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Design of Adaptive Neural Network Controller for Thermal
Power System Frequency Control

UDK
IFAC

681.515
5.5.1; 4.0; 2.8.3

Original scientific paper

This paper deals with analytical and simulation approach for choice of activation functions and instead of a

number of nodes for a class of neural network controllers for frequency control of thermal power systems. Neural

network update laws are derived via Lyapunov like stability analysis. When number of nodes is fixed, then simula-

tion analysis is conducted to find the best performer activation function. Best performance is chosen using integral

error criteria and proper statistical tests.
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Dizajn adaptivnog regulatora s neuronskim mrežama za regulaciju frekvencije u elektroenergetskom

sustavu s toplinskim turbinama. Članak opisuje analitičko-simulacijski pristup izboru aktivacijskih funkcija i

broja čvorova za klasu regulatora s neuronskim mrežama za regulaciju frekvencije u elektroenergetskom sustavu

s toplinskim turbinama. Zakoni učenja neuronske mreže su izvedeni kroz analizu stabilnosti primjenom funkcije

Ljapunova. Nakon što je odre�en broj čvorova, proveden je simulacijski postupak za odre�ivanje najbolje aktivaci-

jske funkcije. Najbolja funkcija za dani regulator je odre�ena korištenjem kriterija integralne pogreške i statističkim

testiranjem.

Ključne riječi: izbor aktivacijskih funkcija, broj čvorova, regulacija neuronskim mrežama

1 INTRODUCTION

The paper presents novel procedure for designing neu-

ral network (NN) frequency controller for an isolated ther-

mopower system. As power systems are rapidly entering

the era of deregulation, the importance of frequency con-

trol becomes more significant and precise scheduling of

loads in power system becomes increasingly complicated,

if not impossible. As a result, load fluctuations in the

power system are becoming more explicit. In addition, in

emerging markets of ancillary services, primary controllers

and turbines employed in secondary frequency and power

control change constantly, typically on hourly basis.

When conventional control schemes are used, these

changes of power system parameters can cause serious

problems affecting the quality of frequency control, and

in some cases even affect the overall system stability. In

order to avoid such instabilities, conventional secondary

controllers are usually implemented with smaller integral

gains than the optimal performance would otherwise re-

quire ([2]).

The problem addressing the frequency and load – fre-

quency control is well described ([2], [3], [4], [5], [6], [7],

[8] and many others). Some of already mentioned non-

adaptive schemes are given in [2], [3], [4], [5], [6], and [7].

However, as the recent trends in the deregulation of mod-

ern power systems lead to frequent and significant param-

eters changes, the quality of control is diminished when

such non-adaptive controllers are used, hence calling for

other approaches.

NN load-frequency control is described in [9], [10]

and [11]. These NN control algorithms show satisfactory

performance but, unfortunately, require off-line training.

Since NN training cannot be done on real systems, this ap-

proach is constrained regarding application to power sys-

tems control because it is very hard to obtain a precise

model required to train the controller.

In this paper we provide a novel design procedure and

description of adaptive NN controller that does not require

a priori training yielding the neural network capable of

on-line learning ([1]). The new controller represents an

advanced and performance-enhanced version of a NN con-

trol scheme given in [12].
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2 MATHEMATICAL PRELIMINARIES

Let R denote the real numbers, Rn denote the real n
vectors, Rm×n the real m × n matrices. We denote by

‖·‖ a suitable vector norm. Given a matrix A = [aij ],
A ∈ Rn×m the Frobenius norm is defined by

‖A‖
2
F = tr(ATA) =

∑

i,j

a2ij (1)

with tr() the trace operation. The associated inner prod-

uct is 〈A, B〉F = tr
(

ATB
)

. The Frobenius norm ‖A‖
2
F

is denoted by ‖·‖ throughout this paper, unless otherwise

specified. The trace of A satisfies tr(A) = tr(AT ) for a

matrix A = [aij ]. For any mxn matrix, and nxm matrix

C, we have tr(BC) = tr(CB).

