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Abstract—in this paper, we propose a novel fuzzy logic con- bership functions, the choice of the rules along with the mem-
troller, called linguistic hedge fuzzy logic controllerto simplify the  pership functions makes significant impacts on the final per-

membership function constructions and the rule developments. formance of the FLC and therefore becomes the major control
The design methodology of linguistic hedge fuzzy logic controller

is a hybrid model based on the concepts of the linguistic hedges strategy in FLC design. The more the mempershlp functions a.re
and the genetic algorithms. The linguistic hedge operators are Used, the more the rules emerge, and the finer the results of in-
used to adjust the shape of the system membership functions ference.

dynamically, and can speed up the control result to fit the system  Much research has concentrated on the rule construction in

demand. The genetic algorithms are adopted to search the optimal an FLC design. Simpson [8] proposed a fuzzy min—-max neural
linguistic hedge combination in the linguistic hedge module.

According to the proposed methodology, the linguistic hedge fuzzy n_etwork for pe_lttern classification. He used a single pass expan-
logic controller has the following advantages: 1) it needs only the Sion—contraction process of fuzzy set hyperboxes to learn non-
simple-shape membership functions rather than the carefully linear class boundaries. Based on his hyperbox method, Abe
designed ones for characterizing the related variables; 2) it is [9] proposed a method for fuzzy rule extraction directly from

sufficient to adopt a fewer number of rules for inference; 3) the the numerical data. In the meantime, Wang [10] proposed gen-
rules are developed intuitionally without heavily depending on ) '

the endeavor of experts; 4) the linguistic hedge module associatederal mgthods to g_enerate the fuzzy control W'GS automatically
with the genetic algorithm enables it to be adaptive; 5) it performs according to the input—output (I/O) data pairs of the control
better than the conventional fuzzy logic controllers do; and 6) it system. With these methods, the rule extraction process can
can be realized with low design complexity and small hardware pe done by one-pass to reduce the system construction com-
overhead. Furthermore, the proposed approach has been applied ayity and the experience of a human expert can be combined
to design three well-known nonlinear systems. The simulation and |~ . - - .
experimental results demonstrate the effectiveness of this design. with the rules obtained f_rom autom_atlc learning. Qn the other
hand, the tree structure is such a simple and easily understood
method for modeling the problem that many applications are
solved [11]-[14]. Turksen [15] proposed a two-level tree search
method for a fuzzy expert system. With his method, taking ad-

I. INTRODUCTION vantage of the tree approach, the computational complexity and
ONVENTIONAL control system designs heavily rely o the search time of the fuzzy system can be reduced. In addition,

the linearized models or the mathematical descriptio#’réu [16] proposed a tree-based FLC design methodology. By
of the controlled plants. As to the real world nonlinear ang'

eans of this method, not only can the control rules be extracted
more complex systems which have no adequate mathemat o

Index Terms—Adaptive fuzzy logic controller, genetic algorithm,
linguistic hedge.

matically but the search time can also be significantly re-

expression to describe them, their related controller models }%\?d'

therefore difficult to construct. The fuzzy logic controller (FLC), ith regard _to the membership functions, instead Of having
first implemented by Mamdani [1] on the basis of the fuzz e membership functions constructed manually by skilled op-
logic system generalized from the fuzzy set theory originat Gators or experts, sevgral resee}rchers have proposed methpds
by Zadeh [2] has appeared to offer a feasible solution to v pr agtomahcally selecting the high pe”or”.“?‘”ce membership
ious control problems [3]-[7]. In an FLC, the inference epunctions for FLC’s. Karr [17] properly specified the member-

’ hip functions to ensure efficient FLC performance by using

gine plays the role of a kernel. It explores the fuzzy rules pr ) . . .
constructed by experts to accomplish inference. Since the riag genetic algorithms (GA) [18], [19] which have the ability

specify the implication relationships between the input variabl§h S€arching the nea_r-optimal or optimal solgtions in the solu-
pecify b P P § n space and are widely used in many applications [20]-[23].

and output variables characterized by their corresponding me%%ang [23] adopted the GA-based tuning methods to member-

ship function tuning. lokibe [24] automatically generated the
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multivariable fuzzy systems, Chen [28] developed a technigaentrol system [40], the truck backer-upper control system [41],
to decompose a system with complicated I/O relationships irdod the cart-pole balance system [42] will be used to verify the
the accumulation of simple I/O relationships, and to extractfaasibility of this LHFLC.
suitable membership function for each simple subsystem. WuThis paper is organized as follows. In Section I, we will
[29] proposed an algorithm to generate fuzzy rules and trémiefly review the fuzzy set theory and introduce the concept
membership functions based on the defined format of fuzey fuzzy linguistic hedges. Besides, the FLC will be also men-
rules. tioned. In Section lll, the architecture of the proposed LHFLC
On the other hand, Zadeh [30] proposed the fuzzy linguistidgll be presented. The GA algorithms used for searching the op-
hedges such agry, more or less, much, essentialipdslightly timal hedge combination will be presented in Section IV. In Sec-
to modify the membership functions of the fuzzy sets. Sind®n V, three well-known examples along with their simulation
the linguistic hedges proposed by Zadeh in 1973, only a smegpults will be presented to verify the feasibility of this LHFLC.
amount of literature dealing with these concepts has been pilibaddition, the experimental results acquired by controlling the
lished [31]-[39]. Banks [31] used hedge operations to bettégal cart-pole balance system will also be demonstrated. Sec-
qualify and emphasize the crisp variables to mix crisp and fuzi#gn VI concludes this work.
logic in applications. Bouchon-Meunier [32] investigated sev-

eral interesting properties of linguistic hedge, such as Il. Fuzzy SeTs, Fuzzy LINGUISTIC HEDGES AND FuzZzY

1) being compatible with simple symbolic rules; LOGIC CONTROLLER

2) avoiding computations and being compatible with th&. Fuzzy Set Theory and Fuzzy Set Operations

fuzzy logic; _ _ _ . Fuzzy sets have been interpreted as membership fungtions
3) enhancing the comparison of various available fuzzy inhat associate with each elemenof the universe of discourse
plication; X anumben(x) in the interval[0, 1]. In essence, a fuzzy set

4) managing gradual rules in the context of deductive rules. may be represented in the form of
Modifying the existing linguistic hedge models, Novak [33]

proposed a horizon-shifting model of linguistic hedges, by F:/ pp(x)/x. 1)
which the membership function can be shifted as well as its X
steepness modified. In addition, the concept of extended heqg¢ne case of” having a finite support+, z», .. ., 7., the dis-

algebras and their application in approximate reasoning W@&te form of (2) is [30]
discussed by Ho [34], [35]. To maintain the completeness
of the set of the linguistic hedges, Liu [36]-[39] proposed o z": B _ R Hn @)
several hedge operators. Their related hardware realizations in o — w T ox Tn
current-mode approach are also found. -

