step.

Implicit strategy B can also be used with anisotropically refined triangular
meshes, see [37]. As coarsening of anisotropic meshes and changes of the
anisotropy direction are still open problems, this implies that the implicit
strategy A can not be used in this context.

The following algorithm implements one time step of the implicit strat-

egy A. The adaptive algorithm ensures that the mesh refinement/coarsening
is done at least once in each time step, even if the error estimate is below
the limit. Nevertheless, the error might not be equally distributed over all
elements; for some simplices the local error estimates might be bigger than
allowed.

Algorithm 1.23 (Implicit strategy A).

Start with given parameters tol and time step size 7,
the solution u, from the previous time step on grid S,

Sn+1 =S,
solve the discrete problem for u,t; on S,i1 using data wu,
compute error estimates on Sn+1

do
mark elements for refinement or coarsening
if elements are marked then
adapt mesh S,41 producing a modified S,41
solve the discrete problem for u,y; on S,41 using data u,
compute error estimates on Spi1
end if
while n > tol

Adaptive control of the time step size

A posteriori error estimates for parabolic problems usually consist of four
different types of terms:

terms estimating the initial error;
terms estimating the error from discretization in space;
terms estimating the error from mesh coarsening between time steps;

terms estimating the error from discretization in time.
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Thus, the total estimate can be split into parts

Mo, Thy T, and Nr

estimating these four different error parts. Usually, the error estimate can be
written like

1
lutn) —uxll < o+ max <nf,n+( Z(nﬁ,s+nf,s)>p>-

1<n<N
SeS,

When a bound tol is given for the total error produced in each time step, the
widely used strategy is to allow one fixed portion Iy tol to be produced by the
discretization of initial data, a portion I}, tol to be produced by the spatial
discretization, and another portion I'; tol of the error to be produced by the
time discretization, with Iy + I, + I < 1.0. The adaptive procedure now
tries to adjust time step sizes and meshes such that

no ~= Iy tol
and in every time step
Ny = Irtol and 1) +nf ~ (I} tol)P.

The adjustment of the time step size can be done via extrapolation tech-
niques known from numerical methods for ordinary differential equations, or
iteratively: The algorithm starts from the previous time step size 7,q or from
an initial guess. A parameter 01 € (0,1) is used to reduce the step size until
the estimate is below the given bound. If the error is smaller than the bound,
the step size is enlarged by a factor d3 > 1 (usually depending on the order of
the time discretization). In this case, the actual time step is not recalculated,
only the initial step size for the next time step is changed. Two additional
parameters 61 € (0,1), 82 € (0,60;) are used to keep the algorithm robust,
just like it is done in the equidistribution strategy for the mesh adaption. The
algorithm starts from the previous time step size 7,4 or from an initial guess.

If §; ~ 1, consecutive time steps may vary only slightly, but the number
of iterations for getting the new accepted time step may increase. Again, as
each iteration includes the solution of a discrete problem, this value should be
chosen not too large. For a first order time discretization scheme, a common
choice is 01 ~ 1/\/5

Algorithm 1.24 (Time step size control).
Start with parameters ¢; € (0,1), d2 > 1, 6, € (0,1), 62 € (0,61)

T T Told
Solve time step problem and estimate the error
while n; > 61 I tol do

T =01 T
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Solve time step problem and estimate the error
end while
if n, <021 tol then

T 1= 02T
end if

The above algorithm controls only the time step size, but does not show
the mesh adaption. There are several possibilities to combine both controls.
An inclusion of the grid adaption in every iteration of Algorithm 1.24 can
result in a large number of discrete problems to solve, especially if the time
step size is reduced more than once. A better procedure is first to do the step
size control with the old mesh, then adapt the mesh, and after this check the
time error again. In combination with the implicit strategy A, this procedure
leads to the following algorithm for one single time step

Algorithm 1.25 (Time and space adaptive algorithm).

Start with given parameter tol, 01 € (0,1), d2 > 1, 6; € (0,1),
62 € (0,61), the solution w, from the previous time step
on grid §,, at time ¢, with time step size T,

Sn+1 =S,
Tn+1 = Tn
tn+1 = tn + Tn+1

solve the discrete problem for u,y; on S,y1 using data u,
compute error estimates on Sn+1

while n; > 61 I'- tol
Tntl = 01 Tng1
tn—i—l = tn+Tn+1
solve the discrete problem for u,i; on Spi1 using data u,
compute error estimates on Spii
end while

do
mark elements for refinement or coarsening
if elements are marked then
adapt mesh S,41 producing a modified S, 41
solve the discrete problem for u,y; on S,41 using data u,
compute estimates on Spii

end if

while n, > 61 I’ tol
Tnl = 01Tny1
tn+1 = tn +Tn+1

solve the discrete problem for u,y; on S,41 using data u,
compute error estimates on Sn+1
end while
while np > tol



1.5 Adaptive Methods 53

if n, <021 tol then

T+l 1= 02 Tl
end if

The adaptive a posteriori approach can be extended to the adaptive choice
of the order of the time discretization: Bornemann [18, 19, 20] describes an
adaptive variable order time discretization method, combined with implicit
strategy B using the extrapolation marking strategy for the mesh adaption.
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Implementation of model problems

In this chapter we describe the implementation of two stationary model prob-
lems (the linear Poisson equation and a nonlinear reaction—diffusion equation)
and of one time dependent model problem (the heat equation). Here we give
an overview how to set up an ALBERTA program for various applications. We
do not go into detail when refering to ALBERTA data structures and functions.
A detailed description can be found in Chapter 3. We start with the easy and
straight forward implementation of the Poisson problem to learn about the
basics of ALBERTA. The examples with the implementation of the nonlinear
reaction-diffusion problem and the time dependent heat equation are more
involved and show the tools of ALBERTA for attacking more complex prob-
lems. Removing all N TEX descriptions of functions and variables results in the
source code for the adaptive solvers.

During the installation of ALBERTA (described in Section 2.4) a subdi-
rectory DEMO with sources and makefiles for these model problems is cre-
ated. The corresponding ready-to-run programs can be found in the files
ellipt.c, heat.c, and nonlin.c, nlprob.c, nlsolve.c in the subdirec-
tory DEMO/src/Common/. Executable programs for different space dimensions
can be generated in the subdirectories DEMO/src/1d/, DEMO/src/2d/, and
DEM0/src/3d/ by calling make ellipt,make nonlin, and make heat. Graph-
ics output for all problems is generated via a routine

void graphics(MESH *mesh, DOF_REAL_VEC *u_h, REAL (*get_est)(EL *));

which shows the geometry given by mesh, as well as finite element func-
tion values given by u_h, or local estimator values when parameter get_est
is given, all in separate graphics windows. The source of this routine is
DEMO/src/Common/graphics.c, which is self explaining and not described
here in detail.
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2.1 Poisson equation

In this section we describe a model implementation for the Poisson equation

—Au=f inf2cCR?
u=gq on 0f2.

This is the most simple elliptic problem (yet very important in many appli-
cations), but the program presents all major ingredients for general scalar
stationary problems. Modifications needed for a nonlinear problem are pre-
sented in Section 2.2.

Fig. 2.1. Solution of the linear Poisson problem and corresponding mesh. The
pictures were produced by GRAPE.

Data and parameters described below lead in 2d to the solution and mesh
shown in Fig. 2.1. The implementation of the Poisson problem is split into
several major steps which are now described in detail.

2.1.1 Include file and global variables

All ALBERTA source files must include the header file alberta.h with all
ALBERTA type definitions, function prototypes and macro definitions:

#include <alberta.h>

For the linear scalar elliptic problem we use four global pointers to data struc-
tures holding the finite element space and components of the linear system
of equations. These are used in different subroutines where such information
cannot be passed via parameters.

static const FE_SPACE *fe_space;
static DOF_REAL_VEC *u_h = nil;
static DOF_REAL_VEC *f_h = nil;
static DOF_MATRIX *matrix = nil;
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fe_space: a pointer to the actually used finite element space; it is initialized
by the function init_dof_admin () which is called by GET_MESH(), see Section
2.1.4;

u_h: a pointer to a DOF vector storing the coefficients of the discrete so-
lution; it is initialized on the first call of build() which is called by
adapt method_stat (), see Section 2.1.7;

f h: a pointer to a DOF vector storing the load vector; it is initialized on the
first call of build();

matrix: a pointer to a DOF matrix storing the system matrix; it is initialized
on the first call of build();

The data structure FE_SPACE is explained in Section 3.2.14, DOF_REAL_VEC in
Section 3.3.2, and DOF MATRIX in Section 3.3.4. Details about DOF adminis-
tration DOF_ADMIN can be found in Section 3.3.1 and about the data structure
MESH for a finite element mesh in Section 3.6.1.

2.1.2 The main program for the Poisson equation

The main program is very simple, it just includes the main steps needed to
implement any stationary problem. Special problem-dependent aspects are
hidden in other subroutines described below.

We first read a parameter file (indicating which data, algorithms, and
solvers should be used; the file is described below in Section 2.1.3).

Then we initialize the mesh (the basic geometric data structure), and read
the macro triangulation (including an initial global refinement, if necessary).
The subdirectories MACRO in the DEMO/src/*d directories contain data for
several sample macro triangulations. How to read and write macro triangula-
tion files is explained in Section 3.2.16. The macro file name and the number
of global refinements are given in the parameter file. Now, the domain’s ge-
ometry is defined, and a finite element space is automatically generated via
the init dof_admin() routine described in Section 2.1.4 below. A call to
graphics () displays the initial mesh.

The basic algorithmic data structure ADAPT_STAT introduced in Section
3.13.1 specifies the behaviour of the adaptive finite element method for sta-
tionary problems. A pre—initialized data structure is accessed by the func-
tion get_adapt_stat(); the most important members (adapt->tolerance,
adapt->strategy, etc.) are automatically initialized with values from the pa-
rameter file; other members can be also initialized by adding similar lines
for these members to the parameter file (compare Section 3.13.4). Eventu-
ally, function pointers for the problem dependent routines have to be set
(estimate, get_el_est, build, solve). Since the assemblage is done in one
step after all mesh modifications, only adapt->build after _coarsen is used,
no assemblage is done before refinement or before coarsening. These addi-
tional assemblage steps are possible and may be needed in a more general
application, for details see Section 3.13.1.
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The adaptive procedure is started by a call of adapt method _stat (). This
automatically solves the discrete problem, computes the error estimate, and
refines the mesh until the given tolerance is met, or the maximal number
of iterations is reached, compare Section 3.13.1. Finally, WAIT REALLY allows
an inspection of the final solution by preventing a direct program exit with
closure of the graphics windows.

int main(int argc, char **argv)
{
FUNCNAME ("main") ;
MESH *mesh ;
int n_refine = 0;
static ADAPT_STAT *adapt;
char filename[100];

Y st */
/* first of all, init parameters of the init file */
Y e e */

R */
/* get a mesh, and read the macro triangulation from file */
Y e et e */

mesh = GET_MESH("ALBERTA mesh", init_dof_admin, init_leaf_data);
GET_PARAMETER(1, "macro file name", "%s", filename);
read_macro(mesh, filename, nil);

GET_PARAMETER(1, "global refinements", "%d", &n_refine);
global_refine(mesh, n_refinexDIM);

graphics(mesh, nil, nil);

Y et et */
/* init adapt structure and start adaptive method */
Y e st */

adapt = get_adapt_stat("ellipt", "adapt", 2, nil);
adapt->estimate = estimate;

adapt->get_el_est = get_el_est;
adapt->build_after_coarsen = build;

adapt->solve = solve;

adapt_method_stat (mesh, adapt);
WAIT_REALLY;
return(0) ;
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2.1.3 The parameter file for the Poisson equation

The following parameter file INIT/ellipt.dat is used for the ellipt.c pro-
gram:

macro file name: Macro/macro.amc
global refinements: 0
polynomial degree: 3

% graphic windows: solution, estimate, and mesh if size > 0
graphic windows: 300 300 300

% for graphics you can specify the range for the values of
% discrete solution for displaying: min max

% automatical scaling by display routine if min >= max
graphic range: 0.0 -1.0

solver: 2 % 1: BICGSTAB 2: CG 3: GMRES 4: ODIR 5: ORES
solver max iteration: 1000

solver restart: 10 % only used for GMRES

solver tolerance: 1.e-8

solver info: 2

solver precon: 2 % 0: no precon 1: diag precon

% 2: HB precon 3: BPX precon

error norm: 1 % 1: H1_NORM, 2: L2_NORM

estimator CO: 0.1 % constant of element residual

estimator C1: 0.1 % constant of jump residual

estimator C2: 0.0 % constant of coarsening estimate
adapt->strategy: 2 % 0: no adaption 1: GR 2: MS 3: ES 4:GERS
adapt->tolerance: l.e-4

adapt->MS_gamma: 0.5

adapt->max_iteration: 20

adapt->info: 8

WAIT: 1

The file Macro/macro . amc storing data about the macro triangulation for {2 =
(0,1)? can be found in Section 3.2.16 for 2d and 3d. The polynomial degree
parameter selects the third order finite elements. By graphic windows, the
number and sizes of graphics output windows are selected. This line is used
by the graphics() routine. For 1d and 2d graphics, the range of function
values might be specified (used for graph coloring and height). The solver for
the linear system of equations is selected (here: the conjugate gradient solver),
and corresponding parameters like preconditioner and tolerance. Parameters
for the error estimator include values of different constants and selection of
the error norm to be estimated (H!- or L?-norm, selection leads to multipli-
cation with different powers of the local mesh size in the error indicators), see
Section 3.14.1. An error tolerance and selection of a marking strategy with
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corresponding parameters are main data given to the adaptive method. Fi-
nally, the WAIT parameter specifies whether the program should wait for user
interaction at additional breakpoints, whenever a WAIT statement is executed
as in the routine graphics() for instance.

The solution and corresponding mesh in 2d for the above parameters
are shown in Fig. 2.1. As optimal parameter sets might differ for different
space dimensions, separate parameter files exist in 1d/INIT/, 2d/INIT/, and
3d/INIT/.

2.1.4 Initialization of the finite element space

During the initialization of the mesh by GETMESH() in the main program,
we have to specify all DOFs which we want to use during the simulation
on the mesh. The initialization of the DOFs is implemented in the function
init_dof_admin() which is called by GET_MESH(). For details we refer to Sec-
tions 3.2.15 and 3.6.2.

For the scalar elliptic problem we need one finite element space for the
discretization. In this example, we use Lagrange elements and we initialize
the degree of the elements via a parameter. The corresponding fe_space is
accessed by get_fe_space() which automatically stores at the mesh informa-
tion about the DOF's used by this finite element space.

It is possible to access several finite element spaces inside this function,
for instance in a mixed finite element method, compare Section 3.6.2.

void init_dof_admin(MESH *mesh)
{
FUNCNAME ("init_dof_admin") ;
int degree = 1;
const BAS_FCTS *lagrange;

GET_PARAMETER(1, "polynomial degree", "Jd", &degree);
lagrange = get_lagrange(degree);

TEST_EXIT(lagrange) ("no lagrange BAS_FCTS\n");

fe_space = get_fe_space(mesh, lagrange->name, nil, lagrange);
return;

2.1.5 Functions for leaf data

As explained in Section 3.2.12, we can “hide” information which is only needed
on a leaf element at the pointer to the second child. Such information, which
we use here, is the local error indicator on an element. For this elliptic problem
we need one REAL for storing this element indicator.

During mesh initialization by GET_ MESH() in the main program, we have to
give information about the size of leaf data to be stored and how to transform
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leaf data from parent to children during refinement and vice versa during
coarsening. The function init_leaf_data() initializes the leaf data used for
this problem and is called by GETMESH(). Here, leaf data is one structure
struct ellipt_leaf_data and no transformation during mesh modifications
is needed. The details of the LEAF DATA_INFO data structure are stated in
Section 3.2.12.

The error estimation is done by the library function ellipt_est(), see
Section 3.14.1. For ellipt_est (), we need a function which gives read and
write access to the local element error, and for the marking function of the
adaptive procedure, we need a function which returns the local error indicator,
see Section 3.13.1. The indicator is stored as the REAL member estimate
of struct ellipt_leaf data and the function rw_el_est () returns for each
element a pointer to this member. The function get_ el est() returns the
value stored at that member for each element.

struct ellipt_leaf_data
{

REAL estimate; /* one real for the estimate */

}s

void init_leaf_data(LEAF_DATA_INFO *leaf_data_info)

{
leaf_data_info->leaf_data_size = sizeof(struct ellipt_leaf_data);
leaf_data_info->coarsen_leaf_data = nil; /* no transformation */
leaf_data_info->refine_leaf_data = nil; /* no transformation */
return;

}

static REAL *rw_el_est(EL *el)
{
if (IS_LEAF_EL(el))
return(&((struct ellipt_leaf_data *)LEAF_DATA(el))->estimate);
else
return(nil);

}

static REAL get_el_est(EL *el)
{
if (IS_LEAF_EL(el))
return(((struct ellipt_leaf_data *)LEAF_DATA(el))->estimate);
else
return(0.0);
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2.1.6 Data of the differential equation

Data for the Poisson problem are the right hand side f and boundary values
g. For test purposes it is convenient to have access to an exact solution of the
problem. In this example we use the function

U(JT) _ 6710\1\2
as exact solution, resulting in
Vu(z) = —20xe ° jof?

and
fz) = —Au(x) = —(400 |z|2 — 20 d) e~ 20 1=I%,

Here, d denotes the space dimension, £2 C R%. The functions u and grd_u are
the implementation of v and Vu and are optional (and usually not known
for a general problem). The functions g and f are implementations of the
boundary values and the right hand side and are not optional.

static REAL u(const REAL_D x)

{
return(exp(-10.0*SCP_DOW(x,x)));
}
static const REAL *grd_u(const REAL_D x)
{
static REAL_D grd;
REAL ux = exp(-10.0*SCP_DOW(x,x));
int n;
for (n = 0; n < DIM_OF_WORLD; n++)
grd[n] = -20.0*x[n]*ux;
return(grd) ;
}

static REAL g(const REAL_D x) /* boundary values, not optional */
{
return(u(x));

}

static REAL f(const REAL_D x) /* -Delta u, not optional */
{

REAL r2 = SCP_DOW(x,x), ux = exp(-10.0%r2);

return(-(400.0*%r2 - 20.0%DIM)*ux) ;
}
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2.1.7 The assemblage of the discrete system

For the assemblage of the discrete system we use the tools described in Sections
3.12.2, 3.12.4, and 3.12.5. For the matrix assemblage we have to provide an
element-wise description of the differential operator. Following the description
in Section 1.4.7 we provide the function init_element () for an initialization
of the operator on an element and the function LALt () for the computation
of det|DFs|AAA" on the actual element, where A is the Jacobian of the
barycentric coordinates, DFs the the Jacobian of the element parameteriza-
tion, and A the matrix of the second order term. For —A, we have A = id and
det |DFs|AA! is the description of differential operator since no lower order
terms are involved.

For passing information about the Jacobian A of the barycentric coordi-
nates and det | DFg| from the function init_element () to the function LALt ()
we use the data structure struct op_info which stores the Jacobian and the
determinant. The function init_element () calculates the Jacobian and the
determinant by the library function el_grd _lambda () and the function LALt ()
uses these values in order to compute det | DFg|AAL.

Pointers to these functions and to one structure struct op_info are mem-
bers of a structure OPERATOR_INFO which is used for the initialization of
a function for the automatic assemblage of the global system matrix. For
more general equations with lower order terms, additional functions Lb0, Lb1,
and/or ¢ have to be defined at that point. The full description of the func-
tion fill matrix_info() for general differential operators is given in Sec-
tion 3.12.2. Currently, the functions init_element () and LALt () only work
properly for DIM_OF _WORLD == DIM. The initialization of the EL_MATRIX_INFO
structure is only done on the first call of the function build () which is called
by adapt method_stat () during the adaptive cycle (compare Section 3.13.1).

By calling dof_compress(), unused DOF indices are removed such that
the valid DOF indices are consecutive in their range. This guarantees op-
timal performance of the BLASI1 routines used in the iterative solvers and
admin->size_used is the dimension of the current finite element space. This
dimension is printed for information.

On the first call, build() also allocates the DOF vectors u_h and f_h,
and the DOF matrix matrix. The vector uh additionally is initialized
with zeros and the function pointers for an automatic interpolation dur-
ing refinement and coarsening are adjusted to the predefined functions in
fe_space->bas_fcts. The load vector £ h and the system matrix matrix are
newly assembled on each call of build (). Thus, there is no need for interpo-
lation during mesh modifications or initialization.

On each call of build() the matrix is assembled by first clearing the
matrix using the function clear_dof matrix () and then adding element con-
tributions by update matrix (). This function will call init_element () and
LALt () on each element.
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The load vector £ _h is then initialized with zeros and the right hand

side is added by L2scp_fct_bas (). Finally, Dirichlet boundary values are set
for all Dirichlet DOFs in the load vector and the discrete solution u_h by
dirichlet _bound (), compare Section 3.12.4 and 3.12.5.

struct op_info
{
REAL_D Lambda[DIM+1]; /* gradient of barycentric coordinates */
REAL det; /* |det D F_S| */
};

static void init_element(const EL_INFO *el_info, const QUAD *quad[3],
void *ud)
{

struct op_info *info = ud;

info->det = el_grd_lambda(el_info, info->Lambda);
return;

}

const REAL (#LALt(const EL_INFO *el_info, const QUAD *quad,
int iq, void *ud)) [DIM+1]
{
struct op_info *info = ud;
int i, j, k;
static REAL LALt [DIM+1] [DIM+1];

for (i = 0; i <= DIM; i++)
for (j = i; j <= DIM; j++)

{
for (LALt[i][j] = k = 0; k < DIM_OF_WORLD; k++)
LALt[i] [j] += info->Lambdal[i] [k]*info->Lambdalj] [k];
LALt[i][j] *= info->det;
LALt[j]1[i] = LALt[i][j];
}

return((const REAL (%) [DIM+1]) LALt);
}

static void build(MESH *mesh, U_CHAR flag)

{
FUNCNAME ("build") ;
static const EL_MATRIX_INFO *matrix_info = nil;
const QUAD *quad ;

dof _compress (mesh) ;
MSG("%d DOFs for %s\n", fe_space->admin->size_used,
fe_space->name) ;
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if (lu_h) /* access matrix and vector for linear system */
{
matrix = get_dof_matrix("A", fe_space);
f_h get_dof_real_vec("f_h", fe_space);
u_h = get_dof_real_vec("u_h", fe_space);
u_h->refine_interpol = fe_space->bas_fcts->real_refine_inter;
u_h->coarse_restrict = fe_space->bas_fcts->real_coarse_inter;

dof_set (0.0, u_h); /* initialize u_h ! */
}
if (!matrix_info) /* information for matrix assembling */
{

OPERATOR_INFO o_info = {nil};

o_info.row_fe_space = o_info.col_fe_space = fe_space;

o_info.init_element = init_element;

o_info.LALt = LALt;

o_info.LALt_pw_const = true;

o_info.LALt_symmetric = true;

o_info.use_get_bound = true;

MEM_ALLOC(1, struct op_info);
CALL_LEAF_EL|FILL_COORDS;

o_info.user_data
o_info.fill_flag

matrix_info = fill_matrix_info(&o_info, nil);

}

clear_dof_matrix(matrix) ; /* assembling of matrix */
update_matrix(matrix, matrix_info);

dof_set (0.0, f_h); /* assembling of load vector */
quad = get_quadrature(DIM, 2*fe_space->bas_fcts->degree - 2);
L2scp_fct_bas(f, quad, f_h);

dirichlet_bound(g, f_h, u_h, nil); /* boundary values */
return;

2.1.8 The solution of the discrete system

The function solve() computes the solution of the resulting linear system.
It is called by adapt method stat() (compare Section 3.13.1). The system
matrix for the Poisson equation is positive definite and symmetric for non-
Dirichlet DOFs. Thus, the solution of the resulting linear system is rather
easy and we can use any preconditioned Krylov-space solver (oem_solve_s()),
compare Section 3.15.2. On the first call of solve(), the parameters for the
linear solver are initialized and stored in static variables. For the OEM solver
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we have to initialize the solver, the tolerance tol for the residual, a maximal
number of iterations miter, the level of information printed by the linear
solver, and the use of a preconditioner by the parameter icon, which may
be 0 (no preconditioning), 1 (diagonal preconditioning), 2 (hierarchical basis
preconditioning), or 3 (BPX preconditioning). If GMRes is used, then the
dimension of the Krylov-space for the minimizing procedure is needed, too.

After solving the discrete system, the discrete solution (and mesh) is dis-
played by calling graphics().

static void solve(MESH *mesh)

{
FUNCNAME("solve");
static REAL tol = 1.e-8;
static int miter = 1000, info = 2, icon = 1, restart = O;

static OEM_SOLVER solver = NoSolver;

if (solver == NoSolver)

{
tol = 1.e-8;
GET_PARAMETER(1, "solver", "%d", &solver);
GET_PARAMETER(1, "solver tolerance", "%f", &tol);
GET_PARAMETER(1, "solver precon", "%d", &icon);
GET_PARAMETER(1, "solver max iteration", "%d", &miter);
GET_PARAMETER(1, "solver info", "%d", &info);
if (solver == GMRes)

GET_PARAMETER(1, "solver restart", "%d", &restart);
}
oem_solve_s(matrix, f_h, u_h, solver, tol, icon, restart, miter,
info);

graphics(mesh, u_h, nil);
return;

2.1.9 Error estimation

The last ingredient missing for the adaptive procedure is a function for an
estimation of the error. For an elliptic problem with constant coefficients in
the second order term this can done by the library function ellipt_est()
which implements the standard residual type error estimator and is described
in Section 3.14.1. ellipt_est () needs a pointer to a function for writing the
local error indicators (the function rw_el_est() described above in Section
2.1.5) and a function for the evaluation of the lower order terms of the ele-
ment residuals at quadrature nodes. For the Poisson equation, this function
has to return the negative value of the right hand side f at that node (which
is implemented in r()). Since we only have to evaluate the right hand side
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f, the init flag r flag is zero. For an equation with lower order term involv-
ing the discrete solution or its derivative this flag has to be INIT UH and/or
INIT_GRD_UH, if needed by r(), compare Example 3.34.

The function estimate (), which is called by adapt method_stat (), first
initializes parameters for the error estimator, like the estimated norm and
constants in front of the residuals. On each call the error estimate is com-
puted by ellipt_est(). The degrees for quadrature formulas are chosen
according to the degree of finite element basis functions. Additionally, as
the exact solution for our test problem is known (defined by u() and
grdu()), the true error between discrete and exact solutions is calculated
by the function Hl_err() or L2_err(), and the ratio of the true and es-
timated errors is printed (which should be approximately constant). The
experimental orders of convergence of the estimated and exact errors are
calculated, which should both be, when using global refinement with DIM
bisection refinements, fe_space->bas_fcts->degree for the H' norm and
fe_space->bas_fcts->degree+1 for the L? norm. Finally, the error indica-
tors are displayed by calling graphics ().

static REAL r(const EL_INFO *el_info, const QUAD *quad, int iq,
REAL uh_iq, const REAL_D grd_uh_iq)
{
REAL_D X;
coord_to_world(el_info, quad->lambdaliql, x);
return(-£(x));
}

#define EOC(e,eo0) log(eo/MAX(e,1.0e-15))/M_LN2

static REAL estimate(MESH *mesh, ADAPT_STAT *adapt)
{
FUNCNAME ("estimate") ;
static int degree, norm = -1;
static REAL cf3] = {1.0, 1.0, 0.0};
static REAL est, est_old = -1.0, err, err_old = -1.0;
static FLAGS r_flag = 0; /* INIT_UH|INIT_GRD_UH, if needed */

REAL_DD A = {{0.0}};
int n;
const QUAD *quad ;

for (n = 0; n < DIM_OF_WORLD; n++)
A[n][n] = 1.0; /* set diag. of A; other elements are zero */

if (norm < 0)

{
norm = H1_NORM;
GET_PARAMETER(1, "error norm", "%d", &norm);
GET_PARAMETER(1, "estimator CO", "%f", &C[01);
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GET_PARAMETER(1, "estimator C1", "%f", &C[1]);
GET_PARAMETER(1, "estimator C2", "%f", &C[2]);
}
degree = 2*u_h->fe_space->bas_fcts->degree;
est = ellipt_est(u_h, adapt, rw_el_est, nil, degree, norm, C,
(const REAL_D *) A, r, r_flag);

MSG("estimate = %.8le", est);
if (est_old >= 0)
print_msg(", EOC: %.21f\n", EOC(est,est_old));
else
print_msg("\n");
est_old = est;

quad = get_quadrature(DIM, degree);
if (norm == L2_NORM)

err = L2_err(u, u_h, quad, 0, nil, nil);
else

err = Hl_err(grd_u, u_h, quad, 0, nil, nil);

MSG("| |lu-uhl| |%s = %.81le", norm == L2_NORM ? "L2" : "H1", err);
if (err_old >= 0)

print_msg(", EOC: %.21f\n", EOC(err,err_old));
else

print_msg("\n");
err_old = err;
MSG("| |u-uh| |%s/estimate = %.21f\n",

norm == L2_NORM ? "L2" : "H1", err/MAX(est,l1.e-15));

graphics(mesh, nil, get_el_est);
return(adapt->err_sum) ;

2.2 Nonlinear reaction—diffusion equation

In this section, we discuss the implementation of a stationary, nonlinear prob-
lem. Due to the nonlinearity, the computation of the discrete solution is more
complex. The solver for the nonlinear reaction—diffusion equation and the
solver for Poisson equation, described in Section 2.1, thus mainly differ in the
routines build() and solve().

Here we describe the solution by a Newton method, which involves the
assemblage and solution of a linear system in each iteration. Hence, we do
not split the assemble and solve routines in build() and solve() as in the
solver for the Poisson equation (compare Sections 2.1.7 and 2.1.8), but only set
Dirichlet boundary values for the initial guess in build () and solve the nonlin-
ear equation (including the assemblage of linearized systems) in solve (). The
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actual solution process is implemented by several subroutines in the separate
file nlsolve.c, see Sections 2.2.5 and 2.2.6.

Additionally we describe a simple way to handle different problem data
easily, see Sections 2.2.1 and 2.2.8.

We consider the following nonlinear reaction—diffusion equation:
—kAu+out = f+oul, in 2 cRY, (2.1a)
u=g on 912. (2.1b)
For 2 C R?, this equation models the heat transport in a thin plate 2 which
radiates heat and is heated by an external heat source f. Here, k is the con-
stant heat conductivity, o the Stefan-Boltzmann constant, g the temperature
at the edges of the plate and u.,; the temperature of the surrounding space

(absolute temperature in °K).
The solver is applied to following data:

e For testing the solver we again use the ‘exponential peak’
u(x):eflolxlz, reN=(-1,1)k=1,0=1, ue =0.

e In general (due to the nonlinearity), the problem is not uniquely solvable;
depending on the initial guess for the nonlinear solver at least two discrete
solutions can be obtained by using data

N=01%k=10=1f=1,9=0, test = 0.

and the interpolant of
d
uo(z) =4 Up [[2:(1 —2:)  with Up € [-5.0,1.0].
=1

as initial guess for the discrete solution on the coarsest grid.
e The last application now addresses a physical problem in 2d with following
data:

2= (-1,1)% k=2, 0=5.67e8, g =300, ey = 273,

_J150, ifxe (-3, 4)%
B 0, otherwise.

/()

2.2.1 Program organization and header file

The implementation is split into three source files:

nonlin.c: main program with all subroutines for the adaptive procedure;
initializes DOFs, leaf data and problem dependent data in main() and the
solve () routine calls the nonlinear solver;
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nlprob.c: definition of problem dependent data;
nlsolve.c: implementation of the nonlinear solver.

Data structures used in all source files, and prototypes of functions are defined
in the header file nonlin.h, which includes the alberta.h header file on the
first line. This file is included by all three source files.

typedef struct prob_data PROB_DATA;
struct prob_data

{
REAL k, sigma;
REAL (*g) (const REAL_D x);
REAL (*f) (const REAL_D x);
REAL (*u0) (const REAL_D x);
REAL (*u) (const REAL_D x);
const REAL *x (*xgrd_u) (const REAL_D x);
};
/*--= file nlprob.c ——-—————-——mo— oo */

const PROB_DATA *init_problem(MESH *mesh);

/*--= file nlsolve.C —=———————— oo */
int nlsolve(DOF_REAL_VEC *, REAL, REAL, REAL (*)(const REAL_D));

/*--- file graphics.c -————————————-————m o */
void graphics(MESH *, DOF_REAL_VEC *, REAL (*)(EL *));

The data structure PROB_DATA yields following information:
k: diffusion coeflicient (constant heat conductivity);

sigma: reaction coefficient (Stefan—Boltzmann constant);

g: pointer to a function for evaluating boundary values;

3mt);

u0: pointer to a function for evaluating an initial guess for the discrete solution
on the macro triangulation, if not nil;

£: pointer to a function for evaluating the right-hand side (f + ou

u: pointer to a function for evaluating the true solution, if not nil (only for
test purpose);

grd_u: pointer to a function for evaluating the gradient of the true solution,
if not nil (only for test purpose).

The function init_problem() initializes problem data, like boundary val-
ues, right hand side, etc. which is stored in a PROBDATA structure and
reads data of the macro triangulation for the actual problem. The function
nlsolve() implements the nonlinear solver by a Newton method including
the assemblage and solution of the linearized sub-problems and graphics ()
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is the routine for visualization already known from the solver for the Poisson
equation, compare Section 2.1.

2.2.2 Global variables

In the main source file for the nonlinear solver nonlin.c we use the following
global variables:

#include "nonlin.h"

static const FE_SPACE x*fe_space;
static DOF_REAL_VEC *u_h = nil;
static const PROB_DATA *prob_data = nil;

As in the solver for the linear Poisson equation, we have a pointer to the used
fe_space and the discrete solution u_h. In this file, we do not need a pointer to
a DOF_MATRIX for storing the system matrix and a pointer to a DOF_REAL_VEC
for storing the right hand side. The system matrix and right hand side are
handled by the nonlinear solver nlsolve (), implemented in nlsolve.c. Data
about the problem is handled via the prob_data pointer.

2.2.3 The main program for the nonlinear reaction—diffusion
equation

The main program is very similar to the main program of the Poisson problem
described in Section 2.1.2. A new feature is that besides a parameter initial-
ization from the file INIT/nonlin.dat, parameters can also be defined and
overwritten via additional arguments on the command line. For the definition
of a parameter via the command line we need for each parameter a pair of
arguments: the key (without terminating :’) and the value.

nonlin "problem number" 1

will for instance overwrite the value of problem number in nonlin.dat with
the value 1.

After processing command line arguments, the mesh with the used DOFs
and leaf data is initialized, problem dependent data, including the macro
triangulation, are initialized by init_problem(mesh) (see Section 2.2.8), the
structure for the adaptive method is filled and finally the adaptive method is
started.

int main(int argc, char **argv)
{

FUNCNAME ("main") ;

MESH *mesh;

ADAPT_STAT *adapt; int k;

R - */

/* first of all, init parameters from init file and command line */
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init_parameters(0, "INIT/nonlin.dat");
for (k = 1; k+1 < argc; k += 2)
ADD_PARAMETER(O, argv([k], argv[k+1]);

R - */

/* get a mesh with DOFs and leaf data */

Y e et e e P */
mesh = GET_MESH("mesh", init_dof_admin, init_leaf_data);

Y e et et */

/* 1init problem dependent data and read macro triangulation */

Y e e et it e */
prob_data = init_problem(mesh);

Y e et */

/* init adapt struture and start adaptive method */

R - */

adapt = get_adapt_stat("nonlin", "adapt", 1, nil);
adapt->estimate = estimate;

adapt->get_el_est = get_el_est;
adapt->build_after_coarsen = build;

adapt->solve = solve;

adapt_method_stat (mesh, adapt);

WAIT_REALLY;
return(0) ;

2.2.4 Initialization of the finite element space and leaf data

The functions for initializing DOF's to be used (init_dof_admin()), leaf data
(init_leaf data()), and for accessing leaf data (rw_el_est (), get_el est())

are exactly the same as in the solver for the linear Poisson equation, compare
Sections 2.1.4 and 2.1.5.

2.2.5 The build routine

As mentioned above, inside the build routine we only access one vector for
storing the discrete solution. On the coarsest grid, the discrete solution is
initialized with zeros, or by interpolating the function prob_data->u0, which
implements an initial guess for the discrete solution. On a refined grid we do
not initialize the discrete solution again. Here, we use the discrete solution
from the previous step, which is interpolated during mesh modifications, as
an initial guess.
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In each adaptive cycle, Dirichlet boundary values are set for the discrete
solution. This ensures ug € gp+ X}, for the initial guess of the Newton method.

static void build(MESH *mesh, U_CHAR flag)
{
FUNCNAME("build");

dof _compress (mesh) ;
MSG("%d DOFs for %s\n", fe_space->admin->size_used,
fe_space->name) ;

if ('u_h) /* access and initialize discrete solution x/
{
u_h = get_dof_real_vec("u_h", fe_space);
u_h->refine_interpol = fe_space->bas_fcts->real_refine_inter;
u_h->coarse_restrict = fe_space->bas_fcts->real_coarse_inter;
if (prob_data->u0)
interpol(prob_data->u0, u_h);
else
dof_set (0.0, u_h);
}
dirichlet_bound(prob_data->g, u_h, nil, nil);

return;

2.2.6 The solve routine

The solve() routine solves the nonlinear equation by calling the function
nlsolve() which is implemented in nlsolve.c and described below in Sec-
tion 2.2.10. After solving the discrete problem, the new discrete solution is
displayed via the graphics() routine.

static void solve(MESH *mesh)

{
nlsolve(u_h, prob_data->k, prob_data->sigma, prob_data->f);
graphics(mesh, u_h, nil);
return;

}

2.2.7 The estimator for the nonlinear problem

In comparison to the Poisson program, the function r () which implements the
lower order term in the element residual changes due to the term ou? in the
differential operator, compare Section 3.14.1. The right hand side f + ou?,,
is already implemented in the function prob_data->f ().

In the function estimate () we have to initialize the diagonal of A with the
heat conductivity prob_data->k and for the function r() we need the values
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of uy, at the quadrature node, thus r flag = INIT_UH is set. The initialization
of parameters for the estimator is the same as in Section 2.1.9. The true error
can be computed only for the first application, where the true solution is
known (prob_data->u() and prob_data->grd u() are not nil). Finally, the
error indicator is displayed by graphics().

static REAL r(const EL_INFO *el_info, const QUAD *quad, int iq,
REAL uh_iq, const REAL_D grd_uh_iq)
{
REAL_D X;
REAL uhx2 = SQR(uh_iq);

coord_to_world(el_info, quad->lambdaliql, x);
return(prob_data->sigma*uhx2*uhx2 - (*prob_data->f) (x));
}
#define EOC(e,eo0) log(eo/MAX(e,1.0e-15))/M_LN2

static REAL estimate(MESH *mesh, ADAPT_STAT *adapt)

{
FUNCNAME ("estimate") ;
static int degree, norm = -1;
static REAL Cc[3] = {1.0, 1.0, 0.0};

static REAL est, est_old -1.0, err = -1.0, err_old = -1.0;
static REAL r_flag = INIT_UH;

REAL_DD A = {{0.0}};

int n;

for (n = 0; n < DIM_OF_WORLD; n++)
A[n] [n] = prob_data->k; /* set diag.; other elements are 0 */

if (norm < 0)

{
norm = H1_NORM;
GET_PARAMETER(1, "error norm", "%d", &norm);
GET_PARAMETER(1, "estimator CO", "%f", C);
GET_PARAMETER(1, "estimator C1", "%f", C+1);
GET_PARAMETER(1, "estimator C2", "Jf", C+2);

}

degree = 2*u_h->fe_space->bas_fcts->degree;

est = ellipt_est(u_h, adapt, rw_el_est, nil, degree, norm, C,

(const REAL_D *) A, r, r_flag);

MSG("estimate = %.8le", est);
if (est_old >= 0)

print_msg(", EOC: %.21f\n", EOC(est,est_old));
else

print_msg("\n");
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est_old = est;

if (norm == L2_NORM && prob_data->u)

err = L2_err(prob_data->u, u_h, nil, 0, nil, nil);
else if (norm == H1_NORM && prob_data->grd_u)

err = Hl_err(prob_data->grd_u, u_h, nil, 0, nil, nil);

if (err >= 0)

{

MSG("| |lu-uh| |%s = %.81le", norm == L2_NORM ? "L2" : "H1", err);

if (err_old >= 0)
print_msg(", EOC: %.21f\n", EOC(err,err_old));
else
print_msg("\n");
err_old = err;
MSG("| |u-uh| |%s/estimate = %.21f\n",
norm == L2_NORM ? "L2" : "H1", err/MAX(est,l.e-15));
}
graphics(mesh, nil, get_el_est);
return(adapt->err_sum) ;

}

2.2.8 Initialization of problem dependent data
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The file nlprob.c contains all problem dependent data. On the first line,
nonlin.h is included and then two variables for storing the values of the heat
conductivity and the Stefan —Boltzmann constant are declared. These values

are used by several functions:

#include "nonlin.h"
static REAL k = 1.0, sigma = 1.0;

The following functions are used in the first example for testing the non-

linear solver (problem number: 0):

static REAL u_O(const REAL_D x)
{
REAL  x2 = SCP_DOW(x,x);
return(exp(-10.0%x2));

}
static const REAL *grd_u_O(const REAL_D x)
{
static REAL_D grd;
REAL ux = exp(-10.0%SCP_DOW(x,x));
int n;
for (n

0; n < DIM_OF_WORLD; n++)

grd[n] = -20.0*x[n]*ux;
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return(grd) ;

}

static REAL f_O(const REAL_D x)

{
REAL r2 = SCP_DOW(x,x), ux = exp(-10.0%r2), ux4 = ux*ux*ux*ux;
return(sigma*ux4 - k*(400.0%r2 - 20.0%DIM)*ux) ;

}

For the computation of a stable and an unstable (but non-physical) so-
lution, depending on the initial choice of the discrete solution, the following
functions are used, which also use a global variable U0. Such an unstable solu-
tion in 3d is shown in Fig. 2.2. Data is given as follows (problem number: 1):

static REAL UO = 0.0;

static REAL g_1(const REAL_D x)
{
#if DIM_OF_WORLD ==
return(4.0*U0*x [0]*(1.0-x[0]));
#endif
#if DIM_OF_WORLD ==
return(16.0%U0*x [0]*(1.0-x[0])*x[1]1*(1.0-x[1]1));
#endif
#if DIM_OF_WORLD ==
return(64.0%U0*x [0]*(1.0-x[0])*x[1]*(1.0-x[1])*x[2]*(1.0-x[2]));
#endif

}
static REAL f_1(const REAL_D x)
{
return(1.0);
}

The last example needs functions for boundary data and right hand side
and variables for the temperature at the edges, and o u,,. A solution to this

problem is depicted in Fig. 2.3 and problem data is (problem number: 2):

static REAL g2 = 300.0, sigma_uext4 = 0.0;
static REAL g_2(const REAL_D x)
{
return(g2) ;
}
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Fig. 2.2. Graph of the unstable solution with corresponding mesh of the nonlinear
reaction—diffusion problem in 3d on the clipping plane z = 0.5. The pictures were
produced by the gltools.

static REAL f_2(const REAL_D x)
{
if (x[0] >= -0.25 && x[0] <= 0.25 && x[1] >= -0.25 && x[1] <= 0.25)
return(150.0 + sigma_uext4);
else
return(sigma_uext4) ;

Depending on the chosen problem via the parameter problem number,
the function init_problem() initializes the entries of a PROB_DATA structure,
adjusts the corresponding function pointers, reads the macro triangulation,
performs some initial refinement and returns a pointer to the filled PROB_DATA
structure. Information store in PROB_DATA is then used in the build() and
the nlsolve() routines.

const PROB_DATA *init_problem(MESH *mesh)
{

FUNCNAME("init_problem");

static PROB_DATA prob_data = {0};

int pn = 2, n_refine = O;

GET_PARAMETER(1, "problem number", "%d", &pn);

switch (pn)

{

case 0: /*- problem with known true solution -------------—---—- */
k=1.0;
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Fig. 2.3. Graph of the solution to the physical problem with corresponding mesh
of the nonlinear reaction—diffusion problem in 2d. The pictures were produced by
the gltools.

sigma = 1.0;

prob_data.g = u_0;
prob_data.f = £_0;
prob_data.u = u_0;

prob_data.grd_u = grd_u_O0;

read_macro(mesh, "Macro/macro-big.amc", nil);
break;
case 1: /*- problem for computing a stable and an unstable sol. -*/
k =1.0;
sigma = 1.0;
g_1;
f_1;

)

prob_data.g
prob_data.f

prob_data.u0 = g_1;
GET_PARAMETER(1, "UO", "%f", &UO);

read_macro(mesh, "Macro/macro.amc", nil);
break;
case 2: /*- physical problem */
k =2.0;
sigma = 5.67e-8;
sigma_uextd = sigma*273%273*273%273;

prob_data.g = g_2;
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prob_data.f = f£_2;
read_macro(mesh, "Macro/macro-big.amc", nil);
break;
default:
ERROR_EXIT("no problem defined with problem no. %d\n", pn);
}
prob_data.k = k;
prob_data.sigma = sigma;

GET_PARAMETER(1, "global refinements", "%d", &n_refine);
global_refine(mesh, n_refinexDIM);

return(&prob_data);

2.2.9 The parameter file for the nonlinear reaction—diffusion
equation

The following parameter file INIT/nonlin.dat is read by main().

problem number: 2
global refinements: 1
polynomial degree: 2
U0: -5.0 % height of initial guess for Problem 1

% graphic windows: solution, estimate, and mesh if size > 0
graphic windows: 300 300 300

% for graphics you can specify the range for the values of
% discrete solution for displaying: min max

% automatical scaling by display routine if min >= max
graphic range: 1.0 0.0

newton tolerance: 1.e-6 % tolerance for Newton
newton max. iter: 50 % maximal number of iterations of Newton
newton info: 6 % information level of Newton

newton restart: 10

=

for step size control

linear solver max iteration: 1000

linear solver restart: 10 % only used for GMRES

linear solver tolerance: 1.e-8

linear solver info: 0

linear solver precon: 1 % 0: no precon 1: diag precon

% 2: HB precon 3: BPX precon

error norm: 1 % 1: H1_NORM, 2: L2_NORM
estimator CO: 0.1 % constant of element residual
estimator C1: 0.1 % constant of jump residual
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estimator C2: 0.0 % constant of coarsening estimate
adapt->strategy: 2 % 0: no adaption 1: GR 2: MS 3: ES 4:GERS
adapt->tolerance: l.e-1

adapt->MS_gamma: 0.5

adapt->max_iteration: 15

adapt->info: 4

WAIT: 1

Besides the parameters for the Newton solver and the height of the initial
guess UO in Problem 1, the file is very similar to the parameter file ellipt.dat
for the Poisson problem, compare Section 2.1.3. As mentioned above, addi-
tional parameters may be defined or overwritten by command line arguments,
see Section 2.2.3.

2.2.10 Implementation of the nonlinear solver

In this section, we now describe the solution of the nonlinear problem which
differs most from the solver for the Poisson equation. It is the last module
missing for the adaptive solver. We use the abstract Newton methods of Sec-
tion 3.15.6 for solving

un €gn+Xn:  Flu) =0  in X},

where g, € X}, is an approximation to boundary data g. Using the classical
Newton method, we start with an initial guess ug € g5, + )D(h, where Dirichlet
boundary values are set in the build() routine (compare Section 2.2.5). For
m > 0 we compute

dp € Xp 0 DF(um)dpm = F(uy,)  in X

and set
Um+1 = Um — dm

until some suitable norm ||dy,[| or [|[F(um+1)|| is sufficiently small. Since the
correction d,, satisfies d,, € X}, all Newton iterates u,, satisfy u,, € gn + Xp,
m > 0. Newton methods with step size control solve similar defect equations
and perform similar update steps, compare Section 3.15.6.

For v € g, + X, the functional F(v) € X}*L of the nonlinear reaction—
diffusion equation is defined by

(F(v), ‘Pj>)°(;;x5(h = /Q kV@; Vv + o @; vt de — /Q(f +u)pide (2.2)

for all p; € X, and the Frechet derivative DF(v) of Fis given for all ¢;, p; €
X, by

(DF(v) i, (pj>)°(;;x5'(h = /Q kVp;i Vi + 40 v p; p; dr. (2.3)



2.2 Nonlinear reaction—diffusion equation 81

The Newton solvers need a function for assembling the right hand side
vector of the discrete system (2.2), and the system matrix of the linearized
equation (2.3) for some given v in X}. The system matrix is always sym-
metric. It is positive definite, if v > 0, and is then solved by the conjugate
gradient method. For v * 0 BiCGStab is used. We choose the H! semi-norm
as problem dependent norm ||.||.

Problem dependent data structures for assembling and solving

Similar to the assemblage of the system matrix for the Poisson problem, we
define a data structure struct op-info in order to pass information to the
routines which describe the differential operator. In the assembling of the
linearized system around a given finite element function v we additionally
need the diffusion coefficient k£ and reaction coefficient o. In general, v is not
constant on the elements, thus we have to compute the zero order term by
numerical quadrature on each element. For this we need access to the used
quadrature for this term, and a vector storing the values of v for all quadrature
nodes.

struct op_info

{
REAL_D Lambda[DIM+1]; /* gradient of barycentric coordinates */
REAL det; /* |det D F_S| */
REAL k, sigma; /* diffusion and reaction coefficient */

const QUAD_FAST *quad_fast; /% quad_fast for the zero order term */
const REAL *V_qp; /* v at quadrature nodes of quad_fast*/
};

The general Newton solvers pass data about the actual problem by void
pointers to the problem dependent routines. Information that is used by these
routines are collected in the data structure NEWTON_DATA

typedef struct newton_data NEWTON_DATA;
struct newton_data

{
const FE_SPACE  *fe_space; /* used finite element space */
REAL k; /* diffusion coefficient */
REAL sigma; /* reaction coefficient */
REAL (*f) (const REAL_D); /* compute f + sigma u_ext™4 */
DOF_MATRIX =DF; /* pointer to system matrix */

/*--- parameters for the linear solver -—-----—--—--—————-——-——-—- */
OEM_SOLVER solver; /* used solver: CG (v >= 0) else BiCGStab */
REAL tolerance;

int max_iter;
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int icon;
int restart;
int info;

};

All entries of this structure besides solver are initialized in the function
nlsolve(). The entry solver is set every time the linearized matrix is as-
sembled.

The assembling routine

Denote by {¢o, ..., ¢y} the basis of X, by {¢0, ..., ¢y} the basis of Xj,. Let
A Dbe the stiffness matrix, i.e.

s kaVgijgoid:v i:O,...,N,j:O,...,N
Y ) 6y i=0,...,N,j=N-+1,...,N,

and M = M (v) the mass matrix, i.e.

My = chrv?’cpjgaid:c 7%:0,...,N,]::00,...,]\Df
0 1=0,...,N,j=N+1,...,N.

The system matrix L, representing DF(v), of the linearized equation is then

given as
L=A+4M.

The right hand side vector F', representing F'(v) is for all non—Dirichlet DOF's
J given by

F; = /Q kEVoVe; + ovt g, de — /Q(f + OUgyy)py da

— (v M)~ [ (F+0ut, ) do (2.4)
0

where v denotes the coefficient vector of v. Thus, we want to use information

assembled into A and M for both system matrix and right hand side vector.

Unfortunately, this can not be done after assembling A + 4 M into the
system matrix L due to the different scaling of M in the system matrix
(factor 4) and right hand side (factor 1). Storing both matrices A and M is
too costly, since matrices are the objects in finite element codes which need
most memory.

The solution to this problem comes from the observation, that (2.4) holds
also element—wise for the element contributions of the right hand side and
element matrices Ag and M g when replacing v by the local coefficient vector
vg. Hence, on elements S we compute the element contributions of Ag and
Mg, add them to the system matrix, and use them and the local coefficient
vector vg for adding the right hand side contribution to the load vector.
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The resulting assembling routine is more complicated in comparison to the
very simple routine used for the linear Poisson problem. On the other hand,
using ALBERTA routines for the computation of element matrices, extracting
local coefficient vectors, and boundary information, the routine is still rather
easy to implement. The implementation does yet not depend on the actually
used set of local basis functions.

The function update () which is now described in detail, can be seen as
an example for the very flexible implementation of rather complex nonlinear
and time dependent problems which often show the same structure (compare
the implementation of the assembling routine for the time dependent heat
equation, Section 2.3.8). It demonstrates the functionality and flexibility of
the ALBERTA tools: the assemblage of complex problems is still quite easy,
whereas the resulting code is quite efficient.

Similar to the linear Poisson solver, we provide a function LALt () for the
second order term. Besides the additional scaling by the heat conductivity k,
it is exactly the same as for the Poisson problem. For the nonlinear reaction—
diffusion equation we also need a function c() for the zero order term. This
term is assembled using element-wise quadrature and thus needs information
about the function v used in the linearization at all quadrature nodes. Infor-
mation for LALt () and c() is stored in the data structure struct op_info,
see above. The members of this structure are initialized during mesh traversal
in update(Q).

static const REAL (*#LALt(const EL_INFO *el_info, const QUAD *quad,
int iq, void *ud)) [DIM+1]
{
struct op_info *info = ud;
REAL fac = info->k*info->det;
int i, j, k;
static REAL LALt [DIM+1] [DIM+1];

for (i = 0; i <= DIM; i++)
{
for (j = i; j <= DIM; j++)
{
for (LALt[i][j] = k = 0; k < DIM_OF_WORLD; k++)
LALt[i] [j] += info->Lambdal[i] [k]*info->Lambdalj] [k];
LALt[i] [j] *= fac;
LALt[jI1[i] = LALt[i]([j];
}
}
return((const REAL (%) [DIM+1]) LALt);

static REAL c(const EL_INFO *el_info, const QUAD *quad, int iq,
void *ud)
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¢ struct op_info *info = ud;
REAL v3;
TEST_EXIT(info->quad_fast->quad == quad) ("quads differ\n");
v3 = info->v_gpliql*info->v_qgpliql*info->v_qpliq];
return(info->sigma*info->det*v3);

}

As mentioned above, we use a general Newton solver and a pointer to
the update () routine is adjusted inside the function nlsolve() in the data
structure for this solver. Such a solver does not have any information about
the actual problem, nor information about the ALBERTA data structures for
storing DOF vectors and matrices. This is also reflected in the arguments of
update():

static void update(void *ud, int dim, const REAL *v, int up_DF,
REAL *F);

Here, dim is the dimension of the discrete nonlinear problem, v is a wvector
storing the coefficients of the finite element function which is used for the
linearization, up DF is a flag indicating whether DF(v) should be assembled
or not. If F is not nil, then F'(v) should be assembled and stored in the vector
F. Information about the ALBERTA finite element space, a pointer to a DOF
matrix, etc. can be passed to update() by the ud pointer. The declaration

NEWTON_DATA *data = ud;

converts the void * pointer ud into a pointer data to a structure NEWTON_DATA
which gives access to all information, used for the assembling (see above). This
structure is initialized in nlsolve () before starting the Newton method.

The update() routine is split into three main parts: an initialization of
the assembling functions (only done on the first call), a conversion of the
vectors that are arguments to the routine into DOF vectors, and finally the
assembling.

Initialization of the assembling functions. The initialization of AL-
BERTA functions for the assembling is similar to the initialization in the
build () routine of the linear Poisson equation (compare Section 2.1.7). There
are minor differences:

1. In addition to the assemblage of the 2nd order term (see the function
LALt ()), we now have to assemble the zero order term too (see the function
c()). The integration of the zero order term has to be done by using an
element wise quadrature which needs the values of v? at all quadrature
nodes. The two element matrices are computed separately. This makes it
possible to use them for the system matrix and right hand side.
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2. In the solver for the Poisson problem, we have filled an OPERATOR_INFO

structure with information about the differential operator. This struc-
ture is an argument to £ill matrix_info() which returns a pointer to
a structure EL_MATRIX_INFO. This pointer is used for the complete as-
semblage of the system matrix by some ALBERTA routine. A detailed
description of this structures and the general assemblage routines for ma-
trices can be found in Section 3.12.2. Here, we want to use only the func-
tion for computing the element matrices. Thus, we only need the entries
el matrix fct() and fill_info of the EL MATRIX_INFO structure, which
are used to compute the element matrix (£ill_info is the second argu-
ment to el matrix_fct()). We initialize a function pointer £ill_a with
data pointer a_info for the computation of the element matrix Ag and
a function pointer £ill_c with data pointer c_info for the computation
Mg.
All other information inside the EL_MATRIX_INFO structure is used for
the automatic assembling of element matrices into the system matrix by
update matrix (). Such information can be ignored here, since this is now
done in update().

3. For the assembling of the element matrix into the system matrix and
the element contribution of the right hand side into the load vector we
need information about the number of local basis functions, n_phi, and
how to access global DOFs from the elements, get_dof (). This function
uses the DOF administration admin of the finite element space. We also
need information about the boundary type of the local basis functions,
get_bound (), and for the computation of the values of v at quadrature
nodes, we have to extract the local coefficient vector from the global one,
get_v_loc(). These functions and the number of local basis functions can
be accessed via the bas_fcts inside the data->fe_space structure. The
used admin is the admin structure in data->fe_space. For details about
these functions we refer to Sections 3.5.1, 3.3.6, and 1.4.3.

Conversion of the vectors into DOF vectors. The input vector v of
update () is a vector storing the coefficients of the function used for the lin-
earization. It is not a DOF vector, but ALBERTA routines for extracting a local
coefficient vector need a DOF vector. Thus, we have to “convert” v into some
DOF vector dof _v. This is done by setting the members fe_space, size, and
vec in the structure dof v to the used finite element space, data->fe_space,
the size of the vector, dim, and the vector, v. In the assignment of the vector
we have to use a cast to (REAL *) since v is a const REAL * whereas the
member dof _v.vec is REAL * only. This is necessary whenever a const REAL
* vector has to be converted into a DOF vector. Nevertheless, values of such
vectors like v must not be changed!

After this initialization, all ALBERTA tools working on DOF vectors
can be used. But this vector is not linked to the list of DOF vectors of
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fe_space->admin and are not administrated by this admin (not enlarged dur-
ing mesh modifications, e.g.)!

In the same way we have to convert F to a DOF vector dof F if F is not
nil.

The assemblage of the linearized system. If the system matrix has to
be assembled, then the DOF matrix data->DF is cleared and we check which
solver can be used for solving the linearized equation.

If the right hand side has to be assembled, then this vector is initialized
with values

_/Q(f‘f'ouézt)@j dz.

For the assemblage of the element contributions we use the non-recursive
mesh traversal routines. On each element we access the local coefficient vector
v_loc, the global DOFs dof and boundary types bound of the local basis
functions.

Next, we initialize the Jacobian of the barycentric coordinates and com-
pute the values of v at the quadrature node by uh_at_qp(). Hence v3 can
easily be calculated in c() at all quadrature nodes. Routines for evaluating
finite element functions and their derivatives are described in detail in Section
3.9.

Now, all members of struct op_info are initialized, and we compute
the element matrices Ag by the function £ill_a() and Mg by the function
£illcQ).