In proving stability we use proposition given in [13]

which basically states that a system is uniformly ultimately

bounded if it has a Lyapunov function whose time deriva-

tive is negative in an annulus of a certain width around the

origin. As given in [13];

Lemma 1: Consider the function g (•) : R→R

g (y) = α0 + α1y−α2y
2, y∈R+, (2)

where αi > 0, i = 0, 1, 2. Then g (y) < 0 if y > η > 0,
where

η =
α1 +

√

α2
1 + 4α0α2

2α2
. (3)

Proposition 1: Let x(t) ∈ Rm be the solution of the

differential equation

ẋ(t) = f(x(t), t), x(t0) = x0. (4)

And assume there exists a function L(x(t), t) that satisfies

mm ‖x(t)‖
2
≤ L(x(t), t) ≤ mM ‖x(t)‖

2
, (5)

L̇(x(t), t) ≤ g(‖x(t)‖) < 0 for all ‖x(t)‖ > η > 0, (6)

with mm and mM positive constants, g (•) as in (2) and η

as in (2). Define δ ≡
√

m−1
m mM and d > δη. Then x(t)

is uniformly ultimately bounded that is

‖x0‖ ≤ r → ‖x(t)‖ ≤ d for all t ≥ t0 + T (d, r), (7)

where

T (d, r) = 0, r ≤ δ−1d, (8)

T (d, r) =
mMr2 −mmR2

α2R2 − α1R− α0
, r > δ−1d. (9)

Fig. 1. Two layer neural network

3 NN POWER SYSTEM CONTROL

Given x ∈ Rn1 , a two-layer NN, shown in Fig. 1, has a

net output given by

y = WTσ(V Tx), (10)

where x =
[

1 x1 . . . xn1

]T
, y =

[

y1 . . . yn2

]

and σ(•) is the activation

function. If z =
[

z1 z2 ...
]T

, we define

σ(z) =
[

σ(z1) σ(z2) ...
]T

. Including "1" as a

first term of vector x in allows one to incorporate the

thresholds as the first column of WT . Then any tuning of

NN weights includes tuning of thresholds as well [1].

The main property of NNs we are concerned with for

control and estimation purposes is the function approxi-

mation property ([15], [16]). Let f(x) be a smooth func-

tion from Rn1 → Rn2 . Then, it can be shown that if the

activation functions are suitably selected, as long as x is

restricted to a compact set S ∈ Rn, then for some suffi-

ciently large number of hidden-layer neurons L, there exist

weights and thresholds such that

f(x) = WTσ(V Tx) + ε(x). (11)

The value of ε(x) is called the neural network func-

tional approximation error. In fact, for any choice of a

positive number εN , one can find a neural network such

that ε(x) ≤ εN for all x ∈ S. Also, it has been shown that,

if the first-layer weights V are fixed (not tuned), then the

approximation property can be satisfied by selecting only

the output weights W . For this to occur ϕ(x) = σ(V Tx)
must be a basis [1].

If one selects the activation functions suitably, then, as

it was shown by Igelnik and Pao [17], the ϕ(x) is a ba-

sis if is selected randomly. Activation functions should be
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Gaussian, subsequent derivatives of Gaussians, sigmoidal

functions or hyperbolic tangents.

3.1 Isolated Thermopower System

The model of an isolated thermopower system is shown

in Fig. 2. All power values are given in per unit system

([pu]).

1/R

Gg Gt Gs

-
Pr

-
PL

+

Pm

-

f

Fig. 2. The model of isolated thermo power system

The transfer functions are given as:

Gg =
1

1 + Tgs
, (12)

Gt =
1

1 + Tts
, (13)

Gs =
Ks

1 + Tss
, (14)

where Gg , Gt and Gs represent turbine governors, control

turbines and the power system respectively. Such models

are described in more details in [2], [3], [4], [5], [6], [7],

[8], and by many others. Model parameters are: power

system droop R [Hz/pu], turbine governing time constant

Tg [s], turbine time constant Tt [s], load time constant Ts

[s] and load system gain Ks [Hz/pu]. Model output is fre-

quency change from operating point ∆f [Hz], model in-

puts are load power change ∆PL [pu] and control power

reference value ∆Pr [pu], and ∆Pm [pu] is mechanical

power change. These papers also show that the isolated

thermopower system given in Fig. 2 is always asymptoti-

cally stable if R is a positive number. In real power systems

that is always the case.