Although the rule developments and the membership funehereu;(: = 1,...,n) is the grade of membership of in F.
tion constructions can be accomplished automatically by a va-Unlike the crisp set logic that distinguishes the members of
riety of algorithms, this major strategy in an FLC design stith given set from no-members by binary decision, the fuzzy sets
becomes a considerable challenge when the number of mare characterized by their membership functions. In order to ma-
tioned variables is increased, when the parameters of the cnipulate the fuzzy sets as well as ordinary sets with Boolean op-
trolled plants are varied, or when the conditions of the enverations, Zadeh [30] proposed the extension of the ordinary set
ronment are changed. To aim directly at this point, an adajheory for fuzzy sets. Lefl and B be two fuzzy sets inX with
tive FLC with ease of membership function constructions amdembership functiong 4 and g, respectively. The fuzzy set
rule developments is necessary. In this paper, we take advantagerations olunion intersection andcomplemenare defined
of the superior characteristics inherent in the linguistic hedges follows.
and the search ability of GA to design a novel FLC calldiha Union:
guistic hedge fuzzy logic controll@cHFLC). In this controller,
each variable utilized is characterized by only three fuzzy setg-(z) = pa(z) V pp(z) = max(pua(z), pp(z)), =€ X.
with simple-shape membership functions; therefore, the max- 3)
imum number of fuzzy rules required for a system withnput
variables is3"™. Moreover, a module called thiguistic hedge Intersection:
moduleembedded in this controller plays the role of a linguistic
modifier. It is used to dynamically modify the shape of simple-uc(z) = pa(x) A pp(z) = min(pa(z), pp(z)), =€ X.
shape membership functions according to the feedback signal 4)
from the controlled plants. This modification action allows the
LHFLC to utilize only fewer rules and simple-shape member-  Complement:
ship functions without the satisfactory performance degrading.
In addition, to prevent the foul factors from damaging the system falz)=1—pa(z). (5)
design, the adjustment of the linguistic hedge module through
the attached GA module makes this controller adaptive. Finallyhese fundamental fuzzy operations are often used to build the
three well-known examples including the nonlinear plant modether fuzzy logic functions.
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B. Fuzzy Linguistic Hedges wH)

In a fuzzy logic based system, the information is describe:
linguistically. The linguistic hedge is an operator with an oper-
ation like a modifier used to modify the shape of membershij
functions. According to the statement in [30], linguistic hedge
operations can be classified into three categomesicentra-
tion, dilation, andcontrast intensificationin this paper, we only
focus on theconcentratiortype and thealilation type hedge op- 0.5F
erations.

1) Concentration: Applying a concentration operator to a
fuzzy setd results in the reduction in the magnitude of the grade
of membership oft in A which is relatively small for those
with a high grade of membership it and relatively large for
thosez with low membership. The hedge operation obhcen- 0 ; . . ‘ ‘ ‘ ¢
tration " defined by Zadeh [30] is L T

more or less cold

very cold

Fig. 1. Effects of the fuzzy linguistic hedgeéry’ and “more or les&

A 4
CON(z) =z%, o> 1 ®
Based on the above definition, a few related hedge operatic I%;‘;g‘ijf‘; 1}3‘;1"6
W. S
such asabsolutely very, much moremorg andpluscan be de- | & :
. 1 1
fined as [36], [39] : :
AL ! Y :
1 1
absolutelyr = z (7)  Crispnput!_["Fugsifier | , || Ff““y Defuzzifier | Crisp Output
A ™| Module [™ nEergnce ™ Module [
veryr =z (8) ! ngine :
A 5 I I
much morer = 21 9) | |
N | Fuzzy Logic Controller ( FLC)
morex =z’ 0 )
A . . . o .
p|USa: 2 125 (11) Fig. 2. Basic configuration of a fuzzy logic controller.

2) Dilation: In contrast, the effect of dilation is opposite taemperature otold while the members in the fuzzy setore
that of concentration. The hedge operation @ifdtion =" de-  or less coldare farther far away from the temperaturecofd.
fined by Zadeh [30] is

C. Fuzzy Logic Controller

A
DIL(z) = 2% a <l (12) A fuzzy logic controller designed on the basis of the fuzzy

Similarly, some related hedge operations sucasis more logic is an approximate reasoning-based controller, which

or less andslightly can be defined as [38], [39] _does _n_ot require exac_tly _analytical models and is much closer
in spirit to human thinking and natural language than the
minusz 2 507 (13) traditionalllo_gic system. Fig. 2 showg the block.diagram of an
A os FLC consisting of four principal units: th&uzzifier modulg
more or less = z°° (14)

fuzzy inference engin&knowledge baseand thedefuzzifier
slightly z £ 2025 (15) module In fuzzy control applications, the observed data are
usually crisp. Since the data manipulation in an FLC is based
In order to consider the hedge effect on the fuzzy set, th@ fuzzy set theory, fuzzification is necessary during an earlier
hedge operatoreryis used to stand for theoncentratiortype  stage. Fuzzification is related to the vagueness and imprecision
operation; the hedge operatmore or lesds used to stand for j, 3 natural language, which translates the input crisp data
thedilation type operation. The fuzzy setsld, very cold and  jntg the fuzzy representation for further processing. The most
more or less coldharacterized by their membership funCtiO”ﬁutstanding feature of fuzzy set theory which made it very
freold (t), Hvery cold(f), @NA fimoreorless cota(t) are shown in giractive for applications is its ability to model the meaning of
Fig. 1. In this figure, the membership function of the fuzzy se{atyral language expressions. A fuzzy system is characterized
very coldis generated by applying the hedge operatanyto  py 5 set of linguistic statements according to expert knowledge

that of the fuzzy setold while the membership function of the 4t is usually represented in the form of “IF=THEN” rules
fuzzy setmore or less colds generated by applying the hedg%xpressed as

operatormore or lesgo that of the fuzzy setold. Obviously,

the linguistic hedgevery tends to narrow the shape of the IF (a set of conditions are satisfied)

membership function and decrease the membership degree;  THEN (a set of consequences can be inferred)(16)

the linguistic hedgemore or lesgends to widen the shape of

the membership function and increase the membership degfHge antecedent and the consequence of these IF-THEN rules
That is, the members in the fuzzy setry coldare closer to the are associated with fuzzy concepts, so they are often dalteg

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 22:44:36 UTC from IEEE Xplore. Restrictions apply.



LIU et al: DESIGN OF ADAPTIVE FUZZY LOGIC CONTROLLER 35

conditional statementsn fact, the antecedent is a condition in Hex )
its application domain and the consequence is a control action
for the system under control. Above all, the fuzzy control rules
provide a convenient way for expressing control policy and do-

main knowledge. The knowledge base module is used to specify > x

t.he Contro.l rules, which comprises a knowledge of the apphcgl- .3.  Membership functions of the fuzzy sets NB, NM, NS, ZE, PS, PM, and
tion domain and the attendant control goals. Moreover, to deg

with the fuzzy information described above, the fuzzy inference

engine employs the fuzzy knowledge base to simulate humanE allv. th | iesin the FLC based
decision making and infer fuzzy control actions. Finally, the de- ssentially, the control strategies in the areé based on ex-

fuzzifier module is used to translate the processed fuzzy d rt experience, so the fuzzy logic controller can be regarded as
into the crisp data suited to real world applications. the simulation of a humanoid control model. When designing a
Consider a multivariable fuzzy control system with three irfLC, the control strategies have to be based on the determination

puts and three outputs. The linguistic description of the syst the fuzzy membership function of control variables and the

control rules can be expressed as [5] [see (17) at the botto |Bguistic control rules. Therefore, after finishing the design of a
the page], wheret,;, is the fuzzy value of thé-th input vari- controller, if the control result fails to meet the system require-
able defir;ed in th’é(zl)miverse of discourg&. k& — 1.2.3- and MeNts due to a change in the outside environment of the control