These contributions are added to the system matrix if up_DF is not zero.
Finally, the right hand side contributions for all non Dirichlet DOF's are com-
puted, and zero Dirichlet boundary values are set for Dirichlet DOFs, if F is
not nil.

static void update(void *ud, int dim, const REAL *v, int up_DF,
REAL *F)
{
FUNCNAME ("update") ;
static struct op_info *op_info = nil;

static const REAL **(*fill_a) (const EL_INFO *, void *) = nil;
static void *a_info = nil;
static const REAL *% (*fill_c) (const EL_INFO *, void *) = nil;
static void *c_info = nil;
static const DOF_ADMIN *admin = nil;
static int n_phi;
static const REAL *(xget_v_loc) (const EL *, const DOF_REAL_VEC *,
REAL *);
static const DOF *(*get_dof) (const EL *, const DOF_ADMIN *,
DOF *);

static const S_CHAR *(*get_bound) (const EL_INFO *, S_CHAR x);
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NEWTON_DATA *data = ud;

TRAVERSE_STACK *stack = get_traverse_stack();
const EL_INFO *el_info;

FLAGS fill_flag;

DOF_REAL_VEC dof_v = {nil, nil, "v"};
DOF_REAL_VEC dof_F = {nil, nil, "F(v)"};

Y e st */
/* init functions for assembling DF(v) and F(v) */
Y e e */
if (admin != data->fe_space->admin)
{
OPERATOR_INFO o_info2 = {nil}, o_infoO0 = {nil};
const EL_MATRIX_INFO *matrix_info;
const BAS_FCTS *bas_fcts = data->fe_space->bas_fcts;
const QUAD *quad = get_quadrature(DIM, 2*bas_fcts->degree-2);

admin = data->fe_space->admin;

n_phi = bas_fcts->n_bas_fcts;
get_dof bas_fcts->get_dof_indices;
get_bound bas_fcts->get_bound;
get_v_loc = bas_fcts->get_real_vec;;

if (lop_info) op_info = MEM_ALLOC(1, struct op_info);

o_info2.row_fe_space = o_info2.col_fe_space = data->fe_space;

o_info2.quad[2] = quad;
o_info2.LALt = LALt;
o_info2.LALt_pw_const = true;

o_info2.LALt_symmetric = true;
o_info2.user_data = op_info;

matrix_info = fill_matrix_info(&o_info2, nil);
fill_a = matrix_info->el_matrix_fct;
a_info = matrix_info->fill_info;

o_info0.row_fe_space = o_info0O.col_fe_space = data->fe_space;

o_info0.quad[0] quad;
o_info0.c = c;
o_info0.c_pw_const false;
o_info0.user_data op_info;

op_info->quad_fast = get_quad_fast(bas_fcts, quad, INIT_PHI);

matrix_info = fill_matrix_info(&o_infoO, nil);
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fill_c = matrix_info->el_matrix_fct;
c_info = matrix_info->fill_info;
}
Y e et */
/* make a DOF vector from input vector v_vec */
Y e et */
dof_v.fe_space = data->fe_space;
dof_v.size = dim;
dof_v.vec = (REAL *) v;
Y et */
/* cast of v is needed; dof_v.vec isn’t const REAL * */
/* nevertheless, values are NOT changed */
R - */
Y e et e */
/* make a DOF vector from F, if not nil */
Y e st */
if (F)
{
dof_F.fe_space = data->fe_space;
dof_F.size = dim;
dof_F.vec = F;
}
R - */
/* and now assemble DF(v) and/or F(v) */
Y e et et */
op_info->k = data->k;
op_info->sigma = data->sigma;
if (up_DF)
{
/*--- if v_vec[i] >= 0 for all i => matrix is pos.definite (p=1) -*/

data->solver = dof_min(&dof_v) >= 0 ? CG : BiCGStab;
clear_dof_matrix(data->DF);
}

if (F)

{
dof_set (0.0, &dof_F);
L2scp_fct_bas(data->f, op_info->quad_fast->quad, &dof_F);
dof_scal(-1.0, &dof_F);

}

f£ill_flag = CALL_LEAF_EL|FILL_COORDS|FILL_BOUND;

el_info = traverse_first(stack, data->fe_space->mesh, -1,
fill_flag);

while (el_info)
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const REAL *v_loc = (xget_v_loc)(el_info->el, &dof_v, nil);

const DOF *dof (*get_dof) (el_info->el, admin, nil);
const S_CHAR *bound (*get_bound) (el_info, nil);
const REAL **xa_mat, **c_mat;

/* initialization of values used by LALt and c

/*

/*
/*
/*

/*
/*
/*

op_info->det = el_grd_lambda(el_info, op_info->Lambda);
op_info->v_gp = uh_at_gp(op_info->quad_fast, v_loc, nil);

a_mat = fill_a(el_info, a_info);

c_mat = fill_c(el_info, c_info);
if (up_DF) /*--- add element contribution to matrix DF(v)
{

add_element_matrix(data->DF, 1.0, n_phi, n_phi, dof, dof,
a_mat, bound);

add_element_matrix(data->DF, 4.0, n_phi, n_phi, dof, dof,
c_mat, bound);

if (F) /*--— add element contribution to F(v) -----———-

{

int i, j;

}

for (i = 0; 1 < n_phi; i++)

{
if (bound[i] < DIRICHLET)
{
REAL val = 0.0;
for (j = 0; j < n_phi; j++)
val += (a_mat[i][j] + c_mat[i][j]1)*v_loc[j];
Fldof[i]] += val;
}
else
F[dof[i]] = 0.0; /*- zero Dirichlet boundary values!
}
}

el_info = traverse_next(stack, el_info);

89

_*/

*/
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free_traverse_stack(stack);

return;

}

The linear sub—solver

For the solution of the linearized problem we use the oem_solve_s() function,
which is also used in the solver for the linear Poisson equation (compare
Section 2.1.8). Similar to the update () function, we have to convert the right
hand side vector F and the solution vector d to DOF vectors. Information
about the system matrix and parameters for the solver are passed by ud. The
member data->solver is initialized in update ().

static int solve(void *ud, int dim, const REAL *F, REAL *d)
{
NEWTON_DATA *data = ud;
int iter;
DOF_REAL_VEC dof_F
DOF_REAL_VEC dof_d

{nil, nil, "F"};
{nil, nil, "d"};

Y e st */
/* make DOF vectors from F and d */
Y e et */

dof_F.fe_space = dof_d.fe_space = data->fe_space;

dof_F.size = dof_d.size = dim;

dof_F.vec = (REAL *) F; /* cast needed ... x/

dof_d.vec =d;

iter = oem_solve_s(data->DF, &dof_F, &dof_d, data->solver,
data->tolerance, data->icon, data->restart,
data->max_iter, data->info);

return(iter);

The computation of the H' semi norm

The H' semi norm can easily be calculated by converting the input vector
v into a DOF vector and then calling the ALBERTA routine H1 norm uh()
(compare Section 3.10).

static REAL norm(void *ud, int dim, const REAL *v)
{

NEWTON_DATA *data = ud;

DOF_REAL_VEC dof_v {nil, nil, "v"};
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dof_v.fe_space
dof_v.size
dof_v.vec

data->fe_space;
dim;
(REAL *) v; /* cast needed ... */

return(H1_norm_uh(nil, &dof_v));

The nonlinear solver

The function nlsolve () initializes the structure NEWTON_DATA with problem
dependent information. Here, we have to allocate a DOF matrix for storing
the system matrix (only on the first call), and initialize parameters for the
linear sub—solver and problem dependent data (like heat conductivity k, etc.)

The structure NLS_DATA is filled with information for the general New-
ton solver (the problem dependent routines update (), solve(), and norm()
described above). All these routines use the same structure NEWTON_DATA
for problem dependent information. For getting access to the definition of
NLS_DATA and prototypes for the Newton solvers, we have to include the nls.h
header file.

The dimension of the discrete equation is

dim = u0->fe_space->admin->size_used;

where u0 is a pointer to a DOF vector storing the initial guess. Note, that
after the call to dof_compress() in the build() routine, dim holds the true
dimension of the discrete equation. Without a dof_compress() there may be
holes in DOF vectors, and u0->fe_space->admin->size_used bigger than
the last used index, and again dim is the dimension of the discrete equation for
the Newton solver. The ALBERTA routines do not operate on unused indices,
whereas the Newton solvers do operate on unused indices too, because they do
not know about used and unused indices. In this situation, all unused DOF's
would have to be cleared for the initial solution u0 by

FOR_ALL_FREE_DOFS (u0->fe_space->admin, u0->vec[dof] = 0.0);

The same applies to the vector storing the right hand side in update (). The
dof _set () function only initializes used indices.

Finally, we reallocate the workspace used by the Newton solvers (compare
Section 3.15.6) and start the Newton method.

#include <nls.h>

int nlsolve(DOF_REAL_VEC *u0O, REAL k, REAL sigma,
REAL (*f) (const REAL_D))
{
FUNCNAME("nlsolve");
static NEWTON_DATA data = {nil,0,0,nil,nil,CG,0,500,2,10,1};
static NLS_DATA nls_data = {nil};
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int

iter, dim = uO->fe_space->admin->size_used;

if (!data.fe_space)

{

Y e e et e */
/*-- init parameters for newton ———————————————————————————————— */
e et e E B e P e e e e e e e */

nls_data.update = update;

nls_data.update_data = &data;

nls_data.solve = solve;

nls_data.solve_data = &data;

nls_data.norm = norm;

nls_data.norm_data = &data;

nls_data.tolerance = 1.e-4;

GET_PARAMETER(1, "newton tolerance", "%e", &nls_data.tolerance);

nls_data.max_iter = 50;

GET_PARAMETER(1, "newton max. iter", "%d", &nls_data.max_iter);

nls_data.info = 8;

GET_PARAMETER(1, "newton info", "%d", &nls_data.info);

nls_data.restart = O;

GET_PARAMETER(1, "newton restart", "%d", &nls_data.restart);
[ R */
/*-- 1init data for update and solve ---—--—--—---—-——-—————o———— */
R - */

data.fe_space = u0->fe_space;

data.DF

get_dof_matrix("DF(v)", uO->fe_space);

data.tolerance = 1.e-2*nls_data.tolerance;

GET_

GET_

GET_
GET_
GET_

X

TEST_E

PARAMETER(1, "linear solver tolerance", "%f",
&data.tolerance) ;

PARAMETER(1, "linear solver max iteration", "%d",
&data.max_iter);

PARAMETER(1, "linear solver info", "%d", &data.info);

PARAMETER(1, "linear solver precon", "Jd", &data.icon);

PARAMETER(1, "linear solver restart", "%d", &data.restart);

XIT(data.fe_space == u0->fe_space)
("can’t change f.e. spaces\n");

/*-- 1init problem dependent parameters -——----——————————————————- x/

/*

data.k
data.s
data.f

igma = sigma;
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Y e et e e */
/*-- enlarge workspace used by newton(_fs), and solve by Newton -*/
R - */
if (nls_data.restart)
{

nls_data.ws = REALLOC_WORKSPACE(nls_data.ws, 4*dim*sizeof (REAL));
iter = nls_newton_fs(&nls_data, dim, uO->vec);
}

else

{
nls_data.ws = REALLOC_WORKSPACE(nls_data.ws, 2*dim*sizeof (REAL));
iter = nls_newton(&nls_data, dim, uO->vec);

}

return(iter);

2.3 Heat equation

In this section we describe a model implementation for the (linear) heat equa-
tion
o — Au = f in 2 cR? x (0,7),
u=g on 002 x (0,T),
u = 1ug on {2 x {0}.

We describe here only differences to the implementation of the linear Pois-
son problem. For common (or similar) routines we refer to Section 2.1.

2.3.1 Global variables

Additionally to the finite element space fe_space, the matrix matrix and the
vectors u-h and f_h, we need a vector for storage of the solution U,, from the
last time step. This one is implemented as a global variable, too. All these
global variables are initialized in main().

static DOF_REAL_VEC *u_old = nil;

A global pointer to the ADAPT_INSTAT structure is used for access in the
build() and estimate () routines, see below.

static ADAPT_INSTAT *adapt_instat = nil;
Finally, a global variable theta is used for storing the parameter # and err_12

for storing the actual L? error between true and discrete solution in the actual
time step.

static REAL theta = 0.5; /*- parameter of time discretization --*/
static REAL err_L2 = 0.0; /*- spatial error in single time step --*/
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2.3.2 The main program for the heat equation

The main program initializes all program parameters from file and com-
mand line (compare Section 2.2.9), generates a mesh and finite element space,
the DOF matrix and vectors, and allocates and fill the parameter structure
ADAPT_INSTAT for the adaptive method for time dependent problems. This
structure is accessed by get_adapt_instat() which already initializes be-
sides the function pointers all members of this structure from the program
parameters, compare Sections 3.13.4 and 2.1.2.

The (initial) time step size, read from the parameter file, is reduced when
an initial global mesh refinement is performed. This reduction is automatically
adapted to the order of time discretization (2nd order when 6 = 0.5, 1st order
otherwise) and space discretization. For stability reasons, the time step size
is scaled by a factor 1073 if § < 0.5, see also Section 2.3.6.

Finally, the function pointers fo the adapt_instat() structure are ad-
justed to the problem dependent routines for the heat equation and the com-
plete numerical simulation is performed by a call to adapt method_instat ().

int main(int argc, char **argv)

{

FUNCNAME ("main") ;

MESH *mesh ;

int n_refine = 0, k, p = 1;

char filename[128];

REAL fac = 1.0;
R - */
/* first of all, init parameters of the init file */
Y e e et et e */

init_parameters(0, "INIT/heat.dat");

for (k = 1; k+1 < argc; k += 2)

ADD_PARAMETER(O, argv(k], argv[k+1]);

Y e et e e */
/* get a mesh, and read the macro triangulation from file */
Y e e e e e B e P e e e e e e e */

GET_PARAMETER(1, "macro file name", "%s", filename);
GET_PARAMETER(1, "global refinements", "%d", &n_refine);

mesh = GET_MESH("ALBERTA mesh", init_dof_admin, init_leaf_data);
read_macro(mesh, filename, nil);

global_refine(mesh, n_refinexDIM);

graphics(mesh, nil, nil);

GET_PARAMETER(1, "parameter theta", "Je", &theta);
if (theta < 0.5)
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{
WARNING("You are using the explicit Euler scheme\n");
WARNING("Use a sufficiently small time step size!!!\n");
fac = 1.0e-3;

}

matrix = get_dof_matrix("A", fe_space);

f_h get_dof_real_vec("f_h", fe_space);

u_h get_dof_real_vec("u_h", fe_space);
u_h->refine_interpol = fe_space->bas_fcts->real_refine_inter;
u_h->coarse_restrict = fe_space->bas_fcts->real_coarse_inter;
u_old = get_dof_real_vec("u_old", fe_space);
u_old->refine_interpol = fe_space->bas_fcts->real_refine_inter;
u_old->coarse_restrict = fe_space->bas_fcts->real_coarse_inter;

dof_set (0.0, u_h); /* initialize u_h ! */
Y e e e */
/* init adapt structure and start adaptive method */
Y e e it */

adapt_instat = get_adapt_instat("heat", "adapt", 2, adapt_instat);
R - */
/* adapt time step size to refinement level and polynomial degreex/
Y e et e */

GET_PARAMETER(1, "polynomial degree", "%d", &p);

if (theta == 0.5)
adapt_instat->timestep *= fac*pow(2, -(REAL) (p*(n_refine))/2.0);
else
adapt_instat->timestep *= fac*pow(2, -(REAL) (p*(n_refine)));
MSG("using initial timestep size = %.4le\n",
adapt_instat->timestep);

eval_time_u0 = adapt_instat->start_time;

adapt_instat->adapt_initial->get_el_est = get_el_est;
adapt_instat->adapt_initial->estimate = est_initial;
adapt_instat->adapt_initial->solve = interpol_u0;

adapt_instat->adapt_space->get_el_est = get_el_est;
adapt_instat->adapt_space->get_el_estc = get_el_estc;
adapt_instat->adapt_space->estimate = estimate;
adapt_instat->adapt_space->build_after_coarsen = build;
adapt_instat->adapt_space->solve = solve;

adapt_instat->init_timestep = init_timestep;
adapt_instat->set_time set_time;
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adapt_instat->get_time_est get_time_est;
adapt_instat->close_timestep = close_timestep;

adapt_method_instat (mesh, adapt_instat);

WAIT_REALLY;
return(0) ;

2.3.3 The parameter file for the heat equation

The parameter file for the heat equation INIT/heat.dat (here for the 2d
simulations) is similar to the parameter file for the Poisson problem. The
main differences are additional parameters for the adaptive procedure, see
Section 3.13.3. These additional parameters may also be optimized for 1d, 2d,
and 3d.

Via the parameter write finite element data storage of meshes and
finite element solution for post-processing purposes can be done. The param-
eter write statistical data selects storage of files containing number of
DOFs, estimate, error, etc. versus time. Finally, data path can prescribe an
existing path for storing such data.

macro file name: Macro/macro.amc
global refinements: 0
polynomial degree: 1

% graphic windows: solution, estimate, and mesh if size > O
graphic windows: 300 300 300

% for graphics you can specify the range for the values of
% discrete solution for displaying: min max

% automatical scaling by display routine if min >= max
graphic range: -1.0 1.0

solver: 2 % 1: BICGSTAB 2: CG 3: GMRES 4: ODIR 5: ORES
solver max iteration: 1000

solver restart: 10 % only used for GMRES

solver tolerance: l.e-12

solver info: 2

solver precon: 1 % 0: no precon 1: diag precon

% 2: HB precon 3: BPX precon

parameter theta: 1.0
adapt->start_time: 0.0
adapt->end_time: 5.0

adapt->tolerance: 1.0e-4
adapt->timestep: 1.0e-2
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adapt->rel_initial_error: 0.

adapt->rel_space_error: 0.
0.
1

oo ;

adapt->rel_time_error:

adapt->strategy: % O=explicit, l=implicit

adapt->max_iteration: 10
adapt->info: 2
adapt->initial->strategy: 2 % O=none, 1=GR, 2=MS, 3=ES, 4=GERS
adapt->initial->MS_gamma: 0.5
adapt->initial->max_iteration: 10
adapt->initial->info: 2
adapt->space->strategy: 3 % O=none, 1=GR, 2=MS, 3=ES, 4=GERS
adapt->space->ES_theta: 0.9
adapt->space->ES_theta_c: 0.05
adapt->space->max_iteration: 10
adapt->space->coarsen_allowed: 1 % 0|1
adapt->space->info: 2
estimator CO: 0.1
estimator C1: 0.1
estimator C2: 0.1
estimator C3: 0.1
write finite element data: 0 7% write data for post-processing 7
write statistical data: 0 7% write statistical data or not
data path: ./data % path for data to be written
WAIT: 0
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Fig. 2.4. Time step size (left) and number of DOF's for different polynomial degrees
(right) over time in 2d.

Figs. 2.4 and 2.5 show the variation of time step sizes and number of
DOFs over time, automatically generated by the adaptive method in two and
three space dimensions for a problem with time-periodic data. The number
of DOFs is depicted for different spatial discretization order and shows the
strong benefit from using a higher order method. The size of time steps was
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Fig. 2.5. Time step size (left) and number of DOF's for different polynomial degrees
(right) over time in 3d.

nearly the same for all spatial discretizations. Parameters for the adaptive
procedure can be taken from the corresponding parameter files in 2d and 3d
in the distribution.

2.3.4 Functions for leaf data

For time dependent problems, mesh adaption usually also includes coarsening
of previously (for smaller ¢) refined parts of the mesh. For storage of local
coarsening error estimates, the leaf data structure is enlarged by a second
REAL. Functions rw_el estc() and get_el_estc() are provided for access to
that storage location.

struct heat_leaf_data

{
REAL estimate; /* one real for the element indicator */
REAL est_c; /* one real for the coarsening indicator */
};
static REAL *rw_el_estc(EL *el)
{
if (IS_LEAF_EL(el))
return(&((struct heat_leaf_data *)LEAF_DATA(el))->est_c);
else
return(nil);
¥

static REAL get_el_estc(EL *el)
{
if (IS_LEAF_EL(el))
return(((struct heat_leaf_data *)LEAF_DATA(el))->est_c);
else
return(0.0);
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2.3.5 Data of the differential equation

Data for the heat equation are the initial values ug, right hand side f, and
boundary values g. When the true solution u is known, it can be used for
computing the true error between discrete and exact solution.

The sample problem is defined such that the exact solution is

u(z,t) = sin(7rt)6710‘z‘2 on (0,1)% x [0,1].

All library subroutines which evaluate a given data function (for integra-
tion, e.g.) are defined for space dependent functions only and do not know
about a time variable. Thus, such a ‘simple’ space dependent function fspace(z)
has to be derived from a space-time dependent function f(x,t). We do this
by keeping the time in a global variable, and setting

fspacc(fr) = f(iZ?, t).

static REAL eval_time_u = 0.0;
static REAL u(const REAL_D x)
{
return(sin(M_PIxeval_time_u)*exp(-10.0*SCP_DOW(x,x)));
}

static REAL eval_time_uO = 0.0;
static REAL uO(const REAL_D x)

{
eval_time_u = eval_time_u0;
return(u(x));
}
static REAL eval_time_g = 0.0;
static REAL g(const REAL_D x) /* boundary values, not optional */
{

eval_time_u = eval_time_g;
return(u(x));

}
static REAL eval_time_f = 0.0;
static REAL f(const REAL_D x) /* u_t - Delta u, not optional  */
{
REAL r2 = SCP_DOW(x,x), ux = sin(M_PIxeval_time_f)*exp(-10.0%*r2);

REAL ut = M_PI*cos(M_PI*eval_time_f)*exp(-10.0%r2);
return(ut - (400.0%r2 - 20.0*DIM)*ux) ;
}

As indicated, the times for evaluation of boundary data and right hand
side may be chosen independent of each other depending on the kind of time
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discretization. The value of eval time f and eval_time_g are set by the func-
tion set_time (). Similarly, the evaluation time for the exact solution is set
by estimate() where also the evaluation time of f is set for the evaluation
of the element residual. In order to start the simulation not only at t = 0,
we have introduced a variable eval_time_uO, which is set in main() at the
beginning of the program to the value of adapt_instat->start_time.

2.3.6 Time discretization

The model implementation uses a variable time discretization scheme. Initial
data is interpolated on the initial mesh,

UO = IOUO.

For 0 € [0, 1], the finite element solution Uy41 = u(, ty41) is given by Up 41 €
I+19(-, tnt1) + Xpy1 such that

(Uns1, B)+0(VU, 41, VD) =

Tn+1 Tn+1

— (1 =0)(VIht1Up, V®) + (f(- tn + 0Tny1), D)

(Ln41Up, @) (2.5)

for all & € X,,,1. Using 6 = 0, this gives the forward (explicit) Euler scheme,
for @ = 1 the backward (implicit) Euler scheme. For § = 0.5, we obtain the
Cranck—Nicholson scheme, which is of second order in time. For 6 € [0.5, 1.0],
the scheme is unconditionally stable, while for 8 < 0.5 stability is only guar-
anteed if the time step size is small enough. For that reason, the time step
size is scaled by an additional factor of 1073 in the main program if 6 < 0.5.
But this might not be enough for guaranteeing stability of the scheme! We do
recommend to use § = 0.5,1 only.

2.3.7 Initial data interpolation

Initial data wug is just interpolated on the initial mesh, thus the solve() en-
try in adapt_instat->adapt_initial will point to a routine interpol_u0()
which implements this by the library interpolation routine. No build () rou-
tine is needed by the initial mesh adaption procedure.

static void interpol_uO(MESH *mesh)
{

dof _compress (mesh) ;

interpol(u0, u_h);

return;

}
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2.3.8 The assemblage of the discrete system

Using a matrix notation, the discrete problem (2.5) can be written as

1

Tn+1

( 1 M+0A)Un+1 - (

M- (1- 9)A) Up+Fopy.
Tn+1

Here, M = ($;,?;) denotes the mass matrix and A = (V®;, V&;) the stiffness
matrix (up to Dirichlet boundary DOFSs). The system matrix on the left hand
side is not the same as the one applied to the old solution on the right hand
side. But we want to compute the contribution of the solution form the old
time step U, to the right hand side vector efficiently by a simple matrix—
vector multiplication and thus avoiding additional element-wise integration.
For doing this without storing both matrices M and A we are using the
element-wise strategy explained and used in Section 2.2.6 when assembling the
linearized equation in the Newton iteration for solving the nonlinear reaction—
diffusion equation.

The subroutine assemble() generates both the system matrix and the
right hand side at the same time. The mesh elements are visited via the non-
recursive mesh traversal routines. On every leaf element, both the element
mass matrix cmat and the element stiffness matrix a_mat are calculated us-
ing the el matrix_fct () provided by £ill matrix_info (). For this purpose,
two different operators (the mass and stiffness operators) are defined and ap-
plied on each element. The stiffness operator uses the same LALt () function
for the second order term as described in Section 2.1.7; the mass operator im-
plements only the constant zero order coefficient ¢ = 1/7,41, which is passed
in struct op-info and evaluated in the function c (). The initialization and
access of these operators is done in the same way as in Section 2.2.6 where
this is described in detail. During the non-recursive mesh traversal, element
stiffness matrix and the mass matrix are computed and added to the global
system matrix. Then, the contribution to the right hand side vector of the
solution from the old time step is computed by a matrix—vector product of
these element matrices with the local coeflicient vector on the element of U,
and added to the global load vector.

After this step, the the right hand side f and Dirichlet boundary values g
are treated by the standard routines.

struct op_info

{
REAL_D Lambda[DIM+1];
REAL det;

REAL tau_1;
};
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static REAL c(const EL_INFO *el_info, const QUAD *quad, int iq,

{

void *ud)

struct op_info *info = ud;

return(info->tau_1*info->det);

}

static void assemble(DOF_REAL_VEC #*u_old, DOF_MATRIX *matrix,

DOF_REAL_VEC *fh, DOF_REAL_VEC #u_h, REAL theta,
REAL tau, REAL (*f) (const REAL_D),
REAL (*g) (const REAL_D))

FUNCNAME ("assemble") ;

static
static
static
static
static

static
static
static

static
static

struc
const
void
const
void

const
int
const

const
const

t op_info *op_info = nil;

REAL **(*fill_a) (const EL_INFO *, void *) = nil;
*a_info = nil;

REAL *% (*fill_c) (const EL_INFO *, void *)
*c_info = nil;

nil;

DOF_ADMIN *admin = nil;
n;
REAL *(xget_u_loc) (const EL *, const DOF_REAL_VEC *,
REAL *);
S_CHAR *(*get_bound) (const EL_INFO *, S_CHAR *);
DOF *(*get_dof) (const EL *, const DOF_ADMIN *, DOF *);

TRAVERSE_STACK *stack = get_traverse_stack();
const EL_INFO *el_info;

FLAGS

const REAL

REAL

const QUAD

int

fill_flag;
**a_mat, **c_mat;
*f_vec;

*quad;

i, j;

quad = get_quadrature(DIM, 2*u_h—>fe_space—>bas_fcts—>degree);

/*

/* init functions for matrix assembling */

if (admin != u_h->fe_space->admin)

{

OPERATOR_INFO o_info2 = {nil}, o_infoO0 = {nil};
const EL_MATRIX_INFO *matrix_info;
const BAS_FCTS *bas_fcts = u_h->fe_space->bas_fcts;

admin

= u_h->fe_space->admin;



2.3 Heat equation 103

n = bas_fcts->n_bas_fcts;

get_dof = bas_fcts->get_dof_indices;
get_bound = bas_fcts->get_bound;
get_u_loc bas_fcts->get_real_vec;

if (lop_info)
op_info = MEM_ALLOC(1, struct op_info);

o_info2.row_fe_space = o_info2.col_fe_space = u_h->fe_space;

o_info2.quad[2] = quad;
o_info2.LALt = LALt;
o_info2.LALt_pw_const = true;

o_info2.LALt_symmetric = true;
o_info2.user_data op_info;

matrix_info = fill_matrix_info(&o_info2, nil);
fill_a = matrix_info->el_matrix_=£fct;
a_info = matrix_info->fill_info;

o_info0.row_fe_space = o_info0.col_fe_space = u_h->fe_space;

o_info0.quad[0] = quad;
o_info0.c = c;
o_info0.c_pw_const = true;

o_info0.user_data op_info;

matrix_info = fill_matrix_info(&o_infoO, nil);

fill_c = matrix_info->el_matrix_=£fct;
c_info = matrix_info->fill_info;

op_info->tau_1 = 1.0/tau;

R - */
/* and now assemble the matrix and right hand side */
Y e et et e */

clear_dof_matrix(matrix);
dof_set (0.0, fh);
f_vec = fh->vec;

f£ill_flag = CALL_LEAF_EL|FILL_COORDS|FILL_BOUND;
el_info = traverse_first(stack, u_h—>fe_space—>mesh,—1,fill_flag);
while (el_info)
{
const REAL *u_old_loc
const DOF *dof
const S_CHAR *bound

(*get_u_loc) (el_info->el, u_old, nil);
(*get_dof) (el_info->el, admin, nil);
(*get_bound) (el_info, nil);
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Y e */

/* initialization of values used by LALt and c */

e e */
op_info->det = el_grd_lambda(el_info, op_info->Lambda);

a_mat = fill_a(el_info, a_info);
c_mat = fill_c(el_info, c_info);

Y e et */
/* add thetaxa(psi_i,psi_j) + 1/tau*m(4*u”3*psi_i,psi_j) */
Y et et */
if (theta)
{

add_element_matrix(matrix, theta, n, n, dof, dof, a_mat,bound);

}

add_element_matrix(matrix, 1.0, n, n, dof, dof, c_mat, bound);

if (1.0 - theta)
{
REAL thetal = 1.0 - theta;
for (i = 0; i < n; i++)
{
if (bound[i] < DIRICHLET)
{
REAL val = 0.0;
for (j = 0; j < nj; j++)
val += (-thetal*a_mat[i][j] + c_mat[i][j])*u_old_loc[jl;
f_vec[dof[i]] += val;
}
}
}
else
{
for (i = 0; i < n; i++)
{
if (bound[i] < DIRICHLET)
{
REAL val = 0.0;
for (j = 0; j < nj; j++)
val += c_mat[i] [jl*u_old_loc[j];
f_vec[dof[i]] += val;
}
}
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}
el_info = traverse_next(stack, el_info);

}

free_traverse_stack(stack);

L2scp_fct_bas(f, quad, fh);
dirichlet_bound(g, fh, u_h, nil);

return;

}

The build() routine for one time step of the heat equation is nearly
a dummy routine and just calls the assemble() routine described above.
In order to avoid holes in vectors and matrices, as a first step, the mesh is
compressed. This guarantees optimal performance of the BLAS1 routines used
in the iterative solvers.

static void build(MESH *mesh, U_CHAR flag)
{
FUNCNAME ("build");

dof _compress (mesh) ;

INFO(adapt_instat->adapt_space->info, 2)
("%d DOFs for %s\n", fe_space->admin->size_used, fe_space->name);

assemble(u_old, matrix, f_h, u_h, theta, adapt_instat->timestep,
f, 8);
return;

}

The resulting linear system is solved by calling the oem_solve_s() library
routine. This is done via the solve () subroutine described in Section 2.1.8.

2.3.9 Error estimation

The initial error ||Uy —uol| £2(g) is calculated exactly (up to quadrature error)
by a call to L2_err (). Local error contributions are written via rw_el_est ()
to the estimate value in struct heat_leaf data. The err max and err_sum
of the ADAPT_STAT structure (which will be adapt_instat->adapt_initial,
see below) are set accordingly.

static REAL est_initial (MESH *mesh, ADAPT_STAT *adapt)
{

err_L2 = L2_err(u0, u_h, nil, 0, rw_el_est, &adapt->err_max);
return(adapt->err_sum = err_L2);

}
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In each time step, error estimation is done by the library routine
heat_est (), which generates both time and space discretization indicators,
compare Section 2.3.9. Similar to the estimator for elliptic problems, a func-
tion r() is needed for computing contributions of lower order terms and the
right hand side. The flag for passing information about the discrete solution
U, 41 or its gradient to r() is set to zero in estimate () since no lower order
term is involved.

Local element indicators are stored to the estimate or est_c entries
inside the data structure struct heat_leaf_data via the function point-
ers rw_el_est() and rw_el_estc(). The errmax and err_sum entries of
adapt->adapt_space are set accordingly. The temporal error indicator is the
return value by heat_est () and is stored in a global variable for later access
by get_time_est (). In this example, the true solution is known and thus the
true error ||u(-,tpy1) — Uny1llr2() is calculated additionally for comparison
in the function close_timestep().

static REAL r(const EL_INFO *el_info, const QUAD *quad, int iq,
REAL t, REAL uh_iq, const REAL_D grd_uh_iq)
{
REAL_D X;
coord_to_world(el_info, quad->lambdaliql, x);
eval_time_f = t;
return(-£(x));

}
static REAL estimate(MESH *mesh, ADAPT_STAT *adapt)
{
FUNCNAME ("estimate") ;
static int degree;
static REAL cf4] = {-1.0, 1.0, 1.0, 1.0};
REAL_DD A = {{0.0}};
FLAGS r_flag = O;
int n;
REAL space_est;

for (n = 0; n < DIM_OF_WORLD; n++)
Aln] [n] .0;

n -
-

eval_time_

[=1
1]

adapt_instat->time;

if (C[0] < 0)

{
c[o] = 1.0;
GET_PARAMETER(1, "estimator CO", "%f", &C[0]);
GET_PARAMETER(1, "estimator C1", "%f", &C[1]);
GET_PARAMETER(1, "estimator C2", "%f", &C[2]);
GET_PARAMETER(1, "estimator C3", "%f", &C[31);
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degree = 2*u_h->fe_space->bas_fcts->degree;
time_est = heat_est(u_h, adapt_instat, rw_el_est, rw_el_estc,
degree, C, u_old, (const REAL_D *) A, r, r_flag);

space_est = adapt_instat->adapt_space->err_sum;
err_L2 = L2_err(u, u_h, nil, 0, nil, nil);

INFO(adapt_instat->info,2)

INFO(adapt_instat->info, 2)("time = %.4le with timestep = %.4le\n",
adapt_instat->time, adapt_instat->timestep);

INFO(adapt_instat->info, 2)("estimate = %.41le, max = %.4le\n",
space_est, sqrt(adapt_instat->adapt_space->err_max));
INFO(adapt_instat->info, 2) ("||u-uhl||L2 = %.4le, ratio = %.21f\n",
err_L2, err_L2/MAX(space_est,1.e-20));

return(adapt_instat->adapt_space->err_sum) ;

2.3.10 Time steps

Time dependent problems are calculated step by step in single time steps. In
a fully implicit time-adaptive strategy, each time step includes an adaptation
of the time step size as well as an adaptation of the corresponding spatial dis-
cretization. First, the time step size is adapted and then the mesh adaptation
procedure is performed. This second part may again push the estimate for the
time discretization error over the corresponding tolerance. In this case, the
time step size is again reduced and the whole procedure is iterated until both,
time and space discretization error estimates meet the prescribed tolerances
(or until a maximal number of iterations is performed). For details and other
time-adaptive strategies see Section 3.13.3.

Besides the build(), solve(), and estimate () routines for the adapta-
tion of the initial grid and the grids in each time steps, additional routines
for initializing time steps, setting time step size of the actual time step, and
finalizing a time step are needed. For adaptive control of the time step size,
the function get_time_est() gives information about the size of the time dis-
cretization error. The actual time discretization error is stored in the global
variable time_est and its value is set in the function estimate().

During the initialization of a new time step in init_timestep(), the dis-
crete solution u_h from the old time step (or from interpolation of initial data)
is copied to u_old. In the function set_time () evaluation times for the right
hand side f and Dirichlet boundary data g are set accordingly to the chosen
time discretization scheme. Since a time step can be rejected by the adaptive
method by a too large time discretization error, this function can be called
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several times during the computation of a single time step. On each call, in-
formation about the actual time and time step size is accessed via the entries
time and timestep of the adapt_instat structure.

After accepting the current time step size and current grid by the adap-
tive method, the time step is completed by close_time_step(). The variables
space_est, time_est, and err L2 now hold the final estimates resp. error,
and u_h the accepted finite element solution for this time step. The final mesh
and discrete solution can now be written to file for post-processing purposes,
depending on the parameter value of write finite element data. The file
name for the mesh/solution consists of the data path, the base name mesh/u h,
and the iteration counter of the actual time step. Such a composition can be
easily constructed by the function generate filename (), described in Sec-
tion 3.1.6. Mesh and finite element solution are then exported to file by the
write_*_xdr () routines in a portable binary format. Using this procedure,
the sequence of discrete solutions can easily be visualized by the program
alberta movi which is an interface to GRAPE and comes with the distribu-
tion of ALBERTA, compare Section 3.16.3.

Depending on the parameter value of write statistical data, the evo-
lution of estimates, error, number of DOFs, size of time step size, etc. are
written to files by the function write_statistical_data(), which is included
in heat.c but not described here. It produces for each quantity a two-column
data file where the first column contains time and the second column estimate,
error, etc. Such data can easily be evaluated by standard (graphic) tools.

Finally, a graphical output of the solution and the mesh is generated via
the graphics () routine already used in the previous examples.

static REAL time_est = 0.0;

static REAL get_time_est(MESH #*mesh, ADAPT_INSTAT *adapt)
{

return(time_est);

}
static void init_timestep(MESH *mesh, ADAPT_INSTAT *adapt)
{

FUNCNAME("init_timestep");

INFO(adapt_instat->info,1)

INFO(adapt_instat->info, 1)("starting new timestep\n");

dof_copy(u_h, u_old);
return;
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static void set_time(MESH *mesh, ADAPT_INSTAT *adapt)

{

}

FUNCNAME ("set_time") ;

INFO(adapt->info,1)
e \n");
if (adapt->time == adapt->start_time)
{
INFO(adapt->info, 1) ("start time: %.4le\n", adapt->time);
}
else
{
INFO(adapt->info, 1) ("timestep for (J.4le %.4le), tau = J.4le\n",
adapt->time-adapt->timestep, adapt->time,
adapt->timestep);

eval_time_f = adapt->time - (1 - theta)*adapt->timestep;
eval_time_g = adapt->time;

return;

static void close_timestep(MESH #*mesh, ADAPT_INSTAT *adapt)

{

FUNCNAME ("close_timestep");

static REAL err_max = 0.0; /* max space-time error */
static REAL est_max = 0.0; /* max space-time estimate */
static int write_fe_data = 0, write_stat_data = 0;

static int step = 0;

static char path[256] = "./";
REAL space_est = adapt->adapt_space->err_sum;
REAL tolerance = adapt->rel_time_error*adapt->tolerance;

err_max = MAX(err_max, err_L2);
est_max = MAX(est_max, space_est + time_est);

INFO(adapt->info,1)

if (adapt->time == adapt->start_time)
{
tolerance = adapt->adapt_initial->tolerance;
INFO(adapt->info,1) ("start time: %.4le\n", adapt->time);
}
else
{

tolerance += adapt->adapt_space->tolerance;
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INFO(adapt->info,1) ("timestep for (%.4le %.4le), tau = %.4le\n",
adapt->time-adapt->timestep, adapt->time,
adapt->timestep) ;

}

INFO(adapt->info,2) ("max. est. = %.4le, tolerance = %.4le\n",
est_max, tolerance);

INFO(adapt->info,2) ("max. error = %.4le, ratio = %.21f\n",
err_max, err_max/MAX(est_max,1.0e-20));

if (!step)
{
GET_PARAMETER(1, "write finite element data", "%d",
&write_fe_data);
GET_PARAMETER(1, "write statistical data", "%d",
&write_stat_data);
GET_PARAMETER(1, "data path", "%s", path);

if (write_fe_data)
{

const char *fn;

fn= generate_filename(path, "mesh", step);
write_mesh_xdr(mesh, fn, adapt->time);

fn= generate_filename(path, "u_h", step);
write_dof_real_vec(u_h, fn);

step++;

[k m = B */
/*--— write data about estimate, error, time step size, etc. ———x/

if (write_stat_data)
{
int n_dof = fe_space->admin->size_used;
write_statistics(path, adapt, n_dof, space_est, time_est,err_L2);

}
graphics(mesh, u_h, get_el_est);

return;
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2.4 Installation of ALBERTA and file organization

2.4.1 Installation

Enclosed on CD you will find a gzipped archive file alberta-1.2.tar.gz for a
UNIX/Linux operating system. It includes all sources of ALBERTA, the model
implementations of the examples described in Chapter 2, and tools for instal-
lation. System requirements for ALBERTA are a Unix/Linux environment with
C and FORTRAN Compilers, OpenGL graphics and GNU make.

The file alberta-1.2.tar.gz has to be unpacked which directly creates
the sub-directory albert-1.2 in the current directory with all data of AL-
BERTA. Changing to this sub-directory, the installation procedure is fully
explained in the README. For a platform independent installation the GNU
configure tools are used, documented in the file INSTALL. Installation options
configure script can be added on the command line and are described in the
READUME file or printed with command configure --help.

When ALBERTA should use the visualization packages gltools or GRAPE,
these have to be installed first, see the corresponding web sites

http://wuw.wias-berlin.de/software/gltools/
http://www.iam.uni-bonn.de/sfb256/grape/

for obtaining the software. Paths to their installation directories have to be
arguments to the configure script.

2.4.2 File organization

Using the ALBERTA library, the dimension enters in an application only by
the parameters DIM and DIM_OF _WORLD. Thus, the code is usually the same
for 1d, 2d, and 3d simulations. Nevertheless, the object files do depend on
the dimension, since DIM and DIM_OF_WORLD are symbolic constants (which
define the length of vectors, e.g.). Hence, all object files have to be rebuilt,
when changing the dimension. To make sure that this is done automatically
we use the following file organization, which is also reflected in the structure
of DEMO/src sub-directory with the implementation of the model problems.
We use the four sub—directories

./1d ./2d ./3d . /Common

for organizing files. The directory Common contains all source files and header
files that do not (or only slightly) depend on the dimension. The directories 14,
2d, 3d contain dimension-dependent data, like macro triangulations files and
parameter files. Finally, a dimension-dependent Makefile is automatically
created in DEMO/src/*d during installation of ALBERTA. These Makefiles
contain all information about ALBERTA header files and all libraries used. In
the 1d, 2d, or 3d sub-directories, the programs of the model problems for the
corresponding space dimension are then generated by executing make ellipt,
make nonlin, and make heat.
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Data structures and implementation

ALBERTA provides two header files alberta_util.h and alberta.h, which
contain the definitions of all data structures, macros, and subroutine proto-
types. The file alberta_util.h is included in the header file alberta.h.

3.1 Basic types, utilities, and parameter handling

The file alberta_util.h contains some type definitions and macro definitions
for memory (de-) allocation and messages, which we describe briefly in this
section. The following system header files are included in alberta util.h

#include <stdio.h>
#include <math.h>

#include <stdlib.h>
#include <string.h>
#include <float.h>

3.1.1 Basic types

ALBERTA uses the following basis symbolic constants and macro definition:

#define true 1

#define false 0

#define nil NULL

#define MAX(a, b) (@ > (b) 7 (a) : (b))
#define MIN(a, b) (@ < (b) 7 (a) : (b))
#define ABS(a) (@) >= 07 (a) : -(a))
#define SQR(a) ((a)*(a))

In order to store information in a compact way, we define two bit fields U_CHAR
and S_CHAR:
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typedef unsigned char U_CHAR;
typedef signed char S_CHAR;

The mesh traversal routines need flags which are stored in the data type
FLAGS:

typedef unsigned long FLAGS;

By the data type REAL the user can specify to store floating point values in
the type float or double. All pointers to variables or vectors of floating point
values have to be defined as REAL!

typedef double REAL;

The use of float is also possible, but it is not guaranteed to work and may
lead to problems when using other libraries (like libraries for linear solver or
graphics, e.g.).

3.1.2 Message macros

There are several macros to write messages and error messages. Especially for
error messages the exact location of the error is of interest. Thus, error mes-
sages are preceded by the name of the source file and the line number at that
this error was detected. Such information is produced by the C-preprocessor.
Additionally, the name of the function is printed. Since there is no symbolic
constant defined by the C-preprocessor holding the function name, in each
function a string funcName containing the name of the function has to be
defined. This is usually done by the macro FUNCNAME

#define FUNCNAME(nn) const char *funcName = nn

as the first declaration:

Example 3.1 (FUNCNAME).

static void refine_element (EL *el)

{
FUNCNAME ("refine_element") ;

All message macros use this local variable funcName and it has to be
defined in each function.

Usual output to stdout is done by the macro MSG() which has the same
arguments as printf ():

MSG(const char *format, ...);

The format string should be ended with the newline character ‘\n’. MSG()
usually precedes the message by the function’s name. If the previous message
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was produced by the same function, the function’s name is omitted and the
space of the name is filled with blanks.

If the format string of MSG() does not end with the newline character, and
one wants to print more information to the same line, this can be done by
print_msg() which again has the same arguments as printf ():

print_msg(const char *format, ...);

Example 3.2 (MSG(), printmsg()).

static void refine_element (EL *el)

{
FUNCNAME("refine_element") ;

MSG("refining element ’%d\n", INDEX(el));
MSG("neighbours of element: ");
for (i = 0; i < N_VERTICES-1; i++)
print_msg("%d, ", INDEX(NEIGH(el) [i]));
print_msg("%d\n", INDEX(NEIGH(el) [N_VERTICES-11));
}

produces for instance output

refine_element: refining element 10
neighbours of element: 0, 14, 42

A simpler way to print vectors of integer or real numbers is provided by
the macros PRINT_INT_VEC and PRINT REAL_VEC.

PRINT_INT_VEC(const char *s, const int *vec, int no);
PRINT_REAL_VEC(const char *s, const REAL *vec, int no);

Based on the MSG() and print_msg() mechanisms, a comma-separated list of
the no vector elements is produced.

Example 3.3 (PRINT_REAL_VEC()).

{

FUNCNAME ("test_routine");

REAL_D point;

PRINT_REAL_VEC("point coordinates", point, DIM_OF_WORLD) ;
¥

generates for the second unit vector in 3D the output

test_routine: point coordinates = (0.00000, 1.00000, 0.00000)
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Often it is useful to suppress messages or to give only information up to a
suitable level. There are two ways for defining such a level of information. The
first one is a local level, which is determined by some variable in a function;
the other one is a global restriction for information. For this global restriction
a global variable

int msg_info = 10;
is defined with an default value of 10. Using one of the macros

#define INFO(info,noinfo)\

if (!(msg_info&&(MIN(msg_info, (info))>=(noinfo))));else MSG
#define PRINT_INFO(info,noinfo)\

if (!(msg_info&&(MIN(msg_info, (info))>=(noinfo))));else print_msg

only messages are produced by INFO() or PRINT_INFO() if msg_info is non
zero and the value MIN(msg_info, info) is greater or equal noinfo, where
noinfo denotes some local level of information. Thus after setting msg_info
= 0, no further messages are produced. Changing the value of this variable
via a parameter file is described below in Section 3.1.5.

Example 3.4 (INFO(), PRINT_INFOQ)).

static void refine_element (EL *el)

{
FUNCNAME ("refine_element") ;
INFO(info,4) ("refining element %d\n", INDEX(el));
INFO(info,6) ("neighbours of element: ");
for (i = 0; i < N_VERTICES-1; i++)
PRINT_INFO(info,6) ("%d, ", INDEX(NEIGH(el)[il));
PRINT_INFO(info,6) ("%d\n", INDEX(NEIGH(el) [N_VERTICES-1]));
}

will print the element index, if the value of the global variable info > 4 and
additionally the indices of neighbours if info > 6.

For error messages macros ERROR and ERROR_EXIT are defined. ERROR has
the same functionality as the MSG macro but the output is piped to stderr.
ERROR_EXIT exits the program after using the ERROR macro with return value
1:

ERROR(const char *format, ...);
ERROR_EXIT(const char *format, ...);

Furthermore, two macros for testing boolean values are available:

#define TEST(test) if ((test)); else ERROR
#define TEST_EXIT(test) if ((test)); else ERROR_EXIT
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If test is not true both macros will print an error message. TEST will continue
the program afterwards, meanwhile TEST_EXIT will exit the program with
return value 1.

Error messages can not be suppressed and the information variable
msg_info does not influence these error functions.

Example 3.5 (TEST(), TEST_EXIT()).

static void refine_element (EL *el)

{
FUNCNAME("refine_element") ;

TEST_EXIT(el) ("no element for refinement\n");

Finally, there exists a macro WARNING for writing warnings to the same
stream as for messages. Each warning is preceeded by the word WARNING.
Warnings can not be suppressed by the information variable msg_info.

WARNING(const char *format, ...);

Sometimes it may be very useful to write messages to file, or write parts
of messages to file. By the functions

void change_msg_out (FILE #*fp);
void open_msg_file(const char *filename, const char *type);

the user can select a new stream or file for message output. Using the
first routine, the user directly specifies the new stream fp. If this stream
is non nil, all messages are flushed to this stream, otherwise ALBERTA will
use the old stream furthermore. The function open msg file() acts like
change msg out (fopen(filename, type)).

Similar functions are available for error messages and they act in the same
manner on the output stream for error messages:

void change_error_out(FILE *fp);
void open_error_file(const char *filename, const char *type);

For setting breakpoints in the program two macros

WAIT
WAIT_REALLY

are defined.
WAIT: this macro uses a global variable msg wait and if the value of this
variable is not zero the statement WAIT; will produce the message

wait for <enter> ...

and will continue after pressing the enter or return key. If the value of
msg_wait is zero, no message is produced and the program continues. The
value of msg_wait can be modified by the parameter tools (see Section 3.1.5).
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WAIT REALLY: the statement WAIT REALLY will always produce the above mes-
sage and will wait for pressing the enter or return key.

3.1.3 Memory allocation and deallocation

Various functions and macros for memory allocation and deallocation are
implemented. The basic ones are

void *alberta_alloc(size_t, const char *, const char *, int);
void *alberta_realloc(void *, size_t, size_t, const char *,
const char *, int);
void *alberta_calloc(size_t, size_t, const char *, const char *,int);
void alberta_free(void *, size_t);

In the following name is a pointer to the string holding the function name of
the calling function (defined by the FUNCNAME macro, e.g.), f£ile a pointer to
the string holding the name of the source file (generated by the __FILE__ CPP
macro) and line is the line number of the call (generated by the __LINE__ CPP
macro). All functions will exit the running program with an error message, if
the size to be allocated is 0 or the memory allocation by the system functions
fails.

alberta_alloc(size, name, file, line): returns a pointer to a block of
memory of at least the number of bytes specified by size.

alberta realloc(ptr, old, new, name, file, line): adjusts the size of
the block of memory pointed to by the pointer ptr to the number of bytes
specified by new, and returns a pointer to the block. The contents of the
block remain unchanged up to the lesser of the 01d and new; if necessary, a
new block is allocated, and data is copied to it; if the ptr is a nil pointer,
the alberta_realloc() function allocates a new block of the requested size.

alberta_calloc(nel, el _size, name, file, line): returns a pointer to
a vector with the n_el number of elements, where each element is of the size
el _size; the space is initialized to zeros.

alberta free(ptr, size): frees the block of memory pointed to by the ar-
gument ptr for further allocation; ptr must have been previously allocated
by either alberta_alloc(), alberta realloc(), or alberta_calloc().

A more comfortable way to use these functions, is the use of the following
macros:

TYPEx MEM_ALLOC(size_t, TYPE);

TYPE+* MEM_REALLOC(TYPE *, size_t, size_t, TYPE);
TYPE+* MEM_CALLOC(size_t, TYPE);

TYPE* MEM_FREE(TYPE *, size_t, TYPE);

They supply the above described functions with the function name, file name
and line number automatically. For an allocation by these macros, the num-
ber of elements and the data type have to be specified; the actual size in
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bytes is computed automatically. Additionally, casting to the correct type is

performed.

MEM_ALLOC(n, TYPE): returns a pointer to a vector of type TYPE with the n
number of elements.

MEM REALLOC(ptr, size old, sizemnew, TYPE): reallocates the vector of
type TYPE at pointer ptr with size_old elements for size new elements;
values of the vector are not changed for all elements up to the minimum of
size_old and size_new; returns a pointer to the new vector.

MEM_CALLOC(n, TYPE): returns a pointer to a vector of type TYPE with the n
number of elements; the elements are initialized to zeros.

MEM_FREE(ptr, n, TYPE): frees a vector ptr of type TYPE with n num-
ber of elements which was previously allocated by either MEM_ALLOC(),
MEM_REALLOC(), or MEM_CALLOC().

Example 3.6 (MEM_ALLOC(), MEM_FREE()).
REAL *u = MEM_ALLOC(10, REAL);

MEM_FREE(u, 10, REAL);

allocates a vector of 10 REALs and frees this vector again.

For some applications matrices are needed too. Matrices can be allocated
and freed by the functions

void **alberta_matrix(size_t, size_t, size_t, const char x*,
const char *, int);
void free_alberta_matrix(void **, size_t, size_t, size_t);

albertamatrix(nr, nc, el_size, name, file, line): allocates a new
matrix (in C-style) with nr number of rows and nc number of columns,
where each element is of size el_size and returns a pointer to this ma-
trix; name is a string holding the name of the calling function, file a string
holding the name of the source file and line the line number of the call.

free_albertamatrix(ptr, nr, n.col, el size): frees the matrix at ptr
which was previously allocated by albertamatrix().

Again, the following macros simplify the use of the above functions:

TYPE*x*x MAT_ALLOC(size_t, size_t, TYPE);
void  MAT_FREE(TYPE **, size_t, size_t, TYPE);

They supply the above described functions with the function name, file name
and line number automatically. These macros need the type of the matrix
elements instead of the size. Casting to the correct type is performed.

MAT_ALLOC(nr, nc, type): returns a pointer **ptr to a matrix with ele-
ments ptr[i] [j] of type TYPE and indices in the range 0 < i < nr and 0
< j < nc.



120 3 Data structures and implementation

MAT FREE(ptr, nr, nc, type): frees a matrix allocated by MAT_ALLOC().

Many subroutines need additional workspace for storing vectors, etc. (lin-
ear solvers like conjugate gradient methods, e.g.). Many applications need
such kinds of workspaces for several functions. In order to make handling of
such workspaces easy, a data structure WORKSPACE is available. In this data
structure a pointer to the workspace and the actual size of the workspace is
stored.

typedef struct workspace WORKSPACE;

struct workspace
{
size_t size;
void *work;
};
The members yield following information:
size: actual size of the workspace in bytes.
work: pointer to the workspace.

The following functions access and enlarge workspaces:

WORKSPACE #*get_workspace(size_t, const char *, const char *, int);
WORKSPACE *realloc_workspace (WORKSPACE *, size_t, const char *,
const char *, int);

Description:

get_workspace(size, name, file, line): return value is a pointer to a
WORKSPACE structure holding a vector of length size bytes; name is a string
holding the name of the calling function, file a string holding the name of
the source file and line the line number of the call.

realloc_workspace(work_space, size, name, file, line): return value
is a pointer to a WORKSPACE structure holding a vector of at least length
size bytes; the member size holds the true length of the vector work; if
work_space is a nil pointer, a new WORKSPACE structure is allocated; name
is a string holding the name of the calling function, file a string holding
the name of the source file and 1ine the line number of the call.

The macros

WORKSPACE* GET_WORKSPACE(size_t)
WORKSPACE* REALLOC_WORKSPACE (WORKSPACE*, size_t)

simplify the use of get_workspace () and realloc_workspace () by supplying

the function with name, file, and line.

GET_WORKSPACE (ws, size): returns a pointer to WORKSPACE structure hold-
ing a vector of length size bytes.

REALLOC_WORKSPACE(ws, size): returns a pointer to WORKSPACE structure
holding a vector of at least length size bytes; the member size holds the
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true length of the vector work; if ws is a nil pointer, a new WORKSPACE
structure is allocated.

The functions

void clear_workspace (WORKSPACE *);
void free_workspace(WORKSPACE x*);

are used for WORKSPACE deallocation. Description:

clear workspace(ws): frees the vector ws->work and sets ws->work to nil
and ws->size to 0; the structure ws is not freed.

free workspace(ws): frees the vector ws->work and then the structure ws.
For convenience, the corresponding macros are defined as well.

void CLEAR_WORKSPACE(WORKSPACE *)
void FREE_WORKSPACE (WORKSPACE *)

For the handling of general linked lists, data structures and memory allo-
cation functions are defined.

typedef struct void_list_element VOID_LIST_ELEMENT;

struct void_list_element

{

void *data;
VOID_LIST_ELEMENT *next;
};

The members yield following information:

data: pointer to data section of list element.

next: pointer to next list element.

Such list elements can be accessed by the function
VOID_LIST_ELEMENT *get_void_list_element(void);

and subsequently be deallocated by a call to the function
void free_void_list_element (VOID_LIST_ELEMENT x*);

Description:

get_void_list_element (): returns a pointer to a new list element with
list->data = list->next = nil.

free_void_list_element (list): frees the list element list. After return,
the pointers list->data and list->next will be changed (the list element
will be linked into a list of currently unused elements).

ALBERTA is recording the size of memory which is allocated and de—
allocated by the routines described above. Information about the actually
used size of allocated memory can be obtained by a call of the function

void print_mem_use();
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3.1.4 Parameters and parameter files

Many procedures need parameters, for example the maximal number of it-
erations for an iterative solver, the tolerance for the error in the adaptive
procedure, etc. It is often very helpful to change the values of these parame-
ters without recompiling the program by initializing them from a parameter
file.

In order to avoid a fixed list of parameters, we use the following concept:
Every parameter consists of two strings: a key string by which the parame-
ter is identified, and a second string containing the parameter values. These
values are stored as ASCII-characters and can be converted to int, REAL, etc.
according to a format specified by the user (see below). Using this concept,
parameters can be accessed at any point of the program.

Usually parameters are initialized from parameter files. Each line of the
file describes either a single parameter: the key definition terminated by a *:°
character followed by the parameter values, or specifies another parameter file
to be included at that point (this can also be done recursively). The syntax
of these files is described below and an example is given at the end of this
section.

Parameter files

The definition of a parameter has the following syntax:
key: parameter values J, optional comment

Lines are only read up to the first occurrence of the comment sign *%’. All
characters behind this sign in the same line are ignored. The comment sign
may be a character of the specified filename in an include statement (see
below). In this case, *%’ is treated as a usual character.

The definition of a new parameter consists out of a key string and a string
containing the parameter values. The definition of the key for a new parameter
has to be placed in one line before the first comment sign. For the parameter
values a continuation line can be used (see below). The key string is a sequence
of arbitrary characters except ’ : > and the comment character. It is terminated
by ’:’, which does not belong to the key string. A key may contain blanks.
Optional white space characters as blanks, tabs, etc. in front of a key and in
between ’:’ and the first character of the parameter value are discarded.

Each parameter definition must have at least one parameter value, but it
can have more than one. If there are no parameter values specified, i.e. the rest
of the line (and all continuation lines) contain(s) only white-space characters
(and the continuation character(s)). Such a parameter definition is ignored
and the line(s) is (are) skipped.

One parameter value is a sequence of non white-space characters. We will
call such a sequence of non white-space characters a word. Two parameter
values are separated by at least one white-space character. A string as a
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parameter value must not contain white-space characters. Strings enclosed in
single or double quotes are not supported at the moment. These quotes are
treated as usual characters.

Parameter values are stored as a sequence of words in one string. The
words are separated by exactly one blank, although parameter values in the
parameter file may be separated by more than one white-space character.

