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Abstract An adaptive fuzzy sliding mode controller 
(AFSMC) is proposed in this paper. The parameters of 
the membership functions in the fuzzy rule base are 
changed according to some adaptive algorithm for the 
purpose of controlling the system state to hit an user- 
defined sliding surface and then slide along it. The ini- 
tial IF-THEN rules in the AFSMC can be randomly se- 
lected or roughly given by human experts, and then 
automatically tuned by a direct adaptive law. There- 
fore, reducing the expertise dependency in the design 
procedure of fuzzy logic control, we call it rule toler- 
ance property. By applying the AFSMC to control a 
nonlinear unstable inverted pendulum system, the 
simulation results show the expected approximation 
sliding property was occurred, and the dynamic behav- 
ior of control system can be determined by the sliding 
surface. 

1. Introduction 
In the classical control theory, most of the au- 
tomatic control problem are usually solved by 
mathematical tools based on the system mod- 
els. But in the real world, there are many com- 
plex industrial processes whose available 
models can't be easily developed. Hence, de- 
sign a model-based controller to control these 
ill-defined systems is very difficult. However, 
human operators can do well without keeping 
any mathematical model in mind. Fuzzy logic 
controller (FLC) [ 11. Although there has been 
some successful applications of fuzzy logic 
controller [2]-[3], however, it still has some 
problems in the design of FLC: 1) The fuzzy 
control rules are experience oriented and the 
suitable membership functions should be given 
by time-consuming trial and error procedure; 
2) The dynamic behavior of control system 
can't be specified previously; 3) No general 
stability analysis tools can be applied to a 

fuzzy system. 
To overcome 1) and 2), we had proposed a 

fuzzy sliding mode control (FSMC) scheme 
[4] which has the advantages of FLC and SMC 
(sliding mode control) [5]. By introducing the 
sliding mode to the FLC and fuzzifying the 
sliding surface, the FSMC has a fuzzy sliding 
mode which is similar to crisp sliding mode 
but has less chattering then the crisp one. The 
closed loop system can be characterized by a 
userdefined sliding surface, and the fuzzy 
rules can be easily obtained. But the FSMC 
developed in our previous works has no auto- 
tunning capacity. The slightly tuning by de- 
signer is also necessary. In the paper, we de- 
velop a new strategy called adaptive fuzzy 
sliding mode control (AFSMC). The parame- 
ters of the membership functions in the 
AFSMC are changed according to some adap- 
tive algorithm for the purpose of controlling 
the system states to hit an userdefined sliding 
surface and then slide along it. The initial IF- 
THEN rules in the AFSMC can be randomly 
selected or roughly given by human experts, 
and then automatically tuned by a direct adap- 
tive law. Therefore, reducing the expertise de- 
pendency in the design procedure of fuzzy 
logic control, we call it rule tolerance proper- 
ty. In Section 2, we introduce the basic concept 
of FSMC. The adaptive algorithms for FSMC 
are derived in Section 3. In Section 4, the 
AFSMC is applied to control an inverted pen- 
dulum system. Section 5 gives a conclusion. 

2. Basic Concept of FSMC 
There are two parts in this section. First, we 
discuss some definitions of fuzzy logic control. 
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Secondly, conventional sliding mode control is 
briefly reviewed, and then the main idea of 
fuzzy sling mode control is presented. 

A. Some definitions of* logic control 
In this paper, the membership functions we 
adopted are all in the form of 
pA(x) - expC-(?)’]. Moreover, the fuzzy set A 
can be express as A(m, CT ). 

Definition 1: Afizzy rule base, R = V Rj, is a 

union of fuzzy rules, in which, each rule j can 
be expressed as 

A N  

j -  1 

Definition 2: Thefiring strength ofjth rule is 
n 

#-I 
= n pAY(xi) (2) 

Definition 3: A fuzzy rule base, R, is said to 
be complete if and only if there at least exist a 
rule, k, in R, such that pjtt rr 0, Vxj E Xi. 

Definition 4: The &zy premise firnctions, 
p,(x), can be determined by the premise part of 
Rj, and can be defined as 

(3) 
A PB,@/”’ 

P j ( X )  = ” j = =  1,2 ,..., N 
2 P R , b )  

j -  I 

Definition 5:  The weighted average dejkzzi- 
#cation is defined as 

N z e/PRj(x) 

(4) 
i-1 A 

U = = e T p ( x )  
2 Pa,@) 

where 9 = [e, 0, ... OJT, p = Ip, pz  ... pJT. We 
have the following fact 
Fact: If a fuzzy rule base is complete, then 

i). Allp,(x) are well-defined, 
ii). 0 5 p,(x) s 

j-1 

1. 

Therefore, it is important to construct a com- 
plete fuzzy d e  base in FLC design. We sug- 

gest two principles to obtain a complete fuzzy 
rule base: 1) Overlapping all membership 
functions of every input variable. 2) Take all 
possible label combinations of input variables. 