Y, is the fuzzy value of thg-th output variable defined in the system, the system control strategies have to be modified to fit
it ’ the control objective. The possible solution to this problem is

universe of discours@’’,j = 1,2, 3. di ther th bershin function of the f
Assume that the outputs depend only on the inputs and héb@t we can adjust either the membership function of the fuzzy

nothing to do with the other outputs. Thus, the linguistic dé—efl_s or thle _conr;[ro:.rulefs to e:]cr;eve tfhe control Obje;t'v_e' I
scription of the control rules can be rewritten as 0 explain the linguistic hedges from a more physical per-
spective, we consider their effects on the inference performance

IF X1y AND X5y AND X33y THEN Y1y of an FLC whose goal is to produce the suitable control ac-
or tions to control the controlled plants reaching the desired sit-
uations. In general, the schedule of the membership functions
: of the fuzzy sets in this case are in the form shown in Fig. 3, in
IF Xy AND X0y AND X350,y THEN Y5 which the fuzzy sets are labeled with linguistic variables Nega-
tive—Big (NB), Negative—Medium (NM), Negative—Small (NS),
Zero (ZE), Positive—Small (PS), Positive—Medium (PM), and
: Positive—Big (PB). What an FLC should do is lead the controlled
IF X1(,y AND X5,y AND X3(,,) THENY,(,,;  (18) plant to the state such that the input variables and the output
) variables of this FLC enter the range around the fuzzy set ZE or
where; = 1,2,3. The three-input/three-output system can bgach zE, which indicates that a balanced condition is met. For
decomposed into 3 three-input/one-output systems. Regardifigiply explaining the effect of linguistic hedges on the member-
the three-input/ one-output system, the fuzzy relation of thfgﬁip functions, we concentrate only on the fuzzy sets NB, ZE,

NB NM NS ZE PS PM PB

or

system defined by Zadeh [30] can be expressed as and PB. The dashed lines in Fig. 4 are the membership functions
n of the fuzzy sets NB, ZE, and PB. The solid lines in Fig. 4(a)
Ry = \/{Xl(i) A Xoy A Xay A Y1y (19) represent the effect of the hedge operatmre or lesson the
i=1 fuzzy sets NB, ZE, and PB, while those in Fig. 4(b) reveal the

If the present inputs ac&’ , X}, and.X, then the present output €f€Ct 0Wning to the hedge operatcery. Clearly, the effect of

Y/ can be determined by the compositional rule of inferendBore or lessan be viewed as the stress of fuzzy sets in physical
[30] meaning. Alternatively, ifz is located in NB or PB, thenore or

lesseffect increases the membership degrees and stresses the
Y] = (X{,X5,X5) o Ry. (20) meaning of NB or PB. This action forces FLC to consider that

IF X, (1) AND X1y AND X301y THEN Y53y AND Yy AND Yiy)
or

IF X1 (i) AND Xy AND Xa(;) THEN Yy ;) AND Yoy AND Yag;)
or

IF X1(y AND X () AND X3,y THEN Y3 ;) AND Ya(,,) AND Y3,y 17)
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Fig. 4. Diagrammatic sketch of effects witleryandmore or less(a) Effect ofmore or less(b) Effect ofvery.

the input state is still far from the target ZE. Furthermore, thaf the inference rules is reduced to a number as small as possible
FLC stresses the output control action to reach the target earlgerch as that only nine rules are used. Fig. 5 is the block dia-
The situation ofr located in ZE is the same as stated abovgram of this LHFLC, which consists of several modules similar
The stress of ZE forces FLC to consider that the input statetisthose in a conventional FLC except for the linguistic hedge
very close to the target and to tune the output control action imedule attached to the fuzzifier module. Relying on the benefits
finer manner to fit control demand. On the other hand, opposidescribed, the number of inference rules used in this LHFLC is
to that ofmore or lessthe effect ofvery suppresses the inputnine. These rules are usually scheduled &va3 rule table. As
state. This means that:fis located in NB or PB, the suppres-shown in Fig. 6, three fuzzy sets labeled NB, ZE, and PB are
sion forces FLC to consider that the input state is not far froosed in this architecture, which are the most general and uni-
the target ZE and to control the output action to approach thersal representations of membership functions used in FLC's.
target in a finer manner. As usualgifis located in ZE, suppres- The Z-shape membership functiprg () of fuzzy set NB can
sion forces FLC to consider that the input state is not closelte expressed as

the target and to tune the output action in a coarser manner to fit

1 —o0 <z < INB
the system demand. T -
d pxp(z) = ¢ =28 41, anp <o <azp (21)
0, 7R < <+

lll. LiNnGguisTIC HEDGE FUzzY LOGIC CONTROLLER
ARCHITECTURE The A-shape membership functiory(z) of fuzzy set ZE can

. . . be expressed as
The LHFLC is designed by taking advantage of the superior

characteristics inherent in the linguistic hedges which can be 0, —oo <z < ZNB
used to modify the shape of the fuzzy membership functions in pize(z) = —% +1, zxg <z <app (22)
order to achieve better inference performance. The major differ- 0, zpp £ < +00

ence between this proposed LHFLC and the conventional F
is that a module callelinguistic hedge modules inserted into
the conventional one to adjust the shape of fuzzy members

I'I%e S-shape membership functipng(x) of fuzzy set PB can
Rﬁa) expressed as

functions dynamically according to the feedback signal from 0, —o <z <LrgR
the controlled plant. The emerged interesting result is that this  upg(z) = ﬁ +1, zzp <z <xpp . (23)
LHFLC maintains better performance even though the number 1, zpg <z < o0
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Linguistic Hedge Fuzzy Logic Controller (LHFLC)

Fig. 5. Architecture of linguistic hedge fuzzy logic controller.

A L which is thei-th element of the hedge combination vector
kel -
S N . : h = [hy...h,] defining the proper hedge operators of the
H () S I D . : :
b NB O igg| ... . PB n intervals of the whole input domain. For the sake of the
! SN LN e convenience of mathematical expression, we define the hedge
combination matrixH as
0 . hi o --- 0
- X
“nB Xzp *pp 0 hy --- O
H= [hlvl - hnvn] = . . . (27)
Fig. 6. Membership functions applied to linguistic hedge fuzzy logic 0 0 - hy nxn
controller.

wherev; is thei-th basis ofn dimensional vector space, which
In order to apply the hedge operations to the proposed FLIE defined as

the domains of the input variables are partitioned intin- vy

tervals. From the mathematical point of view, the membership v;=| : (28)

functionsung(z), puzr(z), andupp(z) seem to be assembled )

by n piecewise linear functions. These partitioned membership Yrndnx1

functions denoted gsx s (), pze (), andups: (x) can be ex- and Lo

ressed as I

P Yi { 0, otherwise (29)
Zi:((g — t2(P(2)) Z;:g)) (24) That is, every entry oH is 0 except the diagonal entriéss
. yirn(z) which give the hedge operators of the corresponding interval

of membership function. Since the mati#X is diagonal, the
wheretr(-) denotes the trace of a matrix, alx) is the par- membership function$.gons (), troze(z), and pgopp(x)
tition matrix defined as (25) shown at the bottom of the pageesulting from modification by corresponding hedge operators
in which A denotes the step size of the input domain partitioean be expressed as

andu(x) is the unit step function of defined as

trioNB () tr(P()(ponn(@))™)
u(z) = {0 —oo <z <0 ' (26) proze(x) | = | tt(P(z)(pze(z)®) | . (30)
1 0<z <+ pHoPR(T) tr(P () (urr(z))H)
The membership function in each intervdf = 1,...,n) Afterprocessing inthe fuzzifier module and the linguistic hedge

is now modified by its corresponding hedge operatgr module, we send the resulting signals to the succeeding stage re-

u(x —axnp) —uw(x — N — D) -~ 0
P(x) = : (25)