The key definition must be placed in one line. Parameter values can also
be specified in so called continuation lines. A line is a continuation line if
the last two characters in the preceding line are a ’\’ followed directly by
the newline character. The ’\’ and the newline character are removed and
the line is continued at the beginning of the next line. No additional blank is
inserted.

Lines containing only white-space characters (if they are not continuation
lines!) are skipped.

Besides a parameter definition we can include another parameter file with
name filename:

#include "filename"

The effect of an include statement is the similar to an include statement in
a C-program. Using the function init_parameters() (see below) for reading
the parameter file, the named file is read by a recursive call of the function
init_parameters(). Thus, the included parameter file may also contain an
include statement. The rest of line behind the closing " is skipped. Initializa-
tion then is continued from the next line on. An include statement must not
have a continuation line.

If a parameter file can not be opened for reading, an error message is
produced and the reading of the file is skipped.

Errors occur and are reported if a key definition is not terminated in the
same line by ’:’, no parameter values are specified, filename for include files
are not specified correctly in between " ". The corresponding lines are ignored.
No parameter is defined, or no file is included.

A parameter can be defined more than once but only the latest definition
is valid. All previous definitions are ignored.

Reading of parameter files

Initializing parameters from such files is done by
void init_parameters(int, const char *);

Description:

init_parameters(info, filename): initializes a set of parameters from the
file filename; if values of the argument info and the global variable
msg_info are not zero, a list of all defined parameters is printed to the mes-
sage stream; if init_parameters() can not open the input file, or filename
is a pointer to nil, no parameters are defined.
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One call of this function should be the first executable statement in the
main program. Several calls of init_parameters() are possible. If a key is
defined more than once, parameter values from the latest definition are valid.
Parameter values from previous definition(s) are ignored.

Adding of parameters or changing of parameter values

Several calls of init_parameters() are possible. This may add new parame-
ters or change the value of an existing parameter since only the values from
the latest definition are valid. Examples for giving parameter values from the
command line and integrating them into the set of parameters are shown in
Sections 2.2.3 and 2.3.2.

Parameters can also be defined or modified by the function or the macro

void add_parameter(int, const char *, const char *);
ADD_PARAMETER(int, const char *, const char *)

Description:

add_parameter (info, key, value): initializes a parameter identified by
key with values value; if the parameter already exists, the old values are
replaced by the new one; if info is not zero information about the initializa-
tion is printed; This message can be suppressed by a global level of parameter
information (see the parameter parameter information in Section 3.1.5).

ADD_PARAMETER (info, key, value): is the same as the above described call
add_parameter (info, key, value) but the function is additionally sup-
plied with the name of the calling function, source file and line, which results
in more detailed messages during parameter definition.

Display and saving of parameters and parameter values

All a list of all parameters together with the actual parameter values can be
printed to stdout using the function

void print_parameters(void);

For long time simulations it is important to write all parameters and their
values to file; using this file the simulation can be re-done with exactly the
same parameter values although the original parameter file was changed. Thus,
after the initialization of parameters in a long time simulation, they should
be written to a file by the following function:

void save_parameters(const char *, int);

Description:

save_parameters(file, info): writes all successfully initialized parameters
to file according to the above described parameter file format; if the value
of info is different from zero, the location of the initialization is supplied for
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each parameter as a comment; no original comment is written, since these
are not stored.

Getting parameter values

After initializing parameters by init_parameters() we can access the values
of a parameter by a call of

int get_parameter(int, const char *, const char *, ...);
int GET_PARAMETER(int, const char *, const char *, ...)
Description:
get_parameter(info, key, format, ...): looks for a parameter which

matches the identifying key string key and converts the values of the cor-
responding string containing the parameter values according to the control
string format. Pointers to variable(s) of suitable types are placed in the un-
named argument list (compare the syntax of scanf ()). The first argument
info defines the level of information during the initialization of parameters
with a range of 0 to 4: no to full information. The return value is the number
of successfully matched and assigned input items.

If there is no parameter key matching key, get_parameter () returns without
an initialization. The return value is zero. It will also return without an
initialization and return value zero if no parameter has been defined by
init_parameters().

In the case that a parameter matching the key is found, get_parameter ()
acts like a simplified version of sscanf (). The input string is the string
containing the parameter values. The function reads characters from this
string, interprets them according to a format, and stores the results in its
arguments. It expects, as arguments, a control string, format (described
below) and a set of pointer arguments indicating where the converted in-
put should be stored. If there are insufficient arguments for the format, the
behavior is undefined. If the format is exhausted while arguments remain,
the excess arguments are simply ignored. The return value is the number of
converted arguments.

The control string must only contain the following characters used as conver-
sion specification: %s, %c, %4, %e, %E, %g, %U, %S, or %*. All other characters
are ignored. In contrast to scanf (), a numerical value for a field width is
not allowed. For each element of the control string the next word of the
parameter string is converted as follows:

%s: a character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to accept
the string and a terminating ‘\0’, which will be added automatically; the
string is one single word of the parameter string; as mentioned above strings
enclosed in single or double quotes are not supported at the moment.



126 3 Data structures and implementation

%c: matches a single character; the corresponding argument should be a
pointer to a char variable; if the corresponding word of the parameter
string consists of more than one character, the rest of the word is ignored;
no space character is possible as argument.

%d: matches a decimal integer, whose format is the same as expected for
the subject sequence of the atoi() function; the corresponding argument
should be a pointer to an int variable.

%he, %t ,hg: matches an optionally signed floating point number, whose for-
mat is the same as expected for the subject string of the atof () function;
the corresponding argument should be a pointer to a REAL variable.

%U: matches an unsigned decimal integer in the range [0,255], whose format
is the same as expected for the subject sequence of the atoi() function;
the corresponding argument should be a pointer to an U_CHAR variable.

%S: matches an optionally signed decimal integer in the range [-128,127],
whose format is the same as expected for the subject sequence of the atoi ()
function; the corresponding argument should be a pointer to an S_CHAR
variable.

%*: next word of parameter string should be skipped; there must not be a
corresponding argument.

get_parameter () will always finish its work, successfully or not. It may
fail if a misspelled key is handed over or there are not so many parameter
values as format specifiers (the remaining variables are not initialized!). If
info is zero, get_parameter () works silently; no error message is produced.
Otherwise the key and the initialized values and error messages are printed.
The second way to influence messages produced by get_parameter () namely
by is a parameter parameter information specified in a parameter file, see
Section 3.1.5.

GET_PARAMETER (info, key, format, ...): isa macro and acts in the same
way as the function get_parameter(info, key, format, ...) but the
function is additionally supplied with the name of the calling function, source
file and line, which results in more detailed messages during parameter def-
inition.

In order to prevent the program from working with uninitialized variables,
all parameters should be initialized before! By the return value the number
of converted arguments can be checked.

Example 3.7 (init_parameters(), GET_PARAMETER()). Cousider the fol-

lowing parameter file init.dat:

adapt info: 3 % level of information of the adaptive method
adapt tolerance: 0.001 % tolerance for the error
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Then

init_parameters(0, "init.dat");

tolerance = 0.1;
GET_PARAMETER(O, "adapt tolerance", "J,e", &tolerance);

initializes the REAL variable tolerance with the value 0.001.

3.1.5 Parameters used by the utilities

The utility tools use the following parameters initialized with default values

given in ():

level of information (10): the global level of information; can restrict
the local level of information (compare Section 3.1.2).

parameter information (1): enforces more/less information than specified
by the argument info of the routine get_parameter (info, ...):

0: no message at all is produced, although the value info may be non zero;
1: gives only messages if the value of info is non zero;

2: all error messages are printed, although the value of info may be zero;
4: all messages are printed, although the value of info may be zero.

WAIT (1): sets the value of the global variable msg wait and changes by that
the behaviour of the macro WAIT (see Section 3.1.2).

3.1.6 Generating filenames for meshes and finite element data

During simulation of time-dependent problems one often wants to store
meshes and finite element data for the sequence of time steps. A routine
is provided to automatically generate file names composed from a given data
path, a base-name for the file and a number which is iteration counter of the
actual time step in time-dependent problems. Such a function simplifies the
handling of a sequence of data for reading and writing. It also ensures that
files are listed alphabetically in the given path (up to 1 million files with the
same base-name).

const char *generate_filename(const char *, const char *, int);

Description:

generate filename(path, file, index): composes a filename from the
given path, the base-name file of the file and the (iteration counter) index.
When no path is given, the current directory "./" is used, if the first char-
acter of path is >~’, path is assumed to be located in the home directory
and the name of the path is expanded accordingly, using the environment
variable HOME. A pointer to a string containing the full filename is the return
value; this string is overwritten on the next call to generate filename().
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For instance, a call generate_filename("./output", "mesh", 1) con-
structs the filename "./output/mesh000001" and returns a pointer to it.
An example how to use generate filename () in a time dependent problem
is given in Section 2.3.10.

3.2 Data structures for the hierarchical mesh

3.2.1 Constants describing the dimension of the mesh

The symbolic constant DIM defines the dimension of the triangulation:

#define DIM 1

for one dimensional grids,
#define DIM 2

for two dimensional grids, and
#define DIM 3

for three dimensional ones. Most parts of the finite element code do not depend
on the particular choice of DIM. But especially the refinement/coarsening and
hierarchical information processing routines strongly depend on DIM.

For finite element methods on one, two, or three dimensional curves and
surfaces embedded in R™ (like mean curvature flow [35]), the vertex coordi-
nates of the simplices have n components. Thus, we need another symbolic
constant DIM_OF_WORLD to define the number of these components. For appli-
cations in domains in RP™ DIM_OF_WORLD equals DIM otherwise the value of
DIM_OF _WORLD is the dimension of the R™ where the DIM-dimensional surface
is embedded.

As a convention all typedef definitions with the ending D define a new
data type for vectors of length DIM_OF _WORLD, definitions with the ending _DD
a matrix of size DIM_OF_WORLD x DIM_OF_WORLD, for example

typedef REAL REAL_D[DIM_OF_WORLD] ;
typedef REAL REAL_DD [DIM_OF_WORLD] [DIM_OF _WORLD] ;

For DIM_OF_WORLD < 3, several macros are defined for working on REAL.D
vectors:

void COPY_DOW(REAL_D, REAL_D)
REAL DIST_DOW(REAL_D, REAL_D)
REAL NORM_DOW(REAL_D)

REAL SCAL_DOW(REAL, REAL_D)
REAL SCP_DOW(REAL_D, REAL_D)
void SET_DOW(REAL, REAL_D)

Description:

COPYDOW(x, y): copies all elements of vector x to y.
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DISTDOW(x, y): returns the Euclidean distance of the two vectors x, y.
NORM DOW(x): returns the Euclidean norm of the vector x.

SCAL_DOW(a, x): scales all elements of vector x with a.

SCPDOW(x, y): returns the Euclidean scalar product of the two vectors x, y.
SET DOW(a, x): set all elements of vector x to a.

For DIM_OF_WORLD < 3, the vector product of two vectors is computed by the
routine

void vector_product(const REAL_D, const REAL_D, REAL_D);
Description:

vector_product(x, y, z): calculates the vector product z = x A y.

3.2.2 Constants describing the elements of the mesh

For a simplex we have to define the number of vertices, adjacent simplices,
in two or three dimensions the number of edges, and in three dimensions the
number of element faces:

#define N_VERTICES 2
#define N_NEIGH 2

for one dimension,

#define N_VERTICES 3
#define N_EDGES 3
#define N_NEIGH 3
for two dimensions, and
#define N_VERTICES 4
#define N_EDGES 6
#define N_FACES 4
#define N_NEIGH 4

for three dimensions.

3.2.3 Neighbour information

As mentioned in Section 1.2 neighbour information is usually not stored explic-
itly, but such an explicit storing may speed up special applications. ALBERTA
supports both kinds of managing neighbour information. Via the symbolic
constant NEIGH_IN_EL the user can enforce to store neighbour information
explicitly in the elements. Setting

#define NEIGH_IN_EL 0

will result in calculating neighbour information (if requested) by the traversal
routines, while

#define NEIGH_IN_EL 1
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enforces that neighbour information is stored explicitly on each element and
has to be set by the refinement/coarsening routines. This consumes additional
computer memory, but will speed up the traversal routines that usually have
to compute neighbour information. Macros

NEIGH(el, el_info), OPP_VERTEX(el, el_info), EL_TYPE(el,el_info)

are defined to access information independently of the value of NEIGH_IN_EL,
compare Section 3.2.10.

Currently, some routines may not work correctly for NEIGH_IN_EL==1. We
recommend not to use this.

3.2.4 Element indices

It is often very helpful — especially during program development — for every
element to have a unique global index. This requires an entry in the element
data structure which adds to the needed computer memory.

On the other hand this additional amount of computer memory may be a
disadvantage in real applications where a big number of elements is needed,
and — after program development — element index information is no longer
of interest.

After setting the value of the symbolic constant EL_INDEX to be 1 an
element index is available and adds to the amount of computer memory, and
setting it to be 0 no element index information is available which results in
less computer memory usage. The macro

INDEX (el)

is defined to access element indices independently of the value of EL_INDEX.
If no indices are available, the macro returns -1, compare Section 3.2.11.

3.2.5 The BOUNDARY data structure

Degrees of freedom (DOFs) which describe the finite element space are located
at a node which is either a vertex, an edge, a face, or the barycenter of an
element (see Section 1.3). For each node we have to specify if (Dirichlet)
boundary conditions are prescribed for DOF's at this node or if the DOF's are
true degrees of freedom. At the moment we support three kinds of nodes:

e interior node where DOFs are handled as real degrees of freedom;

e nodes on the Dirichlet boundary where Dirichlet boundary conditions are
prescribed;

e nodes on the Neumann boundary which are treated like interior nodes.

The boundary type is specified by a S_CHAR. We use the following symbolic
constants and convention:
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#define INTERIOR 0
#define DIRICHLET 1
#define NEUMANN -1

An interior node has the boundary type INTERIOR, a node on a Dirichlet
boundary has positive boundary type (> DIRICHLET), and a node on the
Neumann boundary has negative type (< NEUMANN).

For the approximation of curved boundaries, the new nodes at the mid-
point of the refinement edge are projected onto the curved boundary. Most
likely, the boundary of the domain is split in several parts, where different
functions for these projections are needed. For applying such a function to a
node we have to know which part of the domain’s boundary the refinement
edge belongs.

In order to handle curved boundaries and to classify the type of nodes
located at edges and faces we define the following structure:

typedef struct boundary  BOUNDARY;

struct boundary

{
void (*param_bound) (REAL_D *);
S_CHAR bound;
};
The members yield following information:

param bound: pointer to a function which projects a newly generated vertex
onto a curved boundary;
param_bound (coord) projects the midpoint of the refinement edge with
world coordinates coord onto the curved boundary; after the call, coord
contains the coordinates of the projection, compare Section 3.4.1, Fig. 3.3;
if param bound is a pointer to nil, the edge or face does not belong to a
curved boundary.

bound: boundary type of a node at the edge or face; the boundary type is
uniquely defined by the sign of bound; by the value of bound, the part of the
domain’s boundary to which this object belongs can be stored (assuming,
that these parts are enumerated).

There are some useful macros for the BOUNDARY structure defined in the header
file alberta.h. They can be applied to any BOUNDARY pointer and give a
default return value if the value of that pointer is nil.

#define GET_BOUND(boundary)\
((boundary) ? (boundary)->bound : INTERIOR)
#define IS_INTERIOR(boundary)\
((boundary) ? (boundary)->bound == INTERIOR : true)
#define IS_DIRICHLET(boundary)\
((boundary) 7?7 (boundary)->bound >
#define IS_NEUMANN(boundary)\
((boundary) ? (boundary)->bound <= NEUMANN : false)

DIRICHLET : false)
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3.2.6 The local indexing on elements

For the handling of higher order discretizations where besides vertices DOF's
can be located at edges (in 2d and 3d), faces (in 3d), or center, we also
need a local numbering for edges, and faces. Finally, a local numbering of
neighbours for handling neighbour information is needed, used for instance in
the refinement algorithm itself and for error estimator calculation.

The i-th neighbour is always the element opposite the i-th vertex. The
i-th edge/face is the edge/face opposite the i-th vertex in 2d respectively 3d;
edges in 3d are numbered in the following way (compare Fig. 3.1):

edge 0: between vertex 0 and 1, edge 3: between vertex 1 and 2,
edge 1: between vertex 0 and 2, edge 4: between vertex 1 and 3,
edge 2: between vertex 0 and 3, edge 5: between vertex 2 and 3.

Fig. 3.1. Local indices of edges/neighbours in 2d and local indices of edges in 3d.

The data structures described in the subsequent sections are based on this
local numbering of vertices, edges, faces, and neighbours.

3.2.7 The MACRO_EL data structure

We now describe the macro triangulation and data type for an element of the
macro triangulation. The macro triangulation is stored in a doubly linked list
of macro elements:

typedef struct macro_el MACRO_EL;

struct macro_el

{
MACRO_EL *next, *last;
EL *el;
REAL *coord [N_VERTICES];
S_CHAR bound [N_VERTICES];
#if DIM ==

const BOUNDARY #*boundary[N_EDGES];
#endif
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#if DIM ==
const BOUNDARY #*boundary[N_FACES+N_EDGES];
#endif
MACRO_EL *neigh [N_NEIGH] ;
U_CHAR opp_vertex [N_NEIGH] ;
int index;
#if DIM ==
U_CHAR el_type;
S_CHAR orientation;
#endif
I

The members yield following information (alternatives for different dimensions
are separated by ‘/’):

next: pointer to next macro element; if next is nil then the macro element
is the last macro element.

last: pointer to previous macro element; if last is nil the macro element is
the first macro element.

el: root of the binary tree located at this macro element.

coord: pointer to the world coordinates of the element’s vertices.

bound: bound[i] boundary type of vertex i.

boundary: boundary[i] is a pointer to a boundary structure of the i-th
edge/face for 0 < i < N.NEIGH (in 2d and 3d); in 3d boundary [N FACES+i]

is a pointer to a boundary structure of the i-th edge for 0 < i < N_EDGES;
for an interior edge/face, it is a pointer to nil.

neigh: neigh[i] pointer to the macro element opposite the i-th local vertex;
it is a pointer to nil if the vertex/edges/faces opposite the i-th local vertex
belongs to the boundary.

opp_vertex: opp_vertex[i] is undefined if neigh[i] is a pointer to nil;
otherwise it is the local index of the neighbour’s vertex opposite the common
vertex/edge/face.

index: a unique index of all macro elements.

el _type: type of the element € [0,1,2] used for refinement and coarsening
(for the definition of the element type see Section 1.1.1, only 3d).

orientation: orientation of a tetrahedron — depending on the vertex num-
bering, this is +1 or -1 (only 3d). The entry is calculated during the first mesh
traversal with FILL_ORIENTATION flag set. As the calculation of orientation
is based on the vertex coordinates stored in the macro elements, it may give
wrong results in case of parametric meshes, when the parameterization is
not orientation preserving.
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3.2.8 The EL data structure

The elements of the binary trees and information that should be present for
tree elements are stored in the data structure:

typedef struct el EL;

struct el

{
EL *xchild[2];
DOF *xdof ;
#if EL_INDEX
int index;
#endif
S_CHAR mark;
#if DIM > 1
REAL *new_coord;
#endif

#if NEIGH_IN_EL

EL *neigh [N_NEIGH] ;
U_CHAR opp_vertex [N_NEIGH] ;
#if DIM ==
U_CHAR el_type;
#endif
#endif

};
The members yield following information:

child: pointers to the two children for interior elements of the tree; child[0]
is a pointer to nil for leaf elements; child[1] is a pointer to user data on
leaf elements if leaf _data_size is bigger than zero, otherwise child[1] is
also a pointer to nil for leaf elements (see Section 3.2.12).

dof: vector of pointers to DOFs; these pointers must be available for the
element vertices (for the geometric description of the mesh); there may be
pointers at the edges (in 2d and 3d), at the faces (in 3d), and at the barycen-
ter; they are ordered in the following way: the first N.VERTICES entries cor-
respond to the DOFs at the vertices; the next one are those at the edges, if
present, then those at the faces, if present, and finally those at the barycen-
ter, if present; the offsets are defined in the MESH structure (see Sections
3.2.14, 3.4.1, 3.4.2).

index: unique global index of the element; these indices are not strictly or-
dered and may be larger than the number of elements in the binary tree (the
list of indices may have holes after coarsening); the index is available only if
EL_INDEX is true.

mark: marker for refinement and coarsening: if mark is positive for a leaf
element this element is refined mark times; if it is negative for a leaf element
the element may be coarsened -mark times; (see Sections 3.4.1, 3.4.2).



3.2 Data structures for the hierarchical mesh 135

new_coord: if the element has a boundary edge on a curved boundary this
is a pointer to the coordinates of the new vertex that is created due to the
refinement of the element, otherwise it is a nil pointer; thus, coordinate
information can also be produced by the traversal routines in the case of a
curved boundary.

If neighbour information should be present in the element structure (if
NEIGH_IN_EL is true) then we have the additional entries:

neigh: neigh[i] pointer to the element opposite the i-th local vertex; it
is a pointer to nil if the vertex/edges/faces opposite the i-th local vertex
belongs to the boundary.

opp-vertex: opp-vertex[i] is undefined if neigh[i] is a pointer to nil; oth-
erwise it is the local index of the neighbour’s vertex opposite the common
vertex/edge/face.

el_type: the element’s type (see Section 3.4.1); has to be available on the
element if neighbour information is located at the element, since such infor-
mation then can not be produced by the traversal routines going from one
element to another by the neighbour pointers.

3.2.9 The EL_INFO data structure

The EL_INFO data structure has entries for all information which is not stored
on elements explicitely, but may be generated by the mesh traversal routines;
most entries of the EL_INFO structure are only filled if requested (see Section
3.2.19).

typedef struct el_info  EL_INFO;

struct el_info

{

MESH *mesh;

REAL_D coord [N_VERTICES] ;

const MACRO_EL *macro_el;

EL *el, *parent;

FLAGS fill_flag;

S_CHAR bound [N_VERTICES] ;
#if DIM ==

const BOUNDARY *boundary [N_EDGES] ;
#endif
#if DIM ==

const BOUNDARY  *boundary[N_FACES+N_EDGES] ;
#endif

U_CHAR level;
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#if ! NEIGH_IN_EL

EL *neigh [N_NEIGH] ;
U_CHAR opp_vertex [N_NEIGH] ;
#if DIM == 3
U_CHAR el_type;
#endif
#endif
REAL_D opp_coord [N_NEIGH] ;
#if DIM == 3
S_CHAR orientation;
#endif

I
The members yield following information:

mesh: a pointer to the current mesh.

coord: coord[i] is a DIM_OF_WORLD vector storing world coordinates of the
i-th vertex.

macro_el: the current element belongs to the binary tree located at the macro
element macro_el.

el: pointer to the current element.

parent: el is a child of element parent.

fill flag: a flag which indicates which elements are called and which infor-
mation should be present (see Section 3.2.19).

bound: bound[i] boundary type of vertex i.

boundary: boundary[i] is a pointer to a boundary structure of the i-th
edge/face for i = 0,...N.NEIGH — 1 (in 2d and 3d); additionally in 3d,
boundary [N_FACES+i] is a pointer to a boundary structure of the i-th edge
for i =0,...N_EDGES — 1; it is a pointer to nil for an interior edge/face.

level: level of the current element; the level is zero for macro elements and
the level of the children is (level of the parent + 1); the level is always filled
by the traversal routines.

opp-coord: opp-coord[i] coordinates of the i-th neighbour’s vertex oppo-
site the common vertex/edge/face.

orientation: =£1: sign of the determinant of the transformation to the refer-

ence element with vertices (0,0,0), (1,1,1), (1,1,0), (1,0,0) (see Fig. 1.7).
If neighbour information is not present in the element structure (NEIGH_IN_EL
is false), then we have the additional entries:

neigh: neigh[i] pointer to the element opposite the i-th local vertex; it
is a pointer to nil if the vertex/edges/faces opposite the i-th local vertex
belongs to the boundary.

opp-vertex: opp-vertex[i] is undefined if neigh[i] is a pointer to nil;
otherwise it is the local index of the neighbour’s vertex opposite the common
vertex/edge/face.
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el _type: the element’s type (see Section 3.4.1); is filled automatically by the
traversal routines (only 3d).

3.2.10 The NEIGH, OPP_VERTEX and EL_TYPE macros

If neighbour information is produced by the traversal routines (NEIGH_IN_EL
== 0) we have to access neighbour information by the corresponding el_info
structure:

neigh = el_info->neighli];

opp_v = el_info->opp_vertex[i];
If such information is stored explicitly at each element (NEIGH_IN_EL == 1)
we get a pointer to the i-th neighbour of an element el and the corresponding
opp-_vertex by

neigh = el->neighl[il;

opp_v = el->opp_vertex[i];

To have same access for both situations there are two macros NEIGH and

OPP_VERTEX defined in alberta.h:

#if NEIGH_IN_EL

#define NEIGH(el,el_info) (el)->neigh

#define OPP_VERTEX(el,el_info) (el)->opp_vertex
#else

#define NEIGH(el,el_info) (el_info)->neigh
#define OPP_VERTEX(el,el_info) (el_info)->opp_vertex
#endif

Similarly, the element type (only in 3d) is stored either in the EL structure
or is generated during traversal in EL_INFO. A macro EL_TYPE is defined to
access such information:

#if NEIGH_IN_EL

#define EL_TYPE(el,el_info) (el)->el_type
#else

#define EL_TYPE(el,el_info) (el_info)->el_type
#endif

Using these macros we always get information about the i-th neighbour or
the element type by

neigh = NEIGH(el,el_info) [i];
opp_v OPP_VERTEX(el,el_info) [i];
type EL_TYPE(el,el_info);

independently of the value of NEIGH_IN_EL.

3.2.11 The INDEX macro

In order to avoid to eliminate all lines where the element index is accessed
after recompiling the source with EL_INDEX == 0, a macro INDEX is defined:
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#if EL_INDEX

#define INDEX(el) ((el) ? (el)->index : -1)
#else

#define INDEX(el) -1

#endif

If element indices are stored at the elements INDEX(el) gives the index of
the element, if the el is not a pointer to nil. If el is a pointer to nil,
the value of INDEX(el) is -1. For instance, this allows a construction like
INDEX (NEIGH(el,el info) [i]) without testing whether this neighbour exists
or not (in the case of a boundary edge/face). If element indices are not stored,
the value of INDEX (el) is always -1.

3.2.12 The LEAF DATA_INFO data structure

As mentioned in Section 1.2, it is often necessary to provide access to special
user data which is needed only on leaf elements. Error indicators give examples
for such data.

Information for leaf elements depends strongly on the application and so
it seems not to be appropriate to define a fixed data type for storing this
information. Thus, we implemented the following general concept: The user
can define his own type for data that should be present on leaf elements.
ALBERTA only needs the size of memory that is required to store leaf data
(one entry in a structure leaf data_info described below in detail). During
refinement and coarsening ALBERTA automatically allocates and deallocates
memory for user data on leaf elements if the data size is bigger than zero. Thus,
after grid modifications each leaf element possesses a memory area which is
big enough to take leaf data.

To access leaf data we must have for each leaf element a pointer to the
provided memory area. This would need an additional pointer on leaf elements.
To make the element data structure as small as possible and in order to avoid
different element types for leaf and interior elements we “hide” leaf data at
the pointer of the second child on leaf elements:

By definition, a leaf element is an element without children. For a leaf
element the pointers to the first and second child are pointers to nil, but
since we use a binary tree the pointer to the second child must be nil if the
pointer to the first child is a nil pointer and vice versa. Thus, only testing the
first child will give correct information whether an element is a leaf element
or not, and we do not have to use the pointer of the second child for this test.
As consequence we can use the pointer of the second child as a pointer to the
allocated area for leaf data and the user can write or read leaf data via this
pointer (using casting to a data type defined by himself).

The consequence is that a pointer to the second child is only a pointer to
an element if the pointer to the first child is not a nil pointer. Thus testing
whether an element is a leaf element or not must only be done using the
pointer to the first child.
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If the leaf data size equals zero then the pointer to the second child is also
a nil pointer for leaf elements.

Finally, the user may supply routines for transforming user data from par-
ent to children during refinement and for transforming user data from children
to parent during coarsening. If these routines are not supplied, information
stored for the parent or the children respectively is lost.

In order to handle an arbitrary kind of user data on leaf elements we
define a data structure LEAF DATA_INFO which gives information about size
of user data and may give access to functions transforming user data during
refinement and coarsening. A pointer to such a structure is an entry in the
MESH data structure.

typedef struct leaf_data_info LEAF_DATA_INFO;

struct leaf_data_info

{
char *name;
unsigned leaf_data_size;
void (*refine_leaf_data) (EL *, EL *[2]);
void (*coarsen_leaf_data) (EL *, EL *[2]);
};

Following information is provided via this structure:

name: textual description of leaf data.

leaf _data_size: size of the memory area which is used for storing leaf data;
if leaf_data_size == 0 no memory for leaf data is allocated and child[1]
is also pointer to nil for leaf elements; if leaf _data_size > 0 size of leaf
data will be > leaf data_size (ALBERTA may increase the size of leaf data
in order to guarantee an aligned memory access).

refine leaf data: pointer to a function for transformation of leaf data dur-
ing refinement; first, refine leaf data(parent, child) transforms leaf
data from the parent to the two children if refine_leaf_data is not nil;
then leaf data of the parent is destroyed. Transformation only takes place if
leaf data_size > 0.

coarsen_leaf data: pointer to a function for transformation of leaf data dur-
ing coarsening; first, coarsen_leaf data(parent, child) transforms leaf
data from the two children to the parent if refine_leaf data is not nil;
then leaf data the of the children is destroyed. Transformation only takes
place if leaf _data_size > 0.

The following macros for testing leaf elements and accessing leaf data are
provided:

#define IS_LEAF_EL(el) (!(el)->child[0])
#define LEAF_DATA(el) ((void *)(el)->child[1])
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The first macro IS_LEAF EL(el) is true for leaf elements and false for elements
inside the binary tree; for leaf elements, LEAF DATA(el) returns a pointer to
leaf data hidden at the pointer to the second child.

3.2.13 The RC_LIST_EL data structure

For refining and coarsening we need information of the elements at the refine-
ment and coarsening edge (compare Sections 1.1.1 and 1.1.2). Thus, we have
to collect all elements at this edge. In 1d the patch is built from the current
element only, in 2d we have at most the current element and its neighbour
across this edge, if the edge is not part of the boundary. In 3d we have to loop
around this edge to collect all the elements. Every element at the edge has at
most two neighbours sharing the same edge. Defining an orientation for this
edge, we can define the right and left neighbour in 3d.

For every element at the refinement/coarsening edge we have an entry
in a vector. The elements of this vector build the refinement/coarsening
patch. In 1d the vector has length 1, in 2d length 2, and in 3d length
mesh->max no_edge neigh since this is the maximal number of elements shar-
ing the same edge in the mesh mesh.

typedef struct rc_list_el RC_LIST_EL;

struct rc_list_el

{
EL *el;
int no;
int flag;
#if DIM ==
RC_LIST_EL *neigh[2];
int opp_vertex[2];
U_CHAR el_type;
#endif
};

Information that is provided for every element in this RC_LIST_EL vector:
el: pointer to the element of the RC_LIST EL.
no: this is the no—th entry in the vector.

flag: only used in the coarsening module: flag is true if the coarsening edge
of the element is the coarsening edge of the patch, otherwise flag is false.
neigh: neigh[0/1] neighbour of element to the right/left in the orientation
of the edge, or a nil pointer in the case of a boundary face (only 3d).
opp_vertex: opp_vertex[0/1] the opposite vertex of neigh[0/1] (only 3d).
el_type: the element type; this value is set during looping around the refine-
ment/coarsening edge; if neighbour information is produced by the traversal

routines, information about the type of an element can not be accessed via
el->el _type and thus has to be stored in the RC_LIST_EL vector (only 3d).
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This RC_LIST_EL vector is one argument to the interpolation and restriction
routines for DOF vectors (see Section 3.3.3).

3.2.14 The MESH data structure

All information about a triangulation is accessible via the MESH data structure:

typedef struct mesh MESH;

struct mesh

{
const char *name;
int n_vertices;
int n_elements;
int n_hier_elements;

#if DIM == 2
int n_edges;
#endif

#if DIM == 3

int n_edges;

int n_faces;

int max_edge_neigh;
#endif

int n_macro_el;

MACRO_EL *first_macro_el;

REAL diam[DIM_OF_WORLD] ;

PARAMETRIC *parametric;

LEAF_DATA_INFO 1leaf_data_info[1];

U_CHAR preserve_coarse_dofs;

DOF_ADMIN *xxdof_admin;

int n_dof_admin;

int n_dof_el;

int n_dof [DIM+1];

int n_node_el;

int node [DIM+1];
Y et */
/*--— pointer for administration; don’t touch! —-—-x/
e e */

void *mem_info;
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The members yield following information:

name: string with a textual description for the mesh, or nil.

n_vertices: number of vertices of the mesh.

n_elements: number of leaf elements of the mesh.

n_hier_elements: number of all elements of the mesh.

n_edges: number of edges of the mesh (2d and 3d).

n_faces: number of faces of the mesh (3d).

max_edge neigh: maximal number of elements that share one edge; used
to allocate memory to store pointers to the neighbour at the refine-
ment /coarsening edge (3d).

n_macro_el: number of macro elements.

firstmacro_el: pointer to the first macro element.

diam: diameter of the mesh in the DIM_OF _WORLD directions.

parametric: is a pointer to nil if the mesh contains no parametric elements;
otherwise it is a pointer to a PARAMETRIC structure containing coefficients
of the parameterization and related information; the current version of AL-
BERTA includes only a preliminary definition of the PARAMETRIC data struc-
ture, which is not described here and is subject to change.

leaf_data_info: a structure with information about data on the leaf ele-
ments.

preserve_coarse_dofs: if the value is non zero then preserve all DOFs on
all levels (can be used for multigrid, e.g.); otherwise all DOF's on the parent
that are not handed over to a child are removed during refinement and added
again on the parent during coarsening, compare Section 3.4.

The last entries are used for the administration of DOF's and are explained in
Section 3.3 in detail.

dof _admin: vector of dof_admins.

n_dof_admin: number of dof_admins.

nnode_el: number of nodes on a single element where DOFs are located;
needed for the (de-) allocation of the dof-vector on the element.

n_dof_el: number of all DOFs on a single element.

n_dof: number of DOFs at the different positions VERTEX, EDGE, (FACE,)
CENTER on an element:
n_dof [VERTEX]: number of DOFs at a vertex (> 1);

n_dof [EDGE]: number of DOFs at an edge; if no DOFs are associated to
edges, then this value is 0 (2d and 3d);

n_dof [FACE]: number of DOF's at a face; if no DOF's are associated to faces,
then this value is 0 (3d);

n_dof [CENTER]: number of DOFs at the barycenter; if no DOFs are associ-
ated to the barycenter, then this value is 0.
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node: gives the index of the first node at vertex, edge (2d and 3d), face (3d),
and barycenter:

node [VERTEX]: has always value 0; dof [0], . ..,dof [N.VERTICES-1] are al-
ways DOFs at the vertices;

node [EDGE]: dof [node[EDGE]],...,dof [node[EDGE]+N_EDGES-1] are the
DOFs at the N_EDGES edges, if DOFs are located at edges (2d and 3d);

node [FACE]: dof [node[FACE]], ... ,dof [node[FACE]+N_FACES-1] are the
DOFs at the N_FACES faces, if DOF's are located at faces (3d);

node [CENTER]: dof [node[CENTER]] are the DOFs at the barycenter, if
DOF's are located at the barycenter of elements.

Finally, the pointer mem_info is used for internal memory management and
must not be changed.

3.2.15 Initialization of meshes

It is possible to handle more than one mesh at the same time. A mesh must
be accessed by one of the following functions or macro

MESH *get_mesh(const char *, void (%) (MESH *),
void (*) (LEAF_DATA_INFO *));
MESH *check_and_get_mesh(int, int, int, int, const char ,
const char *, void (*)(MESH x*),
void (*) (LEAF_DATA_INFO *));
MESH *GET_MESH(const char *, void (*) (MESH *),
void (%) (LEAF_DATA_INFO *))

Description:

get mesh(name, init_dof_admins, init_leaf_data): returns a pointer to
a filled mesh structure; name is a string holding a textual description of mesh
and is duplicated at the member name of the mesh;
init_dof _admins is a pointer to a user defined function for the initialization
of the required DOFs on the mesh (see Section 3.6.2 for an example of
such a function); if this argument is a nil pointer a warning is given and
a DOF_ADMIN structure for DOF's at the vertices of the mesh is generated.
This is also done if none of the users DOF_ADMINs uses DOF's at vertices (as
mentioned above, DOFs at vertices have to be present for the geometric
description of the mesh);
init_leaf data is a pointer to a function for the initialization of the
leaf data_info structure, i.e. the size of leaf data can be set and pointers
to transformation functions for leaf data can be adjusted. If this argument
is a nil pointer, the member leaf _data_info structure is initialized with
Z€ro.
The return value of the function is a pointer to the filled mesh data struc-
ture. The user must not change any entry in this structure aside from the
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max_edge neigh, n macro_el, first macro_el, diam, and parametric en-
tries.

Currently no function for adding further DOFs after invoking get mesh()
is implemented. Such a function would have to perform something like a so
called p-refinement.

There is no other possibility to define new meshes inside ALBERTA.

check_and get mesh(d, dow, n, i, v, name, ida, ild): returns also a
pointer to a filled mesh structure; the last three arguments are the same
as of getmesh(); in addition several checks about the used ALBERTA li-
brary are performed: d is DIM, dow is DIM_OF _WORLD, n is NEIGH_IN_EL, i is
EL_INDEX, and v is VERSION in the user program; these values are checked
against the constants in the used library; if these values are identical, the
mesh is accessed by get mesh(name, ida, ild);otherwise an error message
is produced and the program stops.

GET_MESH(name, ida, ild): returns also pointer to a filled mesh structure;
this macro calls check_and_get mesh () and automatically supplies this func-
tion with the first five (missing) arguments; this macro should always be used
for accessing a mesh.

After this initialization data for macro elements can be specified for example
by reading it from file (see Section 3.2.16).
A mesh that is not needed any more can be freed by a call of the function

void free_mesh(MESH *);

Description:

free mesh(mesh): will de-allocate all memory used by mesh (elements,
DOFs, etce.), and finally the data structure mesh too.

3.2.16 Reading macro triangulations

Data for macro triangulations can easily be stored in an ASCII-file (for binary
macro files, see the end of this section). For the macro triangulation file we use
a similar key—data format like the parameter initialization (see Section 3.1.4):

DIM: dim
DIM_OF_WORLD: dow

number of vertices: nv
number of elements: ne

vertex coordinates:
DIM_OF_WORLD coordinates of vertex[0]

DIM_OF_WORLD coordinates of vertex[nv-1]
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element vertices:
N_VERTICES indices of vertices of simplex[0]

N_VERTICES indices of vertices of simplex[ne-1]

element boundaries:
N_NEIGH boundary descriptions of simplex[0]

N_NEIGH boundary descriptions of simplex[ne-1]

element neighbours:
N_NEIGH neighbour indices of simplex[0]

N_NEIGH neighbour indices of of simplex[ne-1]

element type:
element type of simplex[0]

element type of simplex[ne-1]

All lines closed by the ¢:’ character are keys for following data (more
or less self explaining). Data for elements and vertices are read and stored
in vectors for the macro triangulation. Index information given in the file
correspond to this vector oriented storage of data. Thus, index information
must be in the range 0, . ..,ne-1 for elements and 0, ... ,nv-1 for vertices.
Although a vertex may be a common vertex of several macro elements the
coordinates are only stored once.

An important point is that the refinement edges are determined by the
local numbering of the vertices on each element! This is always the edge in
between the vertices with local index 0 and 1. In 1d the local vertex 0 has to be
smaller than the local vertex 1; in 2d the local ordering of vertex indices must
be in counterclockwise sense for each triangle; in 3d by this numbering and
by the element type the distribution of the refinement edges for the children
is determined.

Information about element boundaries and element neighbours is optional.
Information about the element type must only be given in 3d and such in-
formation is optional too. Given values must be in the range 0,1,2. If such
information is not given in the file, all elements are assumed to be of type 0.

There are only few restrictions on the ordering of data in the file: On the
first two lines DIM and DIM_OF_WORLD have to be specified (in an arbitrary
order); number of elements has to be specified before element vertices,
element boundaries element neighbours (the last two optional), and
element type (only 3d and optional); number of vertices has to specified
before vertex coordinates and element vertices. Besides these restric-
tions, ordering of data is left to the user.



146 3 Data structures and implementation

For the 1d version of ALBERTA the parameter DIM must equal 1, for the 2d
version DIM must equal 2, and for the 3d version DIM must equal 3. The param-
eter DIM_OF_WORLD must be > DIM. In the current version DIM_OF _WORLD < 3
is only supported. By these values it is checked whether data matches to the
actual version of ALBERTA.

If information about boundaries is not given in the file, all boundaries are
assumed to be of Dirichlet type with boundary type DIRICHLET, compare Sec-
tion 3.2.5.

If information about neighbours is supplied in the file the index is -1
corresponds to a non existing neighbour at a boundary vertex (1d), edge (2d),
or face (3d). If information about neighbours is not present or not correctly
specified in the file, it is, as the local indices of opposite vertices, generated
automatically.

Reading data of the macro grid from these files can be done by

void read_macro(MESH *, const char x*,
const BOUNDARY *(*)(MESH *, int ));

Description:

read macro(mesh, name, ibdry): reads data of the macro triangulation for
mesh from the ASCII-file name; adjustment of BOUNDARY structures can be
done via the function pointer ibdry; the mesh structure must have been ini-
tialized by a call of get mesh() or check_and get mesh(); this is important
for setting the correct DOF pointers on the macro triangulation.
Using index information from the file, all information concerning element
vertices, neighbour relations can be calculated directly.
If the macro file gives information about boundary types, boundary types
of vertices in 1d, of edges in 2d, and of faces in 3d are prescribed. Zero
values correspond to an interior vertex/edge/face, positive values to an ver-
tex/edge/face on the Dirichlet boundary and negative values to an ver-
tex/edge/face on the Neumann boundary in 1d/2d/3d. Information for ver-
tices in 2d, and for vertices and edges in 3d is derived from that information;
we use the conventions that the Dirichlet boundary is a closed subset of the
boundary. This leads to the following assignments in 2d and 3d:

1. avertex belongs to the Dirichlet boundary if it is a vertex of one edge/face
belonging to the Dirichlet boundary;

2. avertex belongs to the Neumann boundary if it is a vertex of an edge/face
belonging to the Neumann boundary and it is not a vertex of any edge/face
on the Dirichlet boundarys;

3. all other vertices belong to the interior.

The same holds accordingly for edges in 3d.

For boundary edges/faces a boundary structure has to be filled additionally;
this is done by the third argument ibdry which is a pointer to a user defined
function; it returns a pointer to a filled boundary structure, compare Section
3.2.5. The function is called for each boundary edge/face
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(*ibdry) (mesh, bound)

where mesh is the structure to be filled and bound the boundary value read
from the file for this edge/face; using this value, the user can choose inside
ibdry the correct function for projecting nodes that will be created in this
edge/face; if ibdry is a nil pointer, it is assumed that the domain is polyg-
onal, no projection has to be done; the corresponding boundary pointers are
adjusted to two default structures

const BOUNDARY dirichlet_boundary = {nil, DIRICHLET};
const BOUNDARY neumann_boundary = {nil, NEUMANN};

for positive respectively. negative values of bound.

In 3d we have to adjust a pointer to such a BOUNDARY structure also for
edges. This is done by setting this pointer to the BOUNDARY structure of
one of the meeting faces at that edge; if a BOUNDARY structure of a face
supplies a function for the projection of a node onto a curved boundary
during refinement, this function must be able to project any point in the
closure of that face (because it may be used for any edge of that face); if
the boundary type of the edge is DIRICHLET, then at least one the boundary
types of the meeting faces is DIRICHLET also, and we will use the BOUNDARY
structure of a DIRICHLET face.

During the initialization of the macro triangulation, other entries like
n_edges, n_faces, and max_edge neigh in the mesh data structure are cal-
culated.

Example 3.8 (The standard triangulation of the unit interval in R!).
The easiest example is the macro triangulation for the interval (0,1) in 1d.
We just have one element and two vertices.

DIM: 1
DIM_OF_WORLD: 1

number of elements: 1 | 0 |
number of vertices: 2 | !
0 1
element vertices: . . .
01 Macro triangulation of the unit
interval.

vertex coordinates:
0.0 0.0
1.0 0.0

Example 3.9 (The standard triangulation of the unit square in R?).
Still rather simple is the macro triangulation for the unit square (0,1) x (0, 1)
in 2d. Here, we have two elements and four vertices. The refinement edge is
the diagonal for both elements.
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DIM: 2

DIM_OF_WORLD: 2

number of elements:
number of vertices:

element vertices:
201
023

vertex coordinates:

0.0 0.0

[« 3
oo o
= = O
oo o

2
4

1

Macro triangulation of the unit
square.

Example 3.10 (The standard triangulation of the unit cube in R3?).
More involved is already the macro triangulation for the unit cube (0,1)? in
3d. Here, we have eight vertices and six elements, all meeting at one diagonal;
the shown specification of element vertices prescribes this diagonal as the

refinement edge is for all elements.

DIM:
DIM_OF_WORLD: 3

number of vertices:
vertex coordinates:
.0

number of elements:

element vertices:

0

O O O OO

.0

oo oo oo

4

NN W w

3

.0

N O ON = =

8

6
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Example 3.11 (A triangulation of three quarters of the unit disc).
Here, we describe a more complex example where we are dealing with a curved
boundary and mixed type boundary condition. Due to the curved boundary,
we have to provide a function for the projection during refinement in the
boundary data structure. The actual projection is easy to implement, since
we only have normalize the coordinates for nodes belonging to the curved
boundary. A pointer to this function is accessible inside read_mesh() by the
the ibdry function, which is the last argument to read mesh (). Furthermore,
we assume that the two straight edges belong to the Neumann boundary, and
the curved boundary is the Dirichlet boundary. For handling mixed boundary
types we have to specify element boundaries in the macro triangulation
file. Information about element boundaries is also used inside the function
ibdry for initializing routines for projecting the midpoints of the refinement
edges onto the curved boundary.

DIM: 2
DIM_OF_WORLD: 2

number of vertices: 5

number of elements: 3 S1h
vertex coordinates:
0.0 0.0
1.0 0.0 0
0.0 1.0
-1.0 0.0
0.0 -1.0 5 0
0 -1
element vertices:
120
230
340 -1
element boundaries:
0-1 2 1
0O 0 2
-1 0 2

Macro triangulation of a 3/4 disc.

The functions ball_proj () for the projection and ibdry () for the initializa-
tion can be implemented as

static void ball_project(REAL_D p)
{
REAL norm = NORM_DOW(p) ;

norm = 1.0/MAX(1.0E-15, norm);
SCAL_DOW (norm, p);
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return;

}

const BOUNDARY *ibdry(MESH #*mesh, int bound)

{
FUNCNAME ("ibdry") ;
static const BOUNDARY curved_dirichlet = {ball_project, DIRICHLET};
static const BOUNDARY straight_neumann {nil, NEUMANN};

switch(bound)
{
case 2: return(&curved_dirichlet);
case -1: return(&straight_neumann) ;
default: ERROR_EXIT("no boundary %d\n", bound);
}
}

A binary data format allows faster import of a macro triangulation, espe-
cially when the macro triangulation consists already of many elements. Macro
data written previously by binary write macro routines (see below) can be
read in native or machine independent binary format by the two routines

void read_macro_bin(MESH *, const char *,

const BOUNDARY *(x) (MESH *, int ));
void read_macro_xdr (MESH *, const char *,

const BOUNDARY *(x) (MESH *, int ));

Description:

read macro_bin(mesh, name, ibdry): reads data of the macro triangula-
tion for mesh from the native binary file name; the file name was previously
generated by the function write macro_bin(), see below.

read macro_xdr (mesh, name, ibdry): reads data of the macro triangula-
tion for mesh from the machine independent binary file name, the file name
was previously generated by the function write macro xdr (), see below.

3.2.17 Writing macro triangulations

The counterpart of functions for reading macro triangulations are functions
for writing macro triangulations to file. To be more general, it is possible to
create a macro triangulation from the triangulation given by the leaf elements
of a mesh. As mentioned above, it can be faster to use a binary format than
the textual formal for writing and reading macro triangulations with many
elements.

int write_macro(MESH *, const char *);
int write_macro_bin(MESH *, const char *);
int write_macro_xdr(MESH *, const char *);
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Description:

writemacro(mesh, name): writes the triangulation given by the leaf ele-
ments of mesh as a macro triangulation to the file specified by name in the
above described format; if the file could be written, the return value is 1,
otherwise an error message is produced and the return value is 0.

writemacro_bin(mesh, name): writes the triangulation given by the leaf
elements of mesh as a macro triangulation to the file specified by name in
native binary format.

writemacro xdr (mesh, name): writes the triangulation given by the leaf
elements of mesh as a macro triangulation to the file specified by name in
machine independent binary format.

For exporting meshes including the whole hierarchy, see Section 3.3.8

3.2.18 Import and export of macro triangulations from/to other
formats

When meshes are created using a simplicial grid generation tool, then data will
usually not be in the ALBERTA macro triangulation format described above
in Section 3.2.16. In order to simplify the import of such meshes, a vector—
based data structure MACRO_DATA is provided. A vector—based data structure
can easily be filled by an import routine; the filled data structure can then
converted into an ALBERTA mesh. The MACRO_DATA structure is defined as

typedef struct macro_data MACRO_DATA;

struct macro_data

{
int n_total_vertices;
int n_macro_elements;

REAL_D *coords;
int (*mel_vertices) [N_VERTICES];
int (*neigh) [N_NEIGH];
S_CHAR (*boundary) [N_NEIGH] ;
#if DIM ==
U_CHAR *el_type;
#endif
};
The members yield following information:
n_total _vertices: number of vertices.

n_macro_elements: number of mesh elements.

coords: REAL array of size [n_total_vertices] [DIM_OF_WORLD] holding the
point coordinates of all vertices.
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mel_vertices: integer array of size [n_macro_elements] [N.-VERTICES] stor-
ing element index information; mel vertices[i] [j] is the index of the jth
vertex of element i.

neigh: integer array of size [n_macro_elements] [N NEIGH], whereas element
neigh[i] [j] is the index of the jth neighbour element of element i, or -1
in case of a boundary.

boundary: S_CHAR array of size [n_.macro_elements] [N.NEIGH], whereas ele-
ment boundary[i] [j] is the boundary type of the jth vertex/edge/face of
element i (in 1d/2d/3d).

el_type: a U_CHAR vector of size [n.macro_elements] holding the element
type of each mesh element (only 3d).

A MACRO_DATA structure can be allocated and freed by

MACRO_DATA *alloc_macro_data(int, int, FLAGS);
void free_macro_data(MACRO_DATA *);

Description:

allocmacro_data(n_vertices, n_elements, flags): allocates astructure
MACRO_DATA together with all arrays needed to hold n_vertices vertices and
n_elements mesh elements. The coords and mel _vertices arrays are allo-
cated in any case, while neigh, boundary and el_type arrays are allocated
only when requested as indicated by the corresponding flags FILL NEIGH,
FILL BOUNDARY, and FILL EL_TYPE set by a bitwise OR in flags.

free macro_data(data): completely frees all previously allocated storage for
MACRO_DATA structure data including all vectors/arrays in it.

Once MACRO DATA structure is filled, it can be saved to file in the ALBERTA
macro triangulation format, or it can be directly be converted into a MESH.

void macro_data2mesh(MESH *, MACRO_DATA *,

const BOUNDARY *(*) (MESH *, int));
int write_macro_data(MACRO_DATA *, const char *);
int write_macro_data_bin(MACRO_DATA *, const char *);
int write_macro_data_xdr (MACRO_DATA *, const char *);

Description:

macro_dataZmesh(mesh, macro_data, bdry): converts data of a triangula-
tion given in macro_data into a MESH structure. It sets most entries in mesh,
allocates macro elements needed, assigns DOFs according to mesh->n_dof,
and calculates mesh->diam. The coordinates in macro_data->coords are
copied to a newly allocated array, thus the entire MACRO_DATA structure can
thus be freed after calling this routine. When not nil, the bdry function is
used to define the element boundaries.

write macro_data(macro_data, name): writes the macro triangulation with
data stored in macro_data in the ALBERTA format described in Section
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3.2.16 to file name. The return value is 0 when an error occured and 1 in case
the file was written successfully.

writemacro_data_bin(macro_data, name): writes data of the macro trian-
gulation stored in macro_data in native binary format to file name; the return
value is 0 when an error occured and 1 in case the file was written success-

fully.

writemacro_data_xdr(macro_data, name): writes data of the macro trian-
gulation stored in macro_data in machine independent binary format to file
name; the return value is 0 when an error occured and 1 in case the file was
written successfully.

It is appropriate to check whether a macro triangulation given in a
MACRO_DATA structure allows for recursive refinement, by testing for possi-
ble recursion cycles. An automatic correction by choosing other refinement
edges may be done, currently implemented only in 2d.

void macro_test (MACRO_DATA *, const char *);

Description:

macro_test(macro_data, name): checks the triangulation given by the ar-
gument macro_data for potential cycles during recursive refinement. In the
case that such a cycle is detected, the routine tries to correct this by renum-
bering element vertices (which is currently implemented only in 2d) and then
writes the new, changed triangulation using write macro_data() to a file
name, when the second parameter is not nil.

3.2.19 Mesh traversal routines

As described before, the mesh is organized in a binary tree, and most local
information is not stored at leaf element level, but is generated from hier-
archical information and macro element data. The generation of such local
information is done during tree traversal routines.

When some work has to be done at each tree element or leaf element,
such a tree traversal is most easily done in a recursive way, calling some
special subroutine at each (leaf) element which implements the operation
that currently has to be done. For some other applications, it is necessary to
operate on the (leaf) elements in another fashion, where a recursive traversal
is not possible. To provide access for both situations, there exist recursive and
non-recursive mesh traversal routines.

For both styles, selection criteria are available to indicate on which ele-
ments the operation should take place. The following constants are defined:

CALL_EVERY_EL_PREORDER
CALL_EVERY_EL_INORDER
CALL_EVERY_EL_POSTORDER
CALL_LEAF_EL
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CALL_LEAF_EL_LEVEL
CALL_EL_LEVEL
CALL_MG_LEVEL

Choosing one of the flags CALL_EVERY_EL_PREORDER, CALL_EVERY_EL_INORDER,
and CALL_EVERY_EL_POSTORDER operations are performed on all hierarchical
elements of the mesh. These three differ in the sequence of operation on el-
ements: CALL_EVERY_EL_PREORDER operates first on a parent element before
operating on both children, CALL_EVERY_EL_POSTORDER operates first on both
children before operating on their parent, and CALL_EVERY_EL_INORDER first
operates on child[0], then on the parent element, and last on child[1].

CALL_LEAF EL indicates to operate on all leaf elements of the tree, whereas
CALL_LEAF EL_LEVEL indicates to operate only on leaf elements which are ex-
actly at a specified tree depth. CALL_EL_LEVEL operates on all tree elements
at a specified tree depth. The option CALL_MG_LEVEL is special for multigrid
operations. It provides the operation on all hierarchy elements on a specified
multigrid level (which is usually el->level/DIM).

Additional flags are defined that specify which local information in EL_INFO
has to be generated during the hierarchical mesh traversal. A bitwise OR of
some of these constants is given as a parameter to the traversal routines. These
flags are more or less self explaining;:

FILL NOTHING: no information needed at all.

FILL_COORDS: vertex coordinates EL_INFO.coord are filled.

FILL_BOUND: boundary information is filled in the entries EL_INFO.bound and
EL_INFO.boundary (in 2d and 3d).

FILL_NEIGH: neighbour element information EL_INFO.neigh and correspond-
ing EL_INFO.opp-_vertex is generated (for NEIGH_IN_EL == 0).

FILL_OPP_COORDS: information about coordinates of the opposite vertex of
neighbours is filled in EL_INFO.opp_coords; the flag FILL_OPP_COORDS can
only be selected in combination with FILL_COORDS|FILL NEIGH.

FILL_ORIENTATION: the element orientation info EL_INFO.orientation is
generated (3d only). As mentioned in Section 3.2.7, the calculation of ori-
entation may give wrong results in case of parametric meshes, when the
parameterization is not preserving orientation.

FILL EL_TYPE: the element type info is always generated, this flag is defined
for compatible use as parameter to get_macro_data() or similar applications
(3d only).

FILL_ANY: macro definition for a bitwise OR of any possible fill flags, used for
separating the fill flags from the CALL_. .. flags.

During mesh traversal, such information is generated hierarchically using
the two subroutines

void fill_macro_info(MESH *, const MACRO_EL *, EL_INFO *);
void fill_elinfo(int, const EL_INFO *, EL_INFO *);
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Description:

fill macro_info(mesh, mel, el_info): fills the el_info structure with
macro element information of mel required by el_info->flag and sets
el_info->mesh to mesh;

fill elinfo(ichild, parent_info, el_info): fills a given el _info struc-
ture for the child ichild using hierarchy information and parent data
parent_info depending on parent_info->flag.

Sequence of visited elements

The sequence of elements which are visited during the traversal is given by
the following rules:

e All elements in the binary mesh tree of one MACRO_EL mel are visited prior
to any element in the tree of mel->next.

e For every EL el, all elements in the subtree el->child[0] are visited
before any element in the subtree el->child[1].

e The traversal order of an element and its two child trees is deter-
mined by the flags CALL_EVERY _EL_PREORDER, CALL_EVERY_EL_INORDER,
and CALL_EVERY_EL_POSTORDER, as defined above in Section 3.2.19.

Only during non-recursive traversal, this order may be changed by calling
explicitly the traverse neighbour () routine, see below.

Recursive mesh traversal routines

Recursive traversal of mesh elements is done by the routine
void mesh_traverse(MESH *, int, FLAGS, void (*) (const EL_INFO *));

Description:

mesh_traverse(mesh, level, fill flag, el fct): traverses the triangu-
lation mesh; the argument level specifies the element level if CALL_EL_LEVEL
or CALL_LEAF EL_LEVEL, or the multigrid level if CALL_MG_LEVEL is set in the
f£il1l flag; otherwise this variable is ignored; by the argument £ill flag
the elements to be traversed and data to be filled into EL_INFO is selected,
using bitwise OR of one CALL_... flag and several FILL_... flags; the ar-
gument el _fct is a pointer to a function which is called on every element
selected by the CALL._. .. part of £ill flag.
It is possible to use the recursive mesh traversal recursively, by calling
mesh_traverse() from el _fct.

Example 3.12. An example of a mesh traversal is the computation of the
measure of the computational domain. On each leaf element, the volume of
the element is computed by the library function el _volume () and added to a
global variable measure_omega, which finally holds the measure of the domain
after the mesh traversal.
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static REAL measure_omega;
static void measure_el(const EL_INFO *el_info)
{

measure_omega += el_volume(el_info);

return;

}

measure_omega = 0.0;
mesh_traverse(mesh, -1, CALL_LEAF_EL|FILL_COORDS, measure_el);
MSG(" |Omegal = %e\n", measure_omega);

el_volume () computes the element volume and thus needs information about
the elements vertex coordinates.

The only information passed to an element function like measure_el() is
a pointer to the filled el_info structure. All other information needed by the
element function has to be given by global variables, like measure_omega in
this example.