B. Fuzzv slidinp m ode control 
In conventional SMC design, the designer 
must choose a sliding function first, i.e. 

s ( x ) :  R “ 4 R  ( 5 )  
for the linear case, 4.) can be selected as a lin- 
ear combination of state, s = cTx. In this paper, 
we will adopt the linear sliding function for 
simplicity. The sliding surface can be viewed 
as a set of state, in which, the mapping ( 5 )  
equal to zero, i.e. 

Applying the fkzification operation to fuzzi6 
the crisp sliding surface (set) to a fuzzy one is 
the main ideal of FSMC. Figure 1 illustrate 
such concept. 

s: { x  I C T X =  0) (6)  

3. Adaptive algorithm for FSMC 
A class of n-th order nonlinear systems consid- 
exed in this work have the form of 

wherefl.) is a unknown continuous function, b 
is a unknown positive coflsfsulf, and u E R  is 
the system input and y E R is the system out- 
put. To transfer this differential equation to a 
state space realization, let r be the reference 
input, and let E = r - y be the error signal. De- 

then the system (7) can be represented as the 

(8) 

(9) 
Define the sliding function 

where c = [c, c2 ..., c,,, 1IT, then when the state 
on the sliding surface s = 0, the equivalent 
control which can keep the state stay on the 
sliding surface can be derived from setting the 
derivative of s, i, equal to zero, that is 

y‘” =m,y, ..., p-”) + bu, b > 0 (7) 

A fine the state ei r(i-1) -y(k*) = #1), i=l  9 2 ,-*- ~1 9 

following state equations 
ei = ei+l, i -  1, ..., n -  1 
en = r(n) -f- 1‘ 

s = cTe 

u,,=ul;-o =&I ( -f+ r””) + cTe ) (10) 
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Moreover, in the sliding mode, s = 0, the sys- 
tem dynamic can be characterized by the fol- 
lowing characteristic polynomial 

(11) 
where D i, with suitable choice of the coef- 
ficients ci , one can obtain a desired and stable 
equivalent control system e = Ace, where 
A, E R““” , is a companion matrix in controlla- 
ble canonical form with -ci in the last row and 
has negative eigenvalues if (1 1) is Herwitz. 
To develop adaptive fuzzy sliding mode con- 
trol law, let’s assume that we can find a set of 
c ,  i = I ,  2, ..., n, such that ccTAc = -Q, where 
Q is a positive definite matrix. 

Without knowing fl.) and b, there is no 
way to get ueq, the main purpose here is to use 
a fuzzy system to approximate it. Suppose that 
the adaptive fuzzy sliding mode control law 
has two parts, one is fuzzy part, U- and another 
one is hitting part, U,, i.e. 

(12) 
where uf is obtained from a fuzzy rule base de- 
scribed in the Section 2. Now, we derived an 
adaptive law to adjust the parameter vector 8 .  
Assume there exist a set of parameters 8’ in 
the universe of discourse 8, such that (8’)‘p - 
U,, is minimal. Define a Lyapunov function 

where Q = 8* - 8 ,  and 7 is a positive con- 
stant. Substitute (12) to the error equation (8), 
we get 

(14) 
or 

(15) 
where C = [cl ... cn-1 OITb, = [0 0 ... bITE R”.  
Then 
k = -eTQe + tQT(qsp + 4) - sbv - sbuh ( 1 6) 
where p = p(s) is the fuzzy premise function 
vector described in Section 2, and v = u- - ueq. 
Note that 4 = -6, hence, if we choose the 
adaptive law as 

D”” + C,-,D”” + ... + c, = 0 

U = U/ + U, 

v= $9 + $QTQ (13) 
A 

- 
e n  = -ce + b(uq - uf- U,,) 

e = Ace + bc(ueq -US- uh) 

e = qs(e)p(s) (17) 

and U,, has sign agree with sb (this part will be 
derived in the next paragraph), then equation 
(16).becomes 

(18) V s -eTQe - eTcbv 

Stabilie consideration: The purpose of hitting 
control part in the equation (12) is used to 
draw the state to hit the sliding surface no mat- 
ter where the initial state is. To achieve such a 
goal, let’s define a Lyapunov function for s 

the hitting condition which guarantees the sta- 
bility of sliding mode control system is 

(20) 
Suppose that we know the upper bound offl.) 
and lower bound of b, i.e. 

Then, we have 

(19) v s  = 2s 1 2  

v, = ss < 0 

Ifl s f , a n d O < b s b  - (21) 

5 IsbI(lueql+ Iufl)-sbUh (22) 
v, = sb(ue, - Uy- uh) 

To guarantee (22) less then or equal to zero, 
the hitting control law must be selected as 
uh =sign(s)[k-l@+ lr(n)l+ lETel+ I ~ / I )  1 
Substitute (23) into (22), one can get ks s 0, 
and the hitting condition can be satisfied, 
therefore the system is stable. 

(23) 

Practical consideration: In general, the hitting 
control part described previously is a high gain 
bang-bang control. It will generate a very large 
control force and increase the control cost, 
which is usually undesired. Therefore, we re- 
place the sign function in (23) by a saturation 
function and modify the control law (12) by 

where 
U =Uf+ a U, (24) 

a={ 1, 1.1 >s 
0, Is1 <s 

and S is a constant specified by the designer. 