0 o ulr—ang — (0= DA] —u(z —axs —nA) |, o,
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ferred to as the inference engine. This stage infers the fuzzy con

trol actions employing fuzzy implication and rules constructed
by the expert experience. The fuzzy reasoning method adopte
in the LHFLC is Mamdani’s Minimum Operation Rule [43]. ‘ Generate Initial Population Randomly ‘
The final stage is the defuzzifier module whose function is to ‘

transfer the signal from the fuzzy set into the real world for ob-
taining the actual control actions. The widely used method, cen
tral of gravity (COG), is adopted in the proposed LHFLC. In this %
case, the crisp output, can be derived by [5]

—»‘ Calculate the Fitness Value of Each Individual |

Generate 10 Individuals Randomly and Replace

n 10 Individuals with Lower Fitness Value
iy pa(w) s wy
2o = 7 ey |\ ; ——————— |
2 iy Ha(wi)

. . . . ) Selection
where w; is the abscissa at which the membership function

reaches the maximum valye.(w;) andn is the number of
guantization levels of the output variakie
According to the above descriptions, we can find that the

characteristic of this architecture simplifies the complexity of .
the LHFLC design both on architecture itself and the hardware| Mutation
realization. From the viewpoint of the LHFLC architecture it- Bt S

self, inserting a linguistic hedge module allows us to use the
simple triangle-like membership functions and a fewer number
of rules instead of the more carefully designed membershig %
functions and the large number of rules to reach the control No
goals. As a result, the membership function constructions anc

the rule developments become simpler works. From the view-

point of the hardware realization, by comparing this LHFLC

and the conventional FLC’s, we can find that only one extra End

module called a linguistic hedge module is inserted. Besides,

the fuzzifier circuit (membership function generator) becomqgg‘ 7. Modified simple GA approach for searching the optimal hedge
simpler than those of the conventional FLC’s because it ondgmbinations.

has to generate fewer and simpler triangle-like membership

functions; thus, size of memory is decreased dramatically b&_— Two Preliminaries in GA

cause fewer rules are needed storing. Therefore, this LHFLC

can be realized with low design complexity and small hardware 1) Definition of Suitable CodingOne of the most attractive
overhead. problems in GA's is coding the solution space. According to the

eight hedge operations mentioned before ancethpty-hedge
operation defined as

Crossover

Iyl

I
I
I
]
|
I
i GA Operators
I
I
I
I
I
I
I
I

‘ New Generation ‘

Enough Generations?

IV. OPTIMIZATION MECHANISMS

In LHFLC, we must tune the linguistic hedge combinations empty-hedge: < o (32)
which are difficult to be contributed according to human ex-
perience and knowledge. To acquire an optimal combinatichgre are nine possible hedge operations to be adopted in the
we adopt the GA's as the search method. In this work, the Gifsguistic hedge module for modifying the corresponding mem-
module works offline. That is, it searches the optimal linguistibership functions properly. Consider the input domain parti-
hedge combination vector according to the controlled plartisned inton intervals with their own hedge operations. In the
specified at first, and then provides this solution to the linguist@ase of a system with three fuzzy sets, the overall number of
hedge module to make the LHFLC adaptive. Among all tHeaguistic hedge combinations is as many3as 9". That is,
various GA's, the simple GA is the simplest one without losthere are as many &sx 9™ kinds of encoding representations
of efficiency. In this work, we adopted a modified version ofo be searched. To simplify this search problem, we investi-
a simple GA for increasing the linguistic hedge combinatiogate these three mentioned membership functions as shown in
variety while searching the optimal solution. Fig. 7 shows theig. 6 again. The demonstrated significant result is their sym-
flow chart of the modified simple GA. In this algorithm, tenmetrical property. That is, the membership functign:(x) is
individuals with lower fitness among the whole population arself-symmetrical with respect to the link : © = zyg; the
removed, and ten newly generated individuals fill the resultimgembership functiongng(z) and upg(z) are symmetrical
vacancies in the population. This operation increases the varigiyeach other with respect to the lide Therefore, the hedge
of the combination of linguistic hedges and enhances the seacdmbination of the fuzzy set ZE ranging from the first interval
ability. Before proceeding with this GA approach, there are twio then /2-th interval and those ranging from thg:/2)+1)-st
preliminaries to be finished. interval to then-th interval must be symmetrical with respect
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TABLE | + e(k) x(k) y(k+1)
PARAMETERS FORMODIFIED SIMPLE GA r(k) (k) Controller > Plant o
Number of generations | 60
Population size 100 Fig. 8. Control loop of nonlinear plant model control system.
Crossover rate 0.6 Ax ¢
\NB NM NS ZE PS PM PB
Mutation rate 0.01
NB | NB| NB{NM|NM| NS| NS|ZE

NM | NB|[NM|NM| NS| NS| ZE | PS

to the line L. Accordingly, the hedge combination vecthr Ns | nvinMl Ns| ns| ze| ps | s

used to specify the membership function of fuzzy set ZE must ‘
be in the form of ZE [NM| NS| NS| ZE| PS | PS |PM
PS | NS| NS| ZE| PS | PS |PM |PM
h=[A|A"] (33)
PM| NS| ZE| PS | PS |PM |PM | PB
whereA = [a; .. .a, /] specifies the hedge operators corre- PB | ZE| PS | PS |PM |PM | PB| PB

sponding to the./2 intervals to the left of the liné,, andA" is
the vector whose elements are in the reverse order with resgégt 9. The7 x 7 rule table of nonlinear plant model control system.
to those ofA, i.e.,

where
A"=AR =[a,/2...a1] (34)
/ A=la.. an] (39)
where the transfer matriR is defined as B =1[b...0,] (40)
0 - 0 1 anbieSi=1,..2 (41)
0 -~ 10 2
R=|. L (35) and
i 0 0 S = {all hedge operators such as
Bx3 0.25,0.5,0.75,1,1.25,1.5,1.75,2, and4}.
Similarly, consider the fuzzy sets NB and PB. The hedge com- (42)

bination vectoB specifying the hedge operators ranging from = ) .

the first interval to thes/2-th interval of the fuzzy set NB and ' 1is kind of encoding representation reduces the number of the

the hedge combination vect6t specifying the hedge operatorsooss'ble ||12d|V|duaIs inthe search space dramatically fiore™

ranging from the(n/2) + 1)-st interval to then-th interval of 02 x 9n/, . ) , o

the fuzzy set PB must be also symmetrical with respect to the?) Choice of Fitness FunctionThe second preliminary to

line L. That is be finished is choosing the problem-dependent fithess function.
Different fithess functions promote different GA behaviors,