Example 3.13. We give an implementation of the CALL_EVERY EL_. .. rou-
tines to show the simple structure of all recursive traversal routines. A data
structure TRAVERSE_INFO, only used by the traversal routines, holds the traver-
sal flag and a pointer to the element function el fct():

void recursive_traverse(EL_INFO *el_info, TRAVERSE_INFO *trinfo)
{

EL *el = el_info->el;

EL_INFO el_info_new;

if (el->child[0])
{
if (trinfo—>f1ag & CALL_EVERY_EL_PREORDER)
(trinfo->el_fct) (el_info);

fill_elinfo(0, el_info, &el_info_new);
recursive_traverse(&el_info_new, trinfo);

if (trinf0—>f1ag & CALL_EVERY_EL_INORDER)
(trinfo->el_fct) (el_info);

fill_elinfo(1l, el_info, &el_info_new);
recursive_traverse(&el_info_new, trinfo);

if (trinfo—>f1ag & CALL_EVERY_EL_POSTORDER)
(trinfo->el_fct) (el_info);
}
else

{
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(trinfo->el_fct) (el_info);
}

return;

}

void mesh_traverse_every_el(MESH *mesh, FLAGS fill_flag,
void (*el_fct) (const EL_INFO *))
{
MACRO_EL *mel;
EL_INFO el_info;
TRAVERSE_INFO traverse_info;

el_info.fill_flag = (flag & FILL_ANY);
el_info.mesh = mesh;

traverse_info.mesh = mesh;
traverse_info.el_fct = el_fct;
traverse_info.flag = flag;

for (mel = mesh->first_macro_el; mel; mel = mel->next)
{
fill_macro_info(mel, &el_info);
recursive_traverse(&el_info, &traverse_info);
}

return;

Non-recursive mesh traversal routines

As mentioned above in Example 3.12, all information needed by the element
function el_fct(), besides data in the el_info structure, has to be given
by global variables when using the recursive mesh traversal routines. Such a
procedure can be done easier by using a non-recursive mesh traversal, where
the element routine gets pointers to visited elements, one after another.

Additionally, mesh refinement and coarsening routines (for NEIGH_IN EL
== 0, see Sections 3.4.1 and 3.4.2), the gltools and GRAPE graphic interface
(see Sections 3.16.2 and 3.16.3) are functions which need a non-recursive
access to the mesh elements.

The implementation of the non-recursive mesh traversal routines uses a
stack to save the tree path from a macro element to the current element.
A data structure TRAVERSE_STACK holds such information. Before calling the
non-recursive mesh traversal routines, such a stack must be allocated (and
passed to the traversal routines).

typedef struct traverse_stack  TRAVERSE_STACK;
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By allocating a new stack, it is even possible to recursively call the non—
recursive mesh traversal during another mesh traversal without destroying
the stack which is already in use. For the non—recursive mesh traversal no
pointer to an element function el _fct() has to be provided, because all op-
erations are done by the routines which call the traversal functions. A mesh
traversal is launched by each call to traverse first () which also initializes
the traverse stack. Advancing to the next element is done by the function
traversenext (). The following non—recursive routines are provided:

TRAVERSE_STACK *get_traverse_stack(void);

void free_traverse_stack(TRAVERSE_STACK *);

const EL_INFO *traverse_first(TRAVERSE_STACK *, MESH *, int, FLAGS);
const EL_INFO *traverse_next(TRAVERSE_STACK *, const EL_INFO *);

Description:

get_traverse_stack(): the return value is a pointer to a data structure
TRAVERSE_STACK.

free_traverse_stack(stack): frees the traverse stack stack previously ac-
cessed by get_traverse_stack().

traverse first(stack, mesh, level, fill flag): launches the non-re-
cursive mesh traversal; the return value is a pointer to an el_info structure
of the first element to be visited;
stack is a traverse stack previously accessed by get_traverse_stack();
mesh is a pointer to a mesh to be traversed, level specifies the element
level if CALL EL_LEVEL or CALL_LEAF EL_LEVEL, or the multigrid level if
CALL_MG_LEVEL is set; otherwise this variable is ignored;
f£ill flag specifies the elements to be traversed and data to be filled into
EL_INFO is selected, using bitwise OR of one CALL_... flag and several
FILL.... flags;

traverse next (stack, el_info): returns an EL_INFO structure with data
about the next element of the mesh traversal or a pointer to nil, if
el_info->el is the last element to be visited;
information which elements are visited and which data has to be filled is ac-
cessible via the traverse stack stack, initialized by traverse first (). After
calling traversenext (), all EL_INFO information about previous elements
is invalid, the structure may be overwritten with new data.

Usually, the interface to a graphical environment uses the non—recursive
mesh traversal, compare the gltools (Section 3.16.2) and GRAPE interfaces
(Section 3.16.3).

Example 3.14. The computation of the measure of the computational do-
main with the non-recursive mesh traversal routines is shown in the following
code segment. No global variable is needed for storing information which is
needed on elements.



3.2 Data structures for the hierarchical mesh 159

REAL measure_omega(MESH *mesh)
{
TRAVERSE_STACK *stack = get_traverse_stack();
const EL_INFO *el_info;
FLAGS fill_flag;
REAL measure_omega = 0.0;

el_info = traverse_first(stack, mesh,-1, CALL_LEAF_EL|FILL_COORDS);
while (el_info)
{
measure_omega += el_volume(el_info);
el_info = traverse_next(stack, el_info);
}

free_traverse_stack(stack);

return(measure_omega) ;

Neighbour traversal

Some applications, like the recursive refinement algorithm, need the possibility
to jump from one element to another element using neighbour relations. Such
a traversal can not be performed by the recursive traversal routines and thus
needs the non-recursive mesh traversal. The traversal routine for going from
one element to a neighbour is

EL_INFO *traverse_neighbour (TRAVERSE_STACK *, EL_INFO *, int);

Description:

traverse neighbour(stack, el_info, i): returns a pointer to a structure
with EL_INFO information about the i-th neighbour opposite the i-th vertex
of el_info->el;
The function can be called at any time during the non-recursive mesh traver-
sal after initializing the first element by traverse first().
Calling traverse neighbour(), all EL_INFO information about a previ-
ous element is completely lost. It can only be regenerated by calling
traverse neighbour () again with the old OPP_VERTEX value. If called at
the boundary, when no adjacent element is available, then the routine re-
turns nil; nevertheless, information from the old EL_INFO may be overwrit-
ten and lost. To avoid such behavior, one should check for boundary ver-
tices/edges/faces (1d/2d/3d) before calling traverse neighbour ().

Access to an element at world coordinates x

Some applications need the access to elements at a special location in world
coordinates. Examples are characteristic methods for convection problems,
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or the implementation of a special right hand side like point evaluations or
curve integrals. In a characteristic method, the point z is usually given by
x = xo — VT, where x¢ is the starting point, V' the advection and 7 the time
step size. For points zq close to the boundary it may happen that x does not
belong to the computational domain. In this situation it is convenient to know
the point on the domain’s boundary which lies on the line segment between
the old point ¢ and the new point z. This point is uniquely determined by
the scalar value s such that z¢ + s (z — z¢) € ODomain.
The following function accesses an element at world coordinates x:

int find_el_at_pt(MESH *, const REAL_D, EL_INFO **, FLAGS,
REAL [DIM+1], const MACRO_EL *, const REAL_D,
REAL *);

Description:

find el at_pt(mesh,x,el info p,fill flag,bary,startmel,x0,sp):
fills element information in an EL_INFO structure and corresponding barycen-
tric coordinates of the element where the point x is located; the return value
is true if x is inside the domain, or false otherwise. Arguments of the
function are:
mesh is the mesh to be traversed;
x are the world coordinates of the point (should be in the domain occupied
by mesh);
el_info_p is the return address for a pointer to the EL_INFO for the element
at x (or when x is outside the domain but x0 was given, of the element
containing the point z¢ + s (x — x9) € Domain);
f£ill flag are the flags which specify which information should be filled
in the EL_INFO structure, coordinates are included in any case as they are
needed by the routine itself;
bary is a pointer where to return the barycentric coordinates of x on
*el_info_p->el (or, when x is outside the domain but x0 was given, of
the point zg + s (x — x¢) € dDomain);
start_mel an initial guess for the macro element containing x, or nil;
x0 starting point of a characteristic method, see above, or nil;
sp return address for the relative distance to domain boundary in a charac-
teristic method if x0 != nil, see above, or nil.

The implementation of find el _at pt() is based on the transformation
from world to local coordinates, available via the routine world_to_coord(),
compare Section 3.7. At the moment, find el at pt() works correctly only
for domains with non—curved boundary. This is due to the fact that the im-
plementation first looks for the macro—element containing x and then finds its
path through the corresponding element tree based on the macro barycentric
coordinates. For domains with curved boundary, it is possible that in some
cases a point inside the domain is considered as external.
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3.3 Administration of degrees of freedom

Degrees of freedom (DOFSs) give connection between local and global finite
element functions, compare Sections 1.4.2 and 1.3. We want to be able to
have several finite element spaces and corresponding sets of DOFs at the
same time. One set of DOFs may be shared between different finite element
spaces, when appropriate.

During adaptive refinement and coarsening of a triangulation, not only
elements of the mesh are created and deleted, but also degrees of freedom.
The geometry is handled dynamically in a hierarchical binary tree structure,
using pointers from parent elements to their children. For data corresponding
to DOF's, which are usually involved with matrix-vector operations, simpler
storage and access methods are more efficient. For that reason every DOF is
realized just as an integer index, which can easily be used to access data from
a vector or to build matrices that operate on vectors of DOF data.

During coarsening of the mesh, DOFs are deleted. In general, the deleted
DOF is not the one which corresponds to the largest integer index. “Holes”
with unused indices appear in the total range of used indices. One of the main
aspects of the DOF administration is to keep track of all used and unused
indices. One possibility to remove holes from vectors is the compression of
DOFs, i.e. the renumbering of all DOF's such that all unused indices are shifted
to the end of the index range, thus removing holes of unused indices. While
the global index corresponding to a DOF may change, the relative order of
DOF indices remains unchanged during compression.

During refinement of the mesh, new DOFs are added, and additional in-
dices are needed. If a deletion of DOFs created some unused indices before,
some of these can be reused for the new DOFs. Otherwise, the total range of
used indices has to be enlarged, and the new indices are taken from this new
range. At the same time, all vectors and matrices which are supposed to use
these DOF indices have to be adjusted in size, too. This is the next major
aspect of the DOF administration. To be able to do this, lists of vectors and
matrices are included in the DOF_ADMIN data structure. Entries are added to
or removed from these lists via special subroutines, see Section 3.3.2.

In ALBERTA, every abstract DOF is realized as an integer index into
vectors:

typedef signed int  DOF;

These indices are administrated via the DOF_ADMIN data structure (see 3.3.1)
and some subroutines. For each set of DOF's, one DOF_ADMIN structure is cre-
ated. Degrees of freedom are directly connected with the mesh. The MESH data
structure contains a reference to all sets of DOFs which are used on a mesh,
compare Section 3.2.14. The FE_SPACE structure describing a finite element
space references the corresponding set of DOFs, compare Sections 1.4.2, 3.5.1.
Several FE_SPACEs may share the same set of DOFs, thus reference the same
DOF_ADMIN structure. Usually, a DOF_ADMIN structure is created during def-
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inition of a finite element space by get_fe_space(), see Section 3.6.2. For
special applications, additional DOF sets, that are not connected to any finite
element space may also be defined (compare Section 3.6.2).

In Sections 3.3.5 and 3.3.6, we describe storage and access methods for
global DOFs and local DOF's on single mesh elements.

As already mentioned above, special data types for data vectors and ma-
trices are defined, see Sections 3.3.2 and 3.3.4. Several BLAS routines are
available for such data, see Section 3.3.7.

3.3.1 The DOF_ADMIN data structure

The following data structure holds all data about one set of DOF's. It includes
information about used and unused DOF indices, as well as linked lists of
matrices and vectors of different data types, that are automatically resized
and resorted during mesh changes. Currently, only an automatic enlargement
of vectors is implemented, but no automatic shrinking. The actual implemen-
tation of used and unused DOFs is not described here in detail — it uses only
one bit of storage for every integer index.

typedef struct dof_admin DOF_ADMIN;
typedef unsigned int DOF_FREE_UNIT;

struct dof_admin

{
MESH *mesh;
const char *name ;

DOF_FREE_UNIT *dof_free; /* flag bit vector */
unsigned int dof_free_size;/* flag bit vector size */
unsigned int first_hole; /* first non-zero dof_free entry */
DOF size; /* allocated size of dof_list vector */
DOF used_count; /* number of used dof indices */
DOF hole_count; /* number of FREED dof indices */
DOF size_used; /* > max. index of a used entry */
int n_dof [DIM+1]; /* dofs from THIS dof_admin */
int nO_dof [DIM+1]; /* dofs from previous dof_admins */
DOF_INT_VEC *dof_int_vec; /* linked list of int vectors */
DOF_DOF_VEC *dof _dof_vec; /* linked list of dof vectors */
DOF_DOF_VEC *int_dof_vec; /* linked list of dof vectors */

DOF_UCHAR_VEC *dof _uchar_vec; /* linked list of u_char vectorsx*/
DOF_SCHAR_VEC *dof_schar_vec; /* linked list of s_char vectors*/
DOF_REAL_VEC *dof_real_vec; /* linked list of real vectors */
DOF_REAL_D_VEC *dof_real_d_vec; /* linked list of real_d vectorsx/
DOF_MATRIX *dof _matrix; /* linked list of matrices */
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void *mem_info; /*--- don’t touch! ----------—--—--——- */
};
The entries yield following information:
mesh: this is a dof _admin on mesh;
name: a string holding a textual description of this dof _admin;

dof _free, dof free_size, first_hole: internally used variables for ad-
ministration of used and free DOF indices;

size: current size of vectors in dof_*_vec and dof_matrix lists;
used_count: number of used dof indices;

hole_count: number of freed dof indices (not size—used_count);
size_used: > largest used DOF index;

n_dof: numbers of degrees of freedom defined by this dof_admin structure;
n_dof [VERTEX], n_dof [EDGE], n_dof [FACE], and n_dof [CENTER] are the
DOF counts at vertices, edges, faces (only in 3d) and element interiors,
compare Section 3.3.6. These values are usually set by get_fe_space() as
a copy from bas_fcts->n_dof (compare Section 3.5.1);

n0_dof: start indices nO_dof [VERTEX/EDGE/FACE/CENTER] of the first dofs
defined by this dof_admin at vertices, edges (2d and 3d), faces (only 3d),
respectively center in the element’s dof [VERTEX/EDGE/FACE/CENTER] vec-
tors. The values are the sums of all degrees of freedom defined by previous
dof _admin structures on the same mesh, see Section 3.3.6 for details and
usage; the values of nO_dof [VERTEX/EDGE/FACE/CENTER] are set automati-
cally by the function get_fe_space(), compare Section 3.6.2;

dof _*_vec, dof matrix: pointers to linked lists of all used DOF_x*_VEC and
DOF_MATRIX structures which are associated with the DOFs administrated
by this DOF_ADMIN and whose size is automatically adjusted during mesh
refinements, compare Section 3.3.2;

mem_info: used internally for memory management.

Deletion of DOFs occurs not only when the mesh is (locally) coarsened, but
also during refinement of a mesh with higher order elements. This is due to the
fact, that during local interpolation operations, both coarse—grid and fine—grid
DOF's must be present, so deletion of coarse—grid DOFs that are no longer
used is done after allocation of new fine—grid DOFs. Usually, all operations
concerning DOF's are done automatically by routines doing mesh adaption or
handling finite element spaces. The removal of “holes” in the range of used
DOF indices is not done automatically. It is actually not needed to be done,
but may speed up the access in loops over global DOFs; When there are no
holes, then a simple for—loop can be used without checking for each index,
whether it is currently in use or not. The FOR_ALL_DOFS () —macro described
in Section 3.3.5 checks this case. Hole removal is done for all DOF_ADMINs of a
mesh by the function

void dof_compress(MESH *);



164 3 Data structures and implementation

Description:

dof _compress (mesh): remove all holes of unused DOF indices by compressing
the used range of indices (it does not resize the vectors). While the global
index corresponding to a DOF may change, the relative order of DOF indices
remains unchanged during compression.
This routine is usually called after a mesh adaption involving higher order
elements or coarsening.

Remark 3.15. Currently, the use of DOF matrices which combine two dif-
ferent sets of DOFs may produce errors during dof_compress(). Such ma-
trices should be cleared by calling clear_dof matrix() before a call to
dof _compress().

Usually, the range of DOF indices is enlarged in fixed increments given
by the symbolic constant SIZE_INCREMENT, defined in dof_admin.c. If an
estimate of the finally needed number of DOFs is available, then a direct
enlargement of the DOF range to that number can be forced by calling:

void enlarge_dof_lists(DOF_ADMIN *, int);

Description:

enlarge dof lists(admin, minsize): enlarges the range of the indices of
admin to minsize.

3.3.2 Vectors indexed by DOFs: The DOF_*_VEC data structures

The DOFs described above are just integers that can be used as indices into
vectors and matrices. During refinement and coarsening of the mesh, the num-
ber of used DOF's, the meaning of one integer index, and even the total range
of DOF's change. To be able to handle these changes automatically for all vec-
tors, which are indexed by the DOF's, special data structures are used which
contain such vector data. Lists of these structures are kept in the DOF_ADMIN
structure, so that all vectors in the lists can be resized together with the
range of DOFs. During refinement and coarsening of elements, values can be
interpolated automatically to new DOFs, and restricted from old DOFs, see
Section 3.3.3.

ALBERTA includes data types for vectors of type REAL, REAL_D, S_CHAR,
U_CHAR, and int. Below, the DOF_REAL_VEC structure is described in full
detail. Structures DOF_REAL_D_VEC, DOF_SCHAR_VEC, DOF_UCHAR_VEC, and
DOF_INT_VEC are declared similarly, the only difference between them is the
type of the structure entry vec.

Although the administration of such vectors is done completely by the
DOF administration which needs DOF_ADMIN data, the following data struc-
tures include a reference to a FE_SPACE, which includes additionally the MESH
and BAS_FCTS. In this way, complete information about a finite element func-
tion given by a REAL— and REAL_D-valued vector is directly accessible.
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typedef struct dof_real_vec DOF_REAL_VEC;

struct dof_real_vec

{
DOF_REAL_VEC *next ;
const FE_SPACE *fe_space;
const char *name ;
DOF size;
REAL *vec; /* different type in DOF_INT_VEC, ... */
void (*refine_interpol) (DOF_REAL_VEC *, RC_LIST_EL *, int n);
void (*coarse_restrict) (DOF_REAL_VEC *, RC_LIST_EL *, int n);
};

The members yield following information:

next: linked list of DOF_REAL_VEC structures in fe_space->admin;

fe_space: FE_SPACE structure with information about DOF's and basis func-
tions;

name: string with a textual description of vector values, or nil;

size: current size of vec;

vec: pointer to REAL vector of size size;

refine_interpol, coarse_restrict: interpolation and restriction routines,
see Section 3.3.3. For REAL and REAL_D vectors, these usually point to the
corresponding routines from fe_space->bas_fcts, compare Section 3.5.1.
While we distinguish there between restriction and interpolation during
coarsening, only one such operation is appropriate for a given vector, as
it either represents a finite element function or values of a functional applied
to basis functions.

All DOF vectors linked in the corresponding dof _admin->dof_*_vec list
are automatically adjusted in size and reordered during mesh changes. Values
are transformed during local mesh changes, if the refine_interpol and/or
coarse_restrict entries are not nil, compare Section 3.3.3.

Integer DOF vectors can be used in several ways: They may either hold
an int value for each DOF, or reference a DOF value for each DOF. In both
cases, the vectors should be automatically resized and rearranged during mesh
changes. Additionally, values should be automatically changed in the sec-
ond case. Such vectors are referenced in the dof_admin->dof_int_vec and
dof _admin->dof_dof_vec lists.

On the other hand, DOF_INT_VECs provide a way to implement for spe-
cial applications a vector of DOF values, which is not indered by DOFs.
For such vectors, only the values are automatically changed during mesh
changes, but not the size or order. The user program is responsible for al-
locating memory for the vec vector. Such DOF vectors are referenced in the
dof _admin->int_dof_vec list.
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A macro GETDOF_VEC is defined to simplify the secure access to a
DOF_*_VEC’s data. It assigns dof_vec->vec to ptr, if both dof_vec and
dof _vec->vec are not nil, and generates an error in other cases:

#define GET_DOF_VEC(ptr, dof_vec)\
TEST_EXIT((dof_vec)&&(ptr = (dof_vec)->vec))\
("%s == nil", (dof_vec) ? (dof_vec)->name : #dof_vec)

The following subroutines are provided to handle DOF vectors. Allocation
of a new DOF_* VEC and freeing of a DOF_*_VEC (together with its vec) are
done with:

DOF_REAL_VEC xget_dof_real_vec(const char *, const FE_SPACE *);
DOF_REAL_D_VEC *get_dof_real_d_vec(const char *, const FE_SPACE *);

DOF_INT_VEC xget_dof_int_vec(const char *, const FE_SPACE *);
DOF_INT_VEC xget_dof_dof_vec(const char *, const FE_SPACE *);
DOF_INT_VEC xget_int_dof_vec(const char *, const FE_SPACE *);

DOF_SCHAR_VEC xget_dof_schar_vec(const char *, const FE_SPACE x*);
DOF_UCHAR_VEC xget_dof_uchar_vec(const char *, const FE_SPACE %) ;

void free_dof_real_vec(DOF_REAL_VEC x*);
void free_dof_real_d_vec(DOF_REAL_D_VEC *);
void free_dof_int_vec(DOF_INT_VEC x*);

void free_dof_dof_vec(DOF_INT_VEC x*);

void free_int_dof_vec(DOF_INT_VEC x*);

void free_dof_schar_vec(DOF_SCHAR_VEC x);
void free_dof_uchar_vec(DOF_UCHAR_VEC x*);

By specifying a finite element space for a DOF_*_VEC, the corresponding
set of DOF's is implicitly specified by fe_space->admin. The DOF_*_VEC is
linked into DOF_ADMIN’s appropriate dof_*_vec list for automatic handling
during mesh changes. The DOF_*_VEC structure entries next and admin
are set during creation and must not be changed otherwise! The size of the
dof_vec->vec vector is automatically adjusted to the range of DOF indices
controlled by fe_space->admin.

There is a special list for each type of DOF vectors in the DOF_ADMIN
structure. All used DOF_REAL_VECs, DOF_REAL_D_VECs, DOF_UCHAR_VECs, and
DOF_SCHAR_VECs are added to the respective lists, whereas a DOF_INT_VEC
may be added to one of three lists in DOF_ADMIN: dof _int_vec, dof_dof_vec,
and int_dof_vec. The difference between these three lists is their handling
during a resize or compress of the DOF range. In contrast to all other cases,
for a vector in admin’s int_dof_vec list, the size is NOT changed with
admin->size. But the values vec[i], i = 1,...,size are adjusted when
admin is compressed, for example. For vectors in the dof_dof _vec list, both
adjustments in size and adjustment of values is done.

The get_*_vec() routines automatically allocate enough memory for the
data vector vec as indicated by fe_space->admin->size. Pointers to the rou-
tines refine_interpol and coarse_restrict are set to nil. They must be
set explicitly after the call to get_*_vec() for an interpolation during refine-
ment and/or interpolation/restriction during coarsening. The free_*_vec()
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routines remove the vector from a vec->fe_space->admin->dof_x_vec list
and free the memory used by vec->vec and *vec.
A printed output of DOF vector is produced by the routines:

void print_dof_int_vec(const DOF_INT_VEC *);

void print_dof_real_vec(const DOF_REAL_VEC *);
void print_dof_real_d_vec(const DOF_REAL_D_VEC *);
void print_dof_schar_vec(const DOF_SCHAR_VEC x*);
void print_dof_uchar_vec(const DOF_UCHAR_VEC x*);

Description:

pint_dof *_vec(dof_vec): prints the elements of the DOF vector dof _vec
together with its name to the message stream.

3.3.3 Interpolation and restriction of DOF vectors during mesh
refinement and coarsening

During mesh refinement and coarsening, new DOFs are produced, or old ones
are deleted. In many cases, information stored in DOF_*_VECs has to be ad-
justed to the new distribution of DOFs. To do this automatically during the
refinement and coarsening process, each DOF_*_VEC can provide pointers to
subroutines refine_interpol and coarse_restrict, that implements these
operations on data. During refinement and coarsening of a mesh, these rou-
tines are called for all DOF_*_VECs with non-nil pointers in all DOF_ADMINS in
mesh->dof_admin.

Before doing the mesh operations, it is checked whether any automatic
interpolations or restrictions during refinement or coarsening are requested.
If yes, then the corresponding operations will be performed during local mesh
changes.

As described in Sections 3.4.1 and 3.4.2, interpolation resp. restriction
of values is done during the mesh refinement and coarsening locally on every
refined resp. coarsened patch of elements. Which of the local DOF's are created
new, and which ones are kept from parent/children elements, is described
in these other sections, too. All necessary interpolations or restrictions are
done by looping through all DOF_ADMINs in mesh and calling the DOF_x*_VEC’s
routines

struct dof_real_vec

{

void (*refine_interpol) (DOF_REAL_VEC #*, RC_LIST_EL *, int);
void (*coarse_restrict) (DOF_REAL_VEC *, RC_LIST_EL *, int);
}

Those implement interpolation and restriction on one patch of mesh elements
for this DOF_*_VEC. Only these have to know about the actual meaning of the
DOFs. Here, RC_LIST_EL is a vector holding pointers to all n parent elements
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which build the patch (and thus have a common refinement edge). Usually, the
interpolation and restriction routines for REAL or REAL D vectors are defined in
the corresponding dof_vec->fe_space->bas_fcts structures. Interpolation
or restriction of non-real values (int or CHAR) is usually application dependent
and is not provided in the BAS_FCTS structure.

Examples of these routines are shown in Sections 3.5.4-3.5.7.

3.3.4 The DOF_MATRIX data structure

Not only vectors indexed by DOF's are available in ALBERTA, but also matri-
ces which operate on these DOF_*_VECs. For finite element calculations, these
matrices are usually sparse, and should be stored in a way that reflects this
sparseness. We use a storage method which is similar to the one used in [53].
Every row of a matrix is realized as a linked list of MATRIX_ROW structures,
each holding a maximum of ROW_LENGTH matrix entries from that row. Each
entry consists of a column DOF index and the corresponding REAL matrix en-
try. Unused entries in a MATRIX_ROW are marked with a negative column index.
The ROW_LENGTH is a symbolic preprocessor constant defined in alberta.h.
For DIM=2 meshes built from triangles, the refinement by bisection generates
usually at most eight elements meeting at a common vertex, more elements
may meet only at macro vertices. Thus, for piecewise linear (Lagrange) ele-
ments on triangles, up to nine entries are non—zero in most rows of a mass or
stiffness matrix. This motivates the choice ROW_LENGTH = 9. For higher order
elements or tetrahedra, there are much more non—zero entries in each row.
Thus, a split of rows into short MATRIX_ROW parts should not produce too
much overhead.

typedef struct matrix_row MATRIX_ROW;
#define ROW_LENGTH 9

struct matrix_row
{
MATRIX_ROW *next;
DOF col [ROW_LENGTH] ;
REAL entry [ROW_LENGTH] ;
};

#define ENTRY_USED(col) ((col) >= 0)
#define ENTRY_NOT_USED(col) ((col) < 0)
#define UNUSED_ENTRY -1
#define NO_MORE_ENTRIES -2

Such a DOF_MATRIX structure is usually filled by local operations on sin-
gle elements, using the update_matrix() routine, compare Section 3.12.1,
which automatically generates space for new matrix entries by adding new
MATRIX_ROWs, if needed.

An automatic adjustment of matrix entry values during mesh refinement
and coarsening is not possible in the current implementation.
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A DOF_MATRIX may also be used to combine two different sets of DOF's,
compare Section 3.12.1. In the moment, the use of such matrices may produce
errors during dof_compress(). Such a matrix should be cleared by calling
clear_dof matrix() before a call to dof _compress().

typedef struct dof_matrix DOF_MATRIX;

struct dof_matrix

{
DOF_MATRIX *next ;
const FE_SPACE *fe_space;
const char *name ;
MATRIX_ROW **xmatrix_row;
DOF size;

};

The entries yield following information:
next: linked list of DOF_MATRIX structures in fe_space->admin;

fe_space: FE_SPACE structure with information about corresponding row
DOFs and basis functions;

name: a textual description for the matrix, or nil;

matrix_row: vector of pointers to MATRIX_ROWs, one for each row;

size: current size of the matrix_row vector.

The following routines are available for DOF—matrices:
DOF_MATRIX *get_dof_matrix(const char *, const FE_SPACE *);

void free_dof_matrix(DOF_MATRIX *);

void clear_dof_matrix(DOF_MATRIX *);

void print_dof_matrix(const DOF_MATRIX *);
Description:

get_dof matrix(name, fe_space): allocates a new DOF_MATRIX structure for

the finite element space fe_space; name is a textual description for the
name of the new matrix; the new matrix is automatically linked into
the fe_space->admin->dof_matrix list; a matrix_row vector of length
fe_space->admin->size is allocated and all entries are set to nil;

free_dof matrix(matrix): frees the DOF matrix matrix previously ac-
cessed by the function get_dof matrix();in a first step, all MATRIX_ROWs in
matrix->matrix_row are freed, then matrix->matrix_row, and finally the
structure *matrix;

clear_dof matrix(matrix): clears all entries of the DOF matrix matrix;
this is done by removing all entries from the DOF matrix, which means
that all MATRIX_ROWs in matrix->matrix_row are freed and all entries in
matrix->matrix_row are set to nil;

print_dof matrix(dof matrix): prints the elements of dof matrix together
with its name to the message stream.
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3.3.5 Access to global DOFs: Macros for iterations using DOF
indices

For loops over all used (or free) DOFs, the following macros are defined:

FOR_ALL_DOFS(const DOF_ADMIN *, todo);
FOR_ALL_FREE_DOFS(const DOF_ADMIN *, todo);

Description:

FOR_ALL DOFS(admin, todo): loops over all used DOF's of admin; todo is a
list of C-statements which are to be executed for every used DOF index.
During todo, the local variable int dof holds the current index of the used
entry; it must not be altered by todo;

FOR_ALL_FREE_DOFS(admin, todo): loops over all unused DOFs of admin;
todo is a list of C-statements which are to be executed for every unused
DOF index. During todo, the local variable int dof holds the current index
of the unused entry; it must not be altered by todo.

Two examples illustrate the usage of these macros.

Example 3.16 (Initialization of vectors). This BLAS-1 routine dset ()
initializes all elements of a vector with a given value; for DOF_REAL_VECs we
have to set this value for all used DOFs. All used entries of the DOF_REAL_VEC
*drv are set to a value alpha by:

FOR_ALL_DOFS(drv->fe_space->admin, drv->vec[dof] = alpha);

The BLAS-1 routine dof_set () is written this way, compare Section 3.3.7.

Example 3.17 (Matrix—vector multiplication). As a more complex ex-
ample we give the main loop from an implementation of the matrix—vector
product in dof_mv (), compare Sections 3.3.4 and 3.3.7:
FOR_ALL_DOFS (admin,
sum = 0.0;
for (row = a->matrix_rowl[dof]; row; row = row->next)

{
for (j=0; j<ROW_LENGTH; j++)
{
jcol = row->coll[jl;
if (ENTRY_USED(jcol))
{
sum += row->entry[j] * xvec[jcoll;
}
else
{
if (jcol == NO_MORE_ENTRIES)
break;
}
}
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yvec[dof] = sum;

);

3.3.6 Access to local DOF's on elements

As shown by the examples in Fig. 1.17, the DOF administration is able to
handle different sets of DOFs, defined by different DOF_ADMIN structures, at
the same time. All operations with finite element functions, like evaluation
or integration, are done locally on the level of single elements. Thus, access
on element level to DOFs from a single DOF_ADMIN has to be provided in a
way that is independent from all other finite element spaces which might be
defined on the mesh.

As described in Section 3.2.8, the EL data structure holds a vector of
pointers to DOF vectors, that contain data for all DOF's on the element from
all DOF_ADMINs:

struct el
{

DOF *xdof ;
};

During initialization of a mesh, the lengths of these vectors are computed
by collecting data from all DOF_ADMINs associated with the mesh; details are
given below. Information about all DOFs associated with a mesh is collected
and accessible in the MESH data structure (compare Section 3.2.14):

struct mesh

{
DOF_ADMIN **dof_admin;
int n_dof_admin;
int n_dof_el;
int n_dof [DIM+1];
int n_node_el;
int node [DIM+1] ;

};

The meaning of these entries is:

dof_admin: a vector of pointers to all DOF_ADMIN structures for the mesh;

n_dof_admin: number of all DOF_ADMIN structures for the mesh;

n_dof_el: total number of DOFs on one element from all DOF_ADMIN struc-
tures;

n_dof: total number of VERTEX, EDGE, FACE, and CENTER DOFs from all
DOF_ADMIN structures;
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nnode_el: number of used nodes on each element (vertices, edges, faces, and
center), this gives the dimension of el->dof;

node: The entry node[i], i € {VERTEX, EDGE, FACE, CENTER} gives the index
of the first i-node in el->dof.

All these variables must not be changed by a user routine — they are set
during the init_dof_admins () routine given as a parameter to GET_MESH(),
compare Section 3.2.15. Actually, only the subroutine get_fe_space() is al-
lowed to change such information (compare Section 3.6.2).

We denote the different locations of DOFs on an element by modes. As
there are DOFs connected with different—dimensional (sub—) simplices, there
are vertezx, edge, face, and center nodes. Using the symbolic constants from
Section 3.2.2, there may be N_VERTICES vertex nodes, N_EDGES edge nodes (2d
or 3d), N_FACES face nodes (in 3d), and one center node. Depending on the
finite element spaces in use, not all possible nodes must be associated with
DOFs, but some nodes may be associated with DOFs from several differ-
ent finite element spaces (and several DOF_ADMINs). In order to minimize the
memory usage for pointers and DOF vectors, the elements store data only for
such nodes where DOF's are used. Thus, the number of nodes on an element
is determined during mesh initialization, when all finite element spaces and
DOFs are defined. The total number of nodes is stored in mesh->n_node_el,
which will be the length of the el->dof vector for all elements.

In order to access the DOFs for one node, mesh->node [1] contains the
index of the first 1-node in el->dof, where 1 is either VERTEX, EDGE, FACE, or
CENTER (compare Fig. 3.2). So, a pointer to DOF's from the i—th edge node
is stored at el->dof [mesh->node[EDGE]+i] (0 < i < N_EDGES), and these
DOFs (and the vector holding them) are shared by all elements meeting at
this edge.

) ) 2 2
A A A &
0 1o 10 1o 1
5 5

Fig. 3.2. DOF vector indices in el->dof for DOFs at vertices, vertices and
edges, vertices, edges and center, and vertices and center (in 2d). Corresponding
mesh->node values are {0,0,0}, {0,3,0}, {0,3,6}, and {0,0,3}.

The total number of DOFs at an 1-node is available in mesh->n_dof [1].
This number is larger than zero, iff the node is in use. All DOFs from different
DOF_ADMINSs are stored together in one vector. In order to access DOFs from
a given finite element space (and its associated DOF_ADMIN), the start index
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for DOFs from this DOF_ADMIN must be known. This start index is generated
during mesh initialization and stored in admin->n0_dof [1]. The number of
DOFs from this DOF_ADMIN is given in admin->n_dof [1]. Thus, a loop over
all DOF's associated with the i—th edge node can be done by:

DOF *dof_ptr = el->dof [mesh->node[EDGE]+i] + admin->n0_dof [EDGE];
for (j = 0 ; j < admin->n_dof [EDGE]; j++)
{

dof = dof_ptr[j];

}

In order to simplify the access of DOFs for a finite element space on an
element, the BAS_FCTS structure provides a routine

const DOF *(*get_dof_indices) (const EL *, const DOF_ADMIN *, DOF *);

which returns a vector containing all global DOFs associated with basis func-
tions, in the correct order: the k—th DOF is associated with the k—th local
basis function (compare Section 3.5.1).

3.3.7 BLAS routines for DOF vectors and matrices

Several basic linear algebra subroutines (BLAS [45, 28]) are implemented for
DOF vectors and DOF matrices, see Table 3.1. Some non-standard rou-
tines are added: dof_xpay() is a variant of dof_axpy(), dof_min() and
dof _max () calculate minimum and maximum values, and dof_mv () is a sim-
plified version of the general dof _gemv () matrix-vector multiplication routine.
The BLAS-2 routines dof_gemv() and dof_mv() use a MatrixTranspose
flag: transpose = NoTranspose = O indicates the original matrix, while
transpose = Transpose = 1 indicates the transposed matrix. We use the
C_BLAS definition,

typedef enum {NoTranspose, Transpose, ConjugateTransposel}
MatrixTranspose;

Similar routines are provided for DOF_REAL_D vectors, see Table 3.2.

3.3.8 Reading and writing of meshes and vectors

Section 3.2.16 described the input and output of ASCII files for macro tri-
angulations. Locally refined triangulations including the mesh hierarchy and
corresponding DOF's are saved in binary formats. Finite element data is saved
(and restored) in binary format, too, in order to keep the full data precision.
As the binary data and file format does usually depend on hardware and op-
erating system, the interchange of data between different platforms needs a
machine independent format. The XDR (External Data Representation) li-
brary provides a widely used interface for such a format. The _xdr routines
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Table 3.1. Implemented BLAS routines for DOF vectors and matrices

REAL dof_nrm2(const DOF_REAL_VEC *x) nrm2 = (3 X2)'/?
REAL dof_asum(const DOF_REAL_VEC *x) asum = Y | X;|
REAL dof_min(const DOF_REAL_VEC *x) min = min X;
REAL dof_max(const DOF_REAL_VEC *x) max = max X;
void dof_set(REAL alpha, DOF_REAL_VEC *x) |X = (a,...,q)
void dof_scal(REAL alpha, DOF_REAL_VEC *x) (X =a*xX
REAL dof_dot(const DOF_REAL_VEC *x, dot =" X;Y;
const DOF_REAL_VEC *y)
void dof_copy(const DOF_REAL_VEC *x, Y=X
DOF_REAL_VEC *y)
void dof_axpy(REAL alpha, Y=axX+Y
const DOF_REAL_VEC *x, DOF_REAL_VEC x*y)
void dof_xpay(REAL alpha, Y=X+4+axY
const DOF_REAL_VEC *x, DOF_REAL_VEC x*y)
void dof_gemv(MatrixTranspose transpose, Y=axAx X +[3xY
REAL alpha, const DOF_MATRIX *a, or
const DOF_REAL_VEC *x, REAL beta, Y=axA'« X +8+Y
DOF_REAL_VEC *y)
void dof_mv(MatrixTranspose transpose, Y=AxX
const DOF_MATRIX x*a, or
const DOF_REAL_VEC *x, DOF_REAL_VEC #*y) |Y = A" x X

should be used whenever data must be transfered between different computer
platforms.

int write_mesh(MESH *mesh, const char *name, REAL time);

MESH *read_mesh(const char *name, REAL *timeptr,
void (*init_leaf_data) (LEAF_DATA_INFO %),
const BOUNDARY *(*init_boundary) (MESH *, int));

The routine write_mesh stores information about the mesh in a file named
name. Written data includes the corresponding time (only important for
time dependent problems), macro elements, mesh elements including the par-
ent/child hierarchy information, DOF administration and element DOFs. The
return value is 1 if an error occurs, otherwise 0.

Routine read_mesh reads a complete mesh from file name, which was cre-
ated by write_mesh. The corresponding time, if any, is stored at *timeptr.
The arguments init_leaf_data and init_boundary are used in the same
way as in read_macro, compare Section 3.2.16.

For input and output of finite element data, the following routines are
provided which read of write files containing binary DOF vectors.
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Table 3.2. Implemented BLAS routines for DOF_REAL_D vectors

REAL dof_nrm2_d(const DOF_REAL_D_VEC *x)

nrm2 = (3| X;*)"/?

REAL dof_min_d(const DOF_REAL_D_VEC *x)

min = min | X;|

REAL dof_max_d(const DOF_REAL_D_VEC *x)

maz = max | X;]|

void dof_set_d(REAL alpha, DOF_REAL_D_VEC *x)

X =((e,...,),...)

void dof_scal_d(REAL alpha, DOF_REAL_D_VEC *x)

X=axX

REAL dof_dot_d(const DOF_REAL_D_VEC *x,
const DOF_REAL_D_VEC *y)

dot = 5 (X,,Y7)

void dof_copy_d(const DOF_REAL_D_VEC *x, Y=X
DOF_REAL_D_VEC *y)

void dof_axpy_d(REAL alpha, Y=axX+Y
const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y)

void dof_xpay_d(REAL alpha, Y=X+axY
const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y)

void dof_gemv(MatrixTranspose transpose,
REAL alpha, const DOF_MATRIX *a,
const DOF_REAL_D_VEC *x, REAL beta,
DOF_REAL_D_VEC *y)

Y=axAx X +8xY
or

Y':<x*14t*)(+—ﬂa<Y

void dof_mv_d(MatrixTranspose transpose,
const DOF_MATRIX *a,
const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y)

Y=AxX
or
Y =A% X

int
int
int
int
int

DOF_INT_VEC
DOF_REAL_VEC
DOF_REAL_D_VEC
DOF_SCHAR_VEC
DOF_UCHAR_VEC

sread_dof_real_d_vec(const char

write_dof_int_vec(const DOF_INT_VEC *div, const char *name);
write_dof_real_vec(const DOF_REAL_VEC *drv, const char *name);
write_dof_real_d_vec(const DOF_REAL_D_VEC *drdv, const char *);
write_dof_schar_vec(const DOF_SCHAR_VEC *dsv, const char *);
write_dof_uchar_vec(const DOF_UCHAR_VEC *duv, const char x*);

*read_dof_int_vec(const char *name, MESH *,FE_SPACEx);
*read_dof_real_vec(const char *,

MESH *, FE_SPACE x);
*, MESH *,FE_SPACE *);

*read_dof_schar_vec(const char *, MESH *, FE_SPACE *);
*read_dof_uchar_vec(const char *, MESH *, FE_SPACE *);

For the output and input of machine independent data files, similar rou-
tines are provided. The XDR library is used, and all routine names end with

_xdr:

int write_mesh_xdr (MESH *mesh, const char *name, REAL time);

MESH *read_mesh_xdr(const char *name, REAL *timeptr,
void (*init_leaf_data) (LEAF_DATA_INFO *),
const BOUNDARY *(*init_boundary) (MESH *, int));
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int write_dof_int_vec_xdr(const DOF_INT_VEC *, const char *name);

int write_dof_real_vec_xdr(const DOF_REAL_VEC *, const char *name);
int write_dof_real_d_vec_xdr(const DOF_REAL_D_VEC *, const char *);
int write_dof_schar_vec_xdr(const DOF_SCHAR_VEC *, const char *name);
int write_dof_uchar_vec_xdr(const DOF_UCHAR_VEC *, const char *name);

DOF_INT_VEC *read_dof_int_vec_xdr(const char *, MESH *,FE_SPACEx*);

DOF_REAL_VEC *read_dof_real_vec_xdr(const char *, MESH x*,
FE_SPACE *);

DOF_REAL_D_VEC *read_dof_real_d_vec_xdr(const char *, MESH *,

FE_SPACE *);

DOF_SCHAR_VEC *read_dof_schar_vec_xdr(const char *, MESH x*,
FE_SPACE *);

DOF_UCHAR_VEC *read_dof_uchar_vec_xdr(const char *, MESH x*,
FE_SPACE *);

Remark 3.18. Currently, the functions for reading and writing meshes in
a binary fashion, read_mesh(_xdr) () and write_mesh(_xdr) (), are only
available for NEIGH_IN_EL==0.

3.4 The refinement and coarsening implementation

3.4.1 The refinement routines

For the refinement of a mesh the following symbolic constant is defined and
the refinement is done by the functions

#define MESH_REFINED 1

U_CHAR refine(MESH *);
U_CHAR global_refine(MESH *, int);

Description:

refine(mesh): refines all leaf elements with a positive element marker mark
times (this mark is usually set by some adaptive procedure); the routine
loops over all leaf elements and refines the elements with a positive marker
until there is no element left with a positive marker; the return value is
MESH_REFINED, if at least one element was refined, and O otherwise. Every
refinement has to be done via this routine. The basic steps of this routine
are described below.

global refine(mesh, mark): sets all element markers for leaf elements of
mesh to mark; the mesh is then refined by refine () which results in a mark
global refinement of the mesh; the return value is MESH REFINED, if mark is
positive, and 0 otherwise.
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Basic steps of the refinement algorithm

The refinement of a mesh is principally done in two steps. In the first step no
coordinate information is available on the elements. In the case that neighbour
information is stored at the elements such coordinate information can not
be produced when going from one neighbour to another by the neighbour
pointers. Thus, only a topological refinement is performed. If new nodes are
created on the boundary these can be projected onto a curved boundary in
the second step when coordinate information is available.

Again using the notion of “refinement edge” for the element itself in 1d,
the algorithm performs the following steps:

1. The whole mesh is refined only topologically. This part consists of

e the collection of a compatible refinement patch; this includes the recursive
refinement of adjacent elements with an incompatible refinement edge;

e the topological bisection of the patch elements;

e the transformation of leaf data from parent to child, if such a function is
available in the leaf _data_info structure;

e allocation of new DOFss;
e handing on of DOFs from parent to the children;

e interpolation of DOF vectors from the coarse grid to the fine one on the
whole refinement patch, if the function refine_interpol () is available for
these DOF vectors (compare Section 3.3.3); these routines must not use
coordinate information;

e a deallocation of DOF's on the parent when preserve_coarse dofs ==

This process is described in detail below.

2. New nodes which belong to the curved part of the boundary are now pro-
jected onto the curved boundary via the param bound() function in the
BOUNDARY structure of the refinement edge. The coordinates of the projected
node are stored in a REAL D-vector and the pointers el->new_coord of all
parents el which belong to the refinement patch are set to this vector. This
step is only done in 2d and 3d. Fig. 3.3 shows some refinements of a triangle
with one edge on the curved boundary. The projections of refinement edge
midpoints (small circles) to the curved boundary are shown by the black
dots.

The topological refinement is done by the recursive refinement Algorithm
1.5. In 1d, no recursion is needed. In 2d and 3d, all elements at the refinement
edge of a marked element are collected. If a neighbour with an incompatible
refinement edge is found, this neighbour is refined first by a recursive call
of the refinement function. Thus, after looping around the refinement edge,
the patch of simplices at this edge is always a compatible refinement patch.
The elements of this patch are stored in a vector ref list with elements of
type RC_LIST_EL, compare Section 3.2.13. This vector is an argument for the
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Fig. 3.3. Refinement at curved boundary: refinement edge midpoints o are projected
by param_bound() to the curved boundary e

functions for interpolation of DOF vectors during refinement, compare Section
3.3.3.

In 1d the vector has length 1. In 2d the length is 2 if the refinement edge
is an interior edge; for a boundary edge the length is 1 since only the element
itself has to be refined. For 1d and 2d, only the el entry of the components
is set and used.

In 3d this vector is allocated with length mesh->max_edge neigh. As men-
tioned in Section 3.2.13 we can define an orientation of the edge and by this
orientation we can define the right and left neighbours (inside the patch) of
an element at this edge.

The patch is bisected by first inserting a new vertex at the midpoint of
the refinement edge. Then all elements of the refinement patch are bisected.
This includes the allocation of new DOFs, the adjustment of DOF pointers,
and the memory allocation for leaf data (if the leaf data size is positive) and
transformation of leaf data from parent to child (if a pointer to a function
refine leaf data() is provided by the user in the mesh->leaf data_info
structure). Then memory for parents’ leaf data is freed and information stored
there is definitely lost.

In the case of higher order elements we also have to add new DOFs on
the patch and if we do not need information about the higher order DOFs on
coarser levels they are removed from the parents. There are some basic rules
for adding and removing DOF's which are important for the prolongation and
restriction of data (see Section 3.3.3):

1. Only DOFs of the same kind (i.e. VERTEX, EDGE, or FACE) and whose nodes
have the same geometrical position on parent and child are handed on to
this child from the parent;
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2. DOFs at a vertex, an edge or a face belong to all elements sharing this
vertex, edge, face, respectively;

3. DOFs on the parent are only removed if the entry preserve coarse dofs
in the mesh data structure is false; in that case only DOF's which are not
handed on to a child are removed on the parent.

A direct consequence of 1. is that only DOFs inside the patch are added
or removed; DOFs on the patch boundary stay untouched. CENTER DOF's can
not be handed from parent to child since the centers of the parent and the
children are always at different positions.

Using standard Lagrange finite elements, only DOF's that are not handed
from parent to child have to be set while interpolating a finite element function
to the finer grid; all values of the other DOF's stay the same (the same holds
during coarsening and interpolating to the coarser grid).

Due to 2. it is clear that DOFs shared by more than one element have to
be allocated only once and pointers to these DOFs are set correctly for all
elements sharing it.

Now, we take a closer look at DOF's that are handed on by the parents
and those that have to be allocated: In 1d we have

child[0]->dof [0] = el->dof[0];
child[1]->dof[1] = el->dof[1];

in 2d

child[0]->dof [0] = el->dof[2];
child[0]->dof[1] = el->dof[0];
child[1]1->dof [0] = el->dof[1];
child[1]->dof [1] el->dof [2];

In 3d for child[1] this passing of DOFs additionally depends on the element
type el_type of the parent. For child[0] we always have

child[0]->dof [0] = el->dof[0];
child[0]->dof[1] = el->dof[2];
child[0]->dof[2] = el->dof[3];

For child[1] and a parent of type 0 we have

child[1]->dof [0] = el->dof[1];
child[1]->dof[1] = el->dof[3];
child[1]->dof[2] = el->dof[2];

and for a parent of type 1 or 2

child[1]->dof [0] = el->dof[1];
child[1]->dof[1] = el->dof[2];
child[1]->dof[2] = el->dof[3];

In 1d
child [0]->dof [1]
and in 2d and 3d

child[1]->dof [0]
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child[0]->dof [DIM] = child[1]->dof [DIM]

is the newly allocated DOF at the midpoint of the refinement edge (compare
Fig. 1.4 on page 13 for the 1d and 2d situation and Fig. 1.5 on page 13 for
the 3d situation).

In the case that we have DOF's at the midpoint of edges (only 2d and 3d)
the following DOFs are passed on (let enode = mesh->node [EDGE] be the
offset for DOFs at edges): for 2d

child[0]->dof [enode+2] = el->dof [enode+1];
child[1]->dof [enode+2] el->dof [enode+0] ;

and for 3d

child[0]->dof [enode+0] = el->dof [enode+1];
child[0] ->dof [enode+1] el->dof [enode+2] ;
child[0] ->dof [enode+3] el->dof [enode+5] ;

for child[0] a for child[1] of a parent of type 0O

child[1]->dof [enode+0] = el->dof [enode+4];
child[1]->dof [enode+1] el->dof [enode+3];
child[1]->dof [enode+3] el->dof [enode+5] ;

and finally for child[1] of a parent of type 1 or 2

child[1]->dof [enode+0] = el->dof[enode+3];
child[1]->dof [enode+1] = el->dof [enode+4];
child[1]->dof [enode+3] = el->dof [enode+5];

child[1]

child[0] child[1]

{0,1,1}

Fig. 3.4. Edge DOFs that are freed e, passed on o, and newly allocated O

We also have to create new DOFs (compare Fig. 3.4). Two additional
DOFs are created in the refinement edge which are shared by all patch ele-
ments. Pointers to these DOF's are adjusted for

child[0]->dof [enode+0],
child[1]->dof [enode+1]

in 2d and

child[0]->dof [enode+2] ,
child[1]->dof [enode+2]
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in 3d for all patch elements. In 3d, for each interior face of the refinement
patch there is a new edge where we have to add a new DOF vector. These
DOFs are shared by two children in the case of a boundary face; otherwise it
is shared by four children and pointers of

child[0] ->dof [enode+4]
child[0]->dof [enode+5]

child[1]->dof [enode+{5,4,4}],
child[1]->dof [enode+{4,4,5}]

are adjusted for those elements.

In 3d, there may be also DOFs at faces; the face DOFs in the boundary
of the patch are passed on (let fnode = mesh->node [FACE] be the offset for
DOFs at faces):

child[0]->dof [fnode+3] = el->dof [fnode+1];
child[1]->dof [fnode+3] = el->dof[fnode+0];

For the common face of child[0] and child[1] we have to allocate a new
face DOF vector which is located at

child [0]->dof [fnode+0] = child[1]->dof [fnode+0]

and finally for each interior face of the patch two new face DOF vectors are
created and pointers for adjacent children are adjusted:

child[0] ->dof [fnode+1],
child[0] ->dof [fnode+2],
child[1]->dof [fnode+1],
child[1]->dof [fnode+2]

Each of these DOF vectors may be shared with another child of a patch
element.

If DOF's are located at the barycenter they have to be allocated for both
children in 2d and 3d (let cnode = mesh->node [CENTER] be the offset for
DOF's at the center)

child [0]->dof [cnode],
child[1]->dof [cnode] .

After adding and passing on of DOFs on the patch we can interpolate
data from the coarse to the fine grid on the whole patch. This is an operation
on the whole patch since new DOFs can be shared by more than one patch
element and usually the value(s) of such a DOF should only be calculated
once.

All DOF vectors where a pointer to a function refine_interpol() in the
corresponding DOF_*_VEC data structure is provided are interpolated to the
fine grid. Such a function does essentially depend on the described passing on
and new allocation of DOFs. An abstract description of such functions can
be found in Section 1.4.4 and a more detailed one for Lagrange elements in
Section 3.5.2.

After such an interpolation, DOF's of higher degree on parent elements may
be no longer of interest (when not using a higher order multigrid method).
In such a case the entry preserve_coarse_dofs in the mesh data structure
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has to be false and all DOF's on the parent that are not handed over to the
children will be removed. The following DOFs are removed on the parent for
all patch elements (some DOF's are shared by several elements): The DOFs
at the center

el->dof [mesh->node [CENTER] ]

are removed in all dimensions. In 2d, additionally DOF's in the refinement
edge

el->dof [mesh->node [EDGE] +2]

are removed and in 3d the DOFs in the refinement edge and the DOF's in the
two faces adjacent to the refinement edge

el->dof [mesh->node [EDGE] +0],
el->dof [mesh->node [FACE]+2],
el->dof [mesh->node [FACE] +3],
el->dof [mesh->node [CENTER] ]

are deleted on the parent. All pointers to DOFs at edges, faces and centers
are set to nil on the parent. No information about these DOFs is available
on interior tree elements in this case. Again we want to point out that for
the geometrical description of the mesh we do not free vertex DOF's and all
pointers to vertex DOF's stay untouched on the parent elements.

This setting of DOF pointers and pointers to children (and adjustment of
adjacency relations when NEIGH_IN_EL == 1) is the main part of the refine-
ment module.

If neighbour information is produced by the traversal routines, then it is
valid for all tree elements. If it is stored explicitly, then neighbour information
is valid for all leaf elements with all neighbours; but for interior elements of
the tree this is not the case, it is only valid for those neighbours that belong
to the common refinement patch!

3.4.2 The coarsening routines

For the coarsening of a mesh the following symbolic constant is defined and
the coarsening is done by the functions

#define MESH_COARSENED 2

U_CHAR coarsen(MESH x*);
U_CHAR global_coarsen(MESH *, int);

Description:

coarsen(mesh): tries to coarsen all leaf element with a negative element
marker |mark| times (again, this mark is usually set by an adaptive pro-
cedure); the return value is MESH_COARSENED if any element was coarsened,
and 0 otherwise.
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global coarsen(mesh, mark): sets all element markers for leaf elements of
mesh to mark; the mesh is then coarsened by coarsen(); depending on the
actual distribution of coarsening edges on the mesh, this may not result in
a |mark| global coarsening; the return value is coarsen(mesh) if mark is
negative, and 0 otherwise.

The function coarsen() implements Algorithm 1.10. For a marked ele-
ment, the coarsening patch is collected first. This is done in the same manner
as in the refinement procedure. If such a patch can definitely not be coarsened
(if one element of the patch may not be coarsened, e.g.) all coarsening markers
for all patch elements are reset. If we can not coarsen the patch immediately,
because one of the elements has not a common coarsening edge but is allowed
to be coarsened more than once, then nothing is done in the moment and we
try to coarsen this patch later on (compare Remark 1.11).

The coarsening of a patch is the “inverse” of the refinement of a compatible
patch. If DOF's of the parents were removed during refinement, these are now
added on the parents. Pointers to those that have been passed on to the
children are now adjusted back on the parents (see Section 3.4.1 which DOF's
of children are now assigned to the parent, just swap the left and right hand
sides of the assignments). DOFs that were freed have to be newly allocated.

If leaf data is stored at the pointer of child[1], then memory for the
parent’s leaf data is allocated. If a function coarsen_leaf_data is provided
in the mesh->leaf data_info structure then leaf data is transformed from
children to parent. Finally, leaf data on both children is freed.

Similar to the interpolation of data during refinement, we now can re-
strict or interpolate data from children to parent. This is done by the
coarse restrict () functions for all those DOF vectors where such a function
is available in the corresponding DOF_*_VEC data structure. Since it does not
make sense to both interpolate and restrict data, coarse_restrict () may be
a pointer to a function either for interpolation or restriction. An abstract de-
scription of those functions can be found in Section 1.4.4 and a more detailed
one for Lagrange elements in Section 3.5.2.

After these preliminaries the main part of the coarsening can be performed.
DOFs that have been created in the refinement step are now freed again, and
the children of all patch elements are freed and the pointer to the first child
is set to nil and the pointer to the second child is adjusted to the leaf _data
of the parent, or also set to nil. Thus, all fine grid information is lost at
that moment, which makes clear that a restriction of data has to be done in
advance.

3.5 Implementation of basis functions

In order to construct a finite element space, we have to specify a set of local
basis functions. We follow the concept of finite elements which are given on a
single element S in local coordinates: Finite element functions on an element
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S are defined by a finite dimensional function space P on a reference element S
and the (one to one) mapping A° : § — S from the reference element S to the
element S. In this situation the non vanishing basis functions on an arbitrary
element are given by the set of basis functions of P in local coordinates A°.
Also, derivatives are given by the derivatives of basis functions on P and
derivatives of A\°.

Each local basis function on S is uniquely connected to a global degree of
freedom, which can be accessed from S via the DOF administration. Together
with this DOF administration and the underlying mesh, the finite element
space is given. In the following section we describe the basic data structures
for storing basis function information.

In ALBERTA Lagrange finite elements up to order four are implemented;
they are presented in the subsequent sections.

3.5.1 Data structures for basis functions

For the handling of local basis functions, i.e. a basis of the function space P
(compare Section 1.4.2) we use the following data structures:

typedef REAL BAS_FCT(const REAL[DIM+1]);

typedef const REAL *GRD_BAS_FCT(const REAL[DIM+1]);
typedef const REAL (*D2_BAS_FCT(const REAL[DIM+1])) [DIM+1];

Description:

BAS_FCT: the data type for a local finite element function, i.e. a function
@ € P, evaluated at barycentric coordinates A € RP™** and its return value
@(A) is of type REAL.