The system is linear and the need for adaptive control

or use of the function approximation property of the neu-

ral network is not obvious. However, as it was mentioned

before, all of the system parameters can and do change dur-

ing the operation. This is especially true in modern power

systems where ancillary services are bought and utilized

on free market on the hourly base. Thus, with constantly

changing parameters it is conceivable that adaptive control

scheme would perform better than non-adaptive control.

The conventional way to control thermopower plant is

to use linear PI controllers. The controller has the change

of power system frequency ∆f as the input and produces

the control signal ∆Pr at output. That signal is fed to

available turbine governors in order to counter the changes

caused by the change in the load ∆PL. The turbine out-

put is the mechanical power ∆Pm. However, the presence

of integral action means that the system can become un-

stable. Instead, the full state space adaptive NN controller

acting as a nonlinear proportional gain parallel to 1/R will

guarantee stability and provide required accuracy.

The system shown in Fig. 2 can be represented in state

space form as

ẋ =







− 1
Tg

0 − 1
RTg

1
Tt

− 1
Tt

0

0 Ks

Ts
− 1

Ts






x

+





− 1
Tg

0

0 0
0 −Ks

Ts





[

∆Pr

∆PL

]

ẋ = Ax+Bu

∆f =
[

0 0 1
]

x.

(15)

The state vector x is defined as

x =
[

yg ∆Pm ∆f
]T

, (16)

where yg is the output from the turbine controllers. In prac-

tice, these states are physically available, and this represen-

tation allows for the NN control scheme design.

3.2 Adaptive Neural Network Control

We use the neural network shown in Fig. 1. When the

first layer weights are initialized randomly and then fixed

to form a basis ϕ(x), the NN output (10) becomes

y = WTϕ(x) (17)

similarly to the tracking NN controller described in [18],

[19], [14], [20], [21] and numerous other papers.

However, as the problem here is control and not track-

ing, we need different controller architecture. First of all

there is no special robustifying term within the controller

and, second, the PD controller parallel to NN controller

is absent. Actually, nor derivative nor proportional part

parallel to 1/R is needed to initially stabilize the system

since uncontrolled system is always stable. Even though

the proportional gain K parallel to 1/R was still used in the

scheme in [12], simulation analysis had shown that propor-

tional gain does not improve the performance of the control

scheme. Therefore, the controller developed below does

not use proportional part in control, but only NN alone.

It is assumed that the load disturbance ∆PL is bounded

so that

∆PL ≤ ∆PM . (18)

This assumption is true as long as the power system is

in normal mode of operation. If the load disturbance is
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WT (x)

yg

Fig. 3. NN control scheme

too big there will not be any control action since the sys-

tem just does not have enough power generation capability

available. In that case, the protection functions take over

and some loads have to be disconnected.

NN tuning law is derived in [24] as follows. NN control

scheme in shown in Fig. 3. Control signal is given by

∆Pr = WTϕ(x) (19)

and the weight updates are provided by

Ẇ = Fϕ(x)∆f − kw ‖x‖FW, (20)

with F any symmetric and positive definite matrix and

kw positive design parameter. Then, the system states x
and neural network weights W are ultimately uniformly

bounded (UUB) and the system is stable in Lyapunov sense

as long as

‖x‖ >
dMσ(P )max +

D2

4k2
w

1
2σ(Q)min

, (21)

or

‖W‖ >
D

2kw
+

√

D2

4k2w
+

dMσ(P )max

kw
. (22)

Proof is provided in [24] in the way that rewrites equa-

tion (15) into the form that is more suitable for the stability

analysis

ẋ = Ax+B2∆PL +B1W
Tϕ(x) (23)

where

B1 =
[

− 1
Tg

0 0
]T

, (24)

B2 =
[

0 0 −Ks

Ts

]T

. (25)

We will also redefine the disturbance as

d = B2∆PL. (26)

Note that d is also bounded by a constant dM because ratio
Ks

Ts
has always a finite value. We can now rewrite (23) as

ẋ = Ax+ d+B1W
Tϕ(x) (27)

Let us now define the Lyapunov candidate:

L̇ =
1

2
xTPx+

1

2
WTF−1W (28)

with P a diagonal and positive definite matrix. In this de-

sign W is a vector because we have only one output. The

Lyapunov derivative is:

L̇ =
1

2
(ẋTPx+ xTP ẋ) +WTF−1Ẇ . (29)

By introducing (27) into (29) we obtain

L = 1
2 ẋ

T (ATP + PA)x+ xTPd

+xTPB1W
Tϕ(x) +WTF−1Ẇ .