C=B"=BR=[b,...0] (36) Wwhich generate fitness values providing a performance measure

of the problem considered. The general form of a fitness

Obviously, once the vectak and the vectoB are determined, function consists of two functions and can be expressed as

the vectorsA™ andB" (=C) can be also obtained in turn. Thethe composition of a scaling functiog(h) and an objective

hedge combination vectdr used to specify the fuzzy sets NBfunctionm(h), i.e.,

and PB becomes f(h) = g o m(h) (43)

wherem(h) is the objective function returning a cost value, and

o . . g(h) is the scaling function transferring the cost value to the
where B specifies the hedge operators ranging from the f|r§ . : . .
. ; ., Titness. In this work, we choose the fitness function using the
interval to then/2-th interval of the fuzzy set NB whil@ ower scaling function. which can be exoressed as
specifies the hedge operators ranging from(he/2) + 1)-st pow INg function, whi xp
interval to then-t_h in_terval of the fuzzy set PB. chordingly, f(h) = exp(—o - ¢(h)) (44)
the hedge combination vectors we have to determindaaad _ _ _
B with the dimension of./2. For GA processing, more naturalwhere c(h) stands for the cost function which varies from
representations are more efficient and produce better solutiopgblem to problem, and can be viewed as a discernment
Hence, the real-coded representation is used to manipulatefigasure. S
floating point hedge operators. Each individual to be consideredAfter deciding these two preliminaries, we should choose the

h = [BIC] = [B[B'] 37)

is encoded as a vector of floating point numbers, i.e., genetic operators. This modified simple GA consists of three
kinds of genetic operations which aselection crossoverand
h=[A]A"] or h=[B|B"] (38) mutation
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e NB NM NS ZE PS PM PB
0 e
06 -04 -02 0 02 04 086
we NB NM NS ZE PS PM PB
0 -6 4 2 0 2 4 6 €
HAD NB NM NS ZE PS PM PB
0 Ax

-0.63 -042 -021 0 021 042 0.63
Fig. 10. Fuzzy membership functions fe(k), (%), andAx of conventional fuzzy logic controller with x 7 rules.

B. GA Operators Ax ‘
NB ZE PB
1) Selection: Selection chooses the individuals in the popu-
lation as parent individuals to create offspring for the next gen-
eration, whose purpose is to emphasize the fitter individuals in
the population in hopes that their offspring will in turn have PB | ZE | PB | PB
even higher fitness. In this work, the implementation method of
fitness-proportionate selection is adopted. The selective proﬁQ—‘ 11

bility ps(h;) of thes-th individualh, is

NB | NB|NB| ZE

¢ 7E |NB|ZE|PB

The3 x 3 rule table of the nonlinear plant model control system.

u(e)1 NB ZE PB
f(hy)
ps(hi) = =—5—- (45)
2) Crossover:Instead of the single-point crossover, we —%% 5 o6 e

adopt the two-point crossover to increase the candidate popula-
tion variety of the linguistic hedge combinations. For example, .
the parent individuala; andh; given to be crossovered at the Hee) NB ZE PB
points kT andit with the crossover probability,. results in !
the new offsprinda; andh/, expressed as

Y hoi, kT <i<It 0 8 0 6 ¢
by by = {hli, otherwise (46)

and
‘ (AX) PB
hy, kt<i<lIt TR ZE

/. /4 =
hy : By {h%, otherwise. (47)

3) Mutation: Each elementin a hedge combination string is 0
a possible candidate for the mutated element that may be ran- -0.63 0 0.63
domly replaced by all the hedge operators according to the mu- _ _ _ _
tation probabilityp,,,. As an illustration, the individugh] mu- Ejg‘zji‘)gif léé%g}g?m%hf gupljg?s fik), é(k), andA of conventional
tated in thek-th element and th&th element results in the new
offspringh? expressed as (48) shown at the bottom of the ne<</t
page. '

In order to acquire better performance, several parameters forhe capability and feasibility of the proposed LHFLC
GA's should be set appropriately. In this work, the parametease demonstrated in this section. The focus of this work is
suggested by De Jong [44] are adopted, which are widely usedemphasize that the LHFLC with fewer rules can work
in GA community. These parameters are shown in Table I. better than a conventional FLC with more rules. To do this,

Ax

DEMONSTRATIVE EXAMPLES AND EXPERIMENTAL RESULTS
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Fig. 13. Genetic algorithm performance at each generation of nonlinear plant model control system. (a) Average fitness value. (b) Average cost value

three well-known nonlinear systems including the nonlinedihe diagram of the plant control loop is plotted in Fig. 8. The
plant model control system, the truck backer-upper contrgbal of this system is to determine the plant inp(it) such that
system, and the cart-pole balance system are used to verify ]

the performance of the LHFLC. The number of rules chosen (k) —y(k)| < e (51)

in this LHFLC is nine; the domain of each input variable

is divided into 16 equal intervals. Throughout this work, anheree is a suitably chosen constant. That is, the fag(é)

simulations are performed with MATLAB [45]. In addition, thelracks the reference signalk), the better the controller wil

physical cart-pole balance system is also used to demonstl%%form' In Fig. 8, the variables(k) and¢(k) represent the

the feasibility of this LHFLC error input and the change rate of error input of the controller,
' respectively, which are expressed as

A. Nonlinear Plant Model Control System e(k) = r(k) — y(k) (52)
1) Problem Description:The first example in this work is a 5nq
non-BIBO nonlinear plant [40] with the plant model ) (k) —elk — 1
é(k) = %, (53)

y(k +1) = 0.20%(k) + 0.2y(k — 1)
+0.4sin[0.5(y(k) + y(k — 1))]
x cos[0.5(y(k) + y(k — 1) + 1.22(k) (49)

where the time stepht is chosen as 0.1 seconds. Furthermore,
z(k) in (49) can be expressed as

(k) =a(k —1)+ Az (54)
wherez is the input signal of the plant ands its output signal.

The reference model that the plant output will track is chosen W§ereAz represents the increment of the plant input each
iteration. Since the chosen plant model is nonlinear, it is diffi-

r(k) =L (50) cult to handle it when the controller is determined by the clas-
' pr = 4 i i # k, 48)
L hedge operators randomly selected fr8raccording tq,,,, otherwise.
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1.5 T T T T T

LHFLC with 3 x 3 rules
Conventional FLC with 3 x 3 rules

Conventional FLC with 7 x 7 rules

y(k)

0 1 1 1 1 1

5 10 15 20 25 30 35 40 45 50
Iteration
Fig. 14. Simulation result of nonlinear plant model control system.
TABLE I
PERFORMANCEFACTORS OFNONLINEAR PLANT MODEL CONTROL SYSTEM
Conventional FLC | Conventional FLC LHFLC

with 7x7 rules

with 3x3 rules

with 3x3 rules

Shape of membership functions

Gauss-like

Triangle-like

Triangle-like

11

Settling times (s)

0.3

2.7

sical control theory. The FLC is therefore a suitable choice to
replace the role played by this controller. The input variables of
the FLC are the errorand its change rat& the output variable
is Az. In order to stress the power of the proposed LHFLC, the «
performance of the system controlled by the conventional FLC
with 7 x 7 rules and3 x 3 rules is also concerned.
2) Simulation Results:
» Conventional FLC with 7 x 7 Rules
Fig. 9 shows the rule table specifying the implication
relationships between the input variablesi(dé) and the
increment of the output variablsz in the FLC. As shown
in Fig. 10, the input variables and ¢ are characterized
by seven fuzzy sets with the Gauss-like membership
functions distributed in the interval € [-0.6,0.6] and
¢ € [—6,6], respectively; the increment of the output
variable Az is characterized by seven fuzzy singletons
over the intervalAz € [-0.63,0.63] with the sup-

port values (with membership equal to 1) located at
—0.63,—0.42,-0.21,0,0.21,0.42, and 0.63, respec-
tively.