GRD_BAS_FCT: the data type for the gradient (with respect to ) of a local
finite element function, i.e. a function returning a pointer to Vi@ for some

function @ € P
iy _ (92N 9p(N)
V,\go(/\)—< e Do

the arguments of such a function are barycentric coordinates and the return
value is a pointer to a const REAL vector of length [DIM+1] storing VA@(A);
this vector will be overwritten during the next call of the function.

D2 BAS_FCT: the data type for the second derivatives (with respect to A) of a
local finite element function, i.e. a function returning a pointer to the matrix
D2 for some function @ € P:
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the arguments of such a function are barycentric coordinates and the return
value is a pointer to a (DIM + 1) x (DIM + 1) matrix storing D3@; this matrix
will be overwritten during the next call of the function.

For the implementation of a finite element space, we need a basis of the
function space P. For such a basis we need the connection of local and global
DOFs on each element (compare Section 1.4.3), information about the in-
terpolation of a given function on an element, and information about inter-
polation/restriction of finite element functions during refinement/coarsening
(compare Section 1.4.4). Such information is stored in the BAS_FCTS data
structure:

typedef struct bas_fcts BAS_FCTS;

struct bas_fcts

{
char *name ;
int n_bas_fcts;
int degree;
int n_dof [DIM+1];
void (*init_element) (const EL_INFO *, const FE_SPACE x*,
U_CHAR) ;
BAS_FCT *%phi ;
GRD_BAS_FCT **grd_phi;
D2_BAS_FCT **D2_phi;
const DOF *(xget_dof_indices) (const EL *, const DOF_ADMIN x,
DOF *);
const S_CHAR *(*get_bound) (const EL_INFO *, S_CHAR *);
[H——mmm entries must be set for interpolation ---------------- */
const REAL *(*interpol) (const EL_INFO *, int, const int *,
REAL (%) (const REAL_D), REAL *);
const REAL_D *(xinterpol_d) (const EL_INFO *, int, const int *b_no,
const REAL *(*)(const REAL_D, REAL_D),
REAL_D *);
[Hmmmmmmmm optional entries --—--———--———-—————————————————— */

const int *(xget_int_vec) (const EL *, const DOF_INT_VEC *,

int *);
const REAL *(*get_real_vec) (const EL *, const DOF_REAL_VEC x,
REAL *);
const REAL_D *(xget_real_d_vec) (const EL *, const DOF_REAL_D_VEC *,
REAL_D *);

const U_CHAR *(*get_uchar_vec) (const EL *, const DOF_UCHAR_VEC x,
U_CHAR *);
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const S_CHAR *(xget_schar_vec)(const EL *, const DOF_SCHAR_VEC =,
S_CHAR *);

void (*real_refine_inter) (DOF_REAL_VEC #*, RC_LIST_EL *, int);
void (*real_coarse_inter) (DOF_REAL_VEC #*, RC_LIST_EL *, int);
void (*real_coarse_restr) (DOF_REAL_VEC *, RC_LIST_EL *, int);

void (*real_d_refine_inter) (DOF_REAL_D_VEC *, RC_LIST_EL *, int);
void (*real_d_coarse_inter) (DOF_REAL_D_VEC *, RC_LIST_EL *, int);
void (*real_d_coarse_restr) (DOF_REAL_D_VEC *, RC_LIST_EL *, int);

void *bas_fcts_data;

};

The entries yield following information:

name: string containing a textual description or nil.

n_bas_fcts: number of local basis functions.

degree: maximal polynomial degree of the basis functions; this entry is used
by routines using numerical quadrature where no QUAD structure is provided;
in such a case via degree some default numerical quadrature is chosen (see
Section 3.8.1); additionally, degree is used by some graphics routines (see
Section 251).

n_dof: vector with the count of DOF's for this set of basis functions;
n_dof [VERTEX (,EDGE(,FACE)),CENTER] count of DOFs at the vertices,
edges (only 2d and 3d), faces (only 3d), and the center of an element; the
corresponding DOF administration of the finite element space uses such in-
formation.

init_element: is used for the initialization of element dependent local finite
element spaces; is not used or supported by ALBERTA in this version;

phi: vector of function pointers for the evaluation of local basis functions in
barycentric coordinates;
(*phi[i]) (lambda) returns the value @*(\) of the i—th basis function at
lambda for 0 < i < n_bas_fcts.

grd_phi: vector of function pointers for the evaluation of gradients of the
basis functions in barycentric coordinates;
(*grd_phi[i]) (lambda) returns a pointer to a vector of length DIM+1 con-
taining all first derivatives (with respect to the barycentric coordinates) of
the i—th basis function at lambda, i.e. (*grd_phi[i]) (lambda) [k]= gb,i/\k \)
for 0 <k < DIM, 0 < i < n_bas_fcts; this vector is overwritten on the next
call of (*grd_phi[il) O.

D2_phi: vector of function pointers for the evaluation of second derivatives of
the basis functions in barycentric coordinates;
(*D2_phi[i]) (lambda) returns a pointer to a matrix of size (DIM+1) X
(DIM+1) containing all second derivatives (with respect to the barycen-
tric coordinates) of the i—th local basis function at point lambda, i.e.
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(*D2_phi[i]) (lambda) [k] [1]= gﬁf/\kl\l (M) 0 < k1 <DIM 0 < i <
n_bas_fcts; this matrix is overwritten on the next call of (*D2_phi[i]) ().
get_dof_indices: pointer to a function which connects the set of local basis
functions with its global DOFs (an implementation of the function jg in
Section 1.4.3);
get_dof_indices(el, admin, dof) returns a pointer to a const DOF vec-
tor of length n_bas_fcts where the i—th entry is the index of the DOF asso-
ciated to the i—th basis function; arguments are the actual element el and
the DOF admin admin of the corresponding finite element space fe_space
(these indices depend on all defined DOF admins and thus on the corre-
sponding admin); if the last argument dof is nil, get_dof_indices() has
to provide memory for storing this vector, which is overwritten on the next
call of get_dof_indices(); if dof is not nil, dof is a pointer to a vector
which has to be filled.

get_bound: pointer to a function which fills a vector with the boundary types
of the basis functions;
get bound (el _info, bound) returns a pointer to this vector of length
n_bas_fcts where the i—th entry is the boundary type of the i—th basis
function; bound may be a pointer to a vector which has to be filled (compare
the dof argument of get_dof_indices());
such a function needs boundary information; thus, all routines using this
function on the elements need the FILL_BOUND flag during mesh traversal.

When using ALBERTA routines for the interpolation of REAL(.D) valued
functions the interpol(.d) function pointer must be set (for example the
calculation of Dirichlet boundary values by dirichlet_bound() described in
Section 3.12.5):

interpol(.d): pointer to a function which performs the local interpolation
of a REAL (D) valued function on an element;
interpol(.d) (el_info, n, indices, f, coeff) returns a pointer to a
const REAL(D) vector with interpolation coefficients of the REAL(D) val-
ued function f; if indices is a pointer to nil, the coefficients for all basis
functions are calculated and the i—th entry in the vector is the coefficient
of the i—th basis function; if indices is non nil, only the coefficients for a
subset of the local basis functions have to be calculated; n is the number of
those basis functions, indices[0],...,indices[n-1] are the local indices
of the basis functions where the coefficients have to be calculated, and the
i—th entry in the return vector is then the coefficient of the indices[i]-th
basis function; coeff may be a pointer to a vector which has to be filled
(compare the dof argument of get_dof_indices());
such a function usually needs vertex coordinate information; thus, all rou-
tines using this function on the elements need the FILL_COORDS flag during
mesh traversal.
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Optional entries:

get_x_vec: pointer to a function which fills a local vector with values of a
DOF_*_VEC at the DOF's of the basis functions;
get_*x_vec(el, dof_*_vec, * values) returns a pointer to a const * vec-
tor where the i—th entry is the value of dof_*_vec at the DOF of the i—th
basis function on element el; values may be a pointer to a vector which
has to be filled (compare the dof argument of get_dof_indices()), when
values==nil then the vector will be overwritten during the next call of
get_x_vec().

Since the interpolation of finite element functions during refinement and coars-
ening, as well as the restriction of functionals during coarsening, strongly de-
pend on the basis functions and its DOFs (compare Section 1.4.4), pointers
for functions which perform those operations can be stored at the following
entries:

real(_d) refine_inter: pointer to a function for interpolating a REAL (D)
valued function during refinement;
real(.d) refine_ inter(vec, refine 1ist, n) interpolates a given vector
vec of type DOF_REAL (D) VEC on the refinement patch onto the finer grid;
information about all parents of the refinement patch is accessible in the
vector refine_list of length n.

real(.d) _coarse_inter: pointer to a function for interpolating a REAL (D)
valued function during coarsening;
real(_d) _coarse_inter(vec, refine 1ist, n) interpolates a given vector
vec of type DOF_REAL (D) _VEC on the coarsening patch onto the coarser grid;
information about all parents of the refinement patch is accessible in the
vector refine_list of length n.

real (.d) coarse_restr: pointer to a function for restriction of REAL (D)
valued linear functionals during coarsening;
real(.d) _coarse restrict(vec, refine list, n) restricts a given vector
vec of type DOF_REAL (D) _VEC on the coarsening patch onto the coarser grid;
information about all parents of the refinement patch is accessible in the
vector refine_list of length n.

Finally, there is an optional pointer for storing internal data:

bas_fcts_data: pointer to internal data used by the basis functions, like La-
grange nodes in barycentric coordinates for Lagrange elements, e. g.

In Section 3.5.4 and 3.5.5 examples for the implementation of those functions
are given.

Remark 3.19. The access of local element vectors via the get_*_vec() rou-
tines can also be done in a standard way by using the get_dof_indices()
function which must be supplied; if some of the get_* _vec() are nil pointer
in a new basis-functions data structure, ALBERTA fills in pointers to some
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standard functions using get_dof_indices (). But a specialized function may
be faster. An example of such a standard routine is:

const int *get_int_vec(const EL *el, const DOF_INT_VEC *vec,
int *ivec)

{
FUNCNAME ("get_int_vec");
int i, n_bas_fcts;
const DOF *dof;
int *v = nil, *rvec;
const FE_SPACE *fe_space = vec->fe_space;
static int *local_vec = nil;
static int max_size = O0;
GET_DOF_VEC(v, vec);
n_bas_fcts = fe_space->bas_fcts->n_bas_fcts;
if (ivec)
{
rvec = ivec;
}
else
{
if (max_size < n_bas_fcts)
{
local_vec = MEM_REALLOC(local_vec, max_size, n_bas_fcts, int);
max_size = n_bas_fcts;
}
rvec = local_vec;
}
dof = fe_space—>bas_fcts—>get_dof_indices(el,fe_space—>admin,nil);
for (i = 0; i < n_bas_fcts; i++)
rvec[i] = v[dof[il];
return((const int *) rvec);
¥

A specialized implementation for linear finite elements e. g. is more efficient:

const int *get_int_vec(const EL *el, const DOF_INT_VEC *vec,
int *ivec)

{
FUNCNAME ("get_int_vec");
int i, nO;
static int local_vec[N_VERTICES];
int *y = vec—->vec, *rvec = ivec 7 ivec : local_vec;
DOF *xdof = el->dof;

n0 = vec->fe_space->admin->n0_dof [VERTEX] ;
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for (i = 0; i < N_VERTICES; i++)
rvec[i] = v[dof[i] [n0]];

return((const int *) rvec);

}

Any kind of basis functions can be implemented by filling the above de-
scribed structure for basis functions. All non optional entries have to be de-
fined. Since in the functions for reading and writing of meshes, the basis func-
tions are identified by their names, all used basis functions have to be regis-
tered before using these functions (compare Section 3.3.8). All Lagrange finite
elements described below are already registered, with names "lagrange0" to
"lagrange4"; newly defined basis functions must use different names.

int new_bas_fcts(const BAS_FCTS * bas_fcts);
Description:

new_bas_fcts(bas_fcts): puts the new set of basis functions bas_fcts to
an internal list of all used basis functions; different sets of basis functions
are identified by their name; thus, the member name of bas_fcts must be a
string with positive length holding a description; if an existing set of basis
functions with the same name is found, the program stops with an error; if
the entries phi, grd_phi, get_dof_indices, and get_bound are not set, this
also result in an error and the program stops.

Basis functions can be accessed from that list by
const BAS_FCTS *get_bas_fcts(const char *name)
Description:

get bas_fcts(name): looks for a set of basis functions with name name in
the internal list of all registered basis functions; if such a set is found, the
return value is a pointer to the corresponding BAS_FCTS structure, otherwise
the return value is nil.

Lagrange elements can be accessed by get_lagrange(), see Section 3.5.8.

3.5.2 Lagrange finite elements

ALBERTA provides Lagrange finite elements up to order four which are
described in the following sections. Lagrange finite elements are given by
P= ]P’,,(S’ ) (polynomials of degree p € N on S) and they are globally continu-
ous. They are uniquely determined by the values at the associated Lagrange

nodes {:171} The Lagrange basis functions {gbl} satisfy
(bi(xj):éij for z',j:l,...,N:dim Xh.

Now, consider the basis functions {@’}™, of P with the associated Lagrange
nodes {A;}72, given in barycentric coordinates:

@1(>\]):5” for i,j:l,...,m.
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Basis functions are located at the vertices, (edges, faces,) or at the center
of an element. The corresponding DOF is a vertex, (edge, face,) or center
DOF, respectively. The boundary type of a basis function is the boundary
type of the associated vertex (or edge or face). Basis functions at the center
are always INTERIOR. Such boundary information is filled by the get_bound ()
function in the BAS_FCTS structure and is straight forward.

The interpolation coefficient for a function f for basis function @' on el-
ement S is the value of f at the Lagrange node: f(z()\;)). These coefficients
are calculated by the interpol(.d) () function in the BAS_FCTS structure.
Examples for both functions are given below for linear finite elements.

3.5.3 Piecewise constant finite elements

Piecewise constant, discontinuous finite elements are uniquely defined by their
values on the elements of the triangulation. For all dimensions we have ex-
actly one (constant) basis function on each element, where the corresponding
Lagrange node is the barycenter.

3.5.4 Piecewise linear finite elements

Table 3.3. Local basis functions for linear finite elements in 1d.

function position Lagrange node
2°(\) = Ao vertex 0 A0 = (1,0)
Gt =\ vertex 1 A= (0,1)

Table 3.4. Local basis functions for linear finite elements in 2d.

function position Lagrange node
@°(\) = Xo | vertex0 | A =(1,0,0)
'\ =A1 | vertex1 | A =(0,1,0)
B2(\) = Ao vertex 2 A2 =(0,0,1)

Piecewise linear, continuous finite elements are uniquely defined by
their values at the vertices of the triangulation. On each element we have
N_VERTICES basis functions which are the barycentric coordinates of the el-
ement. Thus, in 1d we have two, in 2d we have three, and in 3d four basis
functions for Lagrange elements of first order; the basis functions and the
corresponding Lagrange nodes in barycentric coordinates are shown in Tables
3.3, 3.4 and 3.5. The calculation of derivatives is straight forward.
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Table 3.5. Local basis functions for linear finite elements in 3d.

function position Lagrange node
2°(\) = Xo vertex 0 A0 = (1,0,0,0)
'\ =X | vertex1 | A =(0,1,0,0)
@*(\) = Xa | vertex2 | A2 =(0,0,1,0)
@3(\) = A3 vertex 3 A3 =(0,0,0,1)

The global DOF index of the i—th basis functions on element el is stored
for linear finite elements at

el->dof [i] [admin->n0_dof [VERTEX] ]

Setting nv = admin->n0_dof [VERTEX] the associated DOFs are shown in
Fig. 3.5.

@ dof[3][nv]

d02][nv]

dof[0][nV] g

» dof[2][nv]
dof[0][nv] &

dof[1][nv]

%
dof{1][nv]

Fig. 3.5. DOFs and local numbering of the basis functions for linear elements in
2d and 3d.

For linear finite elements we want to give examples for the implementation
of some routines in the corresponding BAS_FCTS structure.

Example 3.20 (Accessing DOFs for piecewise linear finite elements).
The implementation of get_dof_indices() can be done in the following way,
compare Fig. 3.5 and Remark 3.19 with the implementation of the function
get_int_vec() for accessing a local element vector from a global DOF_INT_VEC
for piecewise linear finite elements.

const DOF *get_dof_indices(const EL *el, const DOF_ADMIN *admin,
DOF *idof)
{
FUNCNAME ("get_dof _indices");
static DOF index_vec[N_VERTICES];
DOF *rvec = idof 7 idof : index_vec;
int i, n0 = admin->n0_dof [VERTEX] ;
DOF *xdof = el->dof;
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for (i = 0; i < N_VERTICES; i++)
rvec[i] = dof[i] [n0];

return((const DOF *) rvec);

}

Example 3.21 (Accessing the boundary types of DOF's for piecewise
linear finite elements). The get bound() function fills the bound vector
with the boundary type of the vertices:

const S_CHAR *get_bound(const EL_INFO *el_info, S_CHAR *bound)
{

FUNCNAME ("get_bound") ;

static S_CHAR bound_vec[N_VERTICES];

S_CHAR *rvec = bound 7 bound : bound_vec;

int i;

TEST_FLAG(FILL_BOUND, el_info);

for (i = 0; i < N_VERTICES; i++)
rvec[i] = el_info->bound[i];

return((const S_CHAR *) rvec);

Example 3.22 (Interpolation for piecewise linear finite elements).
For the interpolation interpol () routine we have to evaluate the given func-
tion at the vertices. Thus, interpolation can be implemented as follows:

const REAL *interpol(const EL_INFO *el_info, int n, const int *dofs,
REAL (*f) (const REAL_D), REAL *vec)
{
FUNCNAME ("interpol");
static REAL inter[N_VERTICES];
REAL *rvec = vec 7 vec : inter;
int i,

TEST_FLAG(FILL_COORDS, el_info);

if (dofs)
{
if (n <= 0 || n > N_VERTICES)
{
MSG("something is wrong, doing nothing\n");
rvec[0] = 0.0;
return((const REAL *) rvec);

}
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for (i = 0; i < n; i++)
rvec[i] = f(el_info->coord[dofs[il]);
}

else
{
for (i = 0; i < N_VERTICES; i++)
rvec[i] = f(el_info->coord[il);
}
return((const REAL *) rvec);

}

Example 3.23 (Interpolation and restriction routines for piecewise
linear finite elements). The implementation of functions for interpolation
during refinement and restriction of linear functionals during coarsening is
very simple for linear elements; we do not have to loop over the refinement
patch since only the vertices at the refinement/coarsening edge and the new
DOF at the midpoint are involved in this process. No interpolation during
coarsening has to be done since all values at the remaining vertices stay the
same; no function has to be defined.

void real_refine_inter (DOF_REAL_VEC *drv, RC_LIST_EL *list, int n)
{
FUNCNAME("real_refine_inter");

EL *el;

REAL *vec = nil;

DOF dof_new, dofO, dofl;
int no0;

if (n < 1) return;

GET_DOF_VEC(vec, drv);

n0 = drv->fe_space->admin->n0_dof [VERTEX] ;

el = list->el;

dof0 = el->dof[0] [n0]; /* 1st endpoint of refinement edge */
dofl = el->dof[1] [n0]; /* 2nd endpoint of refinement edge */
dof_new = el->child[0]->dof[DIM] [n0]; /* newest vertex is DIM */
vec[dof_new] = 0.5*(vec[dof0] + vec[dofl]);

return;

void real_coarse_restr (DOF_REAL_VEC *drv, RC_LIST_EL *list, int n)

{
FUNCNAME("real_coarse_restr");

EL *el;
REAL *vec = nil;
DOF dof_new, dof0O, dofil;

int no;
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if (n < 1) return;

GET_DOF_VEC(vec, drv);
n0 = drv->fe_space->admin->n0_dof [VERTEX] ;

el = list->el;

dof0 = el->dof[0] [nO]; /* 1st endpoint of refinement edge */
dofl = el->dof[1] [n0]; /* 2nd endpoint of refinement edge */
dof_new = el->child[0]->dof[DIM] [n0]; /* newest vertex is DIM */
vec[dof0] += 0.5*vec[dof_new];

vec[dof1] += 0.5*vec[dof_new];

return;

3.5.5 Piecewise quadratic finite elements

Table 3.6. Local basis functions for quadratic finite elements in 1d.

function position Lagrange node
2°(N\) = Ao(2X0 — 1) vertex 0 A% = (1,0
@' (A) = A1(201 — 1) vertex 1 A =(0,1
@*(N) = 4ho M1 center =1

Table 3.7. Local basis functions for quadratic finite elements in 2d.

function position Lagrange node
@°(\) = Xo(2Xo — 1) | vertex0 | A° = (1,0,0)
@'\ = (2 —1) | vertex1 | A=(0,1,0)
B2(\) = Xa(20p — 1) vertex 2 A2 =(0,0,1)
B3(\) = 4X1 Ay edge 0 N =(0,1,1)
@4 (\) = 42 Ao edge 1 At =(3,0,0)
3°(\) = 4Xo M1 edge 2 A =(%,3,0)

Piecewise quadratic, continuous finite elements are uniquely defined by
their values at the vertices and the edges’ midpoints (center in 1d) of the
triangulation. In 1d we have three, in 2d we have six, and in 3d we have ten
basis functions for Lagrange elements of second order; the basis functions and
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Table 3.8. Local basis functions for quadratic finite elements in 3d.

function position Lagrange node
@°(\) = Xo(2Xo — 1) | vertex0 | A% =(1,0,0,0)
@'\ = A1(2A1 — 1) | vertex1 | A'=(0,1,0,0)
Z2(\) = Xa(2Xa — 1) | vertex2 | A% =(0,0,1,0)
@3(\) = A3(2A3 — 1) | vertex3 | A% =(0,0,0,1)
BHN\) = 4Xo \q edge 0 = (3.%,0,0)
@°(\) = 4o A2 edge 1 A® = (3,0,1,0)
@8(\) = 40 A3 edge 2 A6 = (3,0,0,%)
@ (A) = 4A1 Ao edge 3 N =(0,1,1,0)
B8(\) = 4M1 A3 edge 4 A8 =(0,1,0,2)
3°(\) = 4X2 A3 edge 5 A =(0,0,1,3)
dof[3][nv]
doz][nv] dof[6][ne] dof[5][ne]

dof{4][ne] 4
® dof[3][nv]

dof[0][nv] &

. & dof[7][ne]
dof[5][ne] & dof[1][nv]

dof[1][nv] dof[8][ne]

Fig. 3.6. DOFs and local numbering of the basis functions for quadratic elements
in 2d and 3d.

the corresponding Lagrange nodes in barycentric coordinates are shown in
Tables 3.6, 3.7, and 3.8.

The associated DOFs for basis functions at vertices/edges are located at
the vertices/edges of the element; the entry in the vector of DOF indices at the
vertices/edges is determined by the vertex/edge offset in the corresponding
admin of the finite element space: the DOF index of the i—th basis functions
on element el is

el->dof [i] [admin->n0_dof [VERTEX] ]
fori = 0,...,N.VERTICES-1 and
el->dof [i] [admin->n0_dof [EDGE]]

for i = N_VERTICES,...,N.VERTICES+N_EDGES-1. Here we used the fact,
that for quadratic elements DOFs are located at the vertices and the
edges on the mesh. Thus, regardless of any other set of DOFs, the offset
mesh->node [VERTEX] is zero and mesh->node [EDGE] is N_VERTICES.
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Setting nv = admin->n0_dof [VERTEX] and ne = admin->n0_dof [EDGE],
the associated DOFs are shown in Fig. 3.6.

Example 3.24 (Accessing DOFs for piecewise quadratic finite ele-
ments). The function get_dof_indices() for quadratic finite elements can
be implemented in 2d and 3d by (compare Fig. 3.6):

const DOF *get_dof_indices(const EL *el, const DOF_ADMIN *admin,

DOF *idof)
{
static DOF index_vec[N_VERTICES+N_EDGES];
DOF *rvec = idof 7 idof : index_vec, **dof = el->dof;
int i, n0 = admin->n0O_dof [VERTEX];
for (i = 0; i < N_VERTICES; i++)
rvec[i] = dof[i][n0];
n0 = admin->n0_dof [EDGE] ;
for (i = N_VERTICES; i < N_VERTICES+N_EDGES; i++)
rvec[i] = dof[i] [nO0];
return((const DOF *) rvec);
}

The boundary type of a basis functions at a vertex is the the boundary
type of the vertex, and the boundary type of a basis function at an edge is the
boundary type of the edge. The i—th interpolation coefficient of a function f
on element S is just f(z()\;)). The implementation is similar to that for linear
finite elements and is not shown here.

The implementation of functions for interpolation during refinement and
coarsening and the restriction during coarsening becomes more complicated
and differs between the dimensions. Here we have to set values for all elements
of the refinement patch. The interpolation during coarsening in not trivial
anymore. As an example of such implementations we present the interpolation
during refinement for 2d and 3d.

Example 3.25 (Interpolation during refinement for piecewise qua-
dratic finite elements in 2d). We have to set values for the new vertex in
the refinement edge, and for the two midpoints of the bisected edge. Then we
have to set the value for the midpoint of the common edge of the two children
of the bisected triangle and we have to set the corresponding value on the
neighbor in the case that the refinement edge is not a boundary edge:

void real_refine_inter (DOF_REAL_VEC *drv, RC_LIST_EL *list, int n)
{

FUNC_NAME("real_refine_inter");

EL el = list->el;

int node, nO;

DOF cdof;
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const DOF *pdof ;

const DOF *x (*get_dof_indices) (const EL *, const DOF_ADMIN x,
DOF *);

const DOF_ADMIN *admin = drv->fe_space->admin;

REAL *v = drv->vec;

if (n < 1) return;

get_dof_indices = drv->fe_space->bas_fcts->get_dof_indices;
pdof = (*get_dof_indices) (el, admin, nil);

node = drv->fe_space->mesh->node [VERTEX] ;
n0 = admin->n0_dof [VERTEX] ;

Y T e */
/* newest vertex of child[0] and child[1] */
e ettt e */

cdof = el->child[0]->dof [node+DIM] [nO0];
v[cdof] = v[pdof[5]];

Y e et */
/* midpoint of edge on child[0] at the refinement edge */
Y T et */

node = drv->fe_space->mesh->node [EDGE] ;
n0 = admin->n0_dof [EDGE] ;

cdof = el->child[0]->dof [node] [n0];
v[cdof] = 0.375%v[pdof[0]] - 0.125*v[pdof[1]] + 0.75%v[pdof[5]];

Y et */
/* node in the common edge of child[0] and child[1] */
Y T e e */

cdof = el->child[0]->dof [node+1] [n0];
v[cdof] = -0.125%(v[pdof[0]] + v[pdof[1]]) + 0.25%v[pdof[5]]
+ 0.5*%(v[pdof[3]] + v[pdof[4]1]);

Y e et */
/* midpoint of edge on child[1] at the refinement edge */
Y T et */

cdof = el->child[1]->dof [node+1] [n0];
vlcdof] = -0.125%v[pdof[0]] + 0.375%v[pdof[1]] + 0.75%v[pdof[5]];

if (n > 1)

{
Y et */
/* adjust value at midpoint of the common edge of neigh’s children */
Y e i */

el = list[1].el;
pdof = (*get_dof_indices)(el, admin, nil);

cdof = el->child[0]->dof [node+1] [n0];
v[cdof] = -0.125%(v[pdof [0]] + v[pdof[1]]) + 0.25%v[pdof [5]]
+ 0.5%(v[pdof[3]] + v[pdof[4]11);
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}
return;

}

Example 3.26 (Interpolation during refinement for piecewise qua-
dratic finite elements in 3d). Here, we first have to set values for all DOFs
that belong to the first element of the refinement patch. Then we have to loop
over the refinement patch and set all DOF's that have not previously been set
on another patch element. In order to set values only once, by the variable
1lr_set we check, if a common DOF's with a left or right neighbor is set by the
neighbor. Such values are already set if the neighbor is a prior element in the
list. Since all values are set on the first element for all subsequent elements
there must be DOFs which have been set by another element.

void real_refine_inter (DOF_REAL_VEC *drv, RC_LIST_EL *list, int n)
{
FUNCNAME("real_refine_inter");

EL el = list->el;

const DOF *cdof;

DOF pdof [10], cdofi;

int i, lr_set;

int nodeO, nO;

const DOF * (xget_dof_indices) (const EL *, const DOF_ADMIN x,
DOF %) ;

REAL *v = drv->vec;

const DOF_ADMIN *admin = drv->fe_space->admin;
if (n < 1) return;

get_dof_indices = drv->fe_space->bas_fcts->get_dof_indices;
(*get_dof_indices) (el, admin, pdof);

e e L e e e e e e */
/* values on child[0] */
Y e */

cdof = (*get_dof_indices) (el->child[0], admin, nil);

v[cdof [3]]
v[cdof[6]]
v[cdof [8]]

(v[pdof[41]1);

0.375%v[pdof [01] - 0.125%v[pdof[1]] + 0.75%v[pdof [4]];
(0.125%(-v[pdof [0]] - v[pdof[1]]) + 0.25*v[pdof [4]]

+ 0.5%(v[pdof [6]] + v[pdof[711));

(0.125%(-v[pdof [0]] - v([pdof[1]]) + 0.25xv[pdof[4]]

+ 0.5%(v[pdof [6]] + v[pdof[811));

v[cdof[9]]

e et e e */
/* values on child[1] */
Y et et */

node0 = drv->fe_space->mesh->node [EDGE] ;
n0 = admin->n0_dof [EDGE] ;

cdofi = el->child[1]->dof [node0+2] [n0];
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v[cdofi] = -0.125%v[pdof[0]] + 0.375*v[pdof[1]] + 0.75*v[pdof[4]];

Y e et */
/* adjust neighbour values */
Y ettt */
for (i = 1; i < n; i++)
{

el = list[i].el;
(*get_dof_indices) (el, admin, pdof);

lr_set = 0;
if (list[i].neigh[0] && 1list[i].neigh[0]->no < i)
1lr_set = 1;

if (list[i].neighl[1] && 1list[i].neigh[1]->no < i)
1lr_set += 2;

TEST_EXIT(lr_set) ("no values set on both neighbours\n");

switch (lr_set)
{
case 1:
cdofi = el->child[0]->dof [node0+4] [n0];
vlcdofi] = (0.125%(-v[pdof[0]] - v[pdof[1]]1) + 0.25*v[pdof[4]]
+ 0.5%(v[pdof [6]1] + v[pdof[711));
break;
case 2:
cdofi = el->child[0]->dof [node0+5] [n0];
vlcdofil = (0.1256%(-v[pdof[0]] - v[pdof[1]1]) + 0.25*v[pdof[4]]
+ 0.5%(v[pdof[6]] + v[pdof[811));
}
}
return;

}

3.5.6 Piecewise cubic finite elements

Table 3.9. Local basis functions for cubic finite elements in 1d.

function position Lagrange node
2°(A) = 13X —1)(3X0 —2)Xo | vertex0 | A% = (1,0)
P'(A) = 1(3A1 —1)(3A\1 —2)A1 | vertex1 | A'=(0,1)
Z2(\) = 2(3X0 — 1)AoAs center A2 = (2,3)
Z3(\) = 2(3A1 — 1At Ao center A3 = (3,2)
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Table 3.10. Local basis functions for cubic finite elements in 2d.

function position Lagrange node
() = 13h —1)(Bho —2)ho | vertex 0 | A% = (1,0,0)
BH(A) = 2(3A1 — 1)(3A1 — 2)\q vertex 1 Al = (0,1,0)
() = %(3)\2 —1)(3x2 — 2)A2 vertex 2 A2 =(0,0,1)
> (N) = 3(3M1 — 1A edge 0 =021
FHN) = 332 — 1A edge 0 At =(0,4,2)
955(A) = %(3)\2 —1)A220 edge 1 A\ = (%707 %)
@6(/\) = %(3)\0 —1)AoA2 edge 1 P (%707 %)
@7()\) = %(3)\0 —1)AoA1 edge 2 A = (%7 %70)
@8()\) = %(3)\1 —1)A1ho edge 2 28 = (%7 %70)
P°(A) = 27hoA1r2 center | A°= (L1 1)

201

For Lagrange elements of third order we have four basis functions in 1d, ten
basis functions in 2d, and 20 in 3d; the basis functions and the corresponding
Lagrange nodes in barycentric coordinates are shown in Tables 3.9, 3.10, and

3.11.

For cubic elements we have to face a further difficulty. At each edge two
basis functions are located. The two DOF's of the i—th edge are subsequent
entries in the vector el->dof [i]. For two neighboring triangles the common
edge has a different orientation with respect to the local numbering of vertices
on the two triangles. In Fig. 3.7 the 3rd local basis function on the left and
the 4th on the right triangle built up the global basis function, e.g.; thus, both
local basis function must have access to the same global DOF.

Fig. 3.7. Cubic DOFs on a patch of two triangles.

In order to combine the global DOF with the local basis function in the
implementation of the get_dof_indices() function, we have to give every
edge a global orientation, i.e, every edge has a unique beginning and end
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Table 3.11. Local basis functions for cubic finite elements in 3d.

function position Lagrange node

2°(\) = 23X — 1)(3N0 —2)Xo | vertex 0 /\° = (1,0,0,0)

1) = 2(3A1 — 1)(3A1 — 2)\q vertex 1 =(0,1,0,0)

?°(A) = 2(3A2 —1)(3X2 —2)X2 | vertex 2 ,\2 (0,0,1,0)

@°(A\) = 2(3X3 —1)(3X\3 —2)As | vertex 3 A3 =(0,0,0,1)

2*(A) = 2(3%0 — Ao\ edge 0 A= (2,400
2°(A) = 2(3A1 — 1)A1 Ao edge 0 A =(%,2,0,0)
2°(\) = 2(3%0 — )Xoz edge 1 2 =(2,0,4,0)
?'(\) = 2(3x2 — 1)A2Xo edge 1 N =(3,0,2,0)
?°(A) = 2(3X0 — 1)XoXs edge 2 A8 =(2,0,0,2)
2°(A) = 2(3X3 — 1)AsXo edge 2 A% =(%,0,0,2)
20\ = 2(3M\1 — D)Arhe edge 3 A0 =(0,2,%,0)
21N = 2(3X2 — A2\ edge 3 At =(0,3,2,0)
?2(N) = 2(3M\1 — )A1)s edge 4 A =1(0,2,0,3)
22 (\) = 2(3Xs — DAs\y edge 4 AR =1(0,4,0,2)
P = 2302 — DA2)s edge 5 A =1(0,0,2,3)
@15()‘) = %(3/\3 —1)AzA2 edge 5 A5 = (0,0, %7 %)
P'°(N) = 27TA1A2)3 face 0 A6 = (o, N
B (N) = 27230 face 1 A = (3,0,%, %)
B(N\) = 27TA3 o1 face 2 PR (3,%.0,%)
B(N) = 2TAoA Az face 3 AP = (1110

point. Using the orientation of an edge we are able to order the DOFs stored
at this edge. Let for example the common edge in Fig. 3.7 be oriented from
bottom to top. The global DOF corresponding to 3rd local DOF on the left
and the 4th local DOF on the right is then

el->dof [N_VERTICES+0] [admin->n0_dof [EDGE] ]
and for the 4th local DOF on the left and 3rd local DOF on the right
el->dof [N_VERTICES+0] [admin->n0_dof [EDGE] +1]
The global orientation gives a unique access of local DOF's from global ones.
Example 3.27 (Accessing DOFs for piecewise cubic finite elements).
For the implementation, we use in 2d as well as in 3d an orientation defined by
the DOF indices at the edges’ vertices. The vertex with the smaller (global)
DOF index is the beginning point, the vertex with the higher index the end

point. For cubics the implementation differs between 2d and 3d. In 2d we have
one degree of freedom at the center and in 3d on degree of freedom at each
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face and no one at the center. The DOFs at an edge are accessed according
to the orientation of the edge.

#if DIM ==

#define N_BAS N_VERTICES+2*N_EDGES+1
#endif

#if DIM ==

#define N_BAS N_VERTICES+2*N_EDGES+N_FACES
#endif

const DOF *get_dof_indices(const EL *el, const DOF_ADMIN *admin,

DOF *idof)
{
static DOF index_vec[N_BAS];
DOF *rvec = idof ? idof : index_vec, **dof = el->dof;
int i, j;
/*=—— vertex DOFS ——=—=—————————— o */
for (i = 0; i < N_VERTICES; i++)
rvec[i] = dof[i] [admin->n0_dof [VERTEX]];
/*-—- edge DOFS —————————=——————————— */
for (i = 0, j = N_VERTICES; i < N_EDGES; i++)
{
if (dof [vertex_of_edge[i] [0]1][0] < dof [vertex_of_edge[i] [1]1][0])
{
rvec[j++] = dof [N_VERTICES+i] [admin->n0_dof [EDGE]];
rvec[j++] = dof [N_VERTICES+i] [admin->n0_dof [EDGE]+1];
}
else
{
rvec[j++] = dof [N_VERTICES+i] [admin->n0_dof [EDGE]+1];
rvec[j++] = dof [N_VERTICES+i] [admin->n0_dof [EDGE]];
}
}
#if DIM ==
/*--- face DOFs, only 3d -——-——-——————————————m oo */

for (i = 0; i < N_FACES; i++)
rvec[j++] = dof [N_VERTICES+N_EDGES+i] [admin->n0_dof [FACE]];
#endif
#if DIM ==
/*--— center DOF, only 2d ————————————————————————— */
rvec[j] = dof [N_VERTICES+N_EDGES] [admin->n0_dof [CENTER]] ;
#endif
return((const DOF *) rvec);

}
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3.5.7 Piecewise quartic finite elements

For Lagrange elements of fourth order we have 5 basis functions in 1d, 15 in
2d, and 35 in 3d; the basis functions and the corresponding Lagrange nodes

3 Data structures and implementation

in barycentric coordinates are shown in Tables 3.12, 3.13, and 3.14.

For the implementation of get_dof_indices() for quartics, we again need
a global orientation of the edges on the mesh. At every edge three DOFs
are located, which then can be ordered with respect to the orientation of the
corresponding edge. In 3d, we also need a global orientation of faces for a one
to one mapping of global DOF's located at a face to local DOFs on an element
at that face. Such an orientation can again be defined by DOF indices at the

face’s vertices.

Table 3.12. Local basis functions for quartic finite elements in 1d.

function position Lagrange node
@°(A) = (4xo — 1)(2h0 — 1)(4Xo —3)Xo | vertex O = (1,0)
FH(A) = 2(4h1 — 1)(2X01 — 1)(4XA1 — 3) Xy vertex 1 = (0,1)
P*(\) = 2(4ho — 1)(2h0 — 1)AoA1 center A2 =31
23\ = 4(4>\0 —1)(4\1 — D) AoNs center N=(13)
P*(N) = B (4 — 1)(2A1 — 1)AoAs center M =(13)
Table 3.13. Local basis functions for quartic finite elements in 2d.
function position Lagrange node
@°(\) = (420 — 1)(2X0 — 1)(4Xo — )Xo | vertex 0 A0 = (1,0,0)
PY(A) = 3(4A1 — 1)(221 — 1)(4A1 — 3) A4 vertex 1 A =(0,1,0)
P2(A) = 2(4x2 — 1)(2A2 — 1)(4A2 — 3)A2 | vertex 2 A2 =(0,0,1)
@°(A) = L (4x1 — 1) (201 — DArh2 edge 0 N =(0,31
GHA) = 44X — 1)(4ha — DA )o edge 0 M =(0,11)
@°(\) = L (4x2 — 1)(2A2 — D)Arhe edge 0 A =1(0,1,3)
P°(N) = E(4x2 — 1)(2X2 — 1) Aoz edge 1 A =(10,32)
@ (\) = 4(4h2 — 1)(4x0 — 1) Aoz edge 1 N o=(3,02)
@°(N) = 28(4h0 — 1)(2X0 — 1) Aoz edge 1 N =(201)
@°(A) = L(4x0 — 1)(2X0 — 1)AoA1 edge 2 2= (3,10
BON) = 4(4x0 — 1)(4A1 — DAoNs edge 2 A0 = (3,3,0)
PN = B (4 — 1) (271 — 1)AoAs edge 2 M= (120
@2 (N) = 32(4h0 — 1)AoA1 A2 center A= (3,4
FB3(N) = 32(4A1 — D)AoA1 A2 center A= (111
BH(N) = 32(4h2 — 1)AoA1 A2 center A= (.41
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3.5 Implementation of basis functions

Table 3.14. Local basis functions for quartic finite elements in 3d.
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3.5.8 Access to Lagrange elements

The Lagrange elements described above are already implemented in AL-
BERTA; access to Lagrange elements is given by the function

const BAS_FCTS *get_lagrange(int);

Description:

get_lagrange (degree): returns a pointer to a filled BAS_FCTS structure for
Lagrange elements of order degree, where 0 < degree < 4 for all dimensions;
no additional call of new_bas_fcts() is needed. The entry bas_fcts_data

of the BAS_FCTS structure is a pointer to a (*) [DIM+1] vector of length
n_bas_fcts storing the Lagrange nodes in barycentric coordinates.

3.6 Implementation of finite element spaces

3.6.1 The finite element space data structure

All information about the underlying mesh, the local basis functions, and the
DOFs are collected in the following data structure which defines one single
finite element space:

typedef struct fe_space FE_SPACE;

struct fe_space
{

const char *name;
const DOF_ADMIN *admin;
const BAS_FCTS *bas_fcts;
MESH *mesh;
};
Description:
name: holds a textual description of the finite element space.
admin: pointer to the DOF administration for the DOFs of this finite element
space, see Section 3.3.1.
bas_fcts: pointer to the local basis functions, see Section 3.5.1.
mesh: pointer to the underlying mesh, see Section 3.2.14.
Several finite element spaces can be handled on the same mesh. Different
finite element spaces can use the same DOF administration, if they share
exactly the same DOF's.
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3.6.2 Access to finite element spaces

A finite element space can only be accessed by the function

const FE_SPACE *get_fe_space(MESH *, const char *, const int [DIM+1],
const BAS_FCTS x);

Description:

get _fe _space(mesh, name, n_dof, bas fcts): defines a new finite element
space on mesh; it looks for an existing dof_admin defined on mesh, which
manages DOFs uniquely defined by bas_fcts->dof_admin->n_dof or by
n.dof in case that bas_fcts is nil (compare Section 3.3.1); if such a
dof _admin is not found, a new dof_admin is created;
the return value is a newly created FE_SPACE structure, where name is dupli-
cated, and the members mesh, bas_fcts and admin are adjusted correctly.

The selection of finite element spaces defines the DOFs that must be
present on the mesh elements. For each finite element space there must be a
corresponding DOF administration, having information about the used DOF's.
For the access of a mesh, via the GET_.MESH() routine, all used DOFs, i.e. all
DOF administrations, have to be specified in advance. After the access of a
mesh, no further DOF_ADMIN can be defined (this would correspond to a so
called p-refinement of the mesh, which is not implemented yet). The specifi-
cation of the used DOF's is done via a user defined routine

void init_dof_admins(MESH x*);

which is the second argument of the GETMESH() routine and the func-
tion is called during the initialization of the mesh. Inside the function
init_dof_admins (), the finite element spaces are accessed, which thereby
determine the used DOF's. Since a mesh gives only access to the DOF_ADMINs
defined on it, the user has to store pointers to the FE_SPACE structures in some
global variable; no access to FE_SPACEs is possible via the underlying mesh.

Example 3.28 (Initializing DOFs for Stokes and Navier—Stokes).
Now, as an example we look at a user defined function init_dof_admins().
In the example we want to define two finite element spaces on the mesh, for
a mixed finite element formulation of the Stokes or Navier—Stokes equations
with the Taylor-Hood element, e.g. We want to use Lagrange finite elements
of order degree (for the velocity) and degree — 1 (for the pressure). Pointers
to the corresponding FE_SPACE structures are stored in the global variables
u_fe and p_fe.

static FE_SPACE *u_fe, *p_fe;
static int degree;

void init_dof_admins (MESH *mesh)
{
FUNCNAME ("init_dof_admins");
const BAS_FCTS *lagrange;
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TEST_EXIT (mesh) ("no MESH\n");
TEST_EXIT(degree > 1)("degree must be greater than 1\n");

lagrange = get_lagrange(degree);
u_fe = get_fe_space(mesh, lagrange->name, nil, lagrange);

lagrange = get_lagrange(degree-1);
p_fe = get_fe_space(mesh, lagrange->name, nil, lagrange);

return;

}

An initialization of a mesh with this init_dof_admins () function, will provide
all DOF's for the two finite element spaces on the elements and the correspond-
ing DOF_ADMINs will have information about the access of local DOF's for both
finite element spaces.

It is also possible to define only one or even more finite element spaces;
the use of special user defined basis functions is possible too. These should be
added to the list of all used basis functions by a call of new_bas_fcts() inside
init_dof_admins().

Remark 3.29. For some applications, additional DOF sets, that are not
directly connected to any finite element space may also be defined by
get_fe_space(mesh, name, n_dof, nil). Here, n_dof is a vector storing the
number of DOFs at a VERTEX, EDGE (2d and 3d), FACE (3d), and CENTER that
should be present. An additional DOF set with 1 DOF at each edge in 2d and
face in 3d can be defined in the following way inside the init_dof_admins()
function:

#if DIM ==

int n_dof [DIM+1]
#endif
#if DIM ==

int n_dof [DIM+1]
#endif

{0,1,03};

{0,0,1,0};

#if DIM > 1
face_dof = get_fe_space(mesh, "face dofs", n_dof, nil);
#endif

3.7 Routines for barycentric coordinates

Operations on single elements are performed using barycentric coordinates. In
many applications, the world coordinates x of the local barycentric coordinates
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A have to be calculated (see Section 3.12, e.g.). Some other applications will
need the calculation of barycentric coordinates for given world coordinates
(see Section 3.2.19, e.g.). Finally, derivatives of finite element functions on
elements involve the Jacobian of the barycentric coordinates (see Section 3.9,
e.g.).

In case of a grid with parametric elements, these operations strongly de-
pend on the element parameterization and no general routines can be supplied.
For non—parametric simplices, ALBERTA supplies functions to perform these
basic tasks:

const REAL *coord_to_world(const EL_INFO *, const REAL *, REAL_D);
int world_to_coord(const EL_INFO *, const REAL *, REAL [DIM+1]);
REAL el_grd_lambda(const EL_INFO *, REAL [DIM+1] [DIM_OF_WORLD]);
REAL el_det(const EL_INFO *);

REAL el_volume(const EL_INFO *);

Description:

coord_to_world(el_info, lambda, world): returns a pointer to a vector,
which contains the world coordinates of a point in barycentric coordinates
lambda with respect to the element el_info->el;
if world is not nil the world coordinates are stored in this vector; otherwise
the function itself provides memory for this vector; in this case the vector is
overwritten during the next call of coord_to_world();

world_to_coord(el_info, world, lambda): calculates the barycentric co-
ordinates with respect to the element el_info->el of a point with world
coordinates world and stores them in the vector given by lambda. The re-
turn value is -1 when the point is inside the simplex (or on its boundary),
otherwise the index of the barycentric coordinate with largest negative value
(between 0 and DINM;

el grd lambda(el_info, Lambda): calculates the Jacobian of the barycen-
tric coordinates on el_info->el and stores the matrix in Lambda; the return
value of the function is the absolute value of the determinant of the affine
linear parameterization’s Jacobian;

el det(el_info): returns the the absolute value of the determinant of the
affine linear parameterization’s Jacobian;
the function el_det () needs vertex coordinates information; thus, the flag
FILL_COORDS has to be set during mesh traversal when calling this routine
on elements.

el_volume(el_info): returns the the volume of the simplex.

All functions need vertex coordinates information; thus, the flag FILL_COORDS
has to be set during mesh traversal when calling one of the above described
routine on elements.
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3.8 Data structures for numerical quadrature

For the numerical calculation of general integrals

/Sf(:t) dx

we use quadrature formulas described in 1.4.6. ALBERTA supports numerical
integration in one, two, and three dimensions on the standard simplex S in
barycentric coordinates.

3.8.1 The QUAD data structure

A quadrature formula is described by the following structure, which is defined
both as type QUAD and QUADRATURE:

typedef struct quadrature QUAD;

typedef struct quadrature QUADRATURE;

struct quadrature

{
char *name;
int degree;
int dim;
int n_points;
const double **lambda;
const double *w;

};

Description:

name: textual description of the quadrature;
degree: quadrature is exact of degree degree;
dim: quadrature for dimension dim;

n_points: number of quadrature points;

lambda: vector lambdal0],...,lambda[n points-1] of quadrature points
given in barycentric coordinates (thus having DIM+1 components);

w: vector w[0],...,w[n_points-1] of quadrature weights.

Currently, numerical quadrature formulas exact up to order 19 in one (Gauss
formulas), up to order 17 in two, up to order 7 in three dimensions are imple-
mented. We only use stable formulas; this results in more quadrature points
for some formulas (for example in 3d the formula which is exact of degree 3).
A compilation of quadrature formulas on triangles and tetrahedra is given in
[26]. The implemented quadrature formulas are taken from [34, 39, 42, 68].
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Functions for numerical quadrature are

const QUAD *get_quadrature(unsigned dim, unsigned degree);
const QUAD *get_lumping_quadrature(unsigned dim);
REAL integrate_std_simp(const QUAD *quad, REAL (*f)(const REAL *));

Description:

get_quadrature(dim, degree): returns a pointer to a filled QUAD data
structure for numerical integration in dim dimensions which is exact
of degree min(19,degree) for dim==1, min(17,degree) for dim==2, and
min(7,degree) for dim==3.

get_lumping quadrature(dim): returns a pointer to a QUAD structure for
numerical integration in dim dimensions which implements the mass lumping
(or vertex) quadrature rule.

integrate_std_simp(quad, f): approximates an integral by the numerical
quadrature described by quad;
f is a pointer to a function to be integrated, evaluated in barycentric coor-
dinates; the return value is

quad->n_points-1

> quad->wlk] * (*f) (quad->lambda [k]);
k=0

for the approximation of jS f we have to multiply this value with d!|S| for
a simplex S; for a parametric simplex, £ should be a pointer to a function
which calculates f(X)|det DFs(Z(M))].

The following functions initialize values and gradients of functions at the
quadrature nodes:

const REAL *f_at_qp(const QUAD *, REAL (%) (const REAL [DIM+1]),
REAL *);
const REAL_D *grd_f_at_gp(const QUAD *,
const REAL *(*) (const REAL [DIM+1]),
REAL_D *vec);
const REAL_D *f_d_at_qgp(const QUAD *,
const REAL *(*) (const REAL[DIM+1]),
REAL_D *);
const REAL_DD *grd_f_d_at_qp(const QUAD =*,
const REAL_D *(*) (const REAL [DIM+1]),
REAL_DD *);

Description:

f_at_gqp(quad, f, vec): returns a pointer ptr to a vector storing the values
of a REAL valued function at all quadrature points of quad; the length of
this vector is quad->n_points; £ is a pointer to that function, evaluated
in barycentric coordinates; if vec is not nil, the values are stored in this
vector, otherwise the values are stored in some static local vector, which is
overwritten on the next call;
ptrli]=(*f) (quad->lambdal[i]) for 0 < i < quad->n_points.
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grd f_at_qp(quad, grd f, vec): returns a pointer ptr to a vector of length
quad->n_points storing the gradient (with respect to world coordinates) of
a REAL valued function at all quadrature points of quad;
grd_f is a pointer to a function, evaluated in barycentric coordinates and
returning a pointer to a vector of length DIM_OF _WORLD storing the gradient;
if vec is not nil, the values are stored in this vector, otherwise the values
are stored in some local static vector, which is overwritten on the next call;
ptr[il [j1=(*grdf) (quad->lambdali]) [j], for 0 < j < DIM_OF_WORLD
and 0 < i < quad->n_points,

f d_at_gp(quad, fd, vec): returns a pointer ptr to a vector of length
quad->n_points storing the values of a REAL D valued function at all quadra-
ture points of quad;
fd is a pointer to that function, evaluated in barycentric coordinates and re-
turning a pointer to a vector of length DIM_0F_WORLD storing all components;
if the second argument val of (*fd) (lambda, val) is not nil, the values
have to be stored at val, otherwise £d has to provide memory for the vector
which may be overwritten on the next call;
if vec is not nil, the values are stored in this vector, otherwise the values
are stored in some static local vector, which is overwritten on the next call;
ptrl[il [j1=(*£fd) (quad->lambda[i],val) [j], for for values 0 < j <
DIM_OF _WORLD and 0 < i < quad->n_points.

grd_f_d_at_gp(quad, grd_fd, vec): returns a pointer ptr to a vector of
length quad->n_points storing the Jacobian (with respect to world coor-
dinates) of a REAL D valued function at all quadrature points of quad;
grd_fd is a pointer to a function, evaluated in barycentric coordinates and
returning a pointer to a matrix of size DIM_OF_WORLD xDIM_OF _WORLD stor-
ing the Jacobian; if the second argument val of (*grd fd) (x, val) is not
nil, the Jacobian has to be stored at val, otherwise grd_fd has to provide
memory for the matrix which may be overwritten on the next call;
if vec is not nil, the values are stored in this vector, otherwise the values
are stored in some static local vector, which is overwritten on the next call;
ptr[i] [j] [k]=(*grd £d) (quad->lambda[i],val) [j] [k], for 0 < j,k <
DIM_OF _WORLD and 0 < i < quad->n_points,

3.8.2 The QUAD_FAST data structure

Often numerical integration involves basis functions, such as the assembling
of the system matrix and right hand side, or the integration of finite element
functions. Since numerical quadrature involves only the values at the quadra-
ture points and the values of basis functions and its derivatives (with respect
to barycentric coordinates) are the same at these points for all elements of the
grid, such routines can be much more efficient, if they can use pre—computed
values of the basis functions at the quadrature points. In this case the basis
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functions do not have to be evaluated for each quadrature point newly on
every element.
Information that should be pre—computed can be specified by the following
symbolic constants:
INIT_PHI

INIT_GRD_PHI
INIT_D2_PHI

Description:

INIT_PHI: pre—compute the values of all basis functions at all quadrature
nodes;

INIT_GRD_PHI: pre—compute the gradients (with respect to the barycentric
coordinates) of all basis functions at all quadrature nodes;

INIT D2 PHI: pre—compute all 2nd derivatives (with respect to the barycen-
tric coordinates) of all basis functions at all quadrature nodes.

In order to store such information for one set of basis functions we define the
data structure

typedef struct quad_fast QUAD_FAST;

struct quad_fast

{

const QUAD *quad ;

const BAS_FCTS *bas_fcts;

int n_points;

int n_bas_fcts;

const double *W ;

U_CHAR init_flag;

REAL *%*phi ;

REAL (xxgrd_phi) [DIM+1];

REAL (*+D2_phi) [DIM+1] [DIM+1];
};

The entries yield following information:

quad: values stored for numerical quadrature quad;

bas_fcts: values stored for basis functions bas_fcts;

n_points: number of quadrature points; equals quad->n_points;
n_bas_fcts: number of basis functions; equals bas_fcts->n_bas_fcts;
w: vector of quadrature weights; w = quad->w;

init_flag: indicates which information is initialized; may be one of, or a
bitwise OR of several of INIT_PHI, INIT_GRD_PHI, INIT_D2_PHT;
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phi: matrix storing function values if the flag INIT_PHI is set;
phi[i] [j] stores the value bas_fcts->phi[j] (quad->lambdali]),0 < j <
n_bas _fcts and 0 < i < n_points;

grd_phi: matrix storing all gradients (with respect to the barycentric coor-
dinates) if the flag INIT_GRD_PHI is set;
grd phil[i]l [j1[k] = bas_fcts->grd_philj](quad->lambdali]) [k] for
0 <j<nbasfcts, 0 <i<npoints, and 0 <k < DIV;

D2_phi: matrix storing all second derivatives (with respect to the barycentric
coordinates) if the flag INIT_D2_PHI is set;
D2_phi[i] [j] [k] [1] = bas_fcts->D2_philj](quad->lambdalil) [k] [1]
for 0 < j <nbas_fcts, 0 <i <npoints, and 0 <k,1 <DIM

A filled structure can be accessed by a call of

const QUAD_FAST *get_quad_fast(const BAS_FCTS *, const QUAD *,
U_CHAR) ;

Description:

get_quad fast(bas_fcts, quad, init_flag): bas_fcts is a pointer to a
filled BAS_FCTS structure, quad a pointer to some quadrature (accessed by
get_quadrature(), e.g.) and init_flag indicates which information should
be filled into the QUAD_FAST structure; it may be one of, or a bitwise OR
of several of INIT_PHI, INIT_GRD_PHI, INIT_D2_PHI; the function returns a
pointer to a filled QUAD_FAST structure where all demanded information is
computed and stored.

All used QUAD_FAST structures are stored in a linked list and are identi-
fied uniquely by the members quad and bas_fcts; first, get_quad fast()
looks for a matching structure in the linked list; if no structure is found, a
new structure is generated and linked to the list; thus for one combination
bas_fcts and quad only one QUAD_FAST structure is created.

Then get_quad_fast () allocates memory for all information demanded by
init_flag and which is not yet initialized for this structure; only such infor-
mation is then computed and stored; on the first call for bas_fcts and quad,
all information demanded init_flag is generated, on a subsequent call only
missing information is generated.

get_quad _fast() will retwrn a nil pointer, if INIT PHI flag is set and
bas_fcts->phi is nil, INIT_GRD_PHI flag is set and bas_fcts->grd phi is
nil, and INIT D2 _PHI flag is set and bas_fcts->D2_phi is nil.

There may be several QUAD_FAST structures in the list for the same set of
basis functions for different quadratures, and there may be several QUAD_FAST
structures for one quadrature for different sets of basis functions.

The function get_quad fast () should not be called on each element during
mesh traversal, because it has to look in a list for an existing entry for a set
of basis functions and a quadrature; a pointer to the QUAD_FAST structure
should be accessed before mesh traversal and stored in some global variable
for instance.
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Many functions using the QUAD_FAST structure need vectors for storing
values at all quadrature points; for these functions it can be of interest to get
the count of the maximal number of quadrature nodes used by the all ini-
tialized quad_fast structures in order to avoid several memory reallocations.
This count can be accessed by the function

int max_quad_points(void);

Description:

max_quad_points(): returns the maximal number of quadrature points for
all yet initialized quad_fast structures; this value may change after a new
initialization of a quad_fast structures;
this count is not the maximal number of quadrature points of all used QUAD
structures, since new quadratures can be used at any time without an ini-
tialization.

3.8.3 Integration over sub—simplices (edges/faces)

The weak formulation of non-homogeneous Neumann or Robin boundary val-
ues needs integration over DIM-1 dimensional boundary simplices of DIM di-
mensional mesh elements, and the evaluation of jump residuals for error esti-
mators (compare Sections 1.5, 3.14) needs integration over all interior DIM-1
dimensional sub—simplices. The quadrature formulas and data structures de-
scribed above are available for any d dimensional simplex, d = 0,1, 2,3. So,
the above task can be accomplished by using a DIM—1 dimensional quadrature
formula and augmenting the corresponding DIM dimensional barycentric coor-
dinates of quadrature points on edges/faces to DIM+1 dimensional coordinates
on adjacent mesh elements.