(30)

The first term in (30) is a well known Lyapunov function

for linear system and can be easily rewritten by introducing

(20) into (30)

L = 1
2 ẋ

TQx+ xTPd

+WTϕ(x)(xTPB1 +∆f) + kw ‖x‖ ‖W‖
2
,

(31)

with Q positive definite (note that uncontrolled system is

asymptotically stable, so positive definite Q always exists).

Let us define D as D = max(‖ϕ(x)‖ (‖PB1‖ + 1)). Ac-

tivation functions are bounded so we can replace ϕ(x) by

‖ϕ(x)‖. Let us define σ(Q)min and σ(P )max as the min-

imum and maximum singular values of matrices Q and P
respectively. After introducing norms and some arithmetic

we obtain the following inequality:

L̇ ≤ −‖x‖

(

1
2 ‖x‖σ(Q)min−

dMσ(P )max − ‖W‖D + kw ‖W‖
2

)

.

(32)

Lyapunov derivative is negative as long the term in paren-

theses in (32). This term will be positive as long as (21)

and (22) hold, meaning as long as x and W are outside

a compact set. Vectors x and W are thus UUB and the

system is stable.

4 CHOICE OF NUMBER OF NODES AND ACTI-

VATION FUNCTIONS

The important step in structuring the neural network is

choice of number of nodes and type of activation functions.

Exact solution for choice of number of nodes or activation

functions does not exist. Instead, various iterative methods

can be applied. Here, we will illustrate an novel iterative

method for choice of NN controller’s activation functions

and number of nodes.

AUTOMATIKA 52(2011) 4, 319–328 322



Design of Adaptive Neural Network Controller for Thermal Power System Frequency Control O. Kuljača, K. Horvat, B. Borović

Let us first deal with choice of number of nodes. We

will assume some minimal knowledge about the nature of

controlled plant. We can see that, in essence, controlled

plant is built out of three first order transfer functions with

nonconstant parameters. The state vector in our case has

three states. It is shown in [25] and [26] that bound of func-

tion approximation error decreases with number of nodes

as well as the number of inputs.

So, a simple way to estimate number of nodes is to pick

transfer function with any parameters corresponding to the

control plant architecture - in our case, we have three first

order transfer functions so we choose the first order trans-

fer function as a common representative for all three states

of the system. Then, the transfer function is persistently

excited with the appropriate signal ([27]) and the inputs,

u, and the output, y, are recorded. This step can be easily

done by simulation. Error can be calculated as e = y − u.

Now, the next step is to setup feedforward network with

less or the same number of inputs as is our state vector,

x. In our case, inputs are u and e. Generally, the initial

number of NN nodes for the approximation of the first or-

der transfer function can be heuristically determined and

typically turns out to be two. Furthermore, hyperbolic tan-

gents, any member of the family of the sigmoid or the

Gaussian type of activation functions can be used during

this step.

The network is trained to check if sufficiently small er-

ror can be achieved where the sufficiently small error de-

pends on required precision in actual system. If this is

achieved, the chosen number of nodes remains two. If not,

one node is added. The procedure is repeated until the suf-

ficiently small error is achieved. Software tools for NN

training and simulation needed for carrying out the proce-

dure are numerous and readily available.

Now, for the system shown in Fig. 2, we can choose

two nodes for each of the three transfer functions, totaling

six nodes in neural network hidden layer. Actually, the

dimension of ϕ(x) is in this case 7× 1 with bias included.

Choice of activation functions is more complex. Again,

as for the choice of number of nodes, there is no exact

solution for choice of activation functions. Therefore, we

will assume that we know the basic information of system

architecture and we will find activation function through

simulation.