Conventional FLC with 3 x 3 Rules

In this case, the number of rules in the conventional FLC
is reduced front x 7 to 3 x 3 to run the same simulation.
The rule table specifying the 1/O relationships is shown in
Fig. 11. Fig. 12 shows the membership functions for the
input variables{ ande) scheduled by only three fuzzy sets
with the simple shape membership functions linguistically
labeled as NB, ZE, and PB distributed over the intervals
e € [-0.6,0.6] andé € [—6, 6], respectively; the output
variableAz is characterized by three fuzzy singletons NB,
ZE, and PB over the intervakz € [—0.63,0.63].

LHFLC with 3 x 3 Rules

The major difference between the LHFLC and the FLC
with 3 x 3 rules is the inserted linguistic hedge module.
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Fig. 15. Diagram of simulated truck and loading zone. 90 45 O 45 90 135 180 225 270 ?
X
4 NB NM ZE PM PB we)
NB NM NS ZE PS PB
NB|PS |PM|PM| PB | PB 1
NM|NS | PS |PM| PB | PB
NS {INM|NS | PS |PM| PB 30 20 -10 0 10 20 30 6
¢  ZE \NM|NM| ZE | PM|PM Fig. 17. Fuzzy membership functions for ¢, andé of conventional FLC
with 5 x 7 rules.
PS |[NB [NM|NS | PS |PM
PM|NB|NB [NM|NS | PS X
[
PB | NB [NB |NM|NM| NS NB ZE PB
NB | NB| PB|PB
Fig. 16. The5 x 7 rule table of truck backer-upper control system. ZE |NB| ZE | PB
PB |[NB{NB|PB

The linguistic hedge combination is searched by GA and
the fitness function is chosen as

f(h) = exp(—0 - ce(h)) (55)

whereo is selected as 0.2 and(h) is the cost function
expressed as

c.(h) =" ¢*(h) (56)
=1

in which m is the number of iterations during simula-
tion. In the GA searching phase, the performance is mea-
sured according to its corresponding cost value. The lower
the cost value, the better the linguistic hedge combination
searched. Hence, the variablg:) will track the reference
signalr(k) in the best manner possible. During this phase,
the state(e,¢) = (1,0) is chosen as the initial state to
search the optimal linguistic hedge combination by GA.
Fig. 13 shows the GA performance. From this figure, the
maximum average fitness value of 0.79 can be achieved at
the 39th generation. The resultant optimal linguistic hedge
combination vectors are shown in (57) at the bottom of the

page for the fuzzy set ZE and in (58) shown at the bottopyy 19, Fuzzy membership functions for ¢,
with 3 x 3 rules.

of the next page for the fuzzy sets NB and PB.

Fig. 18. The3 x 3 rule table of truck backer-upper control system.

W)l NB ZE PB
0o 2 50 98 100
“("’)1 NB 7E PB
90 45 90 295 270 ?
“(‘91) NB ZE PB
6
.22.5 0 22.5

andé of conventional FLC

h=[02 05 1 2 2 2 111122 2 1 05

0.25]

(57)
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Fig. 20. GA performance at each generation of truck backer-upper control system. (a) Average fitness value. (b) Average cost value.

The performance of the plant model controlled by thiangle of the truck to the horizontal while the coordinate pair
LHFLC is indicated by the solid line in Fig. 14. We define(z, y) specifies the position of the rear center of the truck in the
the settling time as the time for response to settle to withplane[0, 100] x [0, 100]. The truck moves backward by some
40.1% of the steady-state value. Therefore, the plant outplisted distance at each step. The experiment is targeted to drive
y(k) tracks the reference signa{k) with 0.3 s settling time the truck to the loading dockz;,y;) = (50 100) at a right
in the proposed LHFLC system. In contrast, the plant outpahgle(¢ = 90°).

y(k) tracks the reference signa{k) with 1.1 s settling time At each stage, the fuzzy logic controller produces the steering
when it is controlled by the conventional FLC with x 7 angled which causes the truck to back up to the loading zone
rules. Also,y(k) tracksr(k) with 2.7 s settling time when it is from any initial position with any angle in the plane. The dy-
controlled by the conventional FLC with x 3 rules. Clearly, namic equations describing the truck moving backward from
the LHFLC which adopts the least number of ruldx(3 rules (z,y) to (2’, %') at each iteration can be expressed as [41]
rather thariv x 7 rules as those in the conventional FLC) and

the simplest shape membership functions (the triangle-like &’ =z +rcos(¢’) (59)
membership functions rather than the Gauss-like ones as those y =1y +rsin(¢) (60)
in the conventional FLC) possesses the best performance. P =¢+0 (61)

Table Il summaries these results.
wherer is the fixed moving distance of the truck at each itera-
B. Truck Backer-Upper Control System tion. The constraints of these mentioned variables are

1) Problem Description:The truck backer-upper control

: i . . <z <
system with the goal of parking the truck in a prescribed S— v= 1000 (62)
parking lot is shown in Fig. 15. Three variables$, andy —90° < ¢ < 270 (63)
describe this system well, where the variablespecifies the —-30° < 6 <30° (64)
h=[05 2 2 025 4 1 2 025 025 2 1 4 025 2 2 0.5 (58)
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Fig. 21. Trajectories of truck with the initial poifit:, y, ¢) = (10,10,260°).

where the positive values éfrepresent clockwise rotations of
the steering wheel while the negative ones represent counter-
clockwise rotations.

The performance of the FLC is measured in terms of the
docking errordefined as the Euclidean distance between the e
actual final position(¢, z,y) and the desired final position
(¢5,25,y5) of the truck, i.e.,

docking error= \/(d)f — )+ (xp — )2+ (yy —y)2.
(65)
For the FLC, the input variables are thepositionx and the
truck angleg; the output variable is the steering angleThe
y-position can be ignored becausandy are both the functions
of ¢. In this example, the results acquired from the conventional
FLC with 5 x 7 rules and3 x 3 rules are also mentioned to
demonstrate the outstanding behavior of this proposed LHFLC.
2) Simulation Results: '
» Conventional FLC with 5 x 7 Rules
Fig. 16 shows the rule table specifying the implication
relationships between the input variablasand ¢) and
the output variabl® in the FLC. As shown in Fig. 17,
five fuzzy sets with the carefully designed membership
functions linguistically labeled as NB, NM, ZE, PM, and
PB corresponding to the input variablesare designed
over intervalz € [0,100]; seven fuzzy sets with the
carefully designed membership functions linguistically
labeled as NB, NM, NS, ZE, PS, PM, and PB corre-
sponding to the input variableg are designed over
intervalg € [—90°, 270°]; seven fuzzy sets with carefully

designed membership functions linguistically labeled
as NB, NM, NS, ZE, PS, PM, and PB corresponding
to the output variable# are designed over interval

6 € [-30°,30°].