When an integral over an edge/face involves values from both adjacent
elements (in the computation of jump residuals e. g.) it is necessary to have a
common orientation of the edge/face from both elements. Only a common ori-
entation of the edges/faces ensures that augmenting DIM dimensional barycen-
tric coordinates of quadrature points on the edge/face to DIM+ 1 dimensional
barycentric coordinates on the adjacent mesh elements results in the same
points from both sides. Additionally, the calculation of Gram’s determinant
for the DIM — 1 dimensional transformation as well as edge/face normals is
needed. The following routines give such information.

const int *sort_face_indices(const EL *, int, int *);
REAL get_face_normal(const EL_INFO *, int , REAL *);

Description:

sort_face_indices(el, i, vec): calculates a unique ordering of local ver-
tex indices for the side (vertex/edge/face) opposite the i-th vertex of mesh
element el. These indices give the same ordering of vertices from both ad-
jacent mesh element, thus the barycentric coordinates of a quadrature point
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(for DIM — 1 dimensional quadrature) may be transformed into the same
vertex/edge/face points from both sides.

get_face normal(el_info, i, normal): calculates the outer unit normal
vector for the side (vertex/edge/face) opposite the i-th vertex of element
el_info->el and stores it in normal. get_face normal() needs coordinate
information filled in the el_info structure. The return value is Gram’s deter-
minant of the transformation from the DIM—1 dimensional reference element.

3.9 Functions for the evaluation of finite elements

Finite element functions are evaluated locally on single elements using
barycentric coordinates (compare Section 1.4.3). ALBERTA supplies several
functions for calculating values and first and second derivatives of finite ele-
ment functions on single elements. Functions for the calculation of derivatives
are currently only implemented for (non—parametric) simplices.

Recalling (1.4.3) on page 30 we obtain for the value of a finite element
function uy on an element S

up(z(N)) = Zug @' (\) forall A € S,
i=1
where (@1, e gbm) is a basis of P and (uls, - ,u’sn) the local local coefficient

vector of up on S. Derivatives are evaluated on S by

Vup(z(N) = AD us Vg’ (),  AeS

=1

and

D?up(z(N) = A" ug D3p'(N)4,  N€eS,
=1

where A is the Jacobian of the barycentric coordinates, compare Section 1.4.3.

These formulas are used for all evaluation routines. Information about
values of basis functions and their derivatives can be calculated via function
pointers in the BAS_FCTS structure. Additionally, the local coefficient vector
and the Jacobian of the barycentric coordinates are needed (for the calculation
of derivatives).

The following routines calculate values of a finite element function at a
single point, given in barycentric coordinates:

REAL eval_uh(const REAL [DIM+1], const REAL *, const BAS_FCTS *);

const REAL *eval_grd_uh(const REAL [DIM+1], const REAL_D [DIM+1],
const REAL *, const BAS_FCTS *, REAL_D);

const REAL_D *eval_D2_uh(const REAL [DIM+1], const REAL_D [DIM+1],
const REAL *, const BAS_FCTS *, REAL_DD);
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const REAL *eval_uh_d(const REAL [DIM+1], const REAL_D x*,
const BAS_FCTS *, REAL_D);
const REAL_D *eval_grd_uh_d(const REAL [DIM+1], const REAL_D [DIM+1],
const REAL_D *, const BAS_FCTS x*,
REAL_DD) ;
REAL eval_div_uh_d(const REAL [DIM+1], const REAL_D [DIM+1],
const REAL_D *, const BAS_FCTS x*);
const REAL_DD *eval_D2_uh_d(const REAL [DIM+1], const REAL_D [DIM+1],
const REAL_D *, const BAS_FCTS *,
REAL_DD *);

Description:

In the following lambda = A are the barycentric coordinates at which
the function is evaluated, Lambda = A is the Jacobian of the barycentric
coordinates, uh the local coefficient vector (u,...,u% ') (where u} is a REAL
or a REALD), and bas_fcts is a pointer to a BAS_FCTS structure, storing
information about the set of local basis functions ((,270, cee @‘“—1).

All functions returning a pointer to a vector or matrix provide memory for
the vector or matrix in a static local variable. This area is overwritten during
the next call. If the last argument of such a function is not nil, then memory
is provided by the calling function, where values must be stored (optional
memory pointer). These values are not overwritten. The memory area must
be of correct size, no check is performed.

eval uh(lambda, uh, bas_fcts): the function returns up(\).
eval_grd_uh(lambda, Lambda, uh, bas_fcts, grd): returns a pointer ptr
to a vector of length DIM_OF WORLD storing Vup(A), i.e.
ptrlil =up ., (N), i=0,...,DIM_.OF_WORLD — 1;

grd is an optional memory pointer.

eval D2 uh(lambda, Lambda, uh, bas_fcts, D2): the function returns a
pointer ptr to a matrix of size (DIM_OF WORLD x DIM_OF WORLD) storing
D2uh(/\), i.e.

prr (11 (5] = p 4y0s (V) i,j=0,...,DIM_OF_WORLD — 1;

D2 is an optional memory pointer.

eval uh d(lambda, uh, bas_fcts, val): the function returns a pointer
ptr to a vector of length DIM_OF_WORLD storing up (M), i.e.

ptr k] = upx(N), k=0,...,DIM_OF_WORLD — 1;

val is an optional memory pointer.

eval grd uh d(lambda, Lambda, uh, bas_fcts, grd): returns a pointer
ptr to a matrix of size (DIM_OF_WORLD x DIM_OF_WORLD) storing Vup(A), i.e.

ptr(k] [i] = upy,,(A),  k,i=0,...,DIM.OF_WORLD — I;

grd is an optional memory pointer.
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eval div_uh d(lambda, Lambda, uh, bas_fcts): returns divup(A).

eval D2_uh(lambda, Lambda, uh, bas_fcts, D2): the function returns a
pointer ptr to a vector of (DIM_OF _WORLD x DIM_OF_WORLD) matrices of length
DIM_OF _WORLD storing D?up()), i.e.

ptr [kl [1][3] = uney0;(A),  k.i,j=0,...,DIN.OF WORLD — 1;

D2 is an optional memory pointer;

Using pre—computed values of basis functions at the evaluation point, these
routines can be implemented more efficiently.

REAL eval_uh_fast(const REAL *, const REAL *, int);
const REAL *eval_grd_uh_fast(const REAL_D [DIM+1], const REAL *,
const REAL (*)[DIM+1], int , REAL_D);
const REAL_D *eval_D2_uh_fast(const REAL_D [DIM+1], const REAL *,
const REAL (*)[DIM+1] [DIM+1], int ,
REAL_DD) ;
const REAL *eval_uh_d_fast(const REAL_D *, const REAL *, int,
REAL_D);
const REAL_D *eval_grd_uh_d_fast(const REAL_D [DIM+1],
const REAL_D *,
const REAL (x) [DIM+1], int,
REAL_DD) ;
REAL eval_div_uh_d_fast(const REAL_D [DIM+1], const REAL_D =,
const REAL () [DIM+1], int);
const REAL_DD *eval_D2_uh_d_fast(const REAL_D [DIM+1],
const REAL_D *,
const REAL (x)[DIM+1] [DIM+1],
int, REAL_DD *);

Description:
In the following Lambda = A denotes the Jacobian of the barycentric co-
ordinates, uh the local coefficient vector (uos, e ,u';l) (where uY is a REAL

or a REAL D), and m the number of local basis functions on an element.
eval uh fast(uh, phi, m): the function returns uy());
phi is a vector storing the values @°(\), ..., @ 1(\).
eval _grd uh fast(Lambda, uh, grd phi, m, grd): the function returns a
pointer ptr to a vector of length DIM_OF WORLD storing Vup (), i.e.

ptrlil = up 4, (N), i=0,...,DIM_OF WORLD — 1;

grd_phi is a vector of (DIM+ 1) vectors storing VA@"()), ..., VA@® 1()\); grd
is an optional memory pointer.

eval D2_uh fast(Lambda, uh, D2_phi, m, D2): returns a pointer ptr to a
matrix of size (DIM_OF _WORLD x DIM_OF WORLD) storing D?uy (M), i.e.

ptr (11031 = un oy, (V) i,j=0,...,DIM_OF_WORLD — 1;
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D2_phi is a vector of (DIM+ 1 xDIM+1) matrices storing the second derivatives

D3@°(N), ..., D3¢ 1()\); D2 is an optional memory pointer.
eval uh d fast(uh, phi, m, val): the function returns a pointer ptr to a

vector of DIM_OF _WORLD vectors of length DIM_OF _WORLD storing Vup (M), i.e.

ptrlk] [i] = upy,,(\),  ki=0,...,DIM OF WORLD — I;
phi is a vector storing the values ¢%(\),..., " 1()\); val is an optional
memory pointer.

eval _grd uh d fast(Lambda, uh, grd phi, m, grd): the function returns
a pointer ptr to a vector of DIM_OF _WORLD vectors of length DIM_OF_WORLD
storing Vup (), i.e.

ptr k] [1] = uny 4, (N), k,i=0,...,DIM_OF_WORLD — 1;

grd_phi is a vector of (DIM+ 1) vectors storing VA@"()), ..., VA@® 1()\); grd
is an optional memory pointer.
eval div_uh d fast(Lambda, uh, grd_phi, m): returns divup(A);
grd_phi is a vector of (DIM + 1) vectors storing VA@’(\), ..., Va@™ 1(\).
eval D2 uh d fast(Lambda, uh, D2 phi, m, D2): the function returns a
pointer ptr to a vector of (DIM_OF _WORLD x DIM_OF_WORLD) matrices of length
DIM_OF WORLD storing D?uy (M), i.e.

ptr (k] [11[5] = nyeyr; (), k4, =0,...,DIM.OF WORLD — 1;

D2_phi is a vector of (DIM+ 1 xDIM+1) matrices storing the second derivatives
D3g(N), ..., D2,@g™ 1 (\); D2 is an optional memory pointer.

One important task is the evaluation of finite element functions at all
quadrature nodes for a given quadrature formula. Using the QUAD_FAST data
structures, the values of the basis functions are known at the quadrature
nodes which results in an efficient calculation of values and derivatives of
finite element functions at these quadrature points.

const REAL *uh_at_qgp(const QUAD_FAST *, const REAL *, REAL *);

const REAL_D *grd_uh_at_gp(const QUAD_FAST #*, const REAL_D [DIM+1],
const REAL *, REAL_D *);

const REAL_DD *D2_uh_at_gp(const QUAD_FAST #*, const REAL_D [DIM+1],
const REAL *, REAL_DD *);

const REAL_D *uh_d_at_gp(const QUAD_FAST *, const REAL_D *,
REAL_D *);
const REAL_DD *grd_uh_d_at_qp(const QUAD_FAST =,
const REAL_D [DIM+1],
const REAL_D *, REAL_DD *);
const REAL *div_uh_d_at_gp(const QUAD_FAST *, const REAL_D [DIM+1],
const REAL_D *, REAL *);
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const REAL_DD (*D2_uh_d_at_gp(const QUAD_FAST x,
const REAL_D [DIM+1], const REAL_D *,
REAL_DD (*) [DIM_OF_WORLD])
) [DIM_OF_WORLD] ;

Description: In the following, uh denotes a given local coefficient vector

(ul,...,u% ") (where uf is a REAL or a REAL D) on an element. We use lambda

for the quadrature nodes of quad_fast and n_points for their number.

uh_at_gp(quad_fast, uh, val): the function returns a pointer ptr to a vec-
tor of length n_points storing the values of uj at all quadrature points of
quad_fast->quad, i.e.

ptr[1l] = up(lambdall]), 1=0,...,npoints — 1;

the INIT_PHI flag must be set in quad fast->init flag; val is an optional
memory pointer.

grd_uh_at_gp(quad_fast, Lambda, uh, grd): returns a pointer ptr to a
vector of length n_points of DIM_OF _WORLD vectors storing Vuy, at all quadra-
ture points of quad_fast->quad, i.e.

ptr[1][i] = up ,, (lambda[l])

for 1 = 0,...,npoints — 1, and i = 0,...,DIM.OF WORLD — 1; the
INIT_GRD_PHI flag must be set in quad fast->init flag; grd is an optional
memory pointer.

D2_uh_at_gp(quad_fast, Lambda, uh, D2): returns a pointer ptr to a vec-
tor of length n_points of (DIM_OF _WORLD x DIM_OF _WORLD) matrices storing
D?uy, at all quadrature points of quad_fast->quad, i.e.

ptrl1][i]1[j] = Uh gy (lambda[1])

for indices 1 =0,...,n points — 1, and i,j = 0,...,DIM_OF WORLD — 1; the
INIT D2 PHI flag must be set in quad_fast->init_flag; D2 is an optional
memory pointer.

uh_d_at_gp(quad fast, uh, val): the function returns a pointer ptr to a
vector of length n_points of DIM_OF _WORLD vectors storing the values of uy,
at all quadrature points of quad fast->quad, i.e.

ptr[1] [k] = upy(lambdal1])

where 1 = 0,...,n_points — 1, and k¥ = 0,...,DIM_OF_WORLD — 1; the
INIT PHI flag must be set in quad_fast->init flag; val is an optional
memory pointer.

grd_uh d_at_gp(quad_fast, Lambda, uh, grd): returns a pointer ptr to a
vector of length n_points of (DIM_OF_WORLD x DIM_OF _WORLD) matrices storing
Vuy, at all quadrature points of quad_fast->quad, i.e.
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ptr[1] k] [i] = upy ., (Lambda[1])

where 1 = 0,...,n_points — 1, and k,i = 0,...,DIM_OF_WORLD — 1; the
INIT_GRD_PHI flag must be set in quad_fast->init _flag; grd is an optional
memory pointer.

D2_uh d_at_gp(quad_fast, Lambda, uh, D2): returns a pointer ptr to a
vector of tensors of length n_points storing D?uy, at all quadrature points of
quad_fast->quad; the tensors are of size (DIM_OF_WORLD x DIM_OF _WORLD X
DIM_OF WORLD):

ptr[1] k] [i]1[j] = Uhk,z;a (lambdal[1])

where 1 = 0,...,n_points — 1, and k,i,j = 0,...,DIM_OF_WORLD — 1; the
INIT D2 PHI flag must be set in quad fast->init flag; D2 is an optional
memory pointer;

3.10 Calculation of norms for finite element functions

ALBERTA supplies functions for the calculation of the L? norm and H' semi-
norm of a given scalar or vector valued finite element function, currently only
implemented for non—parametric meshes.

REAL H1_norm_uh(const QUAD *, const DOF_REAL_VEC x*);
REAL L2_norm_uh(const QUAD *, const DOF_REAL_VEC x*);
REAL H1_norm_uh_d(const QUAD *, const DOF_REAL_D_VEC x*);
REAL L2_norm_uh_d(const QUAD *, const DOF_REAL_D_VEC x*);

Description:

Hi_normuh(quad, uh): returns an approximation to the H' semi norm of
a finite element function, i.e. ([, |Vua|?)!/?; the coefficient vector of the
vector is stored in uh; the domain is given by uh->fe_space->mesh; the
element integrals are approximated by the numerical quadrature quad,
if quad is not nil; otherwise a quadrature which is exact of degree
2xuh->fe_space->bas_fcts->degree-2 is used.

L2 normuh(quad, uh): returns an approximation to the L? norm of a fi-
nite element function, i.e. ([, |up|?)*/?; the coefficient vector of the vec-
tor is stored in uh; the domain is given by uh->fe_space->mesh; the
element integrals are approximated by the numerical quadrature quad,
if quad is not nil; otherwise a quadrature which is exact of degree
2xuh->fe_space->bas_fcts->degree is used.

Hi_normuh_d(quad, uh_d): returns an approximation to the H' semi norm
of a vector valued finite element function; the coefficient vector of the
vector is stored in uh_d; the domain is given by uh_d->fe_space->mesh,;
the element integrals are approximated by the numerical quadrature quad,
if quad is not nil; otherwise a quadrature which is exact of degree
2xuh_d->fe_space->bas_fcts->degree-2 is used.
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L2 normuh_d(quad, uh_d): returns an approximation to the L? norm of
a vector valued finite element function; the coefficient vector of the vec-
tor is stored in uh_d; the domain is given by uh_d->fe_space->mesh; the
element integrals are approximated by the numerical quadrature quad,
if quad is not nil; otherwise a quadrature which is exact of degree
2xuh_d->fe_space->bas_fcts->degree is used;

3.11 Calculation of errors of finite element
approximations

For test purposes it is convenient to calculate the “exact error” between a finite
element approximation and the exact solution. ALBERTA supplies functions
to calculate the error in several norms. For test purposes, the integral error
routines may be used as “error estimators” in an adaptive method. The local
element error [ |V(u—up)|? or [g|u—us|? can be used as an error indicator
and can be stored on the element leaf data, e.g.

REAL max_err_at_qp(REAL (%) (const REAL_D), const DOF_REAL_VEC x,
const QUAD x*);
REAL H1_err(const REAL *(*) (const REAL_D), const DOF_REAL_VEC x*,
const QUAD *, int, REAL *(*)(EL *), REAL *);
REAL L2_err(REAL (*) (const REAL_D), const DOF_REAL_VEC *,
const QUAD *, int, REAL *(*)(EL *), REAL *);
REAL max_err_d_at_gp(const REAL *(*)(const REAL_D, REAL_D),
const DOF_REAL_D_VEC *, const QUAD *);
REAL H1_err_d(const REAL_D *(*)(const REAL_D, REAL_DD),
const DOF_REAL_D_VEC *, const QUAD *, int,
REAL *(*) (EL *), REAL *);
REAL L2_err_d(const REAL *(*)(const REAL_D, REAL_D),
const DOF_REAL_D_VEC *, const QUAD *, int,
REAL *(*) (EL *), REAL *);

Description:

max_err_at_qp(u, uh, quad): returns the maximal error, max |u — up|, be-
tween the true solution and the approximation at all quadrature nodes
on all elements of a mesh; u is a pointer to a function for the evalua-
tion of the true solution, uh stores the coefficients of the approximation,
uh->fe_space->mesh is the underlying mesh, and quad is the quadrature
which gives the quadrature nodes; if quad is nil, a quadrature which is
exact of degree 2¥uh->fe_space->bas fcts->degree-2 is used.

Hl_err(grdu, uh, quad, rel_err, rwel_err, max): returns an approx-
imation to the absolute error ([, [V(u — up)[?)/? (if rel_err is false) or
relative error ([, |V(u — un)[?/ [, |Vu|?)/? (if rel_err is true) between
the true solution and the approximation in the H' semi norm;
grd_u is a pointer to a function for the evaluation of the gradient of the
true solution returning a DIM_OF _WORLD vector storing this gradient, uh
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stores the coefficients of the approximation, uh->fe_space->mesh is the un-
derlying mesh, and quad is the quadrature for the approximation of the
element integrals; if quad is nil, a quadrature which is exact of degree
2xuh->fe_space->bas_fcts->degree-2 is used;

if rw_el_err is not nil, the return value of (*rw_el_err) (el) provides for
each mesh element el an address where the local error is stored; if max is
not nil, *max is the maximal local error on an element on output.

L2_err(u, uh, quad, rel err, rwel_err, max): the function returns an
approximation to the absolute error ([, [u — up|?)'/? (if rel_err is false)
or the relative error ([, [u — upn|?/ [, |u*)}/? (if rel_err is true) between
the true solution and the approximation in the L? norm,

u is a pointer to a function for the evaluation of the true solution, uh
stores the coefficients of the approximation, uh->fe_space->mesh is the un-
derlying mesh, and quad is the quadrature for the approximation of the
element integrals; if quad is nil, a quadrature which is exact of degree
2xuh->fe_space->bas_fcts->degree-2 is used;

if rw_el_err is not nil, the return value of (*rw_el_err) (el) provides for
each mesh element el an address where the local error is stored; if max is
not nil, *max is the maximal local error on an element on output.

max_err_at_qp-d(u.d, uh d, quad): the function returns the maximal error
between the true solution and the approximation at all quadrature nodes
on all elements of a mesh; u_d is a pointer to a function for the eval-
uation of the true solution returning a DIM_OF_WORLD vector storing the
value of the function, uh_d stores the coeflicients of the approximation,
uh_d->fe_space->mesh is the underlying mesh, and quad is the quadrature
which gives the quadrature nodes; if quad isnil, a quadrature which is exact
of degree 2*¥uh_d->fe_space->bas_fcts->degree-2 is used.

Hil err2 d(grdu.d, uh.d, quad, rel_err, rw_el_err, max): returnsan
approximation to the absolute error (if rel_err is false) or relative error
(if rel_err is true) between the true solution and the approximation in the
H' semi norm;
grdud is a pointer to a function for the evaluation of the Jacobian
of the true solution returning a DIM_OF WORLD x DIM_OF WORLD matrix
storing this Jacobian, uh_d stores the coefficients of the approximation,
uh_d->fe_space->mesh is the underlying mesh, and quad is the quadrature
for the approximation of the element integrals; if quad is nil, a quadrature
which is exact of degree 2*¥uh_d->fe_space->bas fcts->degree-2 is used;
if rw_el_err is not nil, the return value of (*rw_el_err) (el) provides for
each mesh element el an address where the local error is stored; if max is
not nil, *max is the maximal local error on an element on output.

L2_err2.d(ud, uhd, quad, rel err, rwel err, max): the function re-
turns an approximation to the absolute error (if rel_err is false), or the
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relative error (if rel_err is true) between the true solution and the approx-
imation in the L? norm;

u_d is a pointer to a function for the evaluation of the true solution return-
ing a DIM_OF WORLD vector storing the value of the function, uh_d stores
the coefficients of the approximation, uh_d->fe_space->mesh is the un-
derlying mesh, and quad is the quadrature for the approximation of the
element integrals; if quad is nil, a quadrature which is exact of degree
2xuh_d->fe_space->bas_fcts->degree-2 is used,;

if rw_el_err is not nil, the return value of (*rw_el_err) (el) provides for
each mesh element el an address where the local error is stored; if max is
not nil, *max is the maximal local error on an element on output.

3.12 Tools for the assemblage of linear systems

This section describes data structures and subroutines for matrix and vector
assembly. Section 3.12.1 presents basic routines for the update of global matri-
ces and vectors by adding contributions from one single element. Data struc-
tures and routines for global matrix assembly are described in Section 3.12.2.
This includes library routines for the efficient implementation of a general
second order linear elliptic operator. Section 3.12.3 presents data structures
and routines for the handling of pre—computed integrals, which are used to
speed up calculations in the case of problems with constant coefficients. The
assembly of (right hand side) vectors is described in Section 3.12.4. The in-
corporation of Dirichlet boundary values into the right hand side is presented
in Section 3.12.5. Finally, routines for generation of interpolation coefficients
are described in Section 3.12.6.

3.12.1 Assembling matrices and right hand sides

The usual way to assemble the system matrix and the load vector is to loop
over all (leaf) elements, calculate the local element contributions and add
these to the global system matrix and the global load vector. The updating of
the load vector is rather easy. The contribution of a local degree of freedom
is added to the value of the corresponding global degree of freedom. Here we
have to use the function js defined on each element S in (1.4) on page 30. It
combines uniquely the local DOFs with the global ones. The basis functions
provide in the BAS_FCTS structure the entry get_dof_indices() which is an
implementation of jg, see Section 3.5.1.

The updating of the system matrix is not that easy. As mentioned in
Section 1.4.7, the system matrix is usually sparse and we use special data
structures for storing these matrices, compare Section 3.3.4. For sparse ma-
trices we do not have for each DOF a matrix row storing values for all other
DOFs; only the values for pairs of DOFs are stored, where the corresponding
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global basis functions have a common support. Usually, the exact number of
entries in one row of a sparse matrix is not know a priori and can change
during grid modifications.

Thus, we use the following concept: A call of clear matrix () will not set
all matrix entries to zero, but will remove all matrix rows from the matrix,
compare the description of this function on page 169. During the updating
of a matrix for the value corresponding to a pair of local DOFs (i,j), we
look in the jg(é)th row of the matrix for a column jg(j) (the col member
of matrix_row); if such an entry exists, we add the current contribution; if
this entry does not yet exist we will create a new entry, set the current value
and column number. This creation may include an enlargement of the row,
by linking a new matrix row to the list of matrix rows, if no space for a new
entry is left. After the assemblage we then have a sparse matrix, storing all
values for pairs of global basis functions with common support.

The function which we describe now allows also to handle matrices where
the DOFs indexing the rows can differ from the DOFs indexing the columns;
this makes the combination of DOFs from different finite element spaces
possible. Currently, only one reference to a FE_SPACE structure is included
in the DOF_MATRIX structure. Thus, the handling of two different DOF sets
is not yet fully implemented, especially the handling of matrices during
dof _compress () may produce wrong results. Such matrices should be cleared
by calling clear_dof matrix() before a call to dof _compress().

The following functions can be used on elements for updating matrices
and vectors.

void add_element_matrix(DOF_MATRIX *, REAL, int row, int col,
const DOF *, const DOF *, const REAL *x,
const S_CHAR x*);
void add_element_vec(DOF_REAL_VEC *, REAL, int, const DOF x*,
const REAL *, const S_CHAR *);
void add_element_d_vec(DOF_REAL_D_VEC *, REAL, int, const DOF *,
const REAL_D *, const S_CHAR *);

Description:

add_element matrix(mat, fac, nr, nc, rdof, cdof, elmat, bound):
updates the DOF_MATRIX mat by adding element contributions;
fac is a multiplier for the element contributions; usually fac is 1 or -1;
nr is the number of rows of the element matrix;
nc is the number of columns of the element matrix; nc may be less or equal
to zero if the DOF's indexing the columns are the same as the DOF's indexing
the rows; in this case nc = nr is used;
rdof is a vector of length nr storing the global row indices;
cdof is a vector of length nc storing the global column indices, cdof may be
a nil pointer if the DOFs indexing the columns are the same as the DOF's
indexing the rows; in this case cdof = rdof is used;
el mat is a matrix of size nr X nc storing the element contributions;
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bound is an optional S_CHAR vector of length n_row; bound must be a nil
pointer if row indices and column indices are not the same; if row indices
and column indices are the same and bound is not nil it holds the boundary
type of the global DOFs; contributions are not added in rows corresponding
to a Dirichlet DOF; the diagonal matrix entry of a Dirichlet DOF is set to
1.0.
If row indices and column indices differ or if bound is a nil pointer, then
for all i the values fac*el mat[i] [j] are added to the entries (rdof[il,
cdof [j]) in the global matrix mat (0 < i < nr, 0 < j < nc); if such an entry
exists in the rdof [i]-th row of the matrix the value is added; otherwise a
new entry is created in the row, the value is set and the column number is
set to cdof [j]; this may include an enlargement of the row by adding a new
MATRIX ROW structure to the list of matrix rows.
If row DOFs and column DOFs are the same and bound is not nil these
values are only added for row indices i with bound[i] < DIRICHLET; for
row indices i with bound [i] >= DIRICHLET only the diagonal element is set
to 1.0; the values in the i—th row of el mat are ignored.
If row indices and column indices are the same, the diagonal element is
always the first entry in a matrix row; this makes the access to the diagonal
element easy for a diagonal preconditioner, e.g.
add_element_vec(drv, fac, n_dof, dof, el_vec, bound): updates a
given DOF _REAL VEC drv;
fac is a multiplier for the element contributions; usually fac is 1 or -1;
n_dof is the number of local degrees of freedom;
dof is a vector of length n_dof storing the global DOFs, i.e. dof [i] is the
global DOF of the i—th contribution;
el _vec is a REAL vector of length n_dof storing the element contributions;
bound is an optional vector of length n_dof; if bound is not nil it holds
the boundary type of the global DOFs; contributions are only added for
non—Dirichlet DOF's.
For all i or, if bound is not nil, for all i with bound[i] < DIRICHLET
(0 < i < n_dof) the value facxel vec[i] is added to drv->vec[dof[i]l];
values in drv->vec are not changed for Dirichlet DOFs.
add_element_d_vec(drdv, fac, n_dof, dof, el_vec, bound): updates
the DOF_REAL_D_VEC drdv;
fac is a multiplier for the element contributions; usually fac is 1 or -1;
n_dof is the number of local degrees of freedom,;
dof is a vector of length n_dof storing the global DOFs, i.e. dof [i] is the
global DOF of the i—th contribution;
el _vec is a REAL D vector of length n_dof storing the element contributions;
bound is an optional vector of length n_dof; if bound is not nil it holds
the boundary type of the global DOFSs; contributions are only added for
non—Dirichlet DOF's.
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For all i or, if bound is not nil, for all i with bound[i] < DIRICHLET
(0 <1i < n_dof) the value fac*el vec[i] is added to drdv->vec[dof [i]];
values in the drdv->vec are not changed for Dirichlet DOF's.

3.12.2 Data structures and function for matrix assemblage

The following structure holds full information for the assembling of element
matrices. This structure is used by the function update matrix() described
below.

typedef struct el_matrix_info EL_MATRIX_INFO;

struct el_matrix_info

{
int n_row;
const DOF_ADMIN *row_admin;
const DOF *x (xget_row_dof) (const EL *, const DOF_ADMIN *,
DOF *);
int n_col;
const DOF_ADMIN *col_admin;
const DOF x(xget_col_dof) (const EL *, const DOF_ADMIN *,
DOF *);
const S_CHAR * (xget_bound) (const EL_INFO *, S_CHAR x);
REAL factor;
const REAL ** (xel_matrix_fct) (const EL_INFO *, void *);
void *fill_info;
FLAGS fill_flag;
};
Description:

n_row: number of rows of the element matrix.

row_admin: pointer to a DOF_ADMIN structure for the administration of DOF's
indexing the rows of the matrix.

get_row_dof: pointer to a function for the access of the global row DOFs on
a single element; get_row_dof (el, row_admin, row_dof) returns a pointer
to a vector of length n_row storing the global DOFs indexing the rows of the
matrix; if row_dof is a nil pointer, get_row_dof () has to provide memory
for storing this vector, which may be overwritten on the next call; other-
wise the DOF's have to be stored at row_dof; usually, get row_dof () is the
get_dof_indices() function from a BAS_FCTS structure (compare Section
3.5.1).
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n_col: number of columns of the element matrix; n_col may be less or equal
to zero if the DOF's indexing the columns are the same as the DOF's indexing
the rows; in this case n_col = n_row is used.

col_admin: pointer to a DOF_ADMIN structure for the administration of DOFs
indexing the columns of the matrix; col_admin may be a nil pointer if the
column DOFs are the same as the row DOF's.

get_col_dof: pointer to a function for the access of the global row DOF's
on a single element; get_col dof may be a nil pointer if the column
DOFs are the same as the row DOFs; if row and column DOFs differ then
the column DOFs are accessed by get_col_dof () otherwise the vector ac-
cessed by get_row_dof () is used for the columns also; get_col dof (el,
col_admin, col_dof) returns a pointer to a vector of length n_col stor-
ing the global DOFs indexing the rows of the matrix; if col_dof is a nil
pointer, get_col_dof () has to provide memory for storing this vector, which
may be overwritten on the next call; otherwise the DOF's have to be stored
at col_dof; usually, get_col_dof () is the get_dof _indices() function from
a BAS_FCTS structure (compare Section 3.5.1).

get bound: is an optional pointer to a function which provides information
about the boundary type of DOFs; get_bound must be a nil pointer if row
indices and column indices are not the same; otherwise get_bound(el_info,
bound) returns a pointer to a vector of length n_row storing the boundary
type of the local DOF's; this pointer is the optional pointer to a vector hold-
ing boundary information of the function add_element matrix () described
above; if bound is a nil pointer, get_bound() has to provide memory for
storing this vector, which may be overwritten on the next call; otherwise the
DOFs have to be stored at bound; usually, get_bound() is the get_bound ()
function from a BAS_FCTS structure (compare Section 3.5.1).

factor: is a multiplier for the element contributions; usually factor is 1 or
-1.

el matrix_fct: is a pointer to a function for the computation of the element
matrix; el matrix fct(el_info, fill info) returns a pointer to a matrix
of size n_row X n_col storing the element matrix on element el_info->el;
fill_info is a pointer to data needed by el matrix_fct (); the function has
to provide memory for storing the element matrix, which can be overwritten
on the next call.

fill_info: pointer to data needed by el matrix fct(); will be given as sec-
ond argument to this function.

f£ill flag: the flag for the mesh traversal for assembling the matrix.

The following function updates a matrix by assembling element contributions
during mesh traversal; information for computing the element matrices is pro-
vided in an EL_ MATRIX_INFO structure:

void update_matrix(DDF_MATRIX *matrix, const EL_MATRIX_INFO *);
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Description:

updatematrix(matrix, info): updates the matrix matrix by traversing
the underlying mesh and assembling the element contributions into the ma-
trix; information about the computation of element matrices and connection
of local and global DOF's is stored in info;
the flags for the mesh traversal of the mesh matrix->fe _space->mesh are
stored at info->fill flag which specifies the elements to be visited and
information that should be present on the elements for the calculation of
the element matrices and boundary information (if info->get_bound is not
nil).
Information about row DOFs is accessed elementwise by the function
info->get row_dof using info->row_admin; this vector is also used for
the column DOFs if info->n_col is less or equal to zero, or if one of
info->get_col_admin or info->get_col_dof is a nil pointer; when row
and column DOFs are the same, the boundary type of the DOFs is ac-
cessed by info->get bound if info->get bound is not a nil pointer;
then the element matrix is computed by info->el matrix fct(el_info,
info->fill_info); these contributions, multiplied by info->factor, are
eventually added to matrix by a call of add_element matrix() with all in-
formation about row and column DOFs, the element matrix, and boundary
types, if available;
update matrix () only adds element contributions; this makes several calls
for the assemblage of one matrix possible; before the first call, the matrix
should be cleared by calling clear_dof matrix().

Now we want to describe some tools which enable an easy assemblage of
the system matrix. For this we have to provide a function for the calculation
of the element matrix. For a general elliptic problem the element matrix Lg =
(LY )ij=1,...,m is given by (recall (1.16) on page 40)

L :/Sv@i(A(;ﬁ))-A(A(@))Wﬁj(k(i))dﬂﬁ

4 / 5 (A(2)) BAE)) - Ya@ (A(#)) di

S

where A, b, and ¢ are functions depending on given data and on the actual
element, namely

AN = (@(N)) g =0, q = | det DEs(2(N))| A(z(N)) A(z(N)) A* (z(N)),
BN 1= (V) gy = |det DEs(E(N)| A(z(X) b(z(A), and
&(\) == |det DFs(2(N))| e(z(M)).

Having access to functions for the evaluation of A, b, and ¢ at given quadra-
ture nodes, the above integrals can be computed by some general routine for
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any set of local basis functions using quadrature. Additionally, if a coeffi-
cient is piecewise constant on the mesh, only an integration of basis functions
has to be done (compare (1.16) on page 42) for this term. Here we can use
pre—computed integrals of the basis functions on the standard element and
transform them to the actual element. Such a computation is usually much
faster than using quadrature on each single element. Data structures for stor-
ing such pre—computed values are described in Section 3.12.3.

For the assemblage routines which we will describe now, we use the follow-
ing slight generalization: In the discretization of the first order term, some-
times integration by parts is used too. For a divergence free vector field b and
purely Dirichlet boundary values this leads for instance to

/gpb-Vudwzl(/ gpb-Vudw—/Vgo-budx)
Q 2 \Je Q

yielding a modified first order term for the element matrix

irviany iy s N Cirvsany L2 v an iy ey g
/Sw (A(2)) gb(k(x))'ij(/\(z))dx/SVW (A(@)) - 56(A(@)) ¢’ (A(2)) d.
Secondly, we allow that we have two finite element spaces with local basis
functions {¢;}i=1,..» and {@;i}iz=1,..m.

In general, the following contributions of the element matrix Lg =
(Lg)i=1,..,n have to be computed:

j=1,...,m

. Vi (NE)) - AN(E)) YW@ (A(2)) di second order term,

first order terms,

s
/ eA(@)) Y (N @) @7 (M&)) di: zero order term,
5
where for instance b° = b and b' = 0, or using integration by parts b° = b

and b = —%l_).

In order to store information about the finite element spaces, the problem
dependent functions A, b°, b', ¢ and the quadrature that should be used for
the numerical integration of the element matrix, we define the following data
structure:

typedef struct operator_info OPERATOR_INFO;

struct operator_info

{
const FE_SPACE *row_fe_space;
const FE_SPACE *col_fe_space;
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const QUAD *quad[3];

void (*init_element) (const EL_INFO *, const QUAD *[3],
void *);
const REAL (*(*LALt) (const EL_INFO *, const QUAD *, int, void *)
) [DIM+1];
int LALt_pw_const;
int LALt_symmetric;
const REAL *(*Lb0) (const EL_INFO *, const QUAD *, int, void *);
int LbO_pw_const;
const REAL *(*Lb1l) (const EL_INFO *, const QUAD *, int, void *);
int Lbl_pw_const;
int LbO_Lbl_anti_symmetric;
REAL (*c) (const EL_INFO *, const QUAD *, int, void *);
int c_pw_const;
int use_get_bound;
void *user_data;
FLAGS fill_flag;
};
Description:

row_fe_space: pointer to a finite element space connected to the row DOF's
of the resulting matrix.

col _fe_space: pointer to a finite element space connected to the column
DOFs of the resulting matrix.

quad: vector with pointers to quadratures; quad [0] is used for the integration
of the zero order term, quad[1] for the first order term(s), and quad[2] for
the second order term.

init_element: pointer to a function for doing an initialization step on each
element; init_element may be a nil pointer;
if init_element is not nil, init_element(el_info, quad, user_data) is
the first statement executed on each element el_info->el and may initial-
ize data which is used by the functions LALt (), Lb0(), Lb1(), and/or c()
(calculate the Jacobian of the barycentric coordinates in the 1st and 2nd or-
der terms or the element volume for all order terms, e.g.); quad is a pointer
to a vector of quadratures which is actually used for the integration of the
various order terms and user_data may hold a pointer to user data, filled
by init_element (), e.g.;

LALt: is a pointer to a function for the evaluation of A at quadrature nodes
on the element; LALt may be a nil pointer, if no second order term has to
be integrated;
if LALt is not a nil pointer, LALt(el_info, quad, iq, user_data) re-
turns a pointer to a matrix of size DIM+1 x DIM+1 storing the value of A at



232 3 Data structures and implementation

quad->lambdaliq]; quad is the quadrature for the second order term and
user_data is a pointer to user data;

LALt_pw_const: should be true if A is piecewise constant on the mesh (con-
stant matrix A on a non—parametric mesh, e.g.); thus integration of the
second order term can use pre-computed integrals of the basis functions on
the standard element; otherwise integration is done by using quadrature on
each element;

LALt_symmetric: should be true if A is a symmetric matrix; if the finite
element spaces for rows and columns are the same, only the diagonal and
the upper part of the element matrix for the second order term have to be
computed; elements of the lower part can then be set using the symmetry;
otherwise the complete element matrix has to be calculated;

LbO: is a pointer to a function for the evaluation of b°, at quadrature nodes
on the element; LbO may be a nil pointer, if this first order term has not to
be integrated;
if LbO is not nil, LbO(el_info, quad, iq, user_data) returns a pointer
to a vector of length DIM+1 storing the value of ° at quad->lambdaliq];
quad is the quadrature for the first order term and user_data is a pointer
to user data;

Lb0_pw_const: should be true if b° is piecewise constant on the mesh (con-
stant vector b on a non—parametric mesh, e.g.); thus integration of the first
order term can use pre—computed integrals of the basis functions on the
standard element; otherwise integration is done by using quadrature on each
element;

Lbi: is a pointer to a function for the evaluation of b', at quadrature nodes
on the element; Lbl may be a nil pointer, if this first order term has not to
be integrated;
if Lb1 is not nil, Lbi(el_info, quad, iq, user_data) returns a pointer
to a vector of length DIM+1 storing the value of b' at quad->lambdaliq];
quad is the quadrature for the first order term and user_data is a pointer
to user data;

Lbi_pw_const: should be true if b' is piecewise constant on the mesh (con-
stant vector b on a non—parametric mesh, e.g.); thus integration of the first
order term can use pre—computed integrals of the basis functions on the
standard element; otherwise integration is done by using quadrature on each
element;

Lb0 Lbl anti_symmetric: should be true if the contributions of the complete
first order term to the local element matrix are anti symmetric (only possible
if both Lb0 and Lb1 are not nil, b° = —b', e.g.); if the finite element spaces
for rows and columns are the same then only the upper part of the element
matrix for the first order term has to be computed; elements of the lower part
can then be set using the anti symmetry; otherwise the complete element
matrix has to be calculated;
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c: is a pointer to a function for the evaluation of ¢ at quadrature nodes on the
element; ¢ may be a nil pointer, if no zero order term has to be integrated;
if cisnot nil, c(el_info, quad, iq, user_data) returns the value of the
function ¢ at quad->lambdaliq]; quad is the quadrature for the zero order
term and user_data is a pointer to user data;

c_pw_const: should be true if the zero order term ¢ is piecewise constant

on the mesh (constant function ¢ on a non—parametric mesh, e.g.); thus
integration of the zero order term can use pre—computed integrals of the
basis functions on the standard element; otherwise integration is done by
using quadrature on each element;

use_get _bound: if non—zero, then the get bound entry in EL_ MATRIX_INFO
is set to row_fe_space->bas_fcts->get_bound(), and Dirichlet boundary
DOFs are handled accordingly; use_get_bound must be zero if two different
finite element spaces are used.

user_data: optional pointer to memory segment for user data used by
init_element (), LALt (), Lb0(), Lb1(), and/or c() and is the last argu-
ment to these functions.

fill flag: the flag for the mesh traversal routine indicating which elements
should be visited and which information should be present in the EL_INFO
structure for init_element (), LALt (), Lb0(), Lb1(), and/or c() on the
visited elements.

Information stored in such a structure is used by the following function
which returns a pointer to a filled EL_MATRIX_INFO structure; this structure
can be used as an argument to the update matrix () function which will then
assemble the discrete matrix corresponding to the operator defined in the
OPERATOR_INFO:

const EL_MATRIX_INFO *fill_matrix_info(const OPERATOR_INFO *,
EL_MATRIX_INFO *);

Description:

fill matrix_info(op_info, mat_info): the function returns a pointer to a
filled EL_MATRIX_INFO structure for the assemblage of the system matrix for
the operator defined in op_info.

If the second argument mat_info is a nil pointer, a new structure mat_info
is allocated and filled; otherwise the structure mat_info is filled; all members
are newly assigned.

op-info->row_fe_space and op_info->col _fe_space are pointers to the fi-
nite element spaces (and by this to the basis functions and DOFs) con-
nected to the row DOFs and the column DOFs of the matrix to be as-
sembled. If both pointers are nil pointers, an error message is given,
and the program stops; if only one of these pointers is nil, row and
column degrees of freedom are connected with the same finite element
space (i.e. either op_info->row_fe_space = op_info->col_fe_space, or
op_info->col fe_space = op_info->row_fe_space is used).



234 3 Data structures and implementation

The numbers of basis functions of the row_fe_space and col_fe_space de-
termine the members mat_info->n_row and mat_info->n_col, the corre-
sponding dof_admin structures define the entries mat_info->row_admin and
mat_info->col_admin; the get_dof_indices() of the basis functions are
used for mat_info->get_row_dof and mat_info->get_col_dof; the entries
for the columns are only set if the finite element spaces are not the same;
if the spaces are the same and the use_get _bound entry is not zero, then
the get_ bound() function of the basis functions is used for the member
mat_info->get_bound().

The most important member in the EL_MATRIX_INFO structure, namely
mat_info->el matrix_fct, is adjusted to some general routine for the
integration of the element matrix for any set of local basis functions;
fill matrix_info() tries to use the fastest available function for the
element integration for the operator defined in op_info, depending on
op-info->LALt pw_const and similar hints;

Denote by row_degree and col_degree the degree of the basis functions
connected to the rows and columns; the following vector quad of quadra-
tures is used for the element integration, if not specified by op_info->quad
using the following rule: pre—computed integrals of basis functions should be
evaluated exactly, and all terms calculated by quadrature on the elements
should use the same quadrature formula (this is more efficient than to use
different quadratures). To be more specific:

If the 2nd order term has to be integrated and op_info->quad[2] is not nil,
quad[2] = op_info->quad[2] is used, otherwise quad[2] is a quadrature
which is exact of degree row_degree+col degree-2. If the 2nd order term
is not integrated then quad[2] is set to nil.

If the 1st order term has to be integrated and op_info->quad[1] is
not a nil pointer, quad[1] = op_info->quad[1] is used; otherwise: if
op-info->Lb_pw_const is zero and quad[2] is not nil, quad[1] = quad[2]
is used, otherwise quad[1] is a quadrature which is exact of degree
row_degree+col degree-1. If the 1st order term is not integrated then
quad[1] is set to nil.

If the zero order term has to be integrated and op_info->quad[0] is
not a nil pointer, quad[0] = op_info->quad[0] is used; otherwise: if
op_-info->c_pw_const is zero and quad[2] is not nil, quad[0] = quad[2]
is used, if quad[2] is nil and quad[1] is not nil, quad[0] = quad[1] is
used, or if both quadratures are nil, quad[0] is a quadrature which is exact
of degree row_degree+col degree. If the zero order term is not integrated
then quad[0] is set to nil.

If the function pointer op_info->init element is not nil then a call of
op-info->init_element (el _info, quad, op_-info->user_data) is always
the first statement of mat_info->el matrix_fct () on each element; el_info
is a pointer to the EL_INFO structure of the actual element, quad is the
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quadrature vector described above (now giving information about the actu-
ally used quadratures), and the last argument is a pointer to user data.

If op_info->LALt is not nil, the 2nd order term is integrated using
the quadrature quad[2]; if op_info->LALt pw_const is not zero, the in-
tegrals of the product of gradients of the basis functions on the stan-
dard simplex are initialized (using the quadrature quad[2] for the inte-
gration) and used for the computation on the elements; op_info->LALt ()
is only called once with arguments op_info->LALt (el_info, quad[2], O,
op_info->user_data), i.e. the matrix of the 2nd order term is evaluated
only at the first quadrature node; otherwise the integrals are approximated
by quadrature and op_info->LALt () is called for each quadrature node of
quad [2]; if op_info->LALt symmetric is not zero, the symmetry of the ele-
ment matrix is used, if the finite element spaces are the same and this term
is not integrated by the same quadrature as the first order term.

If op_info->Lb0O is not nil, this 1st order term is integrated using the
quadrature quad[1]; if op_info->Lb0O_pw_const is not zero, the integrals
of the product of basis functions with gradients of basis functions on the
standard simplex are initialized (using the quadrature quad[1] for the in-
tegration) and used for the computation on the elements; op_info->Lb0()
is only called once with arguments op_info->Lb0O(el_info, quad[1], O,
op-info->user_data), i.e. the vector of this 1st order term is evaluated
only at the first quadrature node; otherwise the integrals are approximated
by quadrature and op_info->Lb0() is called for each quadrature node of
quad[1];

If op_info->Lb1 is not nil, this 1st order term is integrated also using the
quadrature quad[1]; if op_info->Lbl pw_const is not zero, the integrals
of the product of gradients of basis functions with basis functions on the
standard simplex are initialized (using the quadrature quad[1] for the in-
tegration) and used for the computation on the elements; op_info->Lb1()
is only called once with arguments op_info->Lb1(el_info, quad[1], O,
op_info->user_data), i.e. the vector of this 1st order term is evaluated
only at the first quadrature node; otherwise the integrals are approximated
by quadrature and op_info->Lb1() is called for each quadrature node of
quad[1].

If both op_info->Lb0 and op_info->Lbl are not nil, the finite element
spaces for rows and columns are the same and Lb0_Lbl_anti_symmetric is
non—zero, then the contributions of the 1st order term are computed using
this anti symmetry property.

If op_info->c is not nil, the zero order term is integrated using the
quadrature quad[0]; if op_info->c_pw_const is not zero, the integrals of
the product of basis functions on the standard simplex are initialized (us-
ing the quadrature quad[0] for the integration) and used for the compu-
tation on the elements; op_info->c() is only called once with arguments
op-info->c(el_info, quad[0], O, op_info->user_data),i.e. the zero or-
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der term is evaluated only at the first quadrature node; otherwise the inte-
grals are approximated by quadrature and op_info->c() is called for each
quadrature node of quad[0].

The functions LALt (), Lb0(), Lb1 (), and c(), can be called in an arbitrary
order on the elements, if not nil (this depends on the type of integration,
using pre—computed values, using same/different quadrature for the second,
first, and/or zero order term, e.g.) but commonly used data for these func-
tions is always initialized first by op_info->init_element (), if this function
pointer is not nil.

Using all information about the operator and quadrature, an “optimal” rou-
tine for the assemblage is chosen. Information for this routine is stored at
mat_info which includes the pointer to user data op_info->user_data (the
last argument to init_element (), LALt (), Lb0(), Lb1(), and/or c()).
Finally, the flag for the mesh traversal which is used by the function
update matrix() is set in mat_info->fill flag to op_info->fill flag;
it indicates which elements should be visited and which information should
be present in the EL_INFO structure for init_element (), LALt (), Lb0/1(),
and/or ¢ () on the visited elements. If the finite element spaces are the same,
and the entry op_info->use_get _bound is set, then the FILL_BOUND flag is
added to mat_info->fill flag.

The the access of a MATRIX_INFO structure for the automatic assemblage of
the system matrix corresponding to the Laplace operator is given in Section
2.1.7 on 63.

3.12.3 Data structures for storing pre—computed integrals of basis
functions

Assume a non—parametric triangulation and constant coefficient functions A,
b, and c. Since the Jacobian of the barycentric coordinates is constant on S,
the functions Ag, BOS, Bls, and ¢g are constant on S also. Now, looking at the
element matrix approximated by some quadrature Q, we observe

Q( i (fls,kﬂﬁf,\k @Al) = Z fls,m@(lﬁfkk @{Al),
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The values of the quadrature applied to the basis functions do only depend
on the basis functions and the standard element but not on the actual sim-
plex S. All information about S is given by Ag, BOS, B}g, and ¢g. Thus, these
quadratures have only to be calculated once, and can then be used on each
element during the assembling.

For this we have to store for the basis functions {t;}i=1. , and
{@;}j=1,....m the values

I = Q(zﬁfkk @{Al) for1<i<mn, 1<j<m,0<k,I<DIM,

if A0,

W =Q(d'¢),)  forl<i<n 1<j<m, 0<1<DIN,
if 50 £ 0,

2M=Q(0h, @) forl<i<n 1<j<m, 0<k<DIN
if b! £ 0, and

2= Qv for 1<i<n, 1<j<m,

if ¢ # 0. Many of these values are zero, especially for the first and second order
terms (if " and @’ are the linear nodal basis functions Qlljlkl = 0;;0). Thus,
we use special data structures for a sparse storage of the non zero values for
these terms. These are described now.

In order to “define” zero entries we use

static const REAL TOO_SMALL = 1.e-15;

and all computed values val with |val| < TOO_SMALL are treated as zeros. As
we are considering here integrals over the standard simplex, non-zero integrals
are usually of order one, such that the above constant is of the order of roundoff
errors for double precision.

The following data structure is used for storing values Qll for two sets of
basis functions integrated with a given quadrature

typedef struct qlil_psi_phi  Q11_PSI_PHI;

struct qll_psi_phi

{
const BAS_FCTS *psi;
const BAS_FCTS *phi ;
const QUAD *quad ;

const int **n_entries;
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const REAL ***values;
const int *kkk ;
const int *xk] ;
I
Description:
psi: pointer to the first set of basis functions.
phi: pointer to the second set of basis functions.
quad: pointer to the quadrature which is used for the integration.

n_entries: matrix of size psi->n_bas_fcts X phi->n_bas_fcts storing the
count of non zero integrals;
n_entries[i] [j] is the count of non zero values of A}Jl,kl (0 <
DIM) for the pair (psilil,phil[jl), 0 < i < psi->n bas_fcts, O
phi->n_bas_fcts.

values: tensor storing the non zero integrals;
values[i] [j] is a vector of length n_entries[i] [j] storing the non zero
values for the pair (psil[i],phil[j]).

k,1
<

k, 1: tensor storing the indices k, [ of the non zero integrals;
k[i][j] and 1[i][j] are vectors of length n_entries[i] [j] storing at
k[11[j1[r] and 1[i]1[j][x] the indices k and 1 of the value stored at
values[i] [j] [r],i.e.

. _ All _ 7i =]
values[i] [31[r] = Qij k(101 1001 (51 0] = Q(w,ka e P mm)»

for 0 < r < n_entries[i] [j]. Using these pre-computed values we have for
ni; =n_entries[i] [j] on all elements S

d ni;—1
_ Al T g _ _ R
Z aS,le(w,)\k <P,AL> = Z S x[1]1[51[r], 1011 (5] [r] *values[i] [j][r].
k,1=0 r=0

The following function initializes a Q11_PSI_PHI structure:

const Q11_PSI_PHI *get_qll_psi_phi(const BAS_FCTS *,
const BAS_FCTS *, const QUAD x*);

Description:

get_qll psi phi(psi, phi, quad): the function returns a pointer to a filled
Q11_PSI_PHI structure.
psi is a pointer to the first set of basis functions, phi is a pointer to the
second set of basis functions; if both are nil pointers, nothing is done and
the return value is nil; if one of the pointers is a nil pointer, the structure
is initialized using the same set of basis functions for the first and second
set, i.e. phi = psi or psi = phi is used.
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quad is a pointer to a quadrature for the approximation of the inte-
grals; if quad is nil, then a default quadrature which is exact of degree
psi->degree+phi->degree-2 is used.

All used Q11_PSI_PHI structures are stored in a linked list and are identified
uniquely by the members psi, phi, and quad, and for such a combination
only one Q11 _PSI_PHI structure is created during runtime;

First, get_q11_psi_phi() looks for a matching structure in the linked list;
if such a structure is found a pointer to this structure is returned; the values
are not computed a second time. Otherwise a new structure is generated,
linked to the list, and the values are computed using the quadrature quad;
all values val with |val| < TOO_SMALL are treated as zeros.

Example 3.30. The following example shows how to use these pre-computed
values for the integration of the 2nd order term

/SVAW(A(@) CAN(2) Va@’ (A(2)) di

for all 4, j. We only show the body of a function for the integration and assume
that LALt _fct returns a matrix storing A (compare the member LALt in the
OPERATOR_INFO structure):

if (!'qll_psi_phi) qli_psi_phi = get_qll_psi_phi(psi, phi, quad[2]);

LALt = LALt_fct(el_info, quad, O, user_data);
n_entries = qll_psi_phi->n_entries;

for (i = 0; i < psi->n_bas_fcts; i++)

{
for (j = 0; j < phi->n__bas_fcts; j++)
{
k = qli_psi_phi->k[i]l[j];
1 = qlil_psi_phi->1[i]1[j];
values = qll_psi_phi->values[i] [j];
for (val = m = 0; m < n_entries[i] [j]; m++)
val += values[m]*LALt[k[m]] [1[m]];
mat[i] [j] += val;
}
}

The values Q' for the set of basis functions psi and phi are stored in

typedef struct qO01_psi_phi  QO1_PSI_PHI;

struct qO01_psi_phi

{
const BAS_FCTS *psi;
const BAS_FCTS *phi;
const QUAD *quad ;
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const int **n_entries;
const REAL **x*values;
const int *kk] ;
I
Description:
psi: pointer to the first set of basis functions.
phi: pointer to the second set of basis functions.
quad: pointer to the quadrature which is used for the integration.
n_entries: matrix of size psi->n_bas_fcts X phi->n_bas_fcts storing the
count of non zero integrals;
n_entries[i] [j] is the count of non zero values of Q?}l (0 <1 < DIM)
for the pair (psilil,phi[jl), 0 < i < psi->nbas fcts, 0 < j <
phi->n_bas_fcts.
values: tensor storing the non zero integrals;
values[i] [j] is a vector of length n_entries[i] [j] storing the non zero
values for the pair (psilil, philjl).
1: tensor storing the indices [ of the non zero integrals;
1[i]1 [j] is a vector of length n_entries[i] [j] storing at 1[i] [j] [r] the
index 1 of the value stored at values([i] [j] [r], i.e.

valuesli1 (5 [x) = Q¥acopm = Q¥ Py s )

for 0 < r < n_entries[i] [j]. Using these pre—computed values we have for
all elements S

d n_entries[i] [j]1-1
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The following function initializes a Q01_PSI_PHI structure:

const QO1_PSI_PHI *get_qu_psi_phi(const BAS_FCTS =,
const BAS_FCTS *, const QUAD *);
Description:
get_q01_psi phi(psi, phi, quad): the function returns a pointer to a filled
QO01_PSI_PHI structure.
psi is a pointer to the first set of basis functions phi is a pointer to the
second set of basis functions; if both are nil pointers, nothing is done and
the return value is nil; if one of the pointers is a nil pointer, the structure
is initialized using the same set of basis functions for the first and second
set, i.e. phi = psi or psi = phi is used.
quad is a pointer to a quadrature for the approximation of the inte-
grals; is quad is nil, a default quadrature which is exact of degree
psi->degree+phi->degree-1 is used.
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All used QO1_PSI_PHI structures are stored in a linked list and are identified
uniquely by the members psi, phi, and quad, and for such a combination
only one QO1_PSI_PHI structure is created during runtime;

First, get_q01_psi_phi() looks for a matching structure in the linked list;
if such a structure is found a pointer to this structure is returned; the values
are not computed a second time. Otherwise a new structure is generated,
linked to the list, and the values are computed using the quadrature quad;
all values val with |val| < TOO_SMALL are treated as zeros.

The values Q0 for the set of basis functions psi and phi are stored in

typedef struct ql0_psi_phi Q10_PSI_PHI;

struct ql0_psi_phi

{
const BAS_FCTS *psi;
const BAS_FCTS *phi ;
const QUAD *quad;
const int **n_entries;
const REAL **x*values;
const int *xkk ;

};

Description:

psi: pointer to the first set of basis functions.

phi: pointer to the second set of basis functions.

quad: pointer to the quadrature which is used for the integration.

n_entries: matrix of size psi->n bas fcts X phi->n bas fcts storing the
count of non zero integrals;
n_entries[i] [j] is the count of non zero values of Q}Jok (0 < x < DIM)
for the pair (psilil,phil[jl), 0 < i < psi->nbas fcts, 0 < j <
phi->n_bas_fcts.

values: tensor storing the non zero integrals;
values[i] [j] is a vector of length n_entries[i] [j] storing the non zero
values for the pair (psil[i],phil[j]).

k: tensor storing the indices k of the non zero integrals;
k[i] [j] is a vector of length n_entries[i] [j] storing at k[i] [j] [r] the
index k of the value stored at values[i] [j] [r], i.e.

. . N10 A Ti —q
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for 0 < r < n_entries[i] [j]. Using these pre-computed values we have for
all elements S
n_entries[i] [j1-1
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The following function initializes a Q10_PSI_PHI structure:

const Q10_PSI_PHI *get_qu_psi_phi(const BAS_FCTS =,
const BAS_FCTS *, const QUAD *);

Description:

get_q10_psi phi(psi, phi, quad): the function returns a pointer to a filled
Q10_PSI_PHI structure.
psi is a pointer to the first set of basis functions phi is a pointer to the
second set of basis functions; if both are nil pointers, nothing is done and
the return value is nil; if one of the pointers is a nil pointer, the structure
is initialized using the same set of basis functions for the first and second
set, i.e. phi = psi or psi = phi is used.
quad is a pointer to a quadrature for the approximation of the inte-
grals; is quad is nil, a default quadrature which is exact of degree
psi->degree+phi->degree-1 is used.
All used Q10_PSI_PHI structures are stored in a linked list and are identified
uniquely by the members psi, phi, and quad, and for such a combination
only one Q10_PSI_PHI structure is created during runtime;
First, get_q10_psi_phi() looks for a matching structure in the linked list;
if such a structure is found a pointer to this structure is returned; the values
are not computed a second time. Otherwise a new structure is generated,
linked to the list, and the values are computed using the quadrature quad;
all values val with |val| < TOO_SMALL are treated as zeros.