4. Simulation results 
In this section, we applied the AFSMC devel- 
oped in the last section to control an inverted 
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pendulum system, see Figure 2, which is high- 
ly nonlinear and unstable. The dynamics of the 
inverted pendulum system can be characterized 
by two state variables. x, denotes the angle of 
the pole with respect to the vertical line, and x, 
denotes the angular velocity of the pole. Ne- 
glecting the coefficient of friction, the state 
equation can be expressed as follows 

XI 'X2 

Xz 5 

grmx~-corxl (*xi Sinx1-&t) 

$1- A mc +m wsZxl 

where g is thegravityconstant, 9.8m/s2. m, 
is the mass of the cart, 1 .O kg. m is the mass of 
the pole, 0.1 kg. I is the length of the pole, 1 
m. fis the input force to the cart. Select c =[ 10 
13' and q = 10. Before applying adaptive fuzzy 
sliding mode control law to the system, the de- 
sign must define an initial complete rule base, 
a possible choice is 

IF s is PB(2,0.7) THEN U is ZE(0,2) 
IF s is PM(1.2,0.3) THEN U is ZE(0J) 
IF s is PS(0.5,0.3) THEN U is ZE(0,2) 
IF s is ZE(0,0.2) THEN U is ZE(0,2) 
IF s is NS(-0.5,0.3) THEN U is ZE(0,2) 
IF s is NM(-1.2,0.3) THEN U is ZE(0,2) 
IF s is NB(-2,0.7) THEN U is ZE(0,2) 

Note that consequence part of above rule base 
are all zero. By applying the adaptive law (17) 
and the control law (24) with a=O, i.e. without 
using hitting control part, the membership 
functions of U are shown in Figure 3 at time 
step 0, 50, 100 and 500, respectively. Figure 4 
shows the response of the system controlled by 
such 7-rule AFSMC. By adding the hitting 
control part to the system, Figure 5 shows an 
asymptotically sliding mode can be achieved. 
To view the rule tolerance property of 
AFSMC, we define another rule base with 5 
rules as 

IF s is PB(2,l) THEN U is ZE(0,2) 
IF s is PS(0.5,0.5) THEN U is ZE(0,2) 
IF s is ZE(0,OS) THEN U is ZE(0,2) 
IF s is NM(-0.5,0.5) THEN U is ZE(0,2) 
IF s is NB(-2, 1) THEN U is ZE(0,2) 

the membership functions of U are shown in 
Figure 6 at time step 0, 50, 100 and 500, re- 
spectively. Figure 7 shows the response of the 
system controlled by such 5-rule AFSMC. 
Compare Figure 4 with Figure 7, we see that 
even the initial rule bases are so different, the 
AFSMC can yield similar responses, such a 
rule tolerance property can reduce the exper- 
tise dependency in the designing procedure. 

5. Conclusions 
In this paper, we developed an adaptive fuzzy 
sliding mode controller, which has the follow- 
ing characteristics 
1) The membership functions of consequence 
can be tuned automatically. 
2) Does not require the mathematical model of 
the system. 
3) Expertise dependency can be reduced by the 
rule tolerance property. 
4) By applying the hitting control part, the sta- 
bility of control system can be guaranteed. 
5) Dynamic behavior of the control system can 
be specified by an userdefined sliding surface. 

Reference 
[l] C. C. Lee, "Fuzzy logic in control systems: 
Fuzzy logic controller, parts I and U," IEEE 
Trans. Syst., Man, Cybem., vol. 20, no. 2, pp. 
404435,1990. 
[2] E. M. Mamdani, "Application of fuzzy al- 
gorithms for control of simple dynamic plant," 
Proc. IEE, vol. 121, no. 12, pp. 1585-1588, 
1974 
[3] M. Sugeno and M. Nishida, "Fuzzy control 
of model car," Fuzzy sets and System, vol. 16, 

[4] S .  C. Lin and C. C. Kung, "A linguistic 
fuzzy sliding mode controller," Proc. of 1992 
A.C.C., pp. 1904-1905. 
[5] V. I. Utkin, Sliding modes and their appli- 
cation in variable structure system, Moscow: 
Mir, 1978 (English translation). 

pp. 103-113,1985. 

38 



f 

2 

0 
U 

-0 ii -2 

-4 

-6 
0 0.2 0.4 0.6 

error 

Figure 5 The response with hitting control 

0 4  

0 2  

f O  -20 0 20 40 

Univnw olu  Univemeolu 

I I 

= 0 8  = 0.8 

3 0 6  0.6 1 0 4  0.4 

z 0 2  x 0.2 

0 
-40 .20 o 20 do 50 -20 o 20 40 

~ ~ ~ ~ ~ ~ r t t  IJ~W-OTU 

Figure 6 The membership functions of U in the 
5-rule AFSMC under adjusting. r 0 2  
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Figure 3 The membership functions of U in the 
7-rule AFSMC under adjusting. 
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