The procedure starts with setting up the network with

number of nodes found by the procedure described above.

The activation functions are the ones that are to be checked.

Persistently excited input or disturbance signal is fed into

the system from Fig. 2 controlled by (11) and with weights

updated by (12) and performance indicators recorded. The

procedure is repeated to evaluate all activation functions

candidates with expected parameter changes.

Of course, we must assume that we don’t have com-

plexity issues with hardware. In the other words, our hard-

ware is good enough to withstand numerical burdens of

Radial basis functions (RBF) or sigmoid activation func-

tions. With contemporary hardware pieces this is always

almost the case.

5 SIMULATION EXAMPLE

In order to illustrate the procedure described above,

the simulation example is provided. Simulations were

performed with following parameters and signals: Tg =
0.08s, Tt = 0.3s, Ts = 20s, Ks = 120Hz

pu
, R =

2.4Hz
pu

, F = diag(0.07), kw = 0.05, and ∆PL =

0.1 sin(0.02π t)pu. Matrix ϕ(x) has dimensions 7x1 and

W and V initialized as random numbers between -0.5 and

0.5. Simulations were performed for given plant parame-

ters as well as for plant parameters increased and decreased

by 10%. Simulation time was 480 s. Recorded perfor-

mance indicators for each simulation were Integral of Ab-

solute Error (IAE)

JIAE =

∫

∞

0

|e(t)| dt (33)

and Integral of Squared Error (ISE)

JISE =

∫

∞

0

e2(t)dt. (34)

Since neural network weights were initialized ran-

domly, it was necessary to perform a number of simula-

tions in order to obtain samples with different IAE and ISE

values that allow us to compare mean values and choose

the best candidate. We performed fifty simulations for ev-

ery activation function and every set of parameters. Sim-

ulation was performed for Gaussian activation function

given by

f(x) = e−a2(x−b)2 , (35)

tanh activation function given by

f(x) =
e2a(x−b) − 1

e2a(x−b) + 1
, (36)

and sigm (sigmoid) activation function given by

f(x) =
1

e−a(x−b) + 1
. (37)

Resulting IAE and ISE mean values for the three acti-

vation functions from above are given in Table 1, Table 2

and Table 3.

Simulation was also performed for nominal parame-

ters and ±10% parameter changes for the system con-

trolled with conventional PI controller with proportional
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Fig. 4. Normal probability plots for IAE and original pa-
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Table 1. Mean values of IAE and ISE with original param-

eters
IAE ISE

Gauss 4.0426 0.0476
tanh 16.2409 0.7912
sigm 6.7312 0.1214

Table 2. Mean values of IAE and ISE with original param-

eters decreased by 10%

IAE ISE

Gauss 4.0844 0.0475
tanh 16.1705 0.7654
sigm 6.7234 0.1234

Table 3. Mean values of IAE and ISE with original param-

eters increased by 10%

IAE ISE

Gauss 4.1132 0.0503
tanh 16.1597 0.7799
sigm 6.7229 0.1271

gain, kp = 0.08, and integral gain, ki = 0.1Hz. Results

are shown in Table 4.

From tables 1-4 it can be seen that control with neural

networks with Gaussian and sigmoidal functions outper-

forms by far control with PI or tanh activation function.

However, the question is whether these differences are sta-

tistically significant.

To answer that question, we will first check the distribu-

tion of recorded IAE and ISE simulation results for every

activation function. Normal probability plots varying the

criteria, system parameters, and initial weights within V-

layer are shown in Figures 4-9.

From Figures 4-9 we can see that distributions are nor-
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Fig. 6. Normal probability plots for ISE and original pa-

rameters

mal, so samples can be compared by standard t test for

hypothesis testing, with H0 hypothesis stating the means

are the same and H1 hypothesis stating that one mean is

smaller than the other, i.e. left tailed t test. We will perform

test with 0.025 level of significance. In case of comparison

with PI controller we use one sample t test.

T test results are given in Tables 5-10. Subscripts as-

signed to the criteria name denote activation function for

obtained mean value of integral error.

Very small p values and relatively big t values point on

small effect on precision by consecutive testing on sam-

ples. Therefore, there was no need to perform multivari-

able statistical testing.