Finally, the values Q% for the set of basis functions psi and phi are stored
in

typedef struct qOO_psi_phi  QOO_PSI_PHI;

struct qO0O_psi_phi

{
const BAS_FCTS *psij;
const BAS_FCTS *phi;
const QUAD *quad ;
const REAL **values;
};
Description:

psi: pointer to the first set of basis functions.

phi: pointer to the second set of basis functions.

quad: pointer to the quadrature which is used for the integration.
values: matrix storing the integrals;

values[i] [j] = A(i)é-) = Q(zﬁl @j>»
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for the pair (psilil,phi[j]), 0 < i < psi->nbas fcts, 0 < j <
phi->n_bas_fcts.
The following function initializes a QOO_PSI_PHI structure:

const QOO_PSI_PHI *get_qOO_psi_phi(const BAS_FCTS =,
const BAS_FCTS *, const QUAD *);

Description:

get_q00_psi_phi(psi, phi, quad): the function returns a pointer to a filled
QOO0_PSI_PHI structure.
psi is a pointer to the first set of basis functions phi is a pointer to the
second set of basis functions; if both are nil pointers, nothing is done and
the return value is nil; if one of the pointers is a nil pointer, the structure
is initialized using the same set of basis functions for the first and second
set, i.e. phi = psi or psi = phi is used.
quad is a pointer to a quadrature for the approximation of the inte-
grals; is quad is nil, a default quadrature which is exact of degree
psi->degree+phi->degree is used.
All used QOO_PSI_PHI structures are stored in a linked list and are identified
uniquely by the members psi, phi, and quad, and for such a combination
only one QOO_PSI_PHI structure is created during runtime;
First, get_q00_psi_phi() looks for a matching structure in the linked list;
if such a structure is found a pointer to this structure is returned; the values
are not computed a second time. Otherwise a new structure is generated,
linked to the list, and the values are computed using the quadrature quad.

3.12.4 Data structures and functions for vector update

Besides the general routines update real_vec() and update_real d_vec(),
this section presents also easy to use routines for calculation of L? scalar
products between a given function and all basis functions of a finite element
space.

The following structures hold full information for the assembling of el-
ement vectors. They are used by the functions update real vec() and
update_real_d_vec() described below.

typedef struct el_vec_info EL_VEC_INFO;
typedef struct el_vec_d_info EL_VEC_D_INFO;

struct el_vec_info

{
int n_dof;
const DOF_ADMIN *admin;
const DOF x(xget_dof) (const EL *,const DOF_ADMIN *, DOF *);
const S_CHAR * (xget_bound) (const EL_INFO *, S_CHAR x);

REAL factor;
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const REAL *(xel_vec_fct) (const EL_INFO *, void *);
void *fill_info;
FLAGS fill_flag;

};

struct el_vec_d_info

{
int n_dof;
const DOF_ADMIN *admin;
const DOF * (xget_dof) (const EL *,const DOF_ADMIN *, DOF *);
const S_CHAR * (xget_bound) (const EL_INFO *, S_CHAR x);
REAL factor;
const REAL_D *(xel_vec_fct) (const EL_INFO *, void *);
void *fill_info;
FLAGS fill_flag;

};

Description:

n_dof: size of the element vector.

admin: pointer to a DOF_ADMIN structure for the administration of DOFs of
the vector to be filled.

get_dof: pointer to a function for the access of the global DOFs on a single
element; get row dof(el, admin, dof) returns a pointer to a vector of
length n_dof storing the global DOFs; if dof is a nil pointer, get_dof ()
has to provide memory for storing this vector, which may be overwritten
on the next call; otherwise the DOFs have to be stored at dof; (usually,
get_dof () is the get_dof_indices() function inside a BAS_FCTS structure
(compare Section 3.5.1).

get_bound: optional pointer to a function providing information about the
boundary type of DOFs; if get_bound() is not nil, get_bound(el_info,
bound) returns a pointer to a vector of length n_dof storing the boundary
type of the local DOF's; this pointer is the optional pointer to a vector hold-
ing boundary information of the function add_element [_d] vec () described
above; if bound is a nil pointer, get_bound() has to provide memory for
storing this vector, which may be overwritten on the next call; otherwise the
DOFs have to be stored at bound; (usually, get _bound () is the get_bound ()
function inside a BAS_FCTS structure (compare Section 3.5.1).

factor: is a multiplier for the element contributions; usually factor is 1 or
-1.

el_vec_fct: is a pointer to a function for the computation of the ele-
ment vector; el vec_fct(el_info, fill_info) returns a pointer to a REAL
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resp. REAL D vector of length n_dof storing the element vector on element
el_info->el; fill info is a pointer to data needed by el_vec_fct(); the
function has to provide memory for storing the element vector, which can
be overwritten on the next call.

fill_info: pointer to data needed by el vec_fct();is the second argument
of this function.

fill flag: the flag for the mesh traversal for assembling the vector.

The following function does the update of vectors by assembling element con-
tributions during mesh traversal; information for computing the element vec-
tors is held in a EL_VEC[ D] _INFO structure:

void update_real_vec(DOF_REAL_VEC *, const EL_VEC_INFO *);
void update_real_d_vec(DDF_REAL_D_VEC *, const EL_VEC_D_INFO *);

update real[ d] vec(dr[d]lv, info): updates the vector drv resp. drdv by
traversing the underlying mesh and assembling the element contributions
into the vector; information about the computation of element vectors and
connection of local and global DOF's is stored in info.
The flags for the mesh traversal of the mesh dr[d]v->fe_space->mesh are
stored at info->fill flags which specifies the elements to be visited and
information that should be present on the elements for the calculation of the
element vectors and boundary information (if info->get_bound is not nil);
Information about global DOF's is accessed element-wise by info->get_dof
using info->admin; in addition, the boundary type of the DOFs is accessed
by info->get bound if it is not a nil pointer; then the element vector is
computed by info->el vec_fct(el_info, info->fill_info); these con-
tributions are finally added to dr [d]v multiplied by info->factor by a
call of add_element [ d] _vec() with all information about global DOFs, the
element vector, and boundary types, if available.
update real[-d] _vec() only adds element contributions; this makes several
calls for the assemblage of one vector possible; before the first call, the vector
should be set to zero by a call of dof_set[.d] (0.0, dr[d]lv).

L? scalar products. In many applications, the load vector is just the L2
scalar product of a given function with all basis functions of the finite element
space or this scalar product is a part of the right hand side; such a scalar
product can be directly assembled by the functions

void L2scp_fct_bas(REAL (%) (const REAL_D), const QUAD *,
DOF_REAL_VEC *);
void L2scp_fct_bas_d(const REAL *(*)(const REAL_D, REAL_D),
const QUAD *, DOF_REAL_D_VEC x);
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Description:

L2scp_fct_bas(f, quad, fh): approximates the L? scalar products of a
given function with all basis functions by numerical quadrature and adds
the corresponding values to a DOF vector;

f is a pointer for the evaluation of the given function in world coordinates x
and returns the value of that function at x; if £ is a nil pointer, nothing is
done;

fh is the DOF vector where at the i—th entry the approximation of the L?
scalar product of the given function with the i—th global basis function of
fh->fe_space is added;

quad is the quadrature for the approximation of the integral on each leaf ele-
ment of fh->fe_space->mesh; if quad is a nil pointer, a default quadrature
which is exact of degree 2xfh->fe_space->bas fcts->degree-2 is used.
The integrals are approximated by looping over all leaf elements, computing
the approximations to the element contributions and adding these values to
the vector fh by add_element vec().

The vector fh is mot initialized with 0.0; only the new contributions are
added.

L2scp_fct_bas_d(fd, quad, fhd): approximates the L? scalar products of
a given vector valued function with all scalar valued basis functions by nu-
merical quadrature and adds the corresponding values to a vector valued
DOF vector;
fd is a pointer for the evaluation of the given function in world coordinates
x; £d(x, £x) returns a pointer to a vector storing the value at x; if £x is not
nil, the value is stored at £x otherwise the function has to provide memory
for storing this vector, which can be overwritten on the next call; if £d is a
nil pointer, nothing is done;
fhd is the DOF vector where at the i—th entry (a REAL D vector) the approx-
imation of the L? scalar product of the given vector valued function with
the i—th global (scalar valued) basis function of fhd->fe_space is added;
quad is the quadrature for the approximation of the integral on each leaf ele-
ment of fhd->fe_space->mesh;if quad is anil pointer, a default quadrature
which is exact of degree 2¥fhd->fe_space->bas fcts->degree-2 is used.
The integrals are approximated by looping over all leaf elements, computing
the approximations to the element contributions and adding these values to
the vector fhd by add_element_d_vec().

The vector £hd is not initialized with (0.0,...,0.0); only the new contribu-
tions are added.
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3.12.5 Dirichlet boundary conditions

For the solution of the discrete system (1.13) on page 37 derived in Section
1.4.5, we have to set the Dirichlet boundary values for all Dirichlet DOFs. Usu-
ally, we take for the approximation g of g the interpolant of g, i.e. g, = Ing
and we have to copy the coefficients of g, at the Dirichlet DOFs to the load
vector (compare (1.12) on page 37). Additionally we know that the discrete
solution has also the same coeflicients at Dirichlet DOFs. Using an iterative
solver we should use such information for the initial guess. Copying the co-
efficients of g; at the Dirichlet DOFs to the initial guess will result in an
initial residual (and then for all subsequent residuals) which is (are) zero at
all Dirichlet DOF's.

Furthermore, the matrix we have derived in (1.11) on page 37 (and which
is assembled in this way by the assemblage tools) is not symmetric even for
the discretization of symmetric and elliptic operators. Applying directly the
conjugate gradient method for solving (1.13) will not work, because the matrix
is not symmetric. But setting the Dirichlet boundary values also in the initial
guess at Dirichlet DOFs, all residuals are zero at Dirichlet DOFs and thus the
conjugate gradient method will only apply to the non Dirichlet DOFs, which
means that the conjugate gradient method will only “see” the symmetric and
positive definite part of the matrix.

The following functions will set Dirichlet boundary values for all DOF's on
the Dirichlet boundary, using an interpolation of the boundary values g:

void dirichlet_bound(REAL (*) (const REAL_D), DOF_REAL_VEC x*,
DOF_REAL_VEC *, DOF_SCHAR_VEC x*);
void dirichlet_bound_d(const REAL *(*)(const REAL_D, REAL_D),
DOF_REAL_D_VEC *, DOF_REAL_D_VEC x*,
DOF_SCHAR_VEC *);

Description:

dirichlet bound(g, fh, uh, bound): the function sets Dirichlet boundary
values at all Dirichlet DOFs on leaf elements of fh->fe_space->mesh or
uh->fe_space->mesh; values at DOF's not belonging to the Dirichlet bound-
ary are not changed by this function.
g is a pointer to a function for the evaluation of the boundary data; if g is
a nil pointer, all coefficients at Dirichlet DOFs are set to 0.0.
fh and uh are vectors where Dirichlet boundary values should be set (usually,
fh stores the load vector and uh an initial guess for an iterative solver); one
of fh and uh may be a nil pointer; if both arguments are nil pointers,
nothing is done; if both arguments are not nil, fh->fe_space must equal
uh->fe_space.
Boundary values are set element—wise on all leaf elements at Dirichlet DOFs,
which are identified by fe_space->bas fcts->get bound(); the finite ele-
ment space fe_space of either f£h or uh is used. Interpolation is then done by
fe_space->bas_fcts->interpol () solely for the element’s Dirichlet DOFs;
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the function g must meet the requirements of this function. For Lagrange
elements, (xg) () is evaluated for all Lagrange nodes on the Dirichlet bound-
ary and has to return the values at these nodes (compare Section 3.5.1); the
flag of the mesh traversal is CALL_LEAF EL |FILL_BOUND | FILL_COORDS.
bound is a vector for storing the boundary type for each used DOF; bound
may be nil; if it is not nil, the i—th entry of the vector is filled with the
boundary type of the i—th DOF. bound->fe_space must be the same as fh’s
or uh’s fe_space.

dirichlet bound d(gd, fhd, uhd, bound): sets Dirichlet boundary values
for vector valued functions at all Dirichlet DOFs on leaf elements of
fhd->fe_space->mesh or uhd->fe_space->mesh; values at DOFs not be-
longing to the Dirichlet boundary are not changed by this function.
gd is a pointer to a function for the evaluation of boundary data; the return
value is a pointer to a vector storing the values; if the second argument val
of (xgd) (x, val) is not nil, the values have to be stored at val, otherwise
gd has to provide memory for the vector which may be overwritten on the
next call; if gd is a nil pointer, all coefficients at Dirichlet DOF's are set to
(0.0,...,0.0).
fhd and uhd are DOF vectors where Dirichlet boundary values should be set
(usually, £hd stores the load vector and uhd an initial guess for an iterative
solver); one of fhd and uhd may be a nil pointer; if both arguments are
nil pointers, nothing has is done; if both arguments are not nil pointers,
fhd->fe_space must equal uhd->fe_space.
Boundary values are set element—wise on all leaf elements at Dirichlet
DOFs, which are identified by fe_space->bas fcts->get_bound(); the fi-
nite element space fe_space of either fhd or uhd is used. Interpolation
is then done by fe_space->bas_fcts->interpol d() solely for the ele-
ment’s Dirichlet DOFs; the function gd must meet the requirements of
this function. For Lagrange elements, (xgd) () is evaluated for all La-
grange nodes on the Dirichlet boundary and has to return the values
at these nodes (compare Section 3.5.1); the flag of the mesh traversal is
CALL_LEAF EL|FILL BOUND|FILL_COORDS.
bound is a vector for the storing boundary type for each used DOF; bound
may be nil; if it is not nil, the i—th entry of the vector is filled with the
boundary type of the i—th DOF. bound->fe_space must be the same as
fhd’s or uhd’s fe_space.

3.12.6 Interpolation into finite element spaces

In time dependent problems, usually the “solve” step in the adaptive method
for the adaptation of the initial grid is an interpolation of initial data to the
finite element space, i.e. a DOF vector is filled with the coefficient of the
interpolant. The following functions are implemented for this task:
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void interpol(REAL (%) (const REAL_D), DOF_REAL_VEC *);
void interpol_d(const REAL *(x) (const REAL_D, REAL_D),
DOF_REAL_D_VEC *);

Description:

interpol(f, fh): computes the coefficients of the interpolant of a function
and stores these in a DOF vector;
f is a pointer to a function for the evaluation of the function to be interpo-
lated; if f is a nil pointer, all coefficients are set to 0.0.
fh is a DOF vector for storing the coefficients; if £h is a nil pointer, nothing
is done.
The actual interpolation is done element—wise on the leaf elements of
fh->fe_space->mesh utilizing fh->fe_space->bas_fcts->interpol(); £
must meet the requirements of this function, for instance the point—wise
evaluation of (*f) () at all Lagrange nodes when using Lagrange finite ele-
ments elements (compare Section 3.5.1); the £i11_flag of the mesh traversal
is CALL_LEAF EL|FILL_COORDS.

interpol d(fd, fhd): computes the coefficients of the interpolant of a vec-
tor valued function and stores these in a DOF vector;
fd is a pointer to a function for the evaluation of the function to be in-
terpolated; the return value is a pointer to a vector storing the values; if
the second argument fx of (¥fd) (x, £x) is not nil, the values have to be
stored at £x, otherwise £d has to provide memory for the vector which may
be overwritten on the next call; if £d is a nil pointer, all coefficients are set
to (0.0,...,0.0).
fhd is a DOF vector for storing the coefficients; if fhd is a nil pointer,
nothing is done.
The actual interpolation is done element—wise on the leaf elements of
fhd->fe_space->mesh by fhd->fe space->bas fcts->interpold(); fd
must meet the requirements of this function, for instance the point—wise
evaluation of (x£d) () at all Lagrange nodes when using Lagrange finite ele-
ments elements (compare Section 3.5.1); the £i11_flag of the mesh traversal
is CALL_LEAF EL|FILL_COORDS.

3.13 Data structures and procedures for adaptive
methods

3.13.1 ALBERTA adaptive method for stationary problems

The basic data structure ADAPT_STAT for stationary adaptive methods con-
tains pointers to problem dependent routines to build the linear or nonlinear
system(s) of equations on an adapted mesh, and to a routine which solves the
discrete problem and computes the new discrete solution(s). For flexibility
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and efficiency reasons, building and solution of the system(s) may be split
into several parts, which are called at various stages of the mesh adaption

process.

ADAPT_STAT also holds parameters used for the adaptive procedure. Some
of the parameters are optional or used only when a special marking strategy

is selected.

typedef struct adapt_stat ADAPT_STAT;

struct adapt_stat

{
const char *name;
REAL tolerance;
REAL P /* power of the estimator norm  */
int max_iteration;
int info;
REAL (*estimate) (MESH *mesh, ADAPT_STAT *adapt);
REAL  (*get_el_est) (EL *el); /* access local error indicator */
REAL (*get_el_estc) (EL *el); /+* access local coarsening error */
U_CHAR (*marking) (MESH *mesh, ADAPT_STAT *adapt);
void *est_info; /* data used for the estimator —-——x/
REAL err_sum, err_max; /*--- sum and max of el_est -———%/
void (*build_before_refine) (MESH #*mesh, U_CHAR flag);
void (¥build_before_coarsen) (MESH *mesh, U_CHAR flag);
void (¥build_after_coarsen) (MESH *mesh, U_CHAR flag);
void (*solve) (MESH *mesh);
int refine_bisections;
int coarsen_allowed; /*--- 0: false, 1l:true —-——x/
int coarse_bisections;
int strategy; /*--- 1: GR, 2: MS, 3: ES, 4:GERS ---x%/
/*---- parameters for the different strategies ---—--—-----—--—- */
REAL  MS_gamma, MS_gamma_c;
REAL ES_theta, ES_theta_c;
REAL GERS_theta_star, GERS_nu, GERS_theta_c;
};

The entries yield following information:

name: textual description of the adaptive method, or nil.
tolerance: given tolerance for the (absolute or relative) error.
p: power p used in estimate (1.17), 1 < p < oo.

max_iteration: maximal allowed number of iterations of the adaptive pro-

cedure; if max_iteration <= 0, no iteration bound is used.
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info: level of information printed during the adaptive procedure; if info >=
2, the iteration count and final error estimate are printed; if info >= 4, then
information is printed after each iteration of the adaptive procedure; if info
>= 6, additional information about the CPU time used for mesh adaption
and building the linear systems is printed.

estimate: pointer to a problem dependent function for computing the global
error estimate and the local error indicators; must not be nil;
estimate(mesh, adapt) computes the error estimate and fills the entries
adapt->err_sum and adapt->err_max with

1/p
adapt->err_sum = ( Z nS(Uh)p> )
SeSy,

adapt->err max = max ng(up)?.
SeSy,

The return value is the total error estimate adapt->err_sum. User data, like
additional parameters for estimate (), can be passed via the est_info entry
of the ADAPT_STAT structure to a (problem dependent) parameter structure.
Usually, estimate() stores the local error indicator(s) ns(up)? (and coars-
ening error indicator(s) 7., s(up)P) in LEAF _DATA(el).
For sample implementations of error estimators for quasi-linear elliptic and
parabolic problems, see Section 3.14.

get_el _est: pointer to a problem dependent subroutine returning the value of
the local error indicator; must no be nil if via the entry strategy adaptive
refinement is selected and the specialized marking routine marking is nil;
get_el_est(el) returns the value ng(up)?P, of the local error indicator on
leaf element el; usually, local error indicators are computed by estimate ()
and stored in LEAF DATA(el), which is problem dependent and thus not
directly accessible by general-purpose routines. get_el_est () is needed by
the ALBERTA marking strategies.

get_el estc: pointer to a function which returns the local coarsening error
indicator;
get_el_estc(el) returns the value 7. s(up)? of the local coarsening error
indicator on leaf element el, usually computed by estimate() and stored
in LEAF DATA(el); if not nil, get_el estc() is called by the ALBERTA
marking routines; this pointer may be nil, which means 7. g(up) = 0.

marking: specialized marking strategy; if nil, a standard ALBERTA marking
routine is selected via the entry strategy;
marking (mesh, adapt) selects and marks elements for refinement or coars-
ening; the return value is

0: no element is marked;
MESH_REFINED: elements are marked but only for refinement;
MESH_COARSENED: elements are marked but only for coarsening;
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MESH_REFINED | MESH_COARSENED: elements are marked for refinement and
coarsening.

est_info: pointer to (problem dependent) parameters for the estimate()
routine; via this pointer the user can pass information to the estimate rou-
tine; this pointer may be nil.

err_sum: holds the sum of local error indicators (3" g g ns(un)?)'/?; the value
for this entry must be set by the function estimate().

err_max: holds the maximal local error indicator maxges ns(up)?; the value
for this entry must be set by the function estimate().

build before_refine: pointer to a subroutine that builds parts of the
(non-)linear system(s) before any mesh adaptation; if it is nil, this assem-
blage stage omitted;
build before refine(mesh, flag) launches the assembling of the assem-
bling of the discrete system on mesh; flag gives information which part of
the system has to be built; the mesh will be refined if the MESH_REFINED bit
is set in flag and it will be coarsened if the bit MESH_ COARSENED is set in
flag.

build_before_coarsen: pointer to a subroutine that builds parts of the
(non-)linear system(s) between the refinement and coarsening; if it is nil,
this assemblage stage omitted;
build before_coarsen(mesh, flag) performs an intermediate assembling
step on mesh (compare Section 1.4.4 for an example when such a step is
needed); flag gives information which part of the system has to be built;
the mesh was refined if the MESH REFINED bit is set in flag and it will be
coarsened if the bit MESH_COARSENED is set in flag.

build_after_coarsen: pointer to a subroutine that builds parts of the
(non-)linear system(s) after all mesh adaptation; if it is nil, this assemblage
stage omitted;
build before_coarsen(mesh, flag) performs the final assembling step on
mesh; flag gives information which part of the system has to be built; the
mesh was refined if the MESH REFINED bit is set in flag and it was coarsened
if the bit MESH_COARSENED is set in flag.

solve: pointer to a subroutine for solving the discrete (non-)linear system(s);
if it is nil, the solution step is omitted;
solve(mesh) computes the new discrete solution(s) on mesh.

refine bisections: number of bisection steps for the refinement of an el-
ement marked for refinement; used by the ALBERTA marking strategies;
default value is DIM.

coarsen_allowed: flag used by the ALBERTA marking strategies to allow
(true) or forbid (false) mesh coarsening;

coarse_bisections: number of bisection steps for the coarsening of an el-
ement marked for coarsening; used by the ALBERTA marking strategies;
default value is DIM.
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strategy: parameter to select an ALBERTA marking routine; possible values
are:
0: no mesh adaption,
1: global refinement (GR),
2: maximum strategy (MS),
3: equidistribution strategy (ES),
4: guaranteed error reduction strategy (GERS),
see Section 3.13.2 for a description of these strategies.
MS_gamma, MS_gamma c: parameters for the marking by the mazimum strat-
egy, see Sections 1.5.2 and 1.5.3.
ES_theta, ES_theta c: parameters for the marking by the equidistribution
strategy, see Sections 1.5.2 and 1.5.3.
GERS_theta_star, GERSnu, GERS_theta_c: parameters for the marking by
the guaranteed error reduction strategy, see Sections 1.5.2 and 1.5.3.
The routine adapt method_stat () implements the whole adaptive proce-
dure for a stationary problem, using the parameters given in ADAPT _STAT:

void adapt_method_stat(MESH *, ADAPT_STAT *);

Description:

adapt method _stat (mesh, adapt_stat): the adaptive procedure for a sta-
tionary problem; solves the problem adaptively on mesh by the method de-
scribed in Section 1.5.1; adapt_stat is a pointer to a filled ADAPT_STAT data
structure, holding all information about the problem to be solved and pa-
rameters for the adaptive method.

The main loop of the adaptive method is given in the following source fragment
(assuming that adapt->max_iteration is non-negative):

void adapt_method_stat(MESH *mesh, ADAPT_STAT *adapt)
{

int iter;
REAL est;
/*--- get solution on initial mesh -----------—-————————-——————— */

if (adapt->build_before_refine)
adapt->build_before_refine(mesh, 0);
if (adapt->build_before_coarsen)
adapt->build_before_coarsen(mesh, 0);
if (adapt->build_after_coarsen)
adapt->build_after_coarsen(mesh, 0);
if (adapt->solve)
adapt->solve(mesh) ;
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est = adapt->estimate(mesh, adapt);

for (iter = 0;
(est > adapt->tolerance) && iter < adapt->max_iteration;
iter++)
{
if (adapt_mesh(mesh, adapt))
{
if (adapt->solve) adapt->solve(mesh);
est = adapt->estimate(mesh, adapt);

}
}

The actual mesh adaption is done in a subroutine adapt_mesh (), which com-
bines marking, refinement, coarsening and the linear system building routines:

static U_CHAR adapt_mesh(MESH *mesh, ADAPT_STAT *adapt)
{

U_CHAR flag = 0;

U_CHAR mark_flag;

if (adapt->marking)
mark_flag = adapt->marking(mesh, adapt);
else
mark_flag = marking(mesh, adapt); /*-- use standard marking --*/

if (ladapt->coarsen_allowed)
mark_flag &= MESH_REFINED; /*-- use only refinement --*/

if (adapt->build_before_refine)
adapt->build_before_refine(mesh, mark_flag);

if (mark_flag & MESH_REFINED)
flag = refine(mesh);

if (adapt->build_before_coarsen)
adapt->build_before_coarsen(mesh, mark_flag);

if (mark_flag & MESH_COARSENED)
flag |= coarsen(mesh);

if (adapt->build_after_coarsen)
adapt->build_after_coarsen(mesh, flag);
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return(flag);
}

Remark 3.31. As the same procedure is used for time dependent problems
in single time steps, different pointers to routines for building parts of the
(non-)linear systems make it possible, for example, to assemble the right hand
side including a functional involving the solution from the old time step before
coarsening the mesh, and then using the DOF_VEC restriction during coarsen-
ing to compute exactly the projection to the coarsened finite element space,
without loosing any information, compare Section 1.4.4.

Remark 3.32. For time dependent problems, usually the system matrices
depend on the current time step size. Thus, matrices may have to be rebuilt
even if meshes are not changed, but when the time step size was changed.
Such changes can be detected in the set_time () routine, for example.

3.13.2 Standard ALBERTA marking routine

When the marking procedure pointer in the ADAPT_STAT structure is nil,
then the standard ALBERTA marking routine is called. The strategy en-
try, allows the selection of one of five different marking strategies (compare
Sections 1.5.2 and 1.5.3). Elements are only marked for coarsening and coars-
ening parameters are only used if the entry coarsen_allowed is true. The
number of bisection steps for refinement and coarsening is selected by the
entries refine bisections and coarse_bisections.

strategy=0: no refinement or coarsening is performed;

strategy=1: Global Refinement (GR):
the mesh is refined globally, no coarsening is performed;

strategy=2: Maximum Strategy (MS):
the entries MS_gamma, MS_gamma c are used as refinement and coarsening
parameters;

strategy=3: Equidistribution strategy (ES):
the entries ES_theta, ES_theta_c are used as refinement and coarsening
parameters;

strategy=4: Guaranteed error reduction strategy (GERS):
the entries GERS_theta_star, GERS nu, and GERS_theta_c are used as re-
finement and coarsening parameters.

Remark 3.33. As get_el_est() and get_el_estc() return the p—th power
of the local estimates, all algorithms are implemented to use the values 7%
instead of ng. This results in a small change to the coarsening tolerances
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for the equidistribution strategy described in Section 1.5.3. The implemented
equidistribution strategy uses the inequality

ng +nh g < ¢ tol” /Ny

instead of
Ng + Ne,g < ctol/N,i/p.

3.13.3 ALBERTA adaptive method for time dependent problems

Similar to the data structure ADAPT_STAT for collecting information about the
adaptive solution for a stationary problem, the data structure ADAPT_INSTAT
is used for gather all information needed for the time and space adaptive
solution of instationary problems. Using a time steping scheme, in each time
step a stationary problem is solved; the adaptive method for these stationary
is based on the adapt method_stat() routine described in Section 3.13.1,
the ADAPT_INSTAT structure includes two ADAPT_STAT parameter structures.
Additional entries give information about the time adaptive procedure.

typedef struct adapt_instat ADAPT_INSTAT;
struct adapt_instat
{

const char *name;

ADAPT_STAT adapt_initiall[1];
ADAPT_STAT adapt_space[1];

REAL time;
REAL start_time, end_time;
REAL  timestep;

void (*init_timestep) (MESH *, ADAPT_INSTAT *);
void (*set_time) (MESH *, ADAPT_INSTAT x);

void (*one_timestep) (MESH *, ADAPT_INSTAT *);
REAL (*get_time_est) (MESH *, ADAPT_INSTAT *);
void (*close_timestep) (MESH *, ADAPT_INSTAT *);

int strategy;
int max_iteration;

REAL tolerance;

REAL rel_initial_error;
REAL rel_space_error;
REAL rel_time_error;
REAL time_theta_1;
REAL time_theta_2;
REAL time_delta_1;
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REAL time_delta_2;
int info;
};
The entries yield following information:
name: textual description of the adaptive method, or nil.

adapt_initial: mesh adaption parameters for the initial mesh, compare Sec-
tion 3.13.1.

adapt_space: mesh adaption parameters during time steps, compare Section
3.13.1.

time: actual time, end of time interval for current time step.
start_time: initial time for the adaptive simulation.
end_time: final time for the adaptive simulation.

timestep: current time step size, will be changed by the time adaptive
method.
init_timestep: pointer to a routine called at beginning of each time step; if
nil, initialization of a new time step is omitted;
init_timestep(mesh, adapt) initializes a new time step;
set_time: pointer to a routine called after changes of the time step size if not
nil;
set_time(mesh, adapt) is called by the adaptive method each time when
the actual time adapt->time has changed, i.e. at a new time step and after
a change of the time step size adapt->timestep; information about actual
time and time step size is available via adapt.

one_timestep: pointer to a routine which implements one (adaptive) time
step, if nil, a default routine is called;
one_timestep(mesh, adapt) implements the (adaptive) solution of the
problem in one single time step; information about the stationary problem
of the time step is available in the adapt->adapt_space data structure.

get_time_est: pointer to a routine returning an estimate for the time error;
if nil, no time step adaptation is done;
get_time est(mesh, adapt) returns an estimate 7, for the current time
error at time adapt->time on mesh.

close_timestep: pointer to a routine called after finishing a time step, may
be nil.
close_timestep(mesh, adapt) is called after accepting the solution(s) of
the discrete problem on mesh at time adapt->time by the time-space adap-
tive method; can be used for visualization and export to file for post—
processing of the mesh and discrete solution(s).

strategy: parameter for the default ALBERTA one_timestep routine; possi-
ble values are: 0: explicit strategy, 1: implicit strategy.

max_iteration: parameter for the default one_timestep routine; maximal
number of time step size adaptation steps, only used by the implicit strategy.
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tolerance: given total error tolerance tol.

rel_initial _error: portion I of tolerance allowed for initial error, compare
Section 1.5.4;

rel _space_error: portion I}, of tolerance allowed for error from spatial dis-
cretization in each time step, compare Section 1.5.4.

rel_time_error: portion I, of tolerance allowed for error from time dis-
cretization in each time step, compare Section 1.5.4.

time_theta_1: safety parameter #; for the time adaptive method in the de-
fault ALBERTA one_timestep () routine; the tolerance for the time estimate
1y is 01 I': tol, compare Algorithm 1.24.

time_theta_2: safety parameter #5 for the time adaptive method in the de-
fault ALBERTA one_timestep() routine; enlargement of the time step size
is only allowed for n, < 05 I'> tol, compare Algorithm 1.24.

time_delta_1: factor d; used for the reduction of the time step size in the
default ALBERTA one_timestep() routine, compare Algorithm 1.24.

time_delta 2: factor ds used for the enlargement of the time step size in the
default ALBERTA one_timestep() routine, compare Algorithm 1.24.

info: level of information produced by the time—space adaptive procedure.

Using information given in the ADAPT_INSTAT data structure, the space and
time adaptive procedure is performed by:

void adapt_method_instat(MESH *, ADAPT_INSTAT *);

Description:

adapt_method_instat (mesh, adapt_instat): the function solves an insta-
tionary problem on mesh by the space-time adaptive procedure described in
Section 1.5.4; adapt_instat is a pointer to a filled ADAPT_INSTAT data struc-

ture, holding all information about the problem to be solved and parameters
for the adaptive method.

Implementation of the routine is very simple. All essential work is
done by calling adapt method stat() for the generation of the initial
mesh, based on parameters given in adapt->adapt_initial with tolerance
adapt->tolerance*adapt->rel_space_error, and in one_timestep () which
solves the discrete problem and does mesh adaption and time step adjustment
for one single time step.

void adapt_method_instat(MESH *mesh, ADAPT_INSTAT *adapt)

A T L et et */
/* adaptation of the initial grid: done by adapt_method_stat() */
Rt et e e e e e >8---x%/

adapt->time = adapt->start_time;
if (adapt->set_time) adapt->set_time(mesh, adapt);
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adapt->adapt_initial->tolerance
= adapt->tolerance * adapt->rel_initial_error;
adapt_method_stat (mesh, adapt->adapt_initial);

if (adapt->close_timestep)
adapt->close_timestep(mesh, adapt);

[ k== B */
/* adaptation of timestepsize and mesh: done by one_timestep() */
g et et L e Bt e >8---x%/

while (adapt->time < adapt->end_time)
{
if (adapt->init_timestep)
adapt->init_timestep(mesh, adapt);

if (adapt->one_timestep)
adapt->one_timestep(mesh, adapt);
else
one_timestep(mesh, adapt);

if (adapt->close_timestep)
adapt->close_timestep(mesh, adapt);

The default ALBERTA one_timestep() routine

The default one_timestep () routine provided by ALBERTA implements both
the explicit strategy and the implicit time strategy A. The semi—implicit strat-
egy described in Section 1.5.4 is only a special case of the implicit strategy
with a limited number of iterations (exactly one).

The routine uses the parameter adapt->strategy to select the strategy:

strategy 0: Explicit strategy, strategy 1: Implicit strategy.

Explicit strategy. The explicit strategy does one adaption of the mesh
based on the error estimate computed from the last time step’s discrete solu-
tion by using parameters given in adapt->adapt_space and with tolerance
set to adapt->tolerance*adapt->rel _space_error. Then the current time
step’s discrete problem is solved, and the error estimators are computed. No
time step size adjustment is done.

Implicit strategy. The implicit strategy starts with the old mesh given
from the last time step. Using parameters given in adapt->adapt_space, the
discrete problem is solved on the current mesh. Error estimates are computed,
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and time step size and mesh are adjusted, as shown in Algorithm 1.25. The
tolerances used for time and space estimate are set to

adapt->tolerance * adapt->rel_time_error
and
adapt->tolerance * adapt->rel_space_error,

respectively. This is iterated until the given error bounds are reached, or until
adapt->max_iteration is reached.

With parameter adapt->max_iteration==0, this is equivalent to the
semi—implicit strategy described in Section 1.5.4.

3.13.4 Initialization of data structures for adaptive methods

ALBERTA provides functions for the initialization of the data structures
ADAPT_STAT and ADAPT_INSTAT. Both functions do not fill any function pointer
entry in the structures! These function pointers have to be adjusted in the ap-
plication.

Table 3.15. Initialized members of an ADAPT_STAT structure accessed by the
function get_adapt_stat() with default values and key for the initialization by
GET_PARAMETER().

member default|parameter key

tolerance 1.0 |pre->tolerance

P 2  |pre->p

max_iteration 30 |pre->max_iteration
info 2 |pre->info

refine bisections| DIM |pre->refine_bisections
coarsen_allowed 0 pre->coarsen_allowed
coarse_bisections| DIM |pre->coarse_bisections
strategy 1 |pre->strategy

MS_gamma 0.5 |pre->MS_gamma
MS_gamma_c 0.1 |pre->MS_gamma_c
ES_theta 0.9 |pre->ES_theta
ES_theta_c 0.2 |pre->ES_theta_c
GERS_theta_star 0.6 |pre->GERS_theta_star
GERS_nu 0.1 |pre->GERS_nu
GERS_theta_c 0.1 |pre->GERS_theta_c

ADAPT_STAT x*get_adapt_stat(const char *, const char *, int,
ADAPT_STAT *);
ADAPT_INSTAT *get_adapt_instat(const char *, const char *, int,
ADAPT_INSTAT *);
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Description:

get_adapt_stat(name, pre, info, adapt): returns a pointer to a partly
initialized ADAPT _STAT structure; if the argument adapt is nil, a new struc-
ture is created, the name name is duplicated at the name entry of the struc-
ture, if name is not nil; if name is nil, and pre is not nil, this string is dupli-
cated at the name entry; for a newly created structure, all function pointers
of the structure are initialized with nil; all other members are initialized
with some default value; if the argument adapt is not nil, this initialization
part is skipped, the name and function pointers are not changed;
if pre is not a nil pointer, get_adapt_stat () tries then to initialize mem-
bers by a call of GET_PARAMETER(), where the key for each member is
value (pre)->member name; the argument info is the first argument of
GET_PARAMETER() giving the level of information for the initialization;
only the parameters for the actually chosen strategy are initialized us-
ing the function GET_PARAMETER(): for strategy == 2 only MS_gamma and
MS_gamma c, for strategy == 3 only ES_theta and ES_theta c, and for
strategy == 4 only GERS_theta_star, GERS nu, and GERS_theta c;
since the parameter tools are used for the initialization, get_adapt_stat ()
should be called after the initialization of all parameters; there may be no ini-
tializer in the parameter file(s) for some member, if the default value should
be used; if info is not zero and there is no initializer for some member this
will result in an error message by GET_PARAMETER () which can be ignored;
Table 3.15 shows the initialized members, the default values and the key
used for the initialization by GET_PARAMETER();

Table 3.16. Initialization of the main parameters in an ADAPT_INSTAT structure for
the time-adaptive strategy by get_adapt_instat(); initialized members, the default
values and keys used for the initialization by GET_PARAMETER().

member default|parameter key
start_time 0.0 |pre->start_time
end_time 1.0 |pre->end_time
timestep 0.01 |pre->timestep
strategy 0 |pre->strategy
max_iteration 0 pre—->max_iteration
tolerance 1.0 |pre->tolerance
rel_initial_error| 0.1 |pre->rel_initial_error
rel_space_error 0.4 |pre->rel_space_error
rel_time_error 0.4 |pre->rel_time_error
time_theta_1 1.0 |pre->time_theta_1
time_theta_2 0.3 |pre->time_theta_2
time_delta_1 0.7071 |pre->time_delta_1
time_delta_2 1.4142 |pre->time_delta_2
info 8 |pre->info
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get_adapt_instat(name, pre, info, adapt): returns a pointer to a par-
tially initialized ADAPT_INSTAT structure; if the argument adapt is nil, a
new structure is created, the name name is duplicated at the name entry of
the structure, if name is not nil; if name is nil, and pre is not nil, this
string is duplicated at the name entry; for a newly created structure, all
function pointers of the structure are initialized with nil; all other members
are initialized with some default value; if the argument adapt is not nil,
this default initialization part is skipped;
if pre is not nil, get_adapt_instat() tries then to initialize mem-
bers by a call of GET_PARAMETER(), where the key for each member is
value (pre)->member name; the argument info is the first argument of
GET_PARAMETER () giving the level of information for the initialization;
Tables 3.16-3.18 show all initialized members, their default values and
the key used for the initialization by GET_PARAMETER(). The tolerances
in the two sub-structures adapt_initial and adapt_space are set auto-
matically to the values adapt->tolerance*adapt->rel_ initial error, re-
spectively adapt->tolerance*adapt->rel space_error. A special initial-
ization is done for the info parameters: when adapt_initial->info or
adapt_space->info are negative, then they are set to adapt->info-2.

Table 3.17. Initialization of adapt_initial inside an ADAPT_INSTAT structure for
the adaptation of the initial grid by get_adapt_instat(); initialized members, the
default values and keys used for the initialization by GET_PARAMETER().

member default|parameter key
adapt_initial->tolerance N

adapt_initial->p 2  |pre->initial->p
adapt_initial->max_iteration 30 |pre->initial->max_iteration
adapt_initial->info 2 |pre->initial->info
adapt_initial->refine bisections| DIM |pre->initial->refine_bisections
adapt_initial->coarsen_allowed 0 pre->initial->coarsen_allowed
adapt_initial->coarse_bisections| DIM |pre->initial->coarse_bisections
adapt_initial->strategy 1 pre->initial->strategy
adapt_initial->MS_gamma 0.5 |pre->initial->MS_gamma
adapt_initial->MS_gamma_c 0.1 |pre—>initial->MS_gamma_c
adapt_initial->ES_theta 0.9 |pre->initial->ES_theta
adapt_initial->ES_theta_c 0.2 |pre->initial->ES_theta.c
adapt_initial->GERS_theta_star 0.6 |pre->initial->GERS_theta_star
adapt_initial->GERS_nu 0.1 |pre->initial->GERS_nu
adapt_initial->GERS_theta_c 0.1 |pre->initial->GERS_theta_c
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Table 3.18. Initialization of adapt_space inside an ADAPT_INSTAT structure for
the adaptation of the grids during time-stepping by get_adapt_instat(); initialized
members, the default values and keys used for the initialization by GET_PARAMETER().

member default|parameter key
adapt_space->tolerance N

adapt_space->p 2  |pre->space->p
adapt_space->max_iteration 30 |pre->space->max_iteration
adapt_space->info 2  |pre->space->info
adapt_space->refine_bisections| DIM |pre->space->refine_bisections
adapt_space->coarsen_allowed 1 pre->space->coarsen_allowed
adapt_space->coarse_bisections| DIM |pre->space->coarse_bisections
adapt_space->strategy 1 pre->space->strategy
adapt_space->MS_gamma 0.5 |pre->space->MS_gamma
adapt_space->MS_gamma_c 0.1 |pre->space->MS_gamma_c
adapt_space->ES_theta 0.9 |pre->space->ES_theta
adapt_space->ES_theta_c 0.2 |pre->space->ES_theta_c
adapt_space->GERS_theta_star 0.6 |pre->space->GERS_theta_star
adapt_space->GERS_nu 0.1 |pre->space->GERS_nu
adapt_space->GERS_theta._c 0.1 |pre->space->GERS_theta._c

3.14 Implementation of error estimators

3.14.1 Error estimator for elliptic problems

ALBERTA provides a residual type error estimator for non-linear elliptic prob-
lems of the type

—V - AVu(z) + f(ac,u(ac), Vu(w)) =0 x € 02,
u(z) =0 x € I'p,
v-AVu(z) =0 x € I'n,

where A € R%*? is a positive definite matrix and 92 = I'p U I'y.
Verfiirth [71] proved for this kind of equation under suitable assumptions
on f, u and up (in the non-linear case) the following estimate

lu = unllF ) < D _Co Mg || = V- AVun + (. un, Vur)|72s)
ses

+CF Z hs || [v - AVup] ||%2(r)»
rcosn(2uly)

where [.] denotes the jump of a quantity across an interior edge/face or the
its value for an edge/face on the Neumann boundary.

Bénsch and Siebert [10] proved a similar L? error estimate for semi-linear
problems, i.e. f = f(z,u), namely
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= unlZeqay < YSCE RS | = V- AVun + [ (- un)as)
SeS

+CF > W | [v - AVun] [ 22(ry-
rCosSn(2uly)

The following function is an implementation of the above estimators:

REAL ellipt_est(const DOF_REAL_VEC *, ADAPT_STAT *, REAL *(x) (EL *),
REAL #(x) (EL *), int, int, REAL[3], const REAL_DD,
REAL (*f)(const EL_INFO *, const QUAD *, int, REAL,
const REAL_D), FLAGS);

Description:

ellipt_est(uh, adapt, rwe, rwec, deg, norm, C, A, f, f flag):
computes an error estimate of the above type for the H' or L? norm; the
return value is an approximation of the estimate |[u — uy|| by quadrature.
uh is a vector storing the coefficients of the discrete solution; if uh is a nil
pointer, nothing is done, the return value is 0. 0.
adapt is a pointer to an ADAPT_STAT structure; if not nil, the entries
adapt->p=2, err_sum, and err max of adapt are set by ellipt_est () (com-
pare Section 3.13.1).
rw_e is a function for writing the local error indicator for a single element
(usually to some location inside leaf data, compare Section 3.2.12); if this
function is nil, only the global estimate is computed, no local indicators
are stored. rw_e(el) returns for each leaf element el a pointer to a REAL
for storing the square of the element indicator, which can directly be used
in the adaptive method, compare the get_el_est () function pointer in the
ADAPT _STAT structure (compare Section 3.13.1).
rw_ec is a function for writing the local coarsening error indicator for a
single element (usually to some location inside leaf_data, compare Section
3.2.12); if this function is nil, no coarsening error indicators are computed
and stored; rw_ec(el) returns for each leaf element el a pointer to a REAL
for storing the square of the element coarsening error indicator.
deg is the degree of the quadrature that should be used for the approximation
of the norms on the elements and edges/faces; if deg is less than zero a
quadrature which is exact of degree 2¥uh->fe_space->bas_fcts->degree is
used.
norm can be either H1_NORM or L2 NORM (which are defined as symbolic con-
stants in alberta.h) to indicate that the H! or L? error estimate has to be
calculated.
C[o0], C[11, C[2] are the constants in front of the element residual, edge/face
residual, and coarsening term respectively. If C is nil, then all constants are
set to 1.0.
A is the constant matrix of the second order term.
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f is a pointer to a function for the evaluation of the lower order terms at all
quadrature nodes, i.e. f(x(A),u(N), Vu(N)) ; if £ is a nil pointer, f =0 is
assumed;

f(el_info, quad, iq, uh_iq, grd_uh_iq) returns the value of the lower
oder terms of the element residual on element el_info->el at the quadra-
ture node quad->lambdaliq], where uh_iq is the value and grd_uh_iq the
gradient (with respect to the world coordinates) of the discrete solution at
that quadrature node.

f _flag specifies whether the function f() actually needs values of uh_iq
or grd uh_iq. This flag may hold zero, the predefined values INIT_UH or
INIT_GRD_UH, or their composition INIT_UH|INIT_GRD_UH; the arguments
uh_iq and grd_uh_iq of £ () only hold valid information, if the flags INIT_UH
respectively INIT_GRD_UH are set.

The estimate is computed by a mesh traversal of all leaf elements of
uh->fe_space->mesh, using the quadrature for the approximation of the
residuals and storing the square of the element indicators on the elements
(if rw_e and rw_ec are not nil).

Example 3.34 (Linear problem). Consider the linear model problem (1.7)
with constant coefficients A, b, and c:

-V -AVu+b-Vu+cu=r in £2,
u=20 on 0f2.

Let A be a REAL DD matrix storing A, which is then the eighth argument
of ellipt_est(). Assume that const REAL #*b(const REALD) is a function
returning a pointer to a vector storing b, REAL c¢(REAL D) returns the value
of ¢ and REAL r(const REALD) returns the value of the right hand side r of
(1.7) at some point in world coordinates. The implementation of the function
f is:
static REAL f(const EL_INFO *el_info, const QUAD *quad, int iq,
REAL uh_iq, const REAL_D grd_uh_iq)
{
FUNCNAME("£") ;
const REAL *bx, *x;
extern const REAL b(const REAL_D);
extern REAL c(const REAL_D), r(const REAL_D);

x = coord_to_world(el_info, quad->lambdaliq], nil);
bx = b(x);

return(SCP_DOW(bx, grd_uh_iq) + c(x)*uh_iq - r(x));
}

As both uh_iq and grd uh_iq are used, the estimator parameter f_flag must
be given as INIT_UH|INIT_GRD_UH.
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3.14.2 Error estimator for parabolic problems

Similar to the stationary case, the ALBERTA library provides an error esti-
mator for the non—linear parabolic problem

Bpu — V - AVu(z) + f(:z:,t,u(x),Vu(a:) =0 ze >0,
u(z,t) =0 x € I'p,t>0,
v-AVu(z,t) =0 x € y,t>0,

u(z,0) = ug x €12,

where A € R%*? is a positive definite matrix and 842 = I'pUI'y. The estimator
is split in several parts, where the initial error

no = |luo — Uol|L2 ()

can be approximated by the function L2_err(), e.g. (compare Section 3.11).

For the estimation of the spatial discretization error, the coarsening error,
and the time discretization error, the ALBERTA estimator is given by: The
local error indicator on element S € S

2 2 14 (]n+l "In+1(51 2
g = C2hs || 22T G AV, 4 F (ot Unit, V)
Tn+1 L2(S)
+C7 > Wl v - AVUn ] 1 22(ry,s
I'casn(QuUly)

the local coarsening error indicator for S € S
2 273 2
ns,. = C3 hg [ [VU,] ”L?(FC)
and the estimator for the time error

Ny = C3||Uny1 — Iny1Unl| 22(02)-

The coarsening indicator is motivated by the fact that, for piecewise linear
Lagrange finite element functions, it holds ||U,, — I,41 Un”%?(S) = %, with
Cy = C3(d) and I the element vertex/edge/face which would be removed
during a coarsening operation.

The implementation is done by the function

REAL heat_est(const DOF_REAL_VEC *, ADAPT_INSTAT *, REAL *(x)(EL *),
REAL *(*) (EL *), int, REAL[4], const DOF_REAL_VEC x*,
const REAL_DD,

REAL (*)(const EL_INFO *, const QUAD *, int, REAL,
REAL, const REAL_D), FLAGS);
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Description:

heat_est(uh, adapt, rwe, rwec, deg, C, uhold, A, f, f flag):
computes an error estimate of the above type, the local and global space
discretization estimators are stored in adapt->adapt_space and via the rw_e
and rw_ec pointers; the return value is the time discretization estimate 7.
uh is a vector storing the coefficients of the discrete solution U, 1; if uh is a
nil pointer, nothing is done, the return value is 0.0.
adapt is an optional pointer to an ADAPT_INSTAT structure; if it is not a nil
pointer, then the entries adapt_space->p=2, adapt_space->err_sum and
adapt_space->err max of adapt are set by heat_est() (compare Section
3.13.1).
rw_e is a function for writing the local error indicator 77% for a single element
(usually to some location inside leaf data, compare Section 3.2.12); if this
function is nil, only the global estimate is computed, no local indicators
are stored. rw_e(el) returns for each leaf element el a pointer to a REAL
for storing the square of the element indicator, which can directly be used
in the adaptive method, compare the get_el_est () function pointer in the
ADAPT _STAT structure (compare Section 3.13.1).
rw_ec is a function for writing the local coarsening error indicator ng,c for a
single element (usually to some location inside leaf _data, compare Section
3.2.12); if this function is nil, no coarsening error indicators are computed
and stored; rw_ec(el) returns for each leaf element el a pointer to a REAL
for storing the square of the element coarsening error indicator.
degree is the degree of the quadrature used for the approximation of the
norms on the elements and edges/faces; if degree is less than zero a default
quadrature which is exact of degree 2¥uh->fe_space->bas_fcts->degree is
used.
c[o], c[1]1, c[2], C[3] are the constants in front of the element residual,
edge/face residual, coarsening term, and time residual, respectively. If C is
nil, then all constants are set to 1.0.
uh_old is a vector storing the coefficients of the discrete solution U, from
previous time step; if uh_old is a nil pointer, nothing is done, the return
value is 0.0.
A is the constant matrix of the second order term.
f is a pointer to a function for the evaluation of the lower order terms at all
quadrature nodes, i.e. f(z(A),t,u(X), Vu(N)) ; if £ is a nil pointer, f =0 is
assumed;
f(el_info, quad, iq, t, uh_iq, grduh iq) returns the value of the
lower oder terms of the element residual on element el _info->el at the
quadrature node quad->lambda[iq], where uh_iq is the value and grd_uh_iq
the gradient (with respect to the world coordinates) of the discrete solution
at that quadrature node.
f_flag specifies whether the function f() actually needs values of uh_iq
or grd uh_iq. This flag may hold zero, the predefined values INIT_UH or



268 3 Data structures and implementation

INIT_GRD_UH, or their composition INIT_UH|INIT_GRD_UH; the arguments
uh_iq and grd uh_iq of £ () only hold valid information, if the flags INIT UH
respectively INIT_GRD_UH are set.

The estimate is computed by a mesh traversal of all leaf elements of
uh->fe_space->mesh, using the quadrature for the approximation of the
residuals and storing the square of the element indicators on the elements
(if rw_e and rw_ec are not nil).

3.15 Solver for linear and nonlinear systems

ALBERTA uses a library for solving general linear and nonlinear systems.
The solvers use REAL vectors for storing coefficients. They do not no know
about ALBERTA data structures especially they do not know DOF vectors
and matrices used in ALBERTA. The linear solvers only need a subroutine
for the matrix—vector multiplication, and in the case that a preconditioner is
used, a function for preconditioning. The nonlinear solvers need subroutines
for assemblage and solution of a linearized system.

In the subsequent sections we describe the basic data structures for the
OEM (Orthogonal Error Methods) library, an ALBERTA interface for solving
systems involving a DOF_MATRIX and DOF_REAL[D] vectors, and the access
of functions for matrix—vector multiplication and preconditioning for a direct
use of the OEM solvers. Then we describe the basic data structures for multi-
grid solvers and for the available solvers of nonlinear equations. Most of the
implemented methods (and more) are described for example in [47, 58].

3.15.1 General linear solvers

Highly efficient solvers for linear systems are (preconditioned) Krylov-space
solvers (or Orthogonal Error Methods). The OEM library provides such solvers
for the solution of general linear systems

Az =1b

with A € RV*N and x,b € RY. The library solvers work on vectors and do
not need to know the storage of the system matrix, or the matrix used for
preconditioning. Matrix—vector multiplication and preconditioning is done by
application dependent routines.

The OEM solvers are not part of ALBERTA. For the access of the basic
data structure and prototypes of solvers, the header file

#include <oem.h>

has to be included in each file using a solver from the library. Most of the
implemented solvers are a C-translation from the solvers of FORTRAN OFM
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library (Orthogonale Fehler Methoden), by Dorfler [29]. All solvers allow a
left preconditioning and some also a right preconditioning.

The data structure (defined in oem.h) for passing information about
matrix—vector multiplication, preconditioning and tolerances, etc. to the
solvers is

typedef struct oem_data OEM_DATA;
struct oem_data

{
int (*mat_vec) (void *, int, const REAL *, REAL x*);
void *mat_vec_data;
int (*mat_vec_T) (void *, int, const REAL *, REAL x);
void *mat_vec_T_data;
void (xleft_precon) (void *, int, REAL *);
void *left_precon_data;
void (xright_precon) (void *, int, REAL *);
void *right_precon_data;
REAL (*scp) (void *, int, const REAL *, const REAL *);
void *scp_data;

WORKSPACE *ws;

REAL tolerance;
int restart;
int max_iter;
int info;
REAL initial_residual;
REAL residual;
};
Description:

mat_vec: pointer to a function for the matrix—vector multiplication with the
system matrix;
mat_vec(mat_vec_data, dim, u, b) applies the system matrix to the input
vector u and stores the product in b; dim is the dimension of the linear system,
mat_vec_data a pointer to user data.

mat_vec_data: pointer to user data for the matrix—vector multiplication, first
argument to mat_vec().

mat_vec_T: pointer to a function for the matrix—vector multiplication with
the transposed system matrix;
mat_vec_T(mat_vec_data, dim, u, b) applies the transposed system ma-
trix to the input vector u and stores the product in b; dim is the dimension
of the linear system, mat_vec_T_data a pointer to user data.

mat_vec_T_data: pointer to user data for the matrix—vector multiplication
with the transposed system matrix, first argument to mat_vec_T().
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left_precon: pointer to function for left preconditioning; it may be a nil
pointer; in this case no left preconditioning is done;
left _precon(left precon data, dim, r) is the implementation of the
left preconditioner; r is input and output vector of length dim and
left_precon_data a pointer to user data.

left_precon_data: pointer to user data for the left preconditioning, first ar-
gument to left_precon().

right_precon: pointer to function for right preconditioning; it may be a nil
pointer; in this case no right preconditioning is done;
right _precon(right precon_data, dim, r) is the implementation of the
right preconditioner; r is input and output vector of length dim and
right_precon_data a pointer to user data.

right precon_data: pointer to user data for the right preconditioning, first
argument to right_precon().

scp: pointer to a function for computing a problem dependent scalar product;
it may be a nil pointer; in this case the Euclidian scalar product is used;
scp(scp_data, dim, x, y) computes a problem dependent scalar product
of two vectors x and y of length dim; scp_data is a pointer to user data.

scp-data: pointer to user data for computing the scalar product, first argu-
ment to scpQ).

ws: a pointer to a WORKSPACE structure for storing additional vectors used
by a solver; if the space is not sufficient, the used solver will enlarge this
workspace; if ws is nil, then the used solver allocates memory, which is
freed before exit.

tolerance: tolerance for the residual; if the norm of the residual is less than
or equal to tolerance, the solver returns the actual iterate as the solution
of the system.
restart: restart for the linear solver; used only by oem gmres() at the mo-
ment.
max_iter: maximal number of iterations to be performed although the toler-
ance may not be reached.
info: the level of information produced by the solver; 0 is the lowest level of
information (no information is printed) and 10 the highest level.
initial_residual: stores the norm of the initial residual on exit.
residual: stores the norm of the last residual on exit.
The following linear solvers are currently implemented. Table 3.19 gives
an overview over the implemented solvers, the matrix types they apply to,
and the cost of one iteration.
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Table 3.19. OEM methods with applicable matrix types, numbers of operations
per iteration (MV matrix-vector products, V vector operations), and storage re-
quirements (N number of unknowns, ¥k GMRES subspace dimension)

Method Matrix Operations Storage
BiCGstab symmetric 2MV + 12V 5N
CG symmetric positive definite|]l MV + 5 V 3N
GMRES regular kMV + ... |(k+2)N+k(k+4)
ODir symmetric positive 1MV +11V 5N
ORes symmetric 1MV +12V TN

int oem_bicgstab(OEM_DATA *, int, const REAL *, REAL *);
int oem_cg(OEM_DATA *, int, const REAL *, REAL *);

int oem_gmres(OEM_DATA *, int, const REAL *, REAL *);
int oem_gmres_k(OEM_DATA *, int, const REAL *, REAL *);
int oem_odir (OEM_DATA *, int, const REAL *, REAL *);

int oem_ores(OEM_DATA *, int, const REAL *, REAL x);

Description:
oem bicgstab(oem_data, dim, b, x0): solves a linear system by a sta-
bilized BiCG method and can be used for symmetric system matrices;
oem_data stores information about matrix vector multiplication, precondi-
tioning, tolerances, etc. dim is the dimension of the linear system, b the right
hand side vector, and x0 the initial guess on input and the solution on out-
put; oem_bicgstab() needs a workspace for storing 5*dim additional REALS;
the return value is the number of iterations; oem_bicgstab() only uses left
preconditioning.
oem_cg(oem data, dim, b, x0): solves a linear system by the conjugate
gradient method and can be used for symmetric positive definite system
matrices; oem_data stores information about matrix vector multiplication,
preconditioning, tolerances, etc. dim is the dimension of the linear system,
b the right hand side vector, and x0 the initial guess on input and the so-
lution on output; oem_cg() needs a workspace for storing 3*dim additional
REALs; the return value is the number of iterations; oem_cg() only uses left
preconditioning.
oem_gmres (oem data, dim, b, x0): solves a linear system by the GM-
Res method with restart and can be used for regular system matrices;
oem_data stores information about matrix vector multiplication, precon-
ditioning, tolerances, etc. dim is the dimension of the linear system, b
the right hand side vector, and x0 the initial guess on input and the
solution on output; oem_data->restart is the dimension of the Krylov—
space for the minimizing procedure; oem data->restart must be big-
ger than O and less or equal dim, otherwise restart=10 will be used;
oem_gmres () needs a workspace for storing (oem data->restart+2)*dim
+ oem_data->restart*(oem data->restart+4) additional REALs.
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oem gmres k(oem data, dim, b, x0): a single restart step (minimization
on a k-dimensional Krylov subspace) of the GMRES method. This routine
can be used as subroutine in other solvers. For example, oem_gmres () just
iterates this until the tolerance is met. Other applications are nonlinear GM-
RES solvers, where a new linearization is done after each linear GMRES
restart step.

oem_odir (oem_data, dim, b, x0): solves a linear system by the method of
orthogonal directions and can be used for symmetric, positive system ma-
trices; oem_data stores information about matrix vector multiplication, pre-
conditioning, tolerances, etc. dim is the dimension of the linear system, b
the right hand side vector, and x0 the initial guess on input and the solu-
tion on output; oem_dir() needs a workspace for storing 5*dim additional
REALSs; the return value is the number of iterations; oem_odir() only uses
left preconditioning.

oem_ores(oem data, dim, b, x0): solves a linear system by the method
of orthogonal residuals and can be used for symmetric system matrices;
oem_data stores information about matrix vector multiplication, precondi-
tioning, tolerances, etc. dim is the dimension of the linear system, b the right
hand side vector, and x0 the initial guess on input and the solution on output;
oem_res () needs a workspace for storing 7*dim additional REALSs; the return
value is the number of iterations; oem_ores () only uses left preconditioning.