Conventional FLC with 3 x 3 Rules

Similar simulation work is performed in the other conven-
tional FLC in which the number of rules is reduced from
5 x 7103 x 3 to emphasize the capability of the LHFLC.
The rule table is shown in Fig. 18. As shown in Fig. 19,
the input variable either or ¢ is scheduled by only three
fuzzy sets with the triangle-like membership functions lin-
guistically labeled as NB, ZE, and PB distributed over the
intervalsz € [0,100] and¢ € [—90°,270°], respectively;
three fuzzy singletons with related linguistic labels corre-
sponding to the output variabteare specified in the in-
tervalé € [—30°,30°].

LHFLCwith 3 x 3Rules

Similartothe LHFLC designed in the first example, the op-
timal linguistic hedge combination is searched by GA. The
major concern is whether the truck backs at the right site
ataright angle or not; hence, the docking-error is included
in the fitness function to search the optimal combinations.
The fitness function is chosen as

f(h) = exp(—0 - ca(h)) (66)

whereo is selected as 0.8 ang(h) is the cost function

of the docking-error expressed in (65). In this example,
the GA performance is measured according to the
docking-error oriented cost value. That is, the smaller the
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Fig. 22. Trajectories of truck with the initial poiit:, y, ¢) = (30, 20, 60°).

docking-error, the better the performance of this LHFLGneet our claims again. That is, the LHFLC that adopts the least
The truck statéz, v, ¢) = (10, 10, 260°) is chosen as the number of rules x 3 rules rather thas x 7 rules as those
initial state to search the optimal hedge combinations liy the conventional FLC) and the simplest shape membership
GA. The GA performance is shown in Fig. 20. This figurdunctions (the triangle-like membership functions rather than
indicates that the maximum average fitness value of 0.9 ctlre carefully designed ones as those in the conventional FLC)
be achieved at the 22nd generation. The resultant optinpaissesses the best performance.

linguistic hedge combination vectors are shown in (67) at

the bottom of the page for the fuzzy set ZE and in (68) attife Cart-Pole Balance System

bottom of the page for the fuzzy sets NB and PB. 1) Problem Description: The cart-pole balance systemiis re-

Fig. 21 shows the trajectory of the truck with the initiaklly a well-known nonlinear system the goal of which involves

state(z,y,¢) = (10,10,260°). The performance factors areboth vertically balancing a pole hinged to a motor-driven cart
listed in Table Ill. According to the results in Table lll, theand causing the cart to be stopped at the specified position by
proposed LHFLC possesses the lowest docking-error wigpplying forces on it either left or right. Fig. 23 represents the
the smallest number of iterations. To verify the generalityart-pole balance system, which can be described by the fol-
of this linguistic hedge combination, the other initial pointowing nonlinear differential equations [46] [see (69) and (70)
(z,y,¢) = (30,20,60°) is also chosen to simulate this truckat the bottom of the next page], where the related parameters are

backer-upper control system. The simulation results in Fig. 22= —9.8 m/& acceleration due to gravity;

and Table Il reveal that the LHFLC still gets the best perfordZ = 1.1 kg mass of cart;

mance of the truck backer-upper control system. These resuits= 0.1 kg mass of pole;
h=05 1 4 1 05 2 2 1 1 2 2 05 1 4 1 0.5] (67)
h=[4 1 1 1 025 2 1 4 4 1 2 025 1 1 1 4 (68)
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TABLE Il
PERFORMANCE FACTORS OFTRUCK BACKER-UPPERCONTROL SYSTEM

Initial points (z,,4) = (10,10,260°) (z,y,9) = (30,20,60°)

Conventional | Conventional LHFLC Conventional | Conventional LHFLC

Various schemes FLC with FLC with with FLC with FLC with with
5% 7 rules 3x3 rules 3x3 rules 5X 7 rules 3x3 rules 3%3 rules
Shape of mem- Carefully Simple Simple Carefully Simple Simple

bership functions || designed ones | triangle-like | triangle-like | designed ones | triangle-like | triangle-like

Docking-error 0.0762 0.8676 0.0029 0.0509 0.9142 0.0093

Iterations 1185 1095 1087 868 852 846

s
{ NB NS ZE PS PB

NB | NB|NB|NM|NS | ZE

NS | NB|NM| NS | ZE | PS

s ZE |NM|NS|ZE|PS | PM

PS |NS | ZE | PS |PM| PB

PB | ZE | PS | PM| PB | PB

Fig. 23. Diagram of simulated cart-pole balance system. Fig. 24. Thes x 5 rule table of the cart-pole balance system.

L=05m half-pole length; surface chosen. The sliding surface of the cart-pole balance
pe = 0.1 coefficient of friction of cart on track; system for the approaching mode is designed as

pp = 0.01 coefficient of friction of pole on cart;

At =0.01s the sample time; s =co+0.4c; —0.3(cy +0.4ey) =0 (71)

the four state variables and the output variable are

T position of the cart on the track (in meters); while that for the departure mode is chosen as

Z cart velocity (in meters per second);

6 angle of the pole with the vertical (in radians); s = g +0.4ey +0.3(e; 4 0.4¢5) = 0 (72)

0 rate of change of the angle (in radians per second . . _

f force (in Nev?/tons) appligd tf) cart's cen?er of mass?.n which the error vectoE = [eo ¢, ¢, c;]" is defined as the

difference between the actual state vedfoe= [¢ 6 = i]* and

In this example, we use thswitching-typef slidin ) . .
IS exampe, we ! rening ypeftizzy Sieing dhe desired state vectdf, = [04 64 xq ©4]F. Thatis

mode controller (FSMC) to control the cart-pole balance syst

as our platform. The switching-type FSMC proposed by Li [47] eo 0 0,
is a method based on FLC and sliding mode controller (SMC) . 0 6.,
[48]-[50], which achieves asymptotic stability of the system. E=V-Vu= ea O N T (73)
The dynamics of the cart-pole balance system is divided into ez @ £y

approaching conditioranddeparture conditionTwo different
FSMCs to solve control problems for these two conditionBhe input variables of the switching-type FSMC arand its
should be designed, each characterized by the associated slitimg derivatives; the output variable is the forcg applied to

j_ (M +m)gsing — cos bl +mL6sing — uosgria)] — L (69)
(M +m)L —mLcos? 6

. + mL(6%sin 6 — 6 cos b .

PR ( ) 11eSgN() (70)

M+m
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H(s) NB NS ZE PM PB
0 s
-0.5 -0.25 0 0.25 0.5
HCs) 1 NB NS ZE PM PB
0 s
-0.05 -0.025 0 0.025  0.05
weH L NB NM NS ZE PS PM PB
0 -100 -66 -33 0 33 66 100 f

Fig. 25. Fuzzy membership functions fars, andf of switching-type fuzzy sliding mode controller withx 5 rules.

I s His) NB ZE PB
NB ZE PB 1

NB | NB| NB| ZE

s ZE | NB| ZE| PB s

PB | ZE| PB| PB

e NB ZE PB

Fig. 26. The3 x 3 rule table of the cart-pole balance system. 1
the cart. In the simulation as well as the experiment, the objec- ‘—><>( p
tive with which we are concerned is to control the pole being -0.05 0 0.05
balanced at the position= 0.25 m with the anglé? = 0 rad. "
2) Simulation Results: ! | NB ZE PB
» Switching-Type FSMC with 5 x 5 Rules
Fig. 24 shows the rule table which specifies the impli-
cation relationships between the input variablesafd 100 o 100 !