T tests confirm that the tests leading to results in Ta-

bles 1-4 are statistically significant. Now we can state

that NN control with Gaussian activation functions outper-
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Table 4. IAE and ISE for PI controlled system

IAE ISE

Nominal 17.0659 0.8122
-10% 17.0639 0.8119
+10% 17.0674 0.8124

Table 5. T test results for IAE and original parameters

Test

result

p value t value

IAEtanh <IAEPI no 0.0864 −1.3836
IAEsigma <IAEtanh yes 1.5037 ·10−21 −15.8608
IAEGauss <IAEsigma yes 1.0431 ·10−44 −25.1142

Table 6. T test results for ISE and original parameters

Test

result

p value t value

ISEtanh <ISEPI no 0.3538 −0.3773
ISEsigma <ISEtanh yes 1.5006 ·10−16 −12.0192
ISEGauss <ISEsigma yes 1.7594 ·10−41 −23.5823

Table 7. T test results for IAE and decreased parameters

Test

result

p value t value

IAEtanh <IAEPI no 0.0741 −1.469
IAEsigma <IAEtanh yes 5.0414 ·10−21 −15.4241
IAEGauss <IAEsigma yes 3.3138 ·10−39 −22.2924

Table 8. T test results for ISE and decreased parameters

Test

result

p value t value

ISEtanh <ISEPI no 0.1902 −0.8853
ISEsigma <ISEtanh yes 8.0349 ·10−17 −12.2194
ISEGauss <ISEsigma yes 4.7662 ·10−41 −25.8554

Table 9. T test results for IAE and increased parameters

Test

result

p value t value

IAEtanh <IAEPI no 0.0716 −1.4875
IAEsigma <IAEtanh yes 6.0808 ·10−21 −15.3564
IAEGauss <IAEsigma yes 1.7644 ·10−46 −26.3856

Table 10. T test results for ISE and increased parameters

Test

result

p value t value

IAEtanh <IAEPI no 0.298 −0.5337
IAEsigma <IAEtanh yes 9.4429 ·10−15 −10.7030
IAEGauss <IAEsigma yes 8.4833 ·10−36 −21.4119
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Fig. 8. Normal probability plots for IAE and increased

parameters

forms other cases since it generates the smallest integral

errors.

Comparison in responses of the system with original pa-

rameters controlled by neural network with Gaussian ac-

tivation function vs. PI controller is shown in Fig. 10

and Fig. 11. Disturbance input was set to be ∆PL =
0.1 sin(0.02πt).

Unwanted frequency variation is shown in Fig. 10 and is

about three times smaller in magnitude for the system con-

trolled by NN than in the case of system controlled with

conventional PI controller. However, as shown in Fig. 11,

the power required to achieve such performance is essen-

tially equal in both cases. Thus, the requests for action

from ancillary systems required to keep the system fre-

quency within the nominal bounds will be much lower if

NN control scheme is used resulting in reduced overall cost
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Fig. 10. Frequency changes

of the frequency control.

6 CONCLUSION

Paper has shown a practical approach to neural network

design for frequency control for thermal power systems.

First, we defined linear-in-parameter (LIP) neural network

(i.e. hidden layer weights are fixed and initiated as random

numbers). Then, we performed Lyapunov stability analy-

sis in order to find weight updates laws. It was followed

by initiation of hidden layer and output weights as random

numbers covering the expected state space of controlled

plant. The procedure for determining number of nodes was

described in details. The structure of NN was finalized by

choosing the type of activation function through proper sta-

tistical testing.

The comparative analysis of the NN and conventional

PI controller showed that the power necessary to keep the
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Fig. 11. Control signals

system frequency within the nominal bounds will be much

lower when NN control scheme is used. It results in sig-

nificantly reduced cost of the frequency control.

Described procedure can be easily carried out using a

digital computer and can be applied to systems exhibit-

ing similar dynamics as described in this paper, for exam-

ple hydropower systems, hydraulic pistons or water tur-

bines. Moreover, future work will comprise application of

the given procedure on systems with different dynamics as

well as systems with nonlinearities, therefore expanding its

use to a wider class of systems.
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