3.15.2 Linear solvers for DOF matrices and vectors
OEM solvers

The following functions are an interface to the above described solvers for
DOF matrices and vectors. The function oem_solve_s is used for scalar valued

problems, i.e.
Ax=0b

with A € RV*N and z,b € RY, and oem_solve_d for decoupled vector valued
problems of the form

A0 ...0 f1

0 A - | [ue f2

0...0 A| Lua Ja
with A € RVN*N and w;, f; € RN, i=1,...,d, where d = DIM_OF_WORLD. The
vectors (uq,...,uq) and (f1,..., f4) are stored in DOF_REAL D_VECs, whereas

the matrix is stored as a single DOF_MATRIX.
For the solver identification we use the following type

typedef enum {NoSolver, BiCGStab, CG, GMRes, 0Dir, ORes} OEM_SOLVER;
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This type will be changed at the time when additional solvers will be available.
The following functions can directly be used for solving a linear system
involving a DOF_MATRIX and DOF_REAL[ D] _VECs.

int oem_solve_s(const DOF_MATRIX *, const DOF_REAL_VEC *,
DOF_REAL_VEC #*, OEM_SOLVER, REAL, int, int, int,
int);
int oem_solve_d(const DOF_MATRIX *, const DOF_REAL_D_VEC *,
DOF_REAL_D_VEC #*, OEM_SOLVER, REAL, int, int, int,
int);
Description:

oem_solve_s[d] (A, f, u, isol, tol, icon, restart, miter, info):
solves the linear system for a scalar or decoupled vector valued problem
in ALBERTA by an OEM solver; the return value is the number of used
iterations;
A: pointer to a DOF_MATRIX storing the system matrix;
f: pointer to a DOF_REAL [ D] VEC storing the right hand side of the linear
system.
u: pointer to a DOF_REAL[ D] storing the initial guess on input and the cal-
culated solution on output;
the values for u and f have to be the same at all Dirichlet DOFs (compare
Section 3.12.5).
isol: use solver isol from the OEM library for solving the linear system;
may be one of BiCGStab, CG, GMRes, 0Dir, or ORes; the meaning of isol is
more or less self explaining.
tol: tolerance for the residual; if the norm of the residual is less or equal tol,
oem_solve_s[d] () returns the actual iterate as the solution of the system.
icon: parameter for performing standard preconditioning, if argument
precon is nil: 0: no preconditioning,
1: diagonal preconditioning,
2: hierarchical basis preconditioning,
3: BPX preconditioning.
miter: maximal number of iterations to be performed by the linear solver
although the tolerance may not be reached.
info: is the level of information of the linear solver; 0 is the lowest level of
information (no information is printed) and 10 the highest level.
The function initializes a data structure oem_data with information about
the matrix—vector multiplication, preconditioning, tolerances, etc. and the
additional memory needed by the linear solver is allocated automatically.
The linear system is then solved by the chosen OEM solver.
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SOR solvers

The SOR and SSOR methods are implemented directly for a linear system
involving a DOF_MATRIX and DOF_REAL_[D_] VECs.

int sor_s(DOF_MATRIX *, const DOF_REAL_VEC *, const DOF_SCHAR_VEC *,
DOF_REAL_VEC *, REAL, REAL, int, int);
int sor_d(DOF_MATRIX *, const DOF_REAL_D_VEC x*,
const DOF_SCHAR_VEC *, DOF_REAL_D_VEC x*,
REAL, REAL, int, int);
int ssor_s(DOF_MATRIX *, const DOF_REAL_VEC *, const DOF_SCHAR_VEC *,
DOF_REAL_VEC *, REAL, REAL, int, int);
int ssor_d(DOF_MATRIX *, const DOF_REAL_D_VEC =,
const DOF_SCHAR_VEC *, DOF_REAL_D_VEC *,
REAL, REAL, int, int);

[s]sor_s[d] (matrix, f, bound, u, omega, tol, miter, info): solves
the linear system for a scalar or decoupled vector valued problem in AL-
BERTA by the [Symmetric] Successive Over Relaxation method; the return
value is the number of used iterations to reach the prescribed tolerance;
matrix: pointer to a DOF matrix storing the system matrix;

f: pointer to a DOF vector storing the right hand side of the system:;
bound: optional pointer to a DOF vector giving Dirichlet boundary informa-
tion;

u: pointer to a DOF vector storing the initial guess on input and the calcu-
lated solution on output;

omega: the relaxation parameter and must be in the interval (0, 2]; if it is
not in this interval then omega=1.0 is used;

tol: tolerance for the maximum norm of the correction; if this norm is less
than or equal to tol, then sor_s[d] () returns the actual iterate as the
solution of the system;

miter: maximal number of iterations to be performed by sor_s[d] () al-
though the tolerance may not be reached;

info: level of information of sor_s[d] (); 0 is the lowest level of information
(no information is printed) and 6 the highest level.

3.15.3 Access of functions for matrix—vector multiplication

The general oem_. . . () solvers all need pointers to matrix—vector multiplica-
tion routines which do not work with DOF_REAL_VECs and a DOF_MATRIX but
directly on REAL vectors. For the application to a scalar or vector—valued linear
system described by a DOF_MATRIX (and an optional DOF_SCHAR_VEC holding
boundary information), the following routines are provided.
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void *init_mat_vec_s(MatrixTranspose, const DOF_MATRIX *,
const DOF_SCHAR_VEC x*);
int mat_vec_s(void *, int, const REAL *, REAL *);

void *init_mat_vec_d(MatrixTranspose, const DOF_MATRIX x*,
const DOF_SCHAR_VEC x*);

int mat_vec_d(void *, int, const REAL *, REAL x*);

Description:

init mat_vec_s[d] (transpose, matrix, bound): initialization routine for
the general matrix—vector multiplication routine mat_vec_s[d] () for a sys-
tem matrix from a scalar or decoupled vector valued problem stored in a
DOF matrix matrix;
the original matrix is used if transpose == NoTranspose (= 0) and the
transposed matrix if transpose == Transpose (= 1);
if bound is not nil, the DOF_SCHAR_VEC provides information about boundary
types, and the matrix—vector multiplication will be the identity for all Dirich-
let boundary DOFs; this also enforced in the case that Dirichlet boundary
values are not assembled into the system matrix matrix (compare Sections
3.12.1 and 3.12.2); if Dirichlet boundary conditions are assembled into the
system matrix or no Dirichlet boundary conditions are prescribed, bound
may be a pointer to nil;
the return value is a pointer to data used by the routine mat_vec_s[d] ) as
first argument.

mat_vec_s[d] (data, dim, x, b): applies the system matrix, with data ini-
tialized by init_mat_vec_s[d] (), to the input vector x and stores the prod-
uct in b; dim is the dimension of the linear system, data is a pointer to
data used for the matrix—vector multiplication and is the return value of
initmat_vec_s[d] O;
mat_vec_s[d] can be used as the entry mat_vec or mat_vec_T in an OEM_DATA
structure together with the return value of init_mat_vec_s[d] () as the
corresponding pointer mat_vec_data respectively mat_vec_T_data.

3.15.4 Access of functions for preconditioning

While a preconditioner can be selected in oem_solve_s[d] () just by an inte-
ger parameter, a direct access to the functions is needed for a more general
application, which directly calls one of the oem_. .. () routines.

A preconditioner may need some initialization phase, which depends on
the matrix of the linear system, but is independent of the actual application
of the preconditioner to a vector. Thus, a preconditioner is described by three
functions for initialization, application, and a final exit routine which may
free memory which was allocated during initialization, e.g. All three functions
are collected in the structure
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typedef struct precon PRECON;
struct precon

{
void *precon_data;
int (*init_precon) (void *);
void (*precon) (void *, int, REAL *);
void (*exit_precon) (void *);
};
Description:

precon_data: data for the preconditioner; always the first argument to the
functions init_precon(), precon(), and exit_precon().

init_precon(precon_data): pointer to a function for initializing the precon-
ditioning method; the return value is false if initialization fails, otherwise
true.

precon(precon data): pointer to a function for executing the precondition-
ing method;
precon can be used as the entry left_precon or right_precon in an
OEM_DATA structure together with precon_data as the corresponding pointer
left_precon_data respectively right _precon_data.

exit_precon(precon data): frees all data that was used by the precondi-
tioning method.

Currently, a diagonal preconditioner and two hierarchical basis precon-
ditioners (classical Yserentant [74] and Bramble-Pasciak-Xu [22] types) are
implemented. Access to the corresponding routines for scalar (..._s()) and
vector valued problems (. .._d()) are given via the following functions, which
return a pointer to such a PRECON structure.

const PRECON *get_diag_precon_s(const DOF_MATRIX *,
const DOF_SCHAR_VEC *);
const PRECON *get_diag_precon_d(const DOF_MATRIX =,
const DOF_SCHAR_VEC x*);
const PRECON *get_HB_precon_s(const FE_SPACE =,
const DOF_SCHAR_VEC *, int, int);
const PRECON *get_HB_precon_d(const FE_SPACE *,
const DOF_SCHAR_VEC *, int, int);
const PRECON *get_BPX_precon_s(const FE_SPACE x*,
const DOF_SCHAR_VEC *, int, int);
const PRECON *get_BPX_precon_d(const FE_SPACE x*,
const DOF_SCHAR_VEC *, int, int);

Description:

get_diag precon_s[d] (matrix, bound): returns a pointer to a PRECON data
structure for diagonal preconditioning of scalar or decoupled vector valued
problems;
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matrix is a pointer to a DOF matrix holding information about the system
matrix and bound a pointer to a DOF vector holding information about
boundary types of DOFs. bound may be nil, if boundary information is
assembled into the system matrix (compare Sections 3.12.1 and 3.12.2)) or
no Dirichlet boundary conditions are prescribed.

get HB precon_s[d] (matrix, bound, use_get_bound, info): returns a
pointer to a new PRECON data structure for hierarchical basis preconditioning
of scalar or vector valued problems; the preconditioner needs information
about Dirichlet DOF's;
fe_space is a pointer to the used finite element space; bound is a pointer to
a DOF vector holding information about boundary types of DOFs; if bound
is not nil, the argument use_get_bound is ignored; if bound is nil and
use_get_bound is true, information about boundary DOFs is generated by
fe_space->bas fcts->get bound(); if bound is nil and use_get_bound is
false it is assumed that no Dirichlet boundary conditions are prescribed;
the last argument info is the level of information given during initialization.

get BPX_precon_s[d] (matrix, bound, use_get_bound, info): returns a
pointer to a new PRECON data structure for the Bramble-Pasciak-Xu type
preconditioning of scalar or vector valued problems; the preconditioner needs
information about Dirichlet DOFs;
the arguments to get BPX_precon_s[d] () are the same as to the function
get_HB_precon_s[d] (), described above.

3.15.5 Multigrid solvers

A abstract framework for multigrid solvers is available. The main data struc-
ture for the multigrid solver MG() is

typedef struct multi_grid_info MULTI_GRID_INFO;
struct multi_grid_info

{

REAL  tolerance; /* tol. for resid */
REAL exact_tolerance; /* tol. for exact_solver */
int cycle; /* 1=V-cycle, 2=W-cycle x*/
int n_pre_smooth, n_in_smooth; /* no of smoothing loops */
int n_post_smooth; /* no of smoothing loops */
int mg_levels; /* current no. of levels x*/
int exact_level; /* level for exact_solver */
int max_iter; /* max. no of MG iter’s */
int info;

int (*init_multi_grid)(MULTI_GRID_INFO *mg_info);

void (*pre_smooth) (MULTI_GRID_INFO *mg_info, int level, int n);
void (*in_smooth) (MULTI_GRID_INFO *mg_info, int level, int n);
void (*post_smooth) (MULTI_GRID_INFO *mg_info, int level, int n);
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void  (*mg_restrict) (MULTI_GRID_INFO *mg_info, int level);
void  (*mg_prolongate) (MULTI_GRID_INFO *mg_info, int level);
void (*exact_solver) (MULTI_GRID_INFO #*mg_info, int level);
REAL  (*mg_resid) (MULTI_GRID_INFO *mg_info, int level);

void  (*exit_multi_grid) (MULTI_GRID_INFO *mg_info);

void  *data; /* application dep. data */
};

The entries yield following information:

tolerance: tolerance for norm of residual;

exact_tolerance: tolerance for “exact solver” on coarsest level;

cycle: selection of multigrid cycle type: 1 =V-cycle, 2 =W-cycle, ...

n_pre_smooth: number of smoothing steps on each level before (first) coarse
level correction;

n_in_smooth: number of smoothing steps on each level between coarse level
corrections (for cycle > 2);

n_post_smooth: number of smoothing steps on each level after (last) coarse
level correction;

mg-levels: number of levels;

exact_level: selection of grid level where the “exact” solver is used (and no
further coarse grid correction), usually exact_level=0;

max_iter: maximal number of multigrid iterations;

info: level of information produced by the multigrid method;

init multi grid: pointer to a function for initializing the multigrid method;
may be nil;
if not nil, init multi grid(mg info) initializes data needed by the multi-
grid method, returns true if an error occurs;

pre_smooth: pointer to a function for performing the smoothing step before
coarse grid corrections;
pre_smooth(mg_info, level, n) performs n smoothing iterations on grid
level;

in_smooth: pointer to a function for performing the smoothing step between
coarse grid corrections;
in_smooth(mg_info, level, n) performs n smoothing iterations on grid
level,;

post_smooth: pointer to a function for performing the smoothing step after
coarse grid corrections;

post_smooth(mg info, level, n) performs n smoothing iterations on grid
level;
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mg restrict: pointer to a function for computing and restricting the residual
to a coarser level;
mg restrict(mg_info, level) computes and restricts the residual from
grid level to next coarser grid (level-1);

mg_prolongate: pointer to a function for prolongating and adding coarse grid
corrections to the fine grid solution;
mg_prolongate(mg_info, level) prolongates and adds the coarse grid
(level-1) correction to the fine grid solution on grid level;

exact_solver: pointer to a function for the “exact” solver;
exact_solver(mg_info, level) computes the “exact” solution of the prob-
lem on grid level with tolerance mg_info->exact_tolerance;

mg_resid: pointer to a function for computing the norm of the actual residual;
mg_resid(mg_info, level) returns the norm of residual on grid level;

exitmulti grid: a pointer to a cleanup routine, may be nil;
if not nil exitmulti grid(mg_-info) is called after termination of the
multigrid method for freeing used data;

data: pointer to application dependent data, holding information on or about
different grid levels, e.g.

The abstract multigrid solver is implemented in the routine
int MG(MULTI_GRID_INFQO *)

Description:

MG (mg_info): based upon information given in the data structure mg_info,
the subroutine MG() iterates until the prescribed tolerance is met or the
prescribed number of multigrid cycles is performed.

Main parts of the MG() routine are:

{
int iter;
REAL resid;

if (mg_info->init_multi_grid)
if (mg_info->init_multi_grid(mg_info))
return(-1);

resid = mg_info->resid(mg_info, mg_info->mg_levels-1);
if (resid <= mg_info->tolerance)
return(0);

for (iter = 0; iter < mg_info->max_iter; iter++)
{
recursive_MG_iteration(mg_info, mg_info->mg_levels-1);
resid = mg_info->resid(mg_info, mg_info->mg_levels-1);
if (resid <= mg_info->tolerance)
break;
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}
if (mg_info->exit_multi_grid)
mg_info->exit_multi_grid(mg_info) ;

return(iter+1);

}

The subroutine recursive MG_iteration() performs smoothing, restriction
of the residual and prolongation of the coarse grid correction:

void recursive_MG_iteration(MULTI_GRID_INFO #*mg_info, int level)
{

int cycle;

if (level <= mg_info->exact_level)
{

mg_info->exact_solver(mg_info, level);
}
else
{

if (mg_info->pre_smooth)

mg_info->pre_smooth(mg_info, level, mg_info->n_pre_smooth);

for (cycle = 0; cycle < mg_info->cycle; cycle++) {
if ((cycle > 0) && mg_info->in_smooth)
mg_info->in_smooth(mg_info, level, mg_info->n_in_smooth);

mg_info->mg_restrict(mg_info, level);
recursive_MG_iteration(mg_info, level-1);
mg_info->prolongate (mg_info, level);

}

if (mg_info->post_smooth)
mg_info->post_smooth(mg_info, level, mg_info->n_post_smooth);
}
}

For multigrid solution of a scalar linear system
Au=f

given by a DOF_MATRIX A and a DOF_REAL_VEC £, the following subroutine is
available:

int mg_s(DOF_MATRIX *, DOF_REAL_VEC *, const DOF_REAL_VEC *,
const DOF_SCHAR_VEC *, REAL, int, int, char *);
Description:
mg_s(matrix, u, f, bound, tol, miter, info, prefix): solves a linear
system for a scalar valued problem by a multigrid method; the return value
is the number of performed iterations;
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matrix is a pointer to a DOF matrix storing the system matrix, u is a pointer
to a DOF vector for the solution, holding an initial guess on input; f is a
pointer to a DOF vector storing the right hand side and bound a pointer to
a DOF vector with information about boundary DOFs; bound must not be
nil if Dirichlet DOFs are used;

tol is the tolerance for multigrid solver, miter the maximal number of multi-
grid iterations and info gives the level of information for the solver;
prefix is a parameter key prefix which is used during the initialization of
additional data via GET_PARAMETER, see Table 3.20, may be nil; an SOR

Table 3.20. Parameters read by mg_s() and mg_s_init()

member default|key

mg_info->cycle 1 |prefix->cycle
mg_info->n_pre_smooth 1 prefix->n_pre_smooth
mg_info->n_in_smooth 1 |prefix->n_in_smooth
mg_info->n_post_smooth 1 |prefix->n_post_smooth
mg_info->exact_level 0 |prefix->exact_level
mg_info->info info |prefix->info

mg_s_info->smoother 1 |prefix->smoother

mg_s_info->smooth_omega| 1.0 |prefix->smooth_omega
mg_s_info->exact_solver 1 |prefix->exact_solver
mg_s_info->exact_omega 1.0 |prefix->exact_omega

smoother (mg_s_info->smoother=1) and an SSOR smoother (smoother=2)
are available; an under- or over relaxation parameter can be specified
by mg_s_info->smooth_omega. These SOR/SSOR smoothers are used for
exact_solver, too.

For applications, where several systems with the same matrix have to be
solved, computing time can be saved by doing all initializations like setup of
grid levels and restriction of matrices only once. For such cases, three subrou-
tines are available:

MG_S_INFO *mg_s_init(DOF_MATRIX *, const DOF_SCHAR_VEC *, int,

char *);
int mg_s_solve(MG_S_INFO *, DOF_REAL_VEC *, const DOF_REAL_VEC x,
REAL, int);

void mg_s_exit (MG_S_INFO *);

Description:

mg-s_init(matrix, bound, info, prefix): initializes a standard multi-
grid method for solving a scalar valued problem by mg_s_solve(); the return
value is a pointer to data used by mg_s_solve() and is the first argument
to this function; the structure MG_S_INFO contains matrices and vectors for
linear problems on all used grid levels.



282 3 Data structures and implementation

matrix is a pointer to a DOF matrix storing the system matrix, bound a
pointer to a DOF vector with information about boundary DOFSs; bound
must not be nil if Dirichlet DOF's are used;
info gives the level of information for mg_s_solve(); prefix is a parameter
key prefix for the initialization of additional data via GET_PARAMETER, see
Table 3.20, may be nil.
mg-s_solve(mg_s_info, u, f, tol, miter): solves the linear system for a
scalar valued problem by a multigrid method; the routine has to be initialize
by mg_s_init() and the return value mg_s_info of mg_s_init() is the first
argument; the return value of mg_s_solve() is the number of performed
iterations;
u is a pointer to a DOF vector for the solution, holding an initial guess on
input; f is a pointer to a DOF vector storing the right hand side; tol is
the tolerance for multigrid solver, miter the maximal number of multigrid
iterations;
the function may be called several times with different right hand sides f.
mg_s_exit(mg s_info): frees data needed for the multigrid method and which
is allocated by mg_s_init ().

Remark 3.35. The multigrid solver is currently available only for Lagrange
finite elements of first order (lagrangel). An implementation for higher order
elements is future work.

3.15.6 Nonlinear solvers
For the solution of a nonlinear equation
ue RN : F(u)=0 in RY (3.1)

several Newton methods are provided. For testing the convergence a (problem
dependent) norm of either the correction dy, in the kth step, i.e.

k]l = llurtr = usll,

or the residual, i.e.
| F (urt1)l;
is used.
These solvers are not part of ALBERTA and need for the access of the
basic data structure and prototypes of solvers the header file

#include <nls.h>

The data structure (defined in nls.h) for passing information about assem-
bling and solving a linearized equation, tolerances, etc. to the solvers is
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typedef struct nls_data NLS_DATA;
struct nls_data

{
void (xupdate) (void *, int, const REAL *, int, REAL *);
void *update_data;
int (*solve) (void *, int, const REAL *, REAL *);
void *solve_data;
REAL (*norm) (void *, int, const REAL *);
void *norm_data;

WORKSPACE *ws;

REAL tolerance;
int restart;
int max_iter;
int info;
REAL initial_residual;
REAL residual;
};
Description:

update: subroutine for computing a linearized system;
update (update data, dim, uk, updatematrix, F) computes the system
matrix of a linearization, if update matrix is not zero, and the right hand
side vector F, if F is not nil, for the actual iterate uk; dim is the dimension
of the nonlinear system, and update_data a pointer to user data.

update_data: pointer to user data for the update of a linearized equation,
first argument to update().

solve: function for solving a linearized system for the new correction; the
return value is the number of iterations used by an iterative solver or zero;
this number is printed, if information about the solution process should be
produced;
solve(solve data, dim, F, d) solvesthe linearized equation of dimension
dim with right hand side F for a correction d of the actual iterate; d is
initialized with zeros and update_data is a pointer to user data.

solve_data: pointer to user data for solution of the linearized equation, first
argument to solve();
the nonlinear solver does not know how the system matrix is stored; such
information can be passed from update() to solve() by using pointers to
the same DOF matrix in both update_data and solve_data, e.g.

norm: function for computing a problem dependent norm ||.||; if norm is nil,
the Euclidian norm is used;
norm(norm data, dim, x) returns the norm of the vector x; dim is the di-
mension of the nonlinear system, and norm_data pointer to user data.
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norm_data: pointer to user data for the calculation of the problem dependent
norm, first argument to norm().

ws: a pointer to a WORKSPACE structure for storing additional vectors used
by a solver; if the space is not sufficient, the used solver will enlarge this
workspace; if ws is nil, then the used solver allocates memory, which is
freed before exit.

tolerance: tolerance for the nonlinear solver; if the norm of the correc-
tion/residual is less or equal tolerance, the solver returns the actual iterate
as the solution of the nonlinear system.

restart: restart for the nonlinear solver.

max_iter: is a maximal number of iterations to be performed, even if the
tolerance may not be reached.

info: the level of information produced by the solver; 0 is the lowest level of
information (no information is printed) and 4 the highest level.

initial residual: stores the norm of the initial correction/residual on exit.
residual: stores the norm of the last correction/residual on exit.

The following Newton methods for solving (3.1) are currently implemented:

int nls_newton(NLS_DATA *, int, REAL *);

int nls_newton_ds(NLS_DATA *, int, REAL *);

int nls_newton_fs(NLS_DATA *, int, REAL *);

int nls_newton_br (NLS_DATA *, REAL, int, REAL x*);

Description:

nls newton(nls_ data, dim, u0): solves a nonlinear system by the classical
Newton method; the return value is the number of iterations;
nls_data stores information about functions for the assemblage and solution
of DF(uy), F'(ug), calculation of a norm, tolerances, etc. dim is the dimension
of the nonlinear system, and u0 the initial guess on input and the solution on
output; nls_ newton() stops if the norm of the correction is less or equal
nls_data->tolerance; it needs a workspace for storing 2*dim additional
REALs.

nls newton ds(nls_data, dim, u0): solves a nonlinear system by a Newton
method with step size control; the return value is the number of iterations;
nls_data stores information about functions for the assembling and solving
of DF(uy), F'(ug), calculation of a norm, tolerances, etc. dim is the dimension
of the nonlinear system, and u0O the initial guess on input and the solution
on output; nls newton_ds() stops if the norm of the correction is less or
equal nls_data->tolerance; in each iteration at most nls_data->restart
steps for controlling the step size 7 are performed; the aim is to choose 7
such that

IDF (ui) ™ F(ur + 7di)| < (1= 57)|di |
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holds, where ||.|| is the problem dependent norm, if nls_data->norm is not
nil, otherwise the Euclidian norm; each step needs the update of F', the so-
lution of one linearized problem (the system matrix for the linearized system
does not change during step size control) and the calculation of a norm;
nls newton_ ds () needs a workspace for storing 4*dim additional REALs.

nls newton fs(nls_data, dim, u0): solves a nonlinear system by a Newton
method with step size control; the return value is the number of iterations;
nls_data stores information about functions for the assembling and solving
of DF (uy), F(uy), calculation of a norm, tolerances, etc. dim is the dimension
of the nonlinear system, and u0 the initial guess on input and the solution on
output; nls newton_fs() stops if the norm of the residual is less or equal
nls_data->tolerance; in each iteration at most nls_data->restart steps
for controlling the step size 7 are performed; the aim is to choose 7 such that

17 (g + i) || < (1= 57)[1F (w) |

holds, where ||.|| is the problem dependent norm, if nls_data->norm is not
nil, otherwise the Euclidian norm; the step size control is not expensive,
since in each step only an update of F' and the calculation of || F|| are involved;
nls newton fs() needs a workspace for storing 3*dim additional REALs.

nls newton br(nls_data, delta, dim, u0): solves a nonlinear system by
a global Newton method by Bank and Rose [6]; the return value is the number
of iterations;
nls_data stores information about functions for the assembling and solving
of DF(uy), F(ug), calculation of a norm, tolerances, etc. delta is a pa-
rameter with § € (0,1 — ag), where ag = || DF(ug) uo + F(uo)||/|| F (uo)ll;
dim is the dimension of the nonlinear system, and u0 the initial guess on
input and the solution on output; nls_ newton_br () stops if the norm of the
residual is less or equal nls_data->tolerance; in each iteration at most
nls_data->restart steps for controlling the step size by the method of Bank
and Rose are performed; the step size control is not expensive, since in each
step only an update of F' and the calculation of ||F|| are involved;
nls_newton_br() needs a workspace for storing 3*dim additional REALs.

3.16 Graphics output

ALBERTA provides one and two dimensional interactive graphic subroutines
built on the X-Windows and GL/OpenGL interfaces, and one, two and three
dimensional interactive graphics via the gltools [38]. Additionally, an interface
for post—processing data with the GRAPE visualization environment [64] is
supplied.
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3.16.1 One and two dimensional graphics subroutines

A set of subroutines for opening, closing of graphic output windows, and
several display routines are provided, like drawing the underlying mesh, dis-
playing scalar finite element functions as a graph in 1d, and using iso—lines or
iso—colors in 2d. For vector valued functions v similar routines are available,
which display the modulus |v].

The routines use the following type definitions for window identifica-
tion, standard color specification in [red, green, blue] coordinates, with 0 <
red, green, blue < 1, and standard colors

typedef void * GRAPH_WINDOW;

typedef float GRAPH_RGBCOLOR[3];

extern
extern
extern
extern
extern
extern
extern
extern
extern

extern
extern

The last
logo.

const
const
const
const
const
const
const
const
const

const
const

GRAPH_RGBCOLOR
GRAPH_RGBCOLOR
GRAPH_RGBCOLOR
GRAPH_RGBCOLOR
GRAPH_RGBCOLOR
GRAPH_RGBCOLOR
GRAPH_RGBCOLOR
GRAPH_RGBCOLOR
GRAPH_RGBCOLOR

GRAPH_RGBCOLOR
GRAPH_RGBCOLOR

rgb_black;
rgb_white;
rgb_red;
rgb_green;
rgb_blue;
rgb_yellow;
rgb_magenta;
rgb_cyan;
rgb_grey50;

rgb_albert;
rgb_alberta;

two colors correspond to the two different colors in the ALBERTA

The following graphic routines are available for one and two dimensions:

GRAPH_WINDOW graph_open_window(const char *, const char *, REAL *,

MESH *);
void graph_close_window(GRAPH_WINDOW) ;
void graph_clear_window(GRAPH_WINDOW, const GRAPH_RGBCOLOR);
void graph_mesh(GRAPH_WINDDW, MESH *, const GRAPH_RGBCOLOR, FLAGS);
void graph_drv(GRAPH_WINDOW, const DOF_REAL_VEC *, REAL, REAL, int);
void graph_drv_d(GRAPH_WINDOW, const DOF_REAL_D_VEC *, REAL, REAL,
int);
void graph_el_est(GRAPH_WINDOW, MESH =, REAL (*)(EL =), REAL, REAL);
void graph_fvalues(GRAPH_WINDOW, MESH *, REAL(x*)(const EL_INFO *,
const REAL *), FLAGS, REAL, REAL, int);
void graph_line(GRAPH_WINDOW, , const REAL [2], const REAL [2],
const GRAPH_RGBCOLOR, REAL);
void graph_point (GRAPH_WINDOW, const REAL [2], const GRAPH_RGBCOLOR,

REAL) ;
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Description:

graph open window(title, geometry, world, mesh): returns a pointer to
a GRAPH_WINDOW which is opened for display; if the window could not be
opened, the return value is nil; in 1d the y-direction of the graphic window
is used for displaying the graphs of functions;
title is an optional string holding a window title, if title is nil, a default
title is used; geometry is an optional string holding the window geometry in
X11 format “WxH” or “WxH+X+Y”, if nil, a default geometry is used;
world is an optional pointer to an array of world coordinates (xmin, xmax,
ymin, ymax) to specify which part of a triangulation is displayed in this
window, if world is nil and mesh is not nil, mesh->diam is used to select a
range of world coordinates; in 1d, the range of the y-direction is set to [—1, 1];
if both world and mesh are nil, the unit square [0, 1] x [0, 1] is displayed in
1d and 2d.

graph_close window(win): closes the graphic window win which has been
previously opened by the function graph_open_window().

graph_clear window(win, c): clears the graphic window win and sets the
background color c; if ¢ is nil, white is used as background color.

graph mesh(win, mesh, c, flag): displays the underlying mesh in the
graphic window win; c is an optional color used for drawing lines, if c is
nil black as a default color is used; the last argument flag allows for a
selection of an additional display; flag may be O or the bitwise OR of some
of the following flags:

GRAPH_MESH BOUNDARY: only boundary edges are drawn, otherwise all edges
of the triangulation are drawn; c is the display color for all edges if not
nil; otherwise the display color for Dirichlet boundary vertices/edges is
blue and for Neumann vertices/edges the color is red;

GRAPH_MESH ELEMENT MARK: triangles marked for refinement are filled red,
and triangles marked for coarsening are filled blue, unmarked triangles are
filled white;

GRAPH MESH_VERTEX DOF: the first DOF at each vertex is written near the
vertex; currently only working in 2d when the library is not using OpenGL.

GRAPH_MESH_ELEMENT_INDEX: element indices are written inside the element,
only available for EL_INDEX == 1; currently only working in 2d when the
library is not using OpenGL.

graph drv(win, u, min, max, n_refine): displays the finite element func-
tion stored in the DOF_REAL _VEC u in the graphic window win; in 1d, the graph
of u is plotted in black, in 2d an iso-color display of u is used; min and max
specify a range of u which is displayed; if min > max, min and max of u are
computed by graph drv(); in 2d, coloring is adjusted to the values of min
and max; the display routine always uses the linear interpolant on a simplex;



288 3 Data structures and implementation

if n_refine > 0, each simplex is recursively bisected into 2PIM*nrefine gp,
simplices, and the linear interpolant on these sub—simplices is displayed; for
nrefine < 0 the default value u->admin->bas fcts->degree-1 is used.

graph drv_d(win, v, min, max, n refine): displays the modulus of a vec-
tor valued finite element function stored in the DOF_REAL_D_VEC v in the
graphic window win; the other arguments are the same as for graph_drv().

graph el _est(win, mesh, get_el_est): displays piecewise constant values
over the triangulation mesh, like local error indicators, in the graphics win-
dow win; get_el_est is a pointer to a function which returns the constant
value on each element; by this function the piecewise constant function is
defined.

graph fvalues(win, mesh, f, flag, min, max, n_refine): displaysa
real-valued function f in the graphic window win; f is a pointer to a function
for evaluating values on single elements; f(el_info, lambda) returns the
value of the function on el_info->el at the barycentric coordinates lambda;
in 1d, the graph of f is plotted in black, in 2d an iso-color display of £ is
used; min and max specify a range of £ which is displayed; if min > max, min
and max of f are computed by graph fvalues();in 2d, coloring is adjusted
to the values of min and max; the display routine always uses the linear
interpolant of £ on a simplex; if n_refine > 0, each simplex is recursively
bisected into 2PTM*»refine oyh simplices, and the linear interpolant on these
sub—simplices is displayed.

graph line(win, pO, pl, c, lw): draws the line segment with start point
pO0 and end point p1 in (z,y) coordinates in the graphic window win; c is an
optional argument and may specify the line color to be used; if ¢ isnil black
is used; 1w specifies the linewidth (currently only for OpenGL graphics); if
1w < 0 the default linewidth 1.0 is set.

graph point(win, p, c, diam): draws a point at the position p in (z,y)
coordinates in the graphic window win; c is an optional argument and may
specify the color to be used; if ¢ is nil black is used; diam specifies the
drawing diameter (currently only for OpenGL graphics); if diam < 0 the
default diameter 1.0 is set.

Graphic routines for one dimension

The following routines are slight generalizations of the display routines de-
scribed above for one dimension.

void graphld_drv(GRAPH_WINDOW, const DOF_REAL_VEC *, REAL, REAL, int,
const GRAPH_RGBCOLOR) ;
void graphld_drv_d(GRAPH_WINDOW, const DOF_REAL_D_VEC *, REAL, REAL,
int, const GRAPH_RGBCOLOR);
void graphld_:fvalues(GRAPH_WINDOW, MESH *,
REAL(*) (const EL_INFO *, const REAL *), FLAGS,
REAL, REAL, int, const GRAPH_RGBCOLOR);
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void graphld_el_est(GRAPH_WINDOW, MESH *, REAL (*)(EL *), REAL, REAL,
const GRAPH_RGBCOLOR) ;

Description:

graphld drv(win, uh, min, max, n.refine, c): displays the graph of the
finite element function stored in the DOF_REAL_VEC u in the graphic window
win; the first 5 arguments are the same as for graph_drv() described above;
but by the last optional argument c a line color for the graph can be specified;
if ¢ is nil, black is used.

graphid drv. d(win, uh, min, max, n.refine, c): displays the graph of
the modulus of the vector valued finite element function stored in the
DOF_REAL D_VEC v in the graphic window win; the first 5 arguments are the
same as for graph_drv() described above; but by the last optional argument
c a line color for the graph can be specified; if ¢ is nil, black is used.

graphild fvalues(win, mesh, f, flag, min, max, nrefine, c): draws
a scalar valued function f in the graphic window win; the first 7 arguments
are the same as for graph fvalues() described above; but by the last op-
tional argument c a line color for the graph can be specified; if ¢ is nil,
black is used.

graphld el _est(win, mesh, get_el_est, min, max, c): displays a piece-
wise constant function over the triangulation mesh in the graphics window
win; the first 5 arguments are the same as for graph_el_est() described
above; but by the last optional argument c a line color for the graph can be
specified; if ¢ is nil, black is used.

Graphic routines for two dimensions

The following routines are specialized routines for two dimensional graphic
output:

void graph_level (GRAPH_WINDOW, const DOF_REAL_VEC *, REAL,
const GRAPH_RGBCOLOR, int);
void graph_levels(GRAPH_WINDDW, const DOF_REAL_VEC *, int,
const REAL *, const GRAPH_RGBCOLOR *, int);
void graph_level_ d(GRAPH_WINDOW, const DOF_REAL_D_VEC *, REAL,
const GRAPH_RGBCOLOR, int);
void graph_levels_d(GRAPH_WINDOW, const DOF_REAL_D_VEC *, int,
const REAL *, const GRAPH_RGBCOLOR *, int);
void graph_values(GRAPH_WINDOW, const DOF_REAL_VEC *, REAL, REAL,
int);
void graph_values_d(GRAPH_WINDDW, const DOF_REAL_D_VEC *, REAL, REAL,
int);

Description:

graph_level(win, v, level, c, nrefine): draws a single selected iso-
line at value level of the scalar finite element function stored in the
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DOF_REAL_VEC u in the graphic window win; by the argument c a line color for
the isoline can be specified; if ¢ is nil, black is used as line color; the display
routine always uses the linear interpolant of u on a simplex; if n_refine > 0,
each triangle is recursively bisected into 22*8-refire guh—triangles, and the se-
lected isoline of the linear interpolant on these sub-triangles is displayed; for
nrefine < 0 the default value u->admin->bas fcts->degree-1 is used.

graph levels(win, u, n, levels, c, n.refine): draws n selected iso-
lines at values 1level[0], ..., level[n-1] of the scalar finite element func-
tion stored in the DOF_REAL_VEC u in the graphic window win; if level is
nil, n equally distant isolines between the minimum and maximum of u are
selected; c is an optional vector of n color values for the n isolines, if nil,
then default color values are used; the argument n_refine again chooses a
level of refinement, where iso-lines of the piecewise linear interpolant is dis-
played; for n_ refine < 0 the default value u->admin->bas fcts->degree-1
is used.

graph_level d(win, v, level, c, n_refine): draws a single selected iso-
line at values level of the modulus of a vector valued finite element function
stored in the DOF_REAL D_VEC v in the graphic window win; the arguments
are the same as for graph_ level().

graph levels d(win, v, n, levels, c, nrefine): draws
n selected isolines at values level[0], ..., level[n-1] of the modulus of a
vector valued finite element function stored in the DOF_REAL_D_VEC v in the
graphic window win; the arguments are the same as for graph levels().

graph values(win, u, n_refine): shows an iso-color display of the finite
element function stored in the DOF_REAL_VEC u in the graphic window win;
it is equivalent to graph drv(win, u, min, max, n_refine).

graph values d(win, v, n_refine): shows an iso-color display of the mod-
ulus of a vector valued finite element function stored in the DOF_REAL_D_VEC
v in the graphic window win;
it is equivalent to graph drv_d(win, u, min, max, n_refine).

3.16.2 gltools interface

The following interface for using the interactive gltools graphics of WIAS
Berlin [38] is implemented. The gltools are freely available under the terms of
the MIT license, see

http://www.wias-berlin.de/software/gltools/

The ALBERTA interface is compatible with version gltools-2-4. It can be
used for 1d, 2d, and 3d triangulation, but only when DIM equals DIM_OF _WORLD.
For window identification we use the data type

typedef void * GLTOOLS_WINDOW;
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The interface provides the following functions:

GLTOOLS_WINDOW open_gltools_window(const char *, const char *,
const REAL *, MESH *, int);
void close_gltools_window(GLTOOLS_WINDOW) ;

void gltools_mesh(GLTOOLS_WINDOW, MESH *, int);

void gltools_drv(GLTOOLS_WINDOW, const DOF_REAL_VEC *, REAL, REAL);

void gltools_drv_d(GLTOOLS_WINDOW, const DOF_REAL_D_VEC *, REAL,
REAL) ;

void gltools_vec(GLTOOLS_WINDOW, const DOF_REAL_D_VEC *, REAL, REAL);

void gltools_est(GLTOOLS_WINDOW, MESH *, REAL (%) (EL *), REAL, REAL);

void gltools_disp_mesh(GLTOOLS_WINDOW, MESH *, int,
const DOF_REAL_VEC *);
void gltools_disp_drv(GLTOOLS_WINDOW, const DOF_REAL_VEC *, REAL,
REAL, const DOF_REAL_VEC *);
void gltools_disp_drv_d(GLTODLS_WINDDW, const DOF_REAL_D_VEC *, REAL,
REAL, const DOF_REAL_VEC x*);
void gltools_disp_vec(GLTOOLS_WINDOW, const DOF_REAL_D_VEC *, REAL,
REAL, const DOF_REAL_VEC x*);
void gltools_disp_est(GLTOOLS_WINDOW, MESH *, REAL (%) (EL *), REAL,
REAL, const DOF_REAL_VEC x);

Description:

open_gltools_window(title, geometry, world, mesh, dialog): returns
a GLTOOLS_WINDOW which is opened for display; if the window could not be
opened, the return value isnil; title is an optional string holding a title for
the window; if title isnil, a default is used; geometry is an optional string
holding the window geometry in X11 format (“WxH” or “WxH+X+Y?”), if
nil, a default geometry is used; the optional argument world is a pointer to
an array of world coordinates (xmin, xmax, ymin, ymax) for 2d and (xmin,
Xmax, ymin, ymax, zmin, zmax) for 3d, it can be used to specify which part
of the mesh will be displayed in the window; if world is nil, either mesh or
the default domain [0, 1]°™ is used; mesh is an optional pointer to a mesh to
select a range of world coordinates which will be displayed in the window;
if both world and mesh are nil, the default domain [0, 1]°™ is used; display
is not done or is done in an interactive mode depending on whether dialog
equals O or not; in interactive mode type *h’ to get a list of all key bindings;

close_gltools_window(win): closes the window win which has been previ-
ously opened by open_gltools window();

gltools mesh(win, mesh, mark): displays the elements of mesh in the
graphic window win; if mark is not zero the piecewise constant function
sign(el->mark) is shown;

gltools drv(win, u, min, max): shows the DOF_REAL_VEC u in the graphic
window win; for higher order elements it is possible to display the vector on
a refined grid; the key ’P’ toggles between refined and not refined mode min
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and max define the range of the discrete function for display; if min > max
this range is adjusted automatically;

gltools drv.d(win, ud, min, max): displays the modulus of the given
DOF_REAL D_VEC ud in the graphic window win; for higher order elements
it is possible to display the vector on a refined grid; the key ’P’ toggles
between refined and not refined mode min and max define the range of the
modulus of discrete function for display; if min > max this range is adjusted
automatically;

gltools vec(win, ud, min, max): displays a given vector field stored in
the DOF_REAL_D_VEC ud in the graphic window win; for higher order elements
it is possible to display the vector on a refined grid; the key ’P’ toggles
between refined and not refined mode min and max define the range of the
modulus of discrete function for display; if min > max this range is adjusted
automatically;

gltools_est(win, mesh, get_est, min, max): displays the error estimate
on mesh as a piecewise constant function in the graphic window win; the local
indicators are accessed by get_est () on each leaf element; min and max define
the range for display; if min > max this range is adjusted automatically;
gltools_est() can also be used to display any piecewise constant function
on the mesh, where local values are accessed by get_el_est();

gltools_dispmesh(win, mesh, mark, disp): displays a mesh with an ad-
ditional distortion of the geometry by a displacement vector field disp; this
can be used in solid mechanics applications, e.g.; similar to the function
gltools mesh();

gltools disp.drv(win, u, min, max, disp): displays a real valued finite
element function on a distorted geometry given by the vector field disp;
similar to the function gltools drv();

gltools dispdrv.d(win, ud, min, max, disp): displays the modulus of
a vector valued finite element function on a distorted geometry given by the
vector field disp; similar to the function gltools drv._d();

gltools dispvec(win, ud, min, max, disp): displays a vector field on a
distorted geometry given by the vector field disp; similar to the function
gltools_vec();

gltools disp_est(win, mesh, get_el_est, min, max, disp): depicts an
error estimate as a piecewise constant function on a distorted geometry given
by the vector field disp; similar to the function gltools_est().
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3.16.3 GRAPE interface

Visualization using the GRAPE library [64] is only possible as a post—
processing step. Data of the actual geometry and finite element functions is
written to file by write mesh[ xdr] () and write_dof _real[_d] _vec[ xdr] )
and then read by some programs, using the GRAPE mesh interface for the
visualization. We recommend to use the xdr routines for portability of the
stored binary data. The use of the GRAPE h-mesh and hp—mesh interfaces
is work in progress and the description of these programs will be done in the
near future. References to visualization methods used in GRAPE applying to
ALBERTA can be found in [40, 56, 57].
For obtaining the GRAPE library, please see

http://www.iam.uni-bonn.de/sfb256/grape/

The distribution of ALBERTA contains source files with the implemen-
tation of GRAPE mesh interface to ALBERTA in the GRAPE subdirectory.
Having access to the GRAPE library (Version 5.4.2), this interface can be
compiled and linked with the ALBERTA and GRAPE library into two exe-
cutables alberta grape and albertamovi respectively for 2d and 3d with
DIM = DIM_OF WORLD. The path of the GRAPE header file and library has to
be specified during the installation of ALBERTA, compare Section 2.4.

The interface can be compiled in the sub-directory GRAPE/mesh/2d
for the 2d interface, resulting in the executable alberta_grape22 and
albertamovi22, and in GRAPE/mesh/3d for the 3d interface, resulting in the
executable alberta grape33 and alberta movi33.

The program alberta grape?? is mainly designed for displaying finite
element data on a single grid, i.e. one or several scalar/vector—valued fi-
nite element functions on the corresponding mesh. alberta _grape?? expects
mesh data stored by writemesh[ xdr] () and write_dof real[ xdr] () or
write_dof real d[_xdr] () defined on the same mesh.

alberta_grape22 -m mesh.xdr -s scalar.xdr -v vector.xdr

will display the 2d mesh stored in the file mesh.xdr together with the scalar
finite element function stored in scalar.xdr and the vector valued finite
element function stored in vector.xdr.

alberta grape?? --help explains the full functionality of this program
and displays a list of options.

The program albertamovi?? is designed for displaying finite element
data on a sequence of grids with one or several scalar/vector—valued finite
element functions. This is the standard visualization tool for post—processing
data from time—dependent simulations. alberta_movi?? expects a sequence of
mesh data stored by write mesh[ xdr] () and finite element data of this mesh
stored by write_dof _real[ xdr] () or write_dof _real d[ xdr] (), where the
filenames for the sequence of meshes and finite element functions are gener-
ated by the function generate filename(), explained in Section 3.1.6. Sec-
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tion 2.3.10 shows how to write such a sequence of data in a time—dependent
problem.

Similar to alberta grape?? the command alberta movi?? --help ex-
plains the full functionality of this program and displays a list of options.
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EL_VEC_D_INFO, 243
EL_VEC_INFO, 243
EL, 134

FE_SPACE, 206
FLAGS, 114
GLTOOLS_WINDOW, 290
GRAPH_RGBCOLOR, 286
GRAPH_WINDOW, 286
GRD_BAS_FCT, 184
LEAF _DATA_INFO, 139
MACRO_EL, 132
MATRIX_ROW, 168
MatrixTranspose, 173
MESH, 141
MULTI_GRID_INFO, 277

NLS_DATA, 282
OEM_DATA, 269
OEM_SOLVER, 272
OPERATOR_INFO, 230
PARAMETRIC, 142
PRECON, 275
QOO_PSI_PHI, 242
QO1_PSI_PHI, 239
Q10_PSI_PHI, 241
Q11_PSI_PHI, 237
QUAD_FAST, 213
QUAD, 210
RC_LIST_EL, 140
REAL, 114

REAL D, 128
REAL_DD, 128
S_CHAR, 113
TRAVERSE_STACK, 157
U_CHAR, 113
WORKSPACE, 120

Symbolic constants

CALL_EL_LEVEL, 153
CALL_EVERY_EL_INORDER, 153
CALL_EVERY_EL_POSTORDER, 153
CALL_EVERY_EL_PREORDER, 153
CALL_LEAF EL_LEVEL, 153
CALL_LEAF EL, 153
CALL_MG_LEVEL, 153

CENTER, 163

DIM_OF_WORLD, 128

DIM, 128

DIRICHLET, 130
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EDGE, 163

EL_INDEX, 130

FACE, 163

false, 113

FILL_BOUND, 154
FILL_COORDS, 154
FILL_NEIGH, 154
FILL_NOTHING, 154
FILL_OPP_COORDS, 154
FILL_ORIENTATION, 154
GRAPH_MESH_BOUNDARY, 287
GRAPH_MESH_ELEMENT_INDEX, 287
GRAPH_MESH_ELEMENT MARK, 287
GRAPH_MESH_VERTEX_DOF, 287
H1_NORM, 264
INIT_D2_PHI, 213
INIT_GRD_PHI, 213
INIT_GRD_UH, 265

INIT_UH, 265

INTERIOR, 130

L2_NORM, 264
NEIGH_IN_EL, 129
NEUMANN, 130

nil, 113
NO_MORE_ENTRIES, 168
NO_WINDOW, 286

N_EDGES, 129

N_FACES, 129

N_NEIGH, 129

N_VERTICES, 129
ROW_LENGTH, 168

true, 113

UNUSED_ENTRY, 168
VERTEX, 163

Functions

adapt_mesh(), 254
adapt_method_instat (), 258
adapt_method_stat (), 253
add_element_d_vec(), 225
add_element matrix(), 225
add_element_vec(), 225
add_parameter (), 124
alberta_alloc(), 118
alberta_calloc(), 118
alberta_free(), 118
albertamatrix(), 119
alberta_realloc(), 118

change_error_out(), 117
change msg_out (), 117
check_and_get mesh(), 143
clear_dof matrix(), 169
clear _workspace(), 121
close_gltools_window(), 291
coarsen(), 182
coord_to_world(), 209
D2_uh_at_gp(), 219

D2_uh d_at_gp(), 219
dirichlet_bound(), 247
dirichlet_bound_d(), 247
div_uh.d_at_qp(), 219
dof _asum(), 173

dof _axpy (), 173
dof_axpy-d(), 173

dof _compress (), 163

dof _copy(), 173

dof _copy_d(), 173

dof _dot (), 173

dof dot_d(), 173
dof_gemv (), 173
dof_gemv_d(), 173

dof max(), 173

dof max_d(), 173

dof min(), 173

dof min d(), 173

dof mv(), 173

dof mv_d(), 173

dof nrm2(), 173

dof nrm2.d(), 173

dof _scal(), 173

dof _scal d(), 173

dof _set(), 173
dof_set_d(), 173
dof_xpay (), 173

dof xpay_d(), 173

el _det(), 209
el_grd_lambda(), 209
el_volume(), 209
ellipt_est(), 264
enlarge_dof_lists(), 164
estimate(), 251

eval D2_uh(), 216

eval D2_uh_d(), 216
eval D2 uh.d fast(), 218
eval D2_uh_fast(), 218
eval div_.uh d fast(), 218
eval div_uh d(), 216
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eval grd uh(), 216
eval_grd uh d(), 216
eval_grd uh d _fast(), 218
eval_grd_uh_fast(), 218
eval uh(), 216
eval uh d(), 216
eval_uh d fast(), 218
eval_uh_fast(), 218
f_at_qp(O, 211
fdatqp(, 211

£ill elinfo(), 154

£ill macro_info(), 154
f£ill matrix_info(), 233
find el_at_pt(), 160
free_albertamatrix(), 119
free_dof_dof_vec(), 166
free_dof_int_vec(), 166
free_dof matrix(), 169
free_dof_real d_vec(), 166
free_dof_real vec(), 166
free_dof_schar_vec(), 166
free_dof_uchar_vec(), 166
free_int_dof_vec(), 166
freemesh(), 144
free_traverse_stack(), 158
free_workspace(), 121
get BPX_precon_d(), 276
get BPX_precon_s(), 276
get_HB_precon_d(), 276
get _HB_precon_s(), 276
get_adapt_instat (), 260
get_adapt_stat(), 260
get_bas_fcts(), 190
get_diag_precon_d(), 276
get_diag_precon_s(), 276
get_dof_dof_vec(), 166
get_dof_int_vec(), 166
get_dof matrix(), 169
get_dof real d_vec(), 166
get_dof_real_vec(), 166
get_dof_schar_vec(), 166
get_dof_uchar_vec(), 166
get_el_estc(), 251
get_el_est(), 251
get_face_normal(), 215
get_fe_space(), 207
get_int_dof_vec(), 166
get_lagrange(), 206
get_lumping quadrature(), 211

get mesh(), 143
get_parameter(), 125
get_q00_psi_phi(), 243
get_q01_psi_phi(), 240
get_q10_psi_phi(), 242
get_qll psi_phi(), 238
get_quad_fast(), 214
get_quadrature(), 211
get_traverse_stack(), 158
global_coarsen(), 182
global_refine(), 176
gltools_disp_drv(), 291
gltools_disp._drv.d(), 291
gltools_disp_est(), 291
gltools_dispmesh(), 291
gltools_disp_vec(), 291
gltools_drv(), 291
gltools_drv_d(), 291
gltools_est(), 291
gltools_mesh(), 291
gltools_vec(), 291
graphld_drv(), 288
graphld_drv_d(), 288
graphld_el_est (), 288
graphld_fvalues(), 288
graph_clear_window(), 286
graph_close_window(), 286
graph_el_est (), 286
graph_drv(), 286
graph_drd_v(), 286
graph_fvalues(), 286
graph_level(), 289
graph_level_d(), 289
graph_levels(), 289
graph_levels_d(), 289
graph_line(), 286

graph mesh(), 286
graph_open_window(), 286
graph_point (), 286
graph_values(), 289
graph_values_d(), 289
grd_f_at_qp(), 211
grd_f d at_qp(), 211
grd_uh_at_gp(), 219
grd_uh.d at_qp(), 219
Hi_err(), 222

Hil_err d(), 222

H1 norm uh(), 221

H1 norm_uh_d(), 221
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heat_est (), 266
init_dof_admin(), 207
init_mat_vec_d(), 274
init_mat._vec_s(), 274
init_parameters(), 123
integrate_std_simp(), 211
interpol(), 248
interpol_ d(), 248
L2_err(), 222

L2_err.d(), 222

L2 norm_uh(), 221

L2 normuh d(), 221
L2scp_fct_bas(), 245
L2scp_fct_bas_d(), 245
max_err_at_qp(), 222
max_err_at_qp-d(), 222
mesh_traverse(), 155
MGQ), 279

marking (), 255
mat_vec_d(), 274
mat_vec_s(), 274
max_quad_points(), 215
mg_s(), 280

mg_s_exit (), 281
mg_s_init (), 281
mg_s_solve(), 281
new_bas_fcts(), 190

nls newton(), 284
nls_newton_br(), 284

nls newtonds(), 284

nls newton_fs(), 284
oem_bicgstab(), 270
oem_cg(), 270
oem_gmres (), 270
oem_odir(), 270
oem_ores (), 270
oem_solve_d(), 273
oem_solve_s(), 273
one_timestep(), 259
open_error_file(), 117
open_gltools_window(), 291
openmsg_file(), 117
print_dof_int_vec(), 167
print_dof matrix(), 169
print_dof_real_d_vec(), 167
print_dof_real_vec(), 167
print_dof_schar_vec(), 167
print_dof_uchar_vec(), 167
print_mem_use(), 121

printmsg(), 115
read_dof_int_vec(), 174
read_dof_int_vec_xdr(), 176
read dof_real d_vec(), 174
read_dof_real_d_vec_xdr(), 176
read_dof_real_vec(), 174
read_dof_real vec xdr(), 176
read_dof_schar_vec(), 174
read_dof_schar_vec_xdr (), 176
read_dof_uchar_vec(), 174
read_dof_uchar_vec xdr(), 176
read_macro(), 146

read mesh(), 174
read mesh _xdr(), 175
realloc_workspace(), 120
refine(), 176
save_parameters(), 124
sort_face_indices(), 215
sor_d(), 274

sor_s(), 274

ssor_d(), 274

ssor_s(), 274
traverse_first(), 158
traverse_neighbour(), 159
traverse_next(), 158
uh_at_gp(), 219

uh d_at_qp(), 219

update matrix(), 228
update_real_d_vec(), 245
update_real_vec(), 245
vector_product (), 129
world_to_coord(), 209
write_dof_int_vec(), 174
write_dof_int_vec_xdr(), 176
write_dof _real d.vec(), 174
write_dof _real_d_vec_xdr(), 176
write_dof real _vec(), 174
write_dof _real_vec xdr(), 176
write_dof_schar_vec(), 174
write_dof_schar_vec_xdr(), 176
write_dof_uchar_vec(), 174
write_dof uchar_vec_xdr(), 176
write_macro(), 150
writemacro_bin(), 150

write macro_xdr(), 150
writemesh(), 174

writemesh xdr(), 175
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Macros

ABSQ), 113
ADD_PARAMETER (), 124
DIST_DOW(), 128
EL_TYPE(Q), 137
ENTRY_NOT_USED(), 168
ENTRY_USED(), 168
ERROR_EXITQ), 116
ERROR(), 116
FOR_ALL_DOFS(), 170
FOR_ALL_FREE_DOFS(), 170
FUNCNAMEQ), 114
GET_BOUND(), 131
GET_DOF_VEC(), 166
GET_MESH(Q), 143
GET_PARAMETER, 125
INDEX(), 137

INFOQ), 116
IS_DIRICHLET(), 131
IS_INTERIOR(), 131
IS_LEAF ELQ), 139
IS_NEUMANNQ), 131
LEAF DATA(Q), 139

MAT_ALLOC(), 119
MAT _FREEQ), 119
MAX(), 113
MEM_ALLOC(), 118
MEM_CALLOC(Q), 118
MEM_FREEQ), 118
MEM_REALLOC(), 118
MINQ), 113

MSG(Q), 114
NEIGH(Q), 137
NORM_DOW(), 128
OPP_VERTEX (), 137
PRINT_INFOQ), 116
REALLOC_WORKSPACE(), 120
SCAL DOW(), 128
SCP_DOW(), 128
SET_DOW(), 128
SQR(), 113
TEST_EXIT(), 116
TEST(), 116
WAIT_REALLY, 117
WAIT, 117
WARNING(), 117
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