$) and the output variablg in this controller. The five

fuzzy sets with Gauss-like membership functions linguisig. 27. Fuzzy membership functions fars, andy of switching-type FSMC
tically labeled as NB, NS, ZE, PS, and PB correspondinygth 3 x 3 rules.

to the input variables and s are designed over the inter-

valss € [-0.5,0.5] ands € [—0.05, 0.05], respectively, e LHFLC with 3 x 3 Rules

as shown in Fig. 25. The output variabfeis character- In this case, the linguistic hedge concept is applied to the
ized by seven fuzzy singletons designed over the interval  design of switching-type FSMC in order to modify the
f € [-100100]. membership functions of the input variableands. The

* Switching-Type FSMC with 3 x 3 Rules optimal linguistic hedge combination is searched by GA

To emphasize the capability of the LHFLC, the number of  according to the fitness function defined as

rules in the original switching-type FSMC is reduced from

5 x 510 3 x 3 to run the same simulation. In this case, f(h) = exp(—o(ce(h) + c,(h))) (74)
the rule table is shown in Fig. 26. Each input variable is

defined by three fuzzy sets with triangle-like membership ~ Wheres is selected as 0.1 (h) andc,(h) are the cost

functions distributed over the intervals € [—0.5,0.5] functions expressed as

ands € [—0.05,0.05], respectively, as shown in Fig. 27. m

The output variabléf is defined by three fuzzy singletons co(h) = Z ¢3 () (75)
distributed over the interval € [—100 100]. =
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Average fitness value

0.74 | 1 1 1 1
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Generation
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3 T T T T T

i o o

Average cost value

o
o

2 | 1 1 1 1
0 10 20 30 40 50 60

Generation

(b}

Fig. 28. Genetic algorithm performance at each generation of cart-pole balance system. (a) Average fitness value. (b) Average cost value.

and the page for the fuzzy set ZE and in (78), shown at the
i bottom of the page, for the fuzzy sets NB and PB.
_ 2
cx(h) = z_; ¢, () (76) Fig. 29 shows the response of the cart-pole balance system

controlled by the switching-type FSMC with eithérx 5 or

in which m is the number of iterations during simula-3 x 3 rules and the LHFLC with associatld Obviously, either

tion. During the search process, the statez, #,6) = the pole angle response or the cart position response reveals that
(0,0,0,0) is chosen as the initial state to search thihe LHFLC adopting the least number of rules and the simplest
optimal linguistic hedge combination by GA. The cosshape membership functions really enhances the performance of
values returned by GA reflect the qualities of the linthe FLC adopting x 5 rules and Gauss-like membership func-
guistic hedge combinations searched. The lower the ctisins or the FLC adopting x 3 rules and triangle-like member-
value, the better the result searched. That is, we expsbip functions.

the pole angl® to reach 0 rad and the cart to be located 3) Experimental ResultsTo apply the proposed LHFLC to

at the desired positiom = 0.25 m as fast as possible.the real experimental system, the cart-pole balance system man-
Fig. 28 shows the GA performance. Obviously, the maxHactured by Phimatic Enterprise Co. Ltd. is used to demonstrate
imum average fitness value of 0.8 can be achieved at tthés work. The arrangement of the whole experimental setup is
40th generation. The resultant optimal linguistic hedg#ustrated in Fig. 30. The specifications of the related hardware
combination vectors are shown in (77) at the bottom @ire listed as follows.

h=[05 4 4 05 05 025 1 1 1 1 025 05 05 4 4 0.5 (77)

h=[025 2 1 025 05 05 4 2 2 4 05 05 025 1 2 0.25] (78)
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0.08 T T T T T T T T T
0.06 LHFLC with 3 x 3 rules _
= o04®% /-~ Switching-Type FSMC with 3 x 3 rules |
TN Switching-Type FSMC with 5 x 5 rules
~ 0.02 _
2
%‘D 0 T e, e = — = =
<
-5 =0.02 _
=
A -0.04 _
-0.06 _
—008 | | | | | | { | |
0 1 2 3 4 5 6 7 8 9 10
Time (s)
05 T T T T T T T T T
LHFLC with 3 x 3 rules
0.4 — -

Switching-Type FSMC with 3 x 3 rules
Switching-Type FSMC with 5 x 5 rules

El
= 0.3 _
£ - N —
=
2 0.2 _
2,
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Time (s)

Fig. 29. Simulation result of the cart-pole balance system with initial condmﬁné, x,&) = (0,0,0,0). (@) Response of pole angle. (b) Response of cart

position.
B U.8m _
- VZ
Pole
Bsh Sensor Motor Rail
i S
L2 ]
Feedback Cart
Signals
%6 v MBSP Card
PC A/D—» DSP 1 | D/A Driver l
— Controller
[ N A
A
RS-232

Fig. 30. Experimental setup of the cart-pole balance system.

Pole: 0.5 m length;
Drive force: dc motor (15 W);
Sensor: Photo encoder (500 pulse per rotation);
Micro-computer: 486 personal computer;
A/D, D/A & digital signal control card: MBSP card [51].

the MBSP card through the 25-pin RS-232 transmission line.
The DSP controller processes the received signals to produce
the control actions. These control actions are delivered to a dc
motor via the D/A converter to apply the suitable force to the
cart. The state of the cart-pole balance system is sensed by a
photo encoder and fed back to the A/D converter of the MBSP
card. This routine is run continuously until the system demand
is met.

The responses of the pole angle and the cart position are
recorded by computer and plotted in Fig. 31. Fig. 32 exhibits
the photograph of the cart-pole balance system controlled by
the resultant LHFLC with an exposure of about 8 s.

VI. CONCLUSION

In this paper, we have proposed the LHFLC. By means of ad-
justing the membership functions dynamically through the lin-
guistic hedge concept, we can employ fewer rules and simple-
shape membership functions to achieve a better performance
than a conventional FLC does. Moreover, the GA module at-
tached to this system with the ability of searching the optimal
linguistic hedge combination allows this LHFLC to confront the
variations due to internal or external factors; in other words, this
LHFLC is adaptive. To verify the feasibility of this LHFLC,
we have simulated three famous examples including the non-

Initially, the LHFLC algorithm is programmed in C languagelinear plant model control system, the truck backer-upper con-
The control signals generated by the resultant execution cddad system, and the cart-pole balance system. The member-
compiled from the C program are sent to the DSP controller ship functions used in these systems are S-shasbape, and
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Fig. 31.

Experimental result of the cart-pole balance system.

(1]

(2]
(3]

(4]
(5]

(6]
(7]
(8]

[9]
Z-shape. The number of rules is nine and the number of parti-
tions of each input variable is 16. We have also performed exper10]
iment on the real cart-pole balance system to prove this LHFLC
to be practical. Both the simulation and experimental results ré)
veal that the proposed scheme is really feasible.

Due to the benefits mentioned such as characterizing the ré2]
lated variables by simple-shape membership functions, infer-
ring control actions based on fewer rules, and its adaptabilityfm]
this LHFLC is attractive especially in the systems with more
variables. Furthermore, to be suited to the real-world applica-
tions, the study on developing a hardware realization of thig!4!
LHFLC in VLSI to achieve a real-time adaptive FLC will be 45
continued in the future.

Fig. 32. Photograph of cart and pole during control with initial conditions
(6,6,7,%) = (0,0,0,0).

